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On Projectively Embeddable Complex-Foliated
Structures

by

Takeo Ohsawa

Abstract

An extension of Kodaira’s embedding theorem is proved for compact smoothly foliated
manifolds with complex leaves. Existence of a leafwise positive line bundle is shown to
be sufficient for Ck projective embeddability for all k < ∞.
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Introduction

A well known embedding theorem of Kodaira [K] says that every positive line

bundle over a compact complex manifold is ample. Inspired by Matsushima’s work

[M] on the embedding of certain nonalgebraic tori by partially holomorphic maps,

we would like to extend Kodaira’s work to manifolds with partial complex struc-

tures as a continuation of [O-2].

For that, we shall focus our attention on an abstract question of embedding

foliated manifolds with complex leaves into projective space.

Let M be a paracompact C∞ manifold of dimension 2n+r (n, r ∈ N) equipped

with a 2n-dimensional foliation F such that the tangent bundle TF of F has

a complex structure J ∈ End TF (J2 = −id) which induces integrable almost

complex structures on the leaves of F . Then F will be called an n-dimensional

complex foliation on M .

Given such a pair (M,F), one may consider Ck complex vector bundles

over M whose transition functions are holomorphic along the leaves of F . They will

be called tangentially holomorphic vector bundles over (M,F), or simply over M .

Given a tangentially holomorphic vector bundle E over (M,F), a section s of E
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is called tangentially holomorphic if the restrictions of s to the leaves of F are

holomorphic. As usual, vector bundles of rank one are called line bundles.

Let L → M be a tangentially holomorphic C∞ line bundle equipped with

a C∞ fiber metric h, let Dh be a connection on L compatible with h and with

complex structures of the leaves of F , and let Θh be the curvature form of h.

Recall that Θh is a 2-form on M satisfying D2
hs = Θhs for any C2 section s of L.

We say that (L, h) is F-positive if the restriction of
√
−1 Θh to the leaves of

F is everywhere positive as a real (1, 1)-form.

The purpose of the present work is to establish the following.

Theorem 0.1. Let M be a connected and compact C∞ manifold equipped with a

complex foliation F , and let (L, h) be an F-positive line bundle over M . Then,

for any nonnegative integer k, there exists a positive integer m0 such that, for any

m ≥ m0 (m ∈ N), one can find Ck tangentially holomorphic sections s0, . . . , sN
of Lm such that the ratio (s0 : · · · : sN ) is a Ck embedding of M into CPN . Here

CPN denotes the N -dimensional complex projective space.

It should be noted that a statement essentially equivalent to Theorem 0.1 was

stated in [O-S] to be an application of a vanishing theorem of Kodaira type on Levi

flat CR manifolds. The proof given there relies implicitly on the statement that the

transverse regularity of the inverse of the tangential Laplacian is a consequence

of a certain a priori estimate. However, it is hard to pinpoint an appropriate

reference for that. Accordingly, our method in this article will be based on a

completely different principle. The idea is to exploit the curvature condition to

produce local solutions to the tangential Cauchy–Riemann equation with a good

control of regularity and obtain a global solution by patching them together with

the aid of successive approximations. This method was used by G. Tian [T] for

the Cauchy–Riemann equation. It might be of interest that the method is robust

under the addition of extra parameters.

§1. Local theory

We shall prepare a lemma on the parameter dependence of the canonical L2

solutions of inhomogeneous Cauchy–Riemann equations in the local setting. It

will eventually guarantee the existence of solutions of global tangential Cauchy–

Riemann equations with values in sufficiently high tensor powers of a given F-

positive line bundle. The material presented here originates in [D-O].

The lemma will be formulated for (0, q)-forms although only the case of (0, 1)-

forms is needed afterwards. However, the general form may be useful for other

purposes.
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Let D be a pseudoconvex domain in Cn and let U ⊂ Rr be any convex

domain. The coordinates of Cn and Rr will be denoted by z = (z1, . . . , zn) and

t = (t1, . . . , tr), respectively.

