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Regular Holonomic D [[~]]-modules

Dedicated to Professor Mikio Sato on the occasion of his 80th birthday with our
deep admiration and warmest regards

by

Andrea D’Agnolo, Stéphane Guillermou and Pierre Schapira

Abstract

We describe the category of regular holonomic modules over the ring D [[~]] of linear
differential operators with a formal parameter ~. In particular, we establish the Riemann–
Hilbert correspondence and discuss the additional t-structure related to ~-torsion.
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Introduction

On a complex manifold X, we will be interested in the study of holonomic mod-
ules over the ring DX [[~]] of differential operators with a formal parameter ~.
Such modules naturally appear when studying deformation quantization modules
(DQ-modules) along a smooth Lagrangian submanifold of a complex symplectic
manifold (see [13, Chapter 7]).

In this paper, after recalling the tools from [13] that we shall use, we explain
some basic notions of DX [[~]]-modules theory. For example, it follows easily from
general results on modules over C[[~]]-algebras that given two holonomic DX [[~]]-
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modules M and N , the complex RHomDX [[~]](M ,N ) is constructible over C[[~]]
and that the microsupport of the solution complex RHomDX [[~]](M ,OX [[~]]) co-
incides with the characteristic variety of M .

Then we establish our main result, the Riemann–Hilbert correspondence for
regular holonomic DX [[~]]-modules, an ~-variant of Kashiwara’s classical theorem.
In other words, we show that the solution functor with values in OX [[~]] induces
an equivalence between the derived category of regular holonomic DX [[~]]-modules
and that of constructible sheaves over C[[~]]. A quasi-inverse is obtained by con-
structing the “sheaf” of holomorphic functions with temperate growth and a formal
parameter ~ in the subanalytic site. This needs some care since the literature on
this subject is written in the framework of sheaves over a field and does not im-
mediately apply to the ring C[[~]].

We also discuss the t-structure related to ~-torsion. Indeed, as we work over
the ring C[[~]] and not over a field, the derived category of holonomic DX [[~]]-
modules (or, equivalently, that of constructible sheaves over C[[~]]) has an ad-
ditional t-structure related to ~-torsion. We will show how the duality functor
interchanges it with the natural t-structure.

We end this paper by describing some natural links between the ring DX [[~]]
and deformation quantization algebras, as mentioned above.

Historical remark. As is well-known, holonomic modules play an essential role
in mathematics. They appeared independently in the work of M. Kashiwara [4]
and J. Bernstein [1], but they were first invented by Mikio Sato in a series of
(unfortunately unpublished) lectures at Tokyo University in the 60’s. (See [17] for
a more detailed history.)

Notation and conventions

We shall mainly follow the notation of [12]. In particular, if C is an abelian cat-
egory, we denote by D(C ) the derived category of C and by D∗(C ) (∗ = +,−,b)
the full triangulated subcategory consisting of objects with cohomology bounded
from below (resp. bounded from above, resp. bounded).

For a sheaf R of rings on a topological space X, or more generally on a
site, we denote by Mod(R) the category of left R-modules and we write D∗(R)
instead of D∗(Mod(R)) (∗ = ∅,+,−,b). We denote by Modcoh(R) the full abelian
subcategory of Mod(R) of coherent objects, and by Db

coh(R) the full triangulated
subcategory of Db(R) of objects with coherent cohomology groups.

If R is a ring (a sheaf of rings over a point), we write for short Db
f (R) instead

of Db
coh(R).
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§1. Formal deformations (after [13])

We review here some definitions and results from [13] that we shall use in this
paper.

Modules over Z[~]-algebras. Let X be a topological space. One says that a
sheaf of ZX [~]-modules M has no ~-torsion if ~ : M −→ M is injective; and one
says that M is ~-complete if M −→ lim←−

n

M /~nM is an isomorphism.

Let R be a sheaf of ZX [~]-algebras, and assume that R has no ~-torsion. Set

Rloc := Z[~, ~−1]⊗Z[~] R, R0 := R/~R,

and consider the functors

( • )loc : Mod(R) −→ Mod(Rloc), M 7→M loc := Rloc ⊗R M ,

gr~ : D(R) −→ D(R0), M 7→ gr~(M ) := R0

L
⊗R M .

