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Commutator Length of Leaf Preserving
Diffeomorphisms

by

Kazuhiko Fukui

Abstract

We consider the group of leaf preserving C∞-diffeomorphisms for a C∞-foliation on a
manifold which are isotopic to the identity through leaf preserving C∞-diffeomorphisms
with compact support. We show that for a one-dimensional C∞-foliation F on the torus,
this group is uniformly perfect if and only if F has no compact leaves. Moreover we
consider the group of leaf preserving C∞-diffeomorphisms for the product foliation on
S1 × Sn which are isotopic to the identity through leaf preserving C∞-diffeomorphisms.
Here the product foliation has leaves of the form {pt} × Sn. We show that this group is
uniformly perfect for n ≥ 2.
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§1. Introduction and statement of results

Let M be a connected C∞-manifold without boundary and let D∞c (M) denote the

group of all C∞-diffeomorphisms of M which are isotopic to the identity through

C∞-diffeomorphisms with compact support. It is well known by the results of

M. Herman [8] and W. Thurston [13] that D∞c (M) is perfect, that is, coincides with

its commutator subgroup. There are many analogous results on the group of dif-

feomorphisms preserving a geometric structure of M (for examples, J. Mather [9],

A. Banyaga [5], K. Abe–K. Fukui [1]–[3], T. Rybicki [11], T. Tsuboi [14] etc.).

Let F be a C∞-foliation on M . A diffeomorphism f : M → M is said to be leaf

preserving if f maps each leaf of F to itself. We denote by D∞L,c(M,F) the group

of leaf preserving C∞-diffeomorphisms of (M,F) which are isotopic to the identity

through leaf preserving C∞-diffeomorphisms with compact support. By T. Tsuboi

[14] and T. Rybicki [11], it is known that D∞L,c(M,F) is perfect.
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Given a group G, each element g of the commutator subgroup [G,G] of G can

be written as a product g =
∏k
i=1[ai, bi] (ai, bi ∈ G). The smallest integer k for

which such an expression exists is called the commutator length of g and is denoted

by `(g). We call ` : [G,G] → N the commutator length function of G. A group is

said to be uniformly perfect if it is perfect and its commutator length function of G

is bounded.

In this paper we consider the commutator length of leaf preserving diffeomor-

phisms for foliations. First we consider the group of leaf preserving diffeomorphisms

for one-dimensional foliations and give a sufficient condition for the group to be

non-uniformly perfect (Theorem 2.1). As an application, we have the following

main result.

Theorem A (Theorem 3.1). Let F be a one-dimensional transversely orientable

C∞-foliation on the torus T 2.

(1) If F has some compact leaves, then the commutator length function of

D∞L (T 2,F) is unbounded, hence D∞L (T 2,F) is not a uniformly perfect group.

(2) If every leaf of F is dense, then D∞L (T 2,F) is a uniformly perfect group.

Indeed, any f ∈ D∞L (T 2,F) can be represented by a product of at most six

commutators of elements in D∞L (T 2,F).

Secondly we consider the group of leaf preserving diffeomorphisms for the

product foliation F on S1 × Sn with leaves of the form {pt} × Sn. Then we have

the following.

Theorem B (Theorem 4.1). D∞L (S1 × Sn,F) is a uniformly perfect group for

n ≥ 2. Indeed, any f ∈ D∞L (S1×Sn,F) can be represented by a product of at most

eight commutators of elements in D∞L (S1 × Sn,F).

§2. The commutator length of leaf preserving diffeomorphisms for a

one-dimensional foliation with a compact leaf

Let F be a one-dimensional foliation on a manifoldM with compact leaf L0 (= S1).

We consider the commutator length function of D∞L,c(M,F) and show that it is

unbounded if the compact leaf L0 has infinite holonomy.

The strategy to show that the commutator length function of a group G is

unbounded is to construct non-trivial quasimorphisms. Here a quasimorphism on G

is a function ψ : G → R having a constant Dψ > 0, called the defect of ψ, such

that

|ψ(ab)− ψ(a)− ψ(b)| < Dψ

for a, b ∈ G. Then we can see that if one can construct a non-trivial quasimor-
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phism, then the commutator length function is unbounded (cf. J.-M. Gambaudo–

É. Ghys [7]). We have the following.

Theorem 2.1. Let F be a one-dimensional C∞-foliation on a manifold M . If

there exists a compact leaf L0 with infinite holonomy, then the commutator length

function of D∞L,c(M,F) is unbounded, hence the group is not uniformly perfect.

Proof. We have only to construct a non-trivial quasimorphism of G = D∞L,c(M,F)

to R. Let L0 = S1 (= R/Z) and π : R → S1 be the covering projection. Take

0 = π(0) ∈ S1. For any f ∈ G, take an isotopy {ft}0≤t≤1 from f0 = id to f1 = f .