We shall consider a family vt of C∞ (0, q)-forms on D depending smoothly

on the parameter t ∈ U ,

vt =
∑

1≤i1<···<iq≤n

vi1...iq (z, t)dz̄i1 ∧ · · · ∧ dz̄iq

for some complex-valued C∞ functions vi1...iq on D × U . The set of such {vt}t∈U
will be denoted by C0,q(D × U). For simplicity the elements of C0,q(D × U) will

be denoted by vt.

Let C0,q(D) denote the set of all C∞ (0, q)-forms on D, and by L0,q
(2)(D, loc)

the space of locally square integrable (0, q)-forms on D.

For any v ∈ L0,q
(2)(D, loc), |v|2 will stand for the function∑

1≤i1<···<iq≤n

|vi1...iq |2,

where v =
∑

1≤i1<···<iq≤n vi1...iqdz̄i1 ∧ · · · ∧ dz̄iq . We put

〈v1, v2〉 =
1

4
(|v1 + v2|2 − |v1 − v2|2) +

√
−1

4
(|v1 +

√
−1 v2|2 − |v1 −

√
−1 v2|2)

for v1, v2 ∈ L0,q
(2)(D, loc).

Further, we put

C0,q
0 (D) = {v ∈ C0,q(D) | supp v is compact}.

We denote by ∂ the complex exterior differentiation of type (0, 1). The same

symbol ∂ will also stand for the operator from C0,q(D × U) to C0,q+1(D × U)

defined by vt 7→ ∂vt.

Let us recall a basic result of Hörmander.

Theorem 1.1 (cf. [H, Theorem 2.2.1′]). Let D be a pseudoconvex domain in Cn,

let ψ be plurisubharmonic in D and let κ be a real-valued continuous function such

that the difference

n∑
j,k=1

∂2ψ

∂zj∂z̄k
ξj ξ̄k − eκ

n∑
j=1

|ξj |2

is a positive measure for arbitrary complex numbers ξj. Then, for every v ∈
L0,q
(2)(D, loc), q > 0, such that ∂v = 0 and∫

D

|v|2e−(ψ+κ) dλ <∞,
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one can find a form u ∈ L0,q−1
(2) (D, loc) such that ∂u = v and

q

∫
D

|u|2e−ψ dλ ≤
∫
D

|v|2e−(ψ+κ) dλ.

Here dλ denotes the Lebesgue measure on Cn.

Once for all we fix a C∞ real-valued function ϕ = ϕ(z, t) on D×U . We shall

denote by L0,q
(2),t(D) the completion of the space C0,q

0 (D) with respect to the inner

product

(v1, v2)t =

∫
D

e−ϕ(·,t)〈v1, v2〉 dλ.

We put ‖v‖t = (v, v)
1/2
t .

By an abuse of notation, ∂ will also stand for the closed operator from

L0,q
(2),t(D) to L0,q+1

(2),t (D) whose domain of definition is

Dom ∂ = {u ∈ L0,q
(2),t(D) | ∂u ∈ L0,q+1

(2),t (D)}.

The adjoint of the operator ∂ : L0,q
(2),t(D)→ L0,q+1

(2),t (D) is denoted by ∂
∗
t .

From Theorem 1.1, it is easy to deduce the following.

Proposition 1.1. Assume that D is bounded and that ϕ(z, t)−m|z|2 is plurisub-

harmonic in z for some m > 0. Then there exists a constant C, independent of ϕ,

t and m, such that, for any ft ∈ L0,q
(2),t(D), q > 0, there exist gt ∈ Ker ∂L0,q

(2),t(D)

and ht ∈ Dom ∂
∗
t ⊂ L

0,q+1
(2),t (D) satisfying

ft = gt + ∂
∗
tht, ‖gt‖t ≤ ‖ft‖t and m‖ht‖2t ≤ C‖ft‖2t .