Note that ( • )loc is exact and that for M ,N ∈ Db(R) and P ∈ Db(Rop) one has
isomorphisms

gr~(P
L
⊗R M ) ' gr~ P

L
⊗R0

gr~ M ,(1.1)

gr~(RHomR(M ,N )) ' RHomR0
(gr~(M ), gr~(N )).(1.2)

Here, the functor gr~ on the left hand side acts on ZX [~]-modules.

Cohomologically ~-complete sheaves

Definition 1.1. One says that an object M of D(R) is cohomologically ~-com-
plete if RHomR(Rloc,M ) = 0.

Hence, the full subcategory of cohomologically ~-complete objects is trian-
gulated. In fact, it is the right orthogonal complement to the full subcategory
D(Rloc) of D(R).

Remark that M ∈ D(R) is cohomologically ~-complete if and only if its image
in D(ZX [~]) is cohomologically ~-complete.

Proposition 1.2. Let M ∈ D(R). Then M is cohomologically ~-complete if and
only if

lim−→
U3x

ExtjZ[~]
(Z[~, ~−1], Hi(U ; M )) = 0

for any x ∈ X, any integer i ∈ Z and any j = 0, 1. Here, U ranges over an open
neighborhood system of x.
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Corollary 1.3. Let M ∈ Mod(R). Assume that M has no ~-torsion, is ~-
complete and there exists a base B of open subsets such that Hi(U ; M ) = 0 for
any i > 0 and any U ∈ B. Then M is cohomologically ~-complete.

The functor gr~ is conservative on the category of cohomologically ~-complete
objects:

Proposition 1.4. Let M ∈ D(R) be a cohomologically ~-complete object. If
gr~(M ) = 0, then M = 0.

Proposition 1.5. If M ∈ D(R) is cohomologically ~-complete, then the object
RHomR(N ,M ) ∈ D(ZX [~]) is cohomologically ~-complete for any N ∈ D(R).

Proposition 1.6. Let f : X −→ Y be a continuous map, and M ∈ D(ZX [~]). If
M is cohomologically ~-complete, then so is Rf∗M .

Reductions to ~ = 0. Now we assume that X is a Hausdorff locally compact
topological space.

By a basis B of compact subsets of X, we mean a family of compact subsets
such that for any x ∈ X and any open neighborhood U of x, there exists K ∈ B

such that x ∈ Int(K) ⊂ K ⊂ U .
Let A be a Z[~]-algebra, and recall that we set A0 = A /~A . Consider the

following conditions:

(i) A has no ~-torsion and is ~-complete,
(ii) A0 is a left Noetherian ring,
(iii) there exists a basis B of compact subsets of X and a prestack U 7→

Modgood(A0|U ) (U open in X) such that

(a) for any K ∈ B and any open subset U such that K ⊂ U , there exists
K ′ ∈ B such that K ⊂ Int(K ′) ⊂ K ′ ⊂ U ,

(b) U 7→ Modgood(A0|U ) is a full subprestack of U 7→ Modcoh(A0|U ),
(c) for any K ∈ B, any open set U containing K, any j > 0 and any

M ∈ Modgood(A0|U ), one has Hj(K; M ) = 0,
(d) for any open subset U and any M ∈ Modcoh(A0|U ), if M |V belongs to

Modgood(A0|V ) for any relatively compact open subset V of U , then M

belongs to Modgood(A0|U ),
(e) for any U open in X, Modgood(A0|U ) is stable under subobjects, quo-

tients and extensions in Modcoh(A0|U ),
(f) for any U open in X and any M ∈ Modcoh(A0|U ), there exists an open

covering U =
⋃
i Ui such that M |Ui ∈ Modgood(A0|Ui),

(g) A0 ∈ Modgood(A0),
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(iii)′ there exists a basis B of open subsets of X such that for any U ∈ B, any
M ∈ Modcoh(A0|U ) and any j > 0, one has Hj(U ; M ) = 0.

We will suppose that A and A0 satisfy either Assumption 1.7 or Assump-
tion 1.8 below.

Assumption 1.7. A and A0 satisfy conditions (i)–(iii) above.

Assumption 1.8. A and A0 satisfy conditions (i), (ii) and (iii)′ above.

Theorem 1.9.

(i) A is a left Noetherian ring.
(ii) Any coherent A -module M is ~-complete.
(iii) Let M ∈ Db

coh(A ). Then M is cohomologically ~-complete.

Corollary 1.10. The functor gr~ : Db
coh(A ) −→ Db

coh(A0) is conservative.

Theorem 1.11. Let M ∈ D+(A ) and assume:

(a) M is cohomologically ~-complete,
(b) gr~(M ) ∈ D+

coh(A0).