Then ft(0) (0 ≤ t ≤ 1) is a path on S1 from 0 to f(0). Let f̃t(0) (0 ≤ t ≤ 1)

be the lift of the path ft(0) (0 ≤ t ≤ 1) to R satisfying f̃0(0) = 0. Then the

integer part of the value f̃1(0) represents the winding number of the path ft(0)

(0 ≤ t ≤ 1) around L0 = S1. Since L0 has infinite holonomy, the value f̃1(0) does

not depend on the choice of isotopies of f . Thus we can define a map ψ : G → R
by ψ(f) = f̃1(0) for any f ∈ G.

Now we prove that ψ : G → R is a non-trivial quasimorphism. It is easy to

see that ψ is non-trivial. To show that ψ is a quasimorphism, note that for any

g, h ∈ G and their isotopies gt, ht, the path (g · h)t(0) = (gt(0)) · (ht(0)) is ho-

motopic to the composition of the paths (ht(0)) and (gt(0)) · (h1(0)) (0 ≤ t ≤ 1)

fixing the starting point 0 and the end point g(0) · h(0). For any number a, let

g̃t(0) (0 ≤ t ≤ 1) and g̃t(a) (0 ≤ t ≤ 1) be the lifts of the paths gt(0) (0 ≤ t ≤ 1)

and gt(π(a)) (0 ≤ t ≤ 1) to R satisfying g̃0(0) = 0 and g̃0(a) = a respectively.

Then we have a− 1 < g̃t(a)− g̃t(0) < a+ 1 for any t (0 ≤ t ≤ 1) (see also [4] for

the proof). Indeed, assume that g̃t1(a) − g̃t1(0) ≥ a + 1 for some t1 (0 < t1 ≤ 1).

Since g̃0(a) − g̃0(0) = 0, there is t0 (0 < t0 < t1) satisfying g̃t0(a) − g̃t0(0) ∈ Z.

Thus we have π(g̃t0(a)− g̃t0(0)) = 0, hence gt0(π(a)) = gt0(0). Since gt0 is a home-

omorphism, π(a) = 0, hence g̃t(a) − g̃t(0) = a for any t. This is a contradiction.

When a− 1 < g̃t(a)− g̃t(0), we argue similarly.

Putting a = h̃1(0), we have

h̃1(0)− 1 < g̃1(h̃1(0))− g̃1(0) < h̃1(0) + 1.

Since ψ(g · h) = (g̃ · h)1(0) = g̃1(h̃1(0)), we have

|ψ(g · h)− ψ(g)− ψ(h)| < 1.

This completes the proof.

Let F be the product foliation of Rn × S1 with leaves of the form {pt} × S1.

We consider the commutator length function of D∞L,c(Rn × S1,F). By the same

argument as in the proof of Theorem 2.1 we have:

Corollary 2.2. The commutator length function of D∞L,c(Rn × S1,F) is un-

bounded, hence the group is not uniformly perfect.



618 K. Fukui

Proof. Take a compact leaf L0. As in the proof of Theorem 2.1, we can construct

a non-trivial quasimorphism ψL0
: D∞L,c(Rn × S1,F) → R because any element

of D∞L,c(Rn × S1,F) is compactly supported. The rest of the proof is the same as

that of Theorem 2.1.

For the product foliation F on the torus T 2 we have the following.

Theorem 2.3. Let F be the product foliation on the torus T 2. Then the commu-

tator length function of D∞L (T 2,F) is unbounded, hence the group is not uniformly

perfect.

Proof. Take two compact leaves L1 and L2 of F . As in the proof of Theorem 2.1,

for any f ∈ G and its isotopy {ft}0≤t≤1 from f0 = id to f1 = f , we can lift the

path ft(0) (0 ≤ t ≤ 1) on S1 (= L1 = L2) to the path f̃t(0) (0 ≤ t ≤ 1) on R
satisfying f̃0(0) = 0. Thus we can construct functions ψL0 , ψL1 : D∞L (T 2,F)→ R
simultaneously. The functions ψL1

and ψL2
depend on the choice of isotopies of

an element of D∞L (T 2,F) but the difference of ψL1
and ψL2

does not depend on

the choice of the isotopies. Thus we define a new function ϕ : D∞L (T 2,F)→ R by

ϕ(a) = ψL1
(a)− ψL2

(a)

for any a ∈ D∞L (T 2,F). Then we can easily see in the same way as in the proof

of Theorem 2.1 that ϕ is a non-trivial quasimorphism with defect Dϕ = 2. This

completes the proof.

§3. The commutator length of leaf preserving diffeomorphisms for

foliations on the torus

Let X be a non-singular C∞-vector field on the torus T 2 and FX be the foliation

on T 2 constructed from X. Then we have the following.