Proof. By Theorem 1.1, there exists a constant C, independent of ϕ, t and m, such

that, for any vt ∈ Ker ∂ ∩ L0,q
(2),t(D), q > 0, there exist ut ∈ Dom ∂t ⊂ L0,q−1

(2),t (D)

satisfying

vt = ∂ut and m‖ut‖2t ≤ C‖vt‖2t .

Therefore, the image of ∂
∗
t in L0,q

(2),t(D) is closed for such C, and, for any kt ∈
Im ∂

∗
t ⊂ L

0,q
(2),t(D), q ≥ 0, there exist ht ∈ Dom ∂

∗
t ⊂ L

0,q+1
(2),t (D) satisfying

kt = ∂
∗
tht and m‖ht‖2t ≤ C‖kt‖2t .

The desired conclusion follows from this and the orthogonal decomposition

L0,q
(2),t(D) = Ker ∂ ⊕ Im ∂

∗
t .

Let D, ϕ, m and C be as in Proposition 1.1. Given any vt ∈ C0,q(D × U) ∩
Ker ∂, q > 0, satisfying supt∈U‖vt‖t <∞, we then have a uniquely defined family
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ut ∈ L0,q−1
(2),t (D) such that ∂ut = vt, m‖ut‖2t ≤ C‖vt‖2t and ut ⊥ Ker ∂ in L0,q−1

(2),t (D),

by Theorem 1.1.

Lemma 1.1. Let vt and ut be as above. Suppose moreover that

C1 := sup
D×U

max
j

∣∣∣∣ ∂ϕ∂tj
∣∣∣∣ <∞,

C2 := sup
D×U

max
i,j

∣∣∣∣ ∂2ϕ∂z̄i∂tj

∣∣∣∣ <∞,
C3 := sup

U
‖vt‖t <∞,

C4 := sup
U

max
i

∥∥∥∥∂vt∂ti

∥∥∥∥
t

<∞.

Then, for any t, t0 ∈ U and f ∈ L0,q−1
(2),t (D),

(1.1)
√
m|(ut, f)t − (ut0 , f)t0 | ≤

√
C eC1(C1 + C2 + C1C3 + C4)‖f‖t0 |t− t0|.

Proof. By Proposition 1.1,

f = g + ∂
∗
t0h, g ∈ Ker ∂.

Then

(ut, f)t = (ut, g)t + (ut, ∂
∗
t0h)t.

Since ut ⊥ Ker ∂ in L0,q−1
(2),t (D), we have

(1.2) (ut, g)t = 0 for all t.

On the other hand,

(ut, ∂
∗
t0h)t = (e−ϕ(·,t)+ϕ(·,t0)ut, ∂

∗
t0h)t0(1.3)

= (∂(ϕ(·, t0)− ϕ(·, t))ut, h)t + (e−ϕ(·,t)+ϕ(·,t0)vt, h)t0 ,

(ut0 , f)t0 = (vt0 , h)t0 .(1.4)

Combining (1.2)–(1.4) with m‖ut‖2t ≤ C‖vt‖2t and m‖h‖2t0 ≤ C‖f‖2t0 we obtain

(1.1).

Since Proposition 1.1 similarly implies that
√
m‖ut − ut0‖t ≤ C ′|t− t0| with

a constant C ′ independent of m, we infer from (1.3) that

(ut, ∂
∗
t0h)t = (∂(ϕ(·, t0)− ϕ(·, t))ut0 , h)t + (e−ϕ(·,t)+ϕ(·,t0)vt, h)t0(1.5)

+O(|t− t0|2).

Hence (ut, f)t is of class C1 on U .
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Then we note that the conditions

∂ut = vt, ∂
∗
tut = 0 and m‖ut‖2t ≤ C‖vt‖2t ,

for vt ∈ C0,q(D×U), imply that ut is equicontinuous as a family of (0, q)-forms on

every compact subset ofD. Since (ut, f)t is continuous for any f , the equicontinuity

of ut must imply the continuity of ut on D × U . Otherwise (ut, f)t would not be

continuous for some f .