Then M ∈ D+
coh(A ) and for all i ∈ Z we have the isomorphism

Hi(M ) ∼−→ lim←−
n

Hi(A /~nA
L
⊗A M ).

Theorem 1.12. Assume that A op
0 = A op/~A op is a Noetherian ring and the

flabby dimension of X is finite. Let M be an A -module. Assume the following
conditions:

(a) M has no ~-torsion,
(b) M is cohomologically ~-complete,
(c) M /~M is a flat A0-module.

Then M is a flat A -module.
If moreover M /~M is a faithfully flat A0-module, then M is a faithfully flat

A -module.

Theorem 1.13. Let d ∈ N. Assume that A0 is d-syzygic, i.e., any coherent A0-
module locally admits a projective resolution of length ≤ d by free A0-modules of
finite rank. Then

(a) A is (d+ 1)-syzygic.
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(b) Let M
• be a complex of A -modules concentrated in degrees [a, b] and with

coherent cohomology groups. Then locally there exists a quasi-isomorphism
L
• −→M

• where L
• is a complex of free A -modules of finite rank concen-

trated in degrees [a− d− 1, b].

Proposition 1.14. Let M ∈ Db
coh(A ) and let a ∈ Z. The conditions below are

equivalent:

(i) Ha(gr~(M )) ' 0,
(ii) Ha(M ) ' 0 and Ha+1(M ) has no ~-torsion.

Cohomologically ~-complete sheaves on real manifolds. Let now X be a
real analytic manifold. Recall from [9] that the microsupport of F ∈ Db(ZX) is
a closed involutive subset of the cotangent bundle T ∗X denoted by SS(F ). The
microsupport is additive on Db(ZX) (cf. Definition 3.3(ii) below). Considering the
distinguished triangle F ~−→ F −→ gr~ F

+1−−→, one gets

(1.3) SS(gr~(F )) ⊂ SS(F ).

Proposition 1.15. Let F ∈ Db(ZX [~]) and assume that F is cohomologically
~-complete. Then

(1.4) SS(F ) = SS(gr~(F )).

Proof. It is enough to show that SS(F ) ⊂ SS(gr~(F )). For V ⊂ U open subsets,
consider the distinguished triangle

RΓ(U ;F ) −→ RΓ(V ;F ) −→ G
+1−−→ .

By Proposition 1.6, RΓ(U ;F ) and RΓ(V ;F ) are cohomologically ~-complete, and
thus so is G. One has the distinguished triangle

RΓ(U ; gr~ F ) −→ RΓ(V ; gr~ F ) −→ gr~ G
+1−−→ .

By the definition of microsupport, it is enough to prove that gr~ G = 0 implies
G = 0. This follows from Proposition 1.4.

For K a commutative unital Noetherian ring, one denotes by ModR-c(KX)
the full subcategory of Mod(KX) consisting of R-constructible sheaves and by
Db

R-c(KX) the full triangulated subcategory of Db(KX) consisting of objects with
R-constructible cohomology (see [9, §8.4]). In this paper, we shall mainly be in-
terested in the case where K is either C or the ring of formal power series in an
indeterminate ~, which we denote by

C~ := C[[~]].
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Proposition 1.16. Let F ∈ Db
R-c(C~

X). Then F is cohomologically ~-complete.

Proof. This follows from Proposition 1.2 since for any x ∈ X one has
RΓ(U ;F ) ∼−→ Fx for U in a fundamental system of neighborhoods of x.

Corollary 1.17. The functor gr~ : Db
R-c(C~

X) −→ Db
R-c(CX) is conservative.

Corollary 1.18. For F ∈ Db
R-c(C~

X), one has the equality

SS(gr~(F )) = SS(F ).

Proposition 1.19. For F ∈ Db
R-c(C~

X) and i ∈ Z one has suppHi(F ) ⊂
suppHi(gr~ F ). In particular if Hi(gr~ F ) = 0 then Hi(F ) = 0.

Proof. We apply Proposition 1.14 to Fx for any x ∈ X.

§2. Formal extension

Let X be a topological space, or more generally a site, and let R0 be a sheaf of
rings on X. In this section, we let

R := R0[[~]] =
∏
n≥0

R0~n

be the formal extension of R0, whose sections on an open subset U are formal
series r =

∑∞
n=0 rn~n, with rn ∈ Γ(U ; R0). Consider the associated functor

(2.1) ( • )~ : Mod(R0) −→ Mod(R), N 7→ N [[~]] = lim←−
n

(Rn ⊗R0
N ),

where Rn := R/~n+1R is regarded as an (R,R0)-bimodule. Since Rn is free of
finite rank over R0, the functor ( • )~ is left exact. We denote by ( • )R~ its right
derived functor.