Theorem 3.1. (1) If X has some periodic orbits, then the commutator length

function of D∞L (T 2,FX) is unbounded, hence D∞L (T 2,FX) is not a uniformly

perfect group.

(2) If every orbit of X is ergodic, then D∞L (T 2,FX) is a uniformly perfect group.

Indeed, any f ∈ D∞L (T 2,FX) can be represented by a product of at most six

commutators of elements in D∞L (T 2,FX).

Proof. C. L. Siegel [12] generalized the theorem of A. Denjoy [6] by proving that

exactly one of the following happens:

(i) X has some periodic orbits.

(ii) Every orbit of X is ergodic.
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(1) If X has a periodic orbit, then FX has a compact leaf. If every leaf of FX
is compact, then FX is a bundle foliation with leaf homeomorphic to S1, and the

result follows from Theorem 2.3. If FX has some compact leaves but not all leaves

are compact, then FX has a compact leaf with infinite holonomy, and the result

follows from Theorem 2.1.

(2) If every orbit of X is ergodic, then all leaves in FX are dense. Fix p ∈ T 2

and f ∈ D∞L (T 2,FX). We need the following lemma and proposition.

Lemma 3.2. There exist a small neighborhood V of p, a neighborhood U of p

(V ⊂ U), and f1, f2 ∈ D∞L (T 2,FX) such that

• U and V are diffeomorphic to an open disk,

• f = f2 ◦ f1,

• f1 = id on V , and

• supp(f2) ⊂ U .

Proof. When f(p) = p, take small neighborhoods U, V (V ⊂ U) of p which are dif-

feomorphic to an open disk. We can deform f in U to f1 ∈ D∞L (T 2,FX) satisfying

f1 = id on V . Then f2 = f ◦ f−11 satisfies the desired conditions.

Now consider the case when f(p) 6= p. Let ` be the (shortest) part of a leaf of

FX joining p and f(p). Then we can take a small neighborhood V of p and a thin

neighborhood U (V ⊂ U) of ` such that U and V are diffeomorphic to an open

disk. By the diffeotopy extension theorem, there exists h ∈ D∞L (T 2,FX) satisfying

h = f on V and supp(h) ⊂ U . Put f1 = h−1 ◦ f and f2 = h. Then U, V and f1, f2
satisfy the desired conditions. This completes the proof.

Let N be a manifold and F be the product foliation on the product manifold

N × Rm with leaves of the form {pt} × Rm. Then we have the following.

Proposition 3.3. Any f ∈ D∞L,c(N × Rm,F) can be represented by a product of

two commutators of elements in D∞L,c(N × Rm,F).

Proof. We prove Proposition 3.3 in the parallel way to Tsuboi [15]. Take f ∈
D∞L,c(N × Rm,F). By the theorem of Tsuboi [14] and Rybicki [11], f can be

represented as a product of commutators

f =

k∏
i=1

[ai, bi], where ai, bi ∈ D∞L,c(N × Rm,F).

Let U be a bounded open subset of N × Rm containing the supports of ai’s and

bi’s. Take φ ∈ D∞L,c(N ×Rm,F) such that {φi(U)}ki=1 are disjoint. This is possible

by sliding U along a direction of Rm. We put F =
∏k
j=1 φ

j(
∏k
i=j [ai, bi])φ

−j , which
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defines an element in D∞L,c(N × Rm,F). Then we have

φ−1 ◦ F ◦ φ ◦ F−1 = f ◦
( k∏
j=1

φj [aj , bj ]
−1φ−j

)

= f ◦
[ k∏
j=1

φjbjφ
−j ,

k∏
j=1

φjajφ
−j
]
.

Thus

f = [φ−1, F ] ◦
[ k∏
j=1

φjajφ
−j ,

k∏
j=1

φjbjφ
−j
]
,

so f is a product of two commutators of elements in D∞L,c(N × Rm,F). This

completes the proof.

Proof of Theorem 3.1(2) continued. The map f2 in Lemma 3.2 satisfies supp(f2)

⊂ U (∼= intD2). We may assume that FX is a product foliation on U . From

Proposition 3.3, f2 can be represented by a product of at most two commutators

of elements in D∞L,c(U,FX |U ).