Similarly, since (ut, f)t is C1 for any f , ut must be C1 on D × U .

Moreover, from the equation

∂

∂tj
(ut, f)t =

(
∂ut
∂tj

, f

)
t

−
(
∂ϕ(·, t)
∂tj

ut, f

)
t

,

which holds whenever f is compactly supported, and from the estimate (1.1), it is

easy to see that ∂ut
∂tj

(t0) ∈ L0,q−1
(2),t0

(D), 1 ≤ j ≤ r. Therefore

(1.6) (ut, ∂
∗
t0h)t

=

(
∂(ϕ(·, t0)− ϕ(·, t))

(
ut0 +

r∑
j=1

∂ut
∂tj

(t0)(tj − t0j)
)
, h

)
t

+ (vt, h)t

+O(|t− t0|3),

which implies that (ut, f)t is of class C2 on U .

Hence ut is C2 on D×U , provided that the derivatives of ϕ and ∂ϕ up to the

second order are bounded on D×U and those of vt are square integrable uniformly

in t. Hence, taking into account the dependence of the estimates on m as in (1.1),

we obtain the following by induction.

Proposition 1.2. Let vt and ut be as before. Suppose moreover that ∇itvt are

square integrable for 0 ≤ i ≤ k and that |∇jtϕ| are |∇jt∂ϕ| are bounded by a constant

C(k) on D×U for 1 ≤ j ≤ k. Here ∇t denotes the gradient in t with respect to the

coordinates (z, t), and C(k) is independent of m. Then ut is of class Ck on D×U .

Moreover there exists a constant C〈k〉, depending on C(k) but not on m, such that

(1.7)
√
m‖ut‖t,k ≤ C〈k〉‖vt‖t,k,

where

(1.8) ‖w‖t,k =

k∑
j=0

‖∇jtw‖t.
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We need later an elementary observation on the modified norms

(1.9) ‖w‖′t,k =

k∑
j=0

cj‖∇jtw‖t

and

(1.10) ‖w‖′t,k,b =

k∑
j=0

cj‖b∇jtw‖t

for c0 = 1 > c1 > · · · > ck > 0 and a nowhere vanishing C∞ function b = b(z, t)

on D × U .

Note that Proposition 1.2 holds for the norms ‖ ‖′t,k, with the same con-

stant C〈k〉, independently of the choice of cj (1 ≤ j ≤ k).

For simplicity, we assume that D and U are bounded domains, and ϕ and b

are defined on a neighbourhood of the closure D × U of D × U .

Lemma 1.2. In the above situation, let l ∈ N and let bµ(z, t) (µ = 1, . . . , l) be

nowhere vanishing C∞ functions on D × U . Then, for any k ∈ N, there exists

c > 0 such that, for any elements vµ,t (µ = 1, . . . , l) of C0,q(D × U) which are

smoothly extendable to a neighbourhood of D × U , the estimate

(1.11)

l∑
µ=1

‖bµ(z, t)vµ,t‖′t,k ≤ 2

l∑
µ=1

‖vµ,t‖′t,k,bµ

holds for cj = c−j (j = 0, 1, . . . , k).

The proof is straightforward and may well be left to the reader.

§2. Proof of Theorem 0.1

Let (M,F) and (L, h) be as in the assumption. Let x ∈ M be any point, let

ρ > 0, and let B be a neighbourhood of x on which local coordinates (z, t) =

(z1, . . . , zn, t1, . . . , tr) are defined in such a way that x is mapped by (z, t) to

(0, 0), and B is mapped onto D(ρ)n × (D(1) ∩ R)r, D(ρ) = {ζ ∈ C | |ζ| < ρ},
holomorphically in z with Xt = 0 for any X ∈ TF .