Proposition 2.1. For N ∈ Db(R0) one has

N R~ ' RHomR0
(Rloc/~R,N ),

where Rloc/~R is regarded as an (R0,R)-bimodule.

Proof. It is enough to prove that for N ∈ Mod(R0) one has

N ~ 'HomR0
(Rloc/~R,N ).

Using the right R0-module structure of Rn, set R∗n = HomR0
(Rn,R0). Then R∗n

is an (R0,R)-bimodule, and

N ~ = lim←−
n

(Rn ⊗R0
N ) 'HomR0

(lim−→
n

R∗n,N ).
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Since
Rloc/~R ' lim−→

n

(~−nR/~R),

it is enough to prove that there is an isomorphism of (R0,R)-bimodules

HomR0
(Rn,R0) ' ~−nR/~R.

Recalling that Rn = R/~n+1R, this follows from the pairing

(R/~n+1R)⊗R0
(~−nR/~R) −→ R0, f ⊗ g 7→ Res~=0(fg d~/~).

Note that the isomorphism of (R,R0)-bimodules

R ' (R0)~ = HomR0
(Rloc/~R,R0)

induces a natural morphism

(2.2) R
L
⊗R0

N −→ N R~ for N ∈ Db(R0).

Proposition 2.2. For N ∈ Db(R0), the formal extension N R~ is cohomologi-
cally ~-complete.

Proof. The statement follows from (Rloc/~R)
L
⊗R Rloc ' 0 and from the isomor-

phism

RHomR(Rloc,N R~) ' RHomR0
((Rloc/~R)

L
⊗R Rloc,N ).

Lemma 2.3. Assume that R0 is an S0-algebra, for S0 a commutative sheaf of
rings, and let S = S0[[~]]. For M ,N ∈ Db(R0) we have an isomorphism in
Db(S )

RHomR0
(M ,N )R~ ' RHomR0

(M ,N R~).

Proof. Note the isomorphisms

Rloc/~R ' R0 ⊗S0
(S loc/~S ) ' R0

L
⊗S0

(S loc/~S )

as (R0,S )-bimodules. Then one has

RHomR0
(M ,N )R~ = RHomS0

(S loc/~S ,RHomR0
(M ,N ))

' RHomR0
(M ,RHomS0

(S loc/~S ,N ))

' RHomR0
(M ,RHomR0

(Rloc/~R,N ))

= RHomR0
(M ,N R~).
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Lemma 2.4. Let f : X −→ Y be a morphism of sites, and assume that (f−1R0)~ '
f−1R. Then the functors Rf∗ and ( • )R~ commute, that is, for P ∈ Db(f−1R0)
we have (Rf∗P)R~ ' Rf∗(PR~) in Db(R).

Proof. One has the isomorphism

Rf∗(PR~) = Rf∗RHomf−1R0
(f−1(Rloc/~R),P)

' RHomR0
(Rloc/~R,Rf∗P) = Rf∗(P)R~.

Proposition 2.5. Let T be either a basis of open subsets of the site X or, as-
suming that X is a locally compact topological space, a basis of compact subsets.
Denote by JT the full subcategory of Mod(R0) consisting of T -acyclic objects,
i.e., sheaves N for which Hk(S; N ) = 0 for all k > 0 and all S ∈ T . Then JT

is injective with respect to the functor ( • )~. In particular, for N ∈ JT , we have
N ~ ' N R~.

Proof. (i) Since injective sheaves are T -acyclic, JT is cogenerating.
(ii) Consider an exact sequence 0 −→ N ′ −→ N −→ N ′′ −→ 0 in Mod(R0).

Clearly, if both N ′ and N belong to JT , then so does N ′′.
(iii) Consider an exact sequence as in (ii) and assume that N ′ ∈ JT . We have

to prove that 0 −→ N ′,~ −→ N ~ −→ N ′′,~ −→ 0 is exact. Since ( • )~ is left exact, it
is enough to prove that N ~ −→ N ′′,~ is surjective. Noticing that N ~ '

∏
N N as

R0-modules, it is enough to prove that
∏

N N −→
∏

N N ′′ is surjective