Next we consider f1. Choose V ′ ⊂ V (⊂ U) as open flow boxes with common

transverse component and take A to be the union of a leaf of FX |T 2\V ′ and two

leaves of FX |V , which is connected. This is possible because all leaves of FX are

dense. Take small neighborhoods P,Q (P ⊂ Q) of A such that P,Q are unions

of connected parts of leaves of FX and are diffeomorphic to an open disk. Then

we may assume that FX is a product foliation on Q. Thus by deforming f1 in Q,

we obtain f3 ∈ D∞L (T 2,FX) with f3 = id on P . Putting f4 = f−13 ◦ f1, we have

f1 = f3 ◦ f4. Since f4 is supported in Q (∼= intD2) and FX is a product foliation

on Q, f4 can be represented by a product of at most two commutators of elements

in D∞L,c(Q,FX |Q) by the above argument. Since V ∪ Q is homeomorphic to an

open cylinder, a small open neighborhood W of the complement of V ∪Q is also

homeomorphic to S1× (−1, 1). Furthermore we may assume that FX is a product

foliation on W . From Proposition 3.3, f3 ∈ D∞L,c(W,FX |W ) can be represented

by a product of at most two commutators of elements in D∞L,c(W,FX |W ). Hence

f can be represented by a product of at most six commutators of elements in

D∞L (T 2,FX). This completes the proof.

Remark 3.4. Any transversely orientable C∞-foliation F on the torus T 2 comes

from a foliation constructed from a non-singular C∞-vector field. Thus Theorem A

follows from Theorem 3.1. On the other hand, any transversely non-orientable C∞-

foliation F on T 2 has a compact leaf with infinite holonomy. Thus Theorem 2.1

implies that D∞L (T 2,F) is not uniformly perfect.
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§4. The uniform perfectness of leaf preserving diffeomorphisms for the

product foliation on S1 × Sn (n ≥ 2)

Let Sn be the unit n-sphere in Rn+1 and let F be the product foliation on S1×Sn

(n ≥ 1) with leaves of the form {pt} × Sn, and D∞L (S1 × Sn,F) be the group

of leaf preserving C∞-diffeomorphisms of (S1 × Sn,F) which are isotopic to the

identity through leaf preserving C∞-diffeomorphisms.

In this section we show the uniform perfectness of D∞L (S1 × Sn,F) (n ≥ 2).

Put G = D∞L (S1×Sn,F). Fix a point p ∈ Sn. Let p∗ be the antipodal point of p.

Theorem 4.1. D∞L (S1 × Sn,F) is uniformly perfect for n ≥ 2. Indeed, any f ∈
D∞L (S1 × Sn,F) can be represented by a product of at most eight commutators of

elements in D∞L (S1 × Sn,F).

Proof. Fix any f ∈ G. If f(S1 × {p}) ∩ (S1 × {p∗}) 6= ∅, then by sliding f on a

neighborhood of S1×{p∗}, we can assume f(S1×{p})∩ (S1×{p∗}) = ∅ because

n ≥ 2. That is, there are f1, f2 ∈ G such that (1) f = f1 ◦ f2 and (2) fi(S
1 × {p})

∩ (S1×{p∗}) = ∅ (i = 1, 2). Thus we may assume f(S1×{p})∩ (S1×{p∗}) = ∅.
Then for any s ∈ S1, there exists a continuous family of shortest geodesics `(s, p)

joining (s, p) to f(s, p) ∈ {s}×Sn. Put L =
⋃
s∈S1 `(s, p), which may be considered

as a (singular) surface with S1 × {p} and f(S1 × {p}) as boundary. Take an open

neighborhood U of L such that U ∩ (S1 × {p∗}) = ∅ and U is diffeomorphic to

S1 × intDn. Let U(s, p) = U ∩ ({s} × Sn). Take a sufficiently small disk V (s, p)

around (s, p) in U(s, p) satisfying W (f(s, p)) = f(V (s, p)) ⊂ U(s, p). Then we can

take a constant disk V = V (s, p) not depending on s because of the compactness

of S1. Then by using the diffeotopy extension theorem (see Theorem 2.3 of Milnor

[10]), for each s ∈ S1, there exists a leaf preserving C∞-diffeomorphism h : (S1 ×
Sn,F)→ (S1×Sn,F) such that for each s, h(s, ·) : {s}×Sn → {s}×Sn satisfies

• h(s, x) = f(s, x) for (s, x) ∈ V = V (s, p),

• h(s, x) = (s, x) for (s, x) /∈ U(s, p).

Put f = h ◦ (h−1 ◦ f) = h1 ◦ h2, where h1 = h and h2 = h−1 ◦ f . Then supp(h1) ⊂
U ∼= S1×intDn and supp(h2) ⊂ S1×(Sn−V̄ ) ∼= S1×intDn. Thus we may consider

that h1, h2 ∈ D∞L,c(S1 × intDn, F0), where F0 is the product foliation with leaves

of the form {pt}× intDn. From Proposition 3.3, h1, h2 can each be represented by

a product of at most two commutators of elements in D∞L,c(S
1× intDn,F0). Hence

f can be represented by a product of at most eight commutators. This completes

the proof.

Corollary 4.2. D∞L (S1 × Sn,F) is uniformly perfect if and only if n 6= 1.

Proof. This is an immediate consequence of Theorems 2.3 and 4.1.
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