Shrinking B if necessary, we may assume that there exists a nowhere vanish-

ing C∞ tangentially holomorphic section of L over B, say s.

For any section σ of L, let |σ|h denote the length of σ with respect to h, and

let γ be the real-valued C∞ function on B defined by

|σ|2h = e−γ |σ/s|2 on B for all σ.
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Let

(2.1) γ (= γ(z, t))

= 2 Re
(
a(t) +

n∑
i=1

ai(t)zi +

n∑
i,j=1

aij(t)zizj +
∑
i,j,k

aijk(t)zizjzk

)
+

n∑
i,j=1

bij(t)zizj + 2 Re
∑
i,j,k

cijk(t)zizjzk +O(|z|4)

be the Taylor expansion of γ around x. Replacing s by

s′ = s · exp
(
a(t) +

n∑
i=1

ai(t)zi +

n∑
i,j=1

aij(t)zizj +
∑
i,j,k

aijk(t)zizjzk

)
we may assume that (2.1) is of the form

(2.2) γ =
∑
i,j

bij(t)zizj + 2 Re
∑
i,j,k

cijk(t)zizjzk +O(|z|4).

Further, since (L, h) is F-positive, (bij(t)) is everywhere positive definite. There-

fore, by a coordinate change, we may assume that

(2.3) γ =

n∑
i=1

|zi|2 +O(|z|4),

where the original radius ρ should be replaced by a possibly smaller positive num-

ber, say ρ′.

If (2.3) is satisfied, we shall say that s′ is a distinguished coordinate (associated

to ρ′). The constant ρ′ will be referred to as a distinguished radius.

Moreover we put in this situation

Ωm = {(z, t) | m|z|3 < ρ′3, |t| < 1},
Dm = {z | 2m|z|3 < ρ′3},
Uc′ = {t | c′|t| < 1} (c′ ≥ 1).

Then, in view of Proposition 1.2 and a remark after it, we infer from (2.3) the

following. (See also [Dm, p. 270, Proposition 12.10].)

Sublemma 2.1. For any k ∈ N and c′ ≥ 1, there exists a constant C[k] such

that, for any m ∈ N and for any vt ∈ C0,q(Ωm) ∩Ker ∂, q > 0, one can find ut ∈
C0,q−1(Dm × Uc′) satisfying ∂ut = vt on Dm × Uc′ and

√
m‖ut‖′t,k ≤ C[k]‖vt‖′t,k.

For each distinguished coordinate (zx, tx), we shall denote by Im,x and Jm,x
the neighbourhoods of x that are identified with Dm × U3/2 and D2m × U2, re-

spectively.
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It is clear that, for any point x0 ∈ M , there exists a neighbourhood V 3 x0
such that one has a C∞ family of distinguished frames and associated distinguished

coordinates around x ∈ V , parametrized by x ∈ V . Hence, since M is compact,

we have the following.

Sublemma 2.2. There exist ν ∈ N and C : N → (0,∞) such that, for any

k,m ∈ N one can find N ∈ N, xm1, . . . , xmN ∈ M and distinguished coordinates

(z(mα), t(mα)) (1 ≤ α ≤ N) around xmα, with distinguished radius ρ0 independent

of m, such that

|∇kt(mα)t(mβ)| < C(k) on Im,xmα ∩ Im,xmβ ,(2.4)

M =

N⋃
α=1

Jm,xmα ,(2.5)

µ⋂
κ=1

Im,xmακ = ∅ if α1 < · · · < αµ and µ > ν.(2.6)

In the above situation, we shall call {Jm,xmα}1≤α≤N a (k,m)-filamental cov-

ering of M .

With these preparations, we construct tangentially holomorphic Ck sections

of Lm as follows.

Let x ∈ M be any point, let s be a distinguished frame and let (z, t) be

distinguished coordinates around x associated to s. Given any C∞ tangentially

holomorphic function on Im,x, we are going to show that there exist, for any k ∈ N
and for any m � k, a tangentially holomorphic Ck section σm of Lm over M

satisfying

|f − σm/sm|x < 1/m,(2.7)

|df − d(σm/s
m)|x < 1/m.(2.8)

Here the norm of df−d(σm/s
m) is measured with respect to the metric

∑
dzidzi+∑

dt2j .

For that, we first fix (k,m)-filamental coverings {Jm,xmα}1≤α≤N(m) (m ∈ N)

of M with xm1 = x for all m. Let smα be the associated distinguished frames

around xmα such that sm1 = s for all m.

Let X : R→ R be a nonnegative C∞ function satisfying X (t) = 1 on (−∞, 1]

and suppX ∩ [2,∞) = ∅. We put

Xmα(z(mα), t(mα)) = X (4|z(mα)|3/ρ30)X (2|t(mα)|).
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By extending Xmα as 0 outside the set {|z(mα)| < ρ0, |t(mα)| < 1}, we obtain C∞

functions X̃mα on M . Then we put

ηmα = X̃mα/
N(m)∑
β=1

X̃mβ .

The system ηmα is then a C∞ partition of unity satisfying supp ηmα ⊂ Im,xmα .

We put

f̃ =

{
Xm1fs

m on Im,x,

0 otherwise,
vm = ∂f̃ ,

and define vmα by

vmαs
m
mα = vm on Im,xmα ,

where ∂ is defined leafwise as before.

Obviously, one may choose the frames smα and coordinates (z(mα), t(mα)) in

such a way that, for any fixed k, there exist εk > 0 and m0 such that, for any

m > m0,

(2.9)

N(m)∑
α=1

‖vmα‖′t(mα),k
≤ e−m

1/6

for cj = εjkm
−j (0 ≤ j ≤ k). From now on, cj will be chosen in that way.

By Sublemma 2.1, one can find umα ∈ C0,0(Jm,xmα) satisfying ∂umα = vmα
on Jm,xmα and

(2.10)
√
m‖umα‖′t(mα),k

≤ C[k]‖vmα‖′t(mα),k
.

We put

ũm =
∑
α

ηmαs
m
mαumα and ũmα = ũm/s

m
mα on Im,xmα .

Since ∂ηmα is at most of order m1/3, we obtain, in view of Lemma 1.2 and the

strong ellipticity of the Laplacian along F , the estimates∑
α

‖ũmα‖′t(mα),k
≤ 2ν

∑
α

‖umα‖′t(mα),k
,(2.11) ∑

α

‖vmα − ∂ũmα‖′t(mα),k
≤ 2νm1/3

∑
β

‖umβ‖′t(mβ),k,(2.12)

on replacing εk by a smaller number if necessary.
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Combining (2.12) with (2.9) and (2.10), we obtain

(2.13)
∑
α

‖vmα − ∂ũ(mα)‖′t(mα),k
≤ C̃km−1/6

for some constant Ck independent of m.

Therefore, for any k, by choosing m sufficiently large and εk sufficiently small,

we have, in view of (2.10) and (2.11),∑
α

‖ũmα‖′t(mα),k
≤ 1

2

∑
α

‖vmα‖′t(mα),k
,(2.14)

∑
α

‖vmα − ∂ũmα‖′t(mα),k
≤ 1

2

∑
α

‖vmα‖′t(mα),k
.(2.15)

Hence one can repeat this procedure, with a fixed choice of εk, to obtain for m� 1

a system of infinite series { ∞∑
κ=0

ũmα,κ

}
1≤α≤N(m)

such that
∑∞
κ=0 ũmα,κ is convergent with respect to ‖ ‖′t(mα),k

,

smmαũmα,κ = smmβ ũmβ,κ on Im,xmα ∩ Im,xmβ ,(2.16)

∂
( ∞∑
κ=0

ũmα,κ

)
= vmα on Im,xmα ,(2.17)

∥∥∥ ∞∑
κ=0

ũmα,κ

∥∥∥′
t(mα),k

≤ e−m
1/7

.(2.18)

In particular, we obtain from (2.18) the Ck differentiability of
∑∞
κ=0 ũmα,κ.

Moreover, by (2.9), (2.3) and Cauchy’s estimate along F , we have∣∣∣f − (f̃ − ∞∑
κ=0

ũm1,κ

)∣∣∣
x
≤ e−m

1/8

,
∣∣∣df − d(f̃ − ∞∑

κ=0

ũm1,κ

)∣∣∣
x
≤ e−m

1/8

,

for m� 1. Hence, σm := f − smmα
∑∞
κ=0 ũmα,κ satisfies the requirements (2.7) and

(2.8) for m� 1.

Taking the components of a local coordinate system around x as f ,

we obtain tangentially holomorphic Ck sections s1, . . . , sn+r of Lm such that

(s1/s
m
m1, . . . , sn+r/s

m
m1) embeds a neighbourhood of x into Cn+r.

Similarly, for any two distinct points x and y of M , one can find tangentially

holomorphic Ck sections s, s′ of Lm satisfying (s(x) : s′(x)) 6= (s(y) : s′(y)).
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Thus, by the usual compactness argument, one can find tangentially holo-

morphic Ck sections s0, . . . , sN of Lm for m� 1 such that (s0 : · · · : sN ) is a Ck

embedding of M into CPN .

§3. Notes and remarks

Since every Ck-embeddable complex-foliated manifold (M,F) admits a Ck F-

positive line bundle (e.g. the restriction of the hyperplane section bundle) if k ≥ 2,

it is obvious from the proof of Theorem 0.1 that the following refined statement is

also true.

Theorem 3.1. Let M be a compact C∞ manifold and let F be a C∞ foliation

on M whose leaves are complex. Then (M,F) admits a Ck tangentially holomor-

phic embedding into some CPN for any k ∈ N if and only if there exists a Ck

F-positive line bundle over M for any k ∈ N.

Corollary 3.1. Let M be a compact C∞ Riemannian manifold with an oriented

2-dimensional C∞ foliation F . Then there exist Ck embeddings (k ∈ N) into

some CPN which are conformal along the leaves of F if and only if there exists

a closed C1 submanifold of M which intersects with every leaf of F transversally

(along a nonempty set).

It is also easy to see that the method of the proof of Theorem 0.1 can be di-

rectly applied to prove the Ck-solvability of tangential Cauchy–Riemann equations

of more general type.

Let T 1,0F (resp. T 0,1F) denote the subbundle of TF ⊗ C consisting of holo-

morphic (resp. antiholomorphic) vectors, and let (T 1,0F)∗) (resp. (T 0,1F)∗) be its

dual.

Given a tangentially holomorphic vector bundle E →M of class Ck, we denote

by Cp,q(k),F (E) the set of Ck sections of E⊗
∧p

(T 1,0F)∗⊗
∧q

(T 0,1F)∗ over M that

are C∞ along F , and let ∂ : Cp,q(k),F (E)→ Cp,q+1
(k),F (E) denote the complex exterior

differentiation of type (0, 1) along F . Then the method in §2 entails

Theorem 3.2. Let (M,F) be as in Theorem 3.1, and let L→M be an F-positive

C∞ line bundle. Then, for any tangentially holomorphic Ck vector bundle E →M

there exists m0 ∈ N such that, for any m ≥ m0 and for any v ∈ Cp,q(k),F (E ⊗Lm)∩
Ker ∂, q > 0, one can find a u ∈ Cp,q−1(k),F (E ⊗ Lm) satisfying ∂u = v.

It should be noted that the statement of Theorem 3.2 becomes false if k =∞
(cf. [O-1]).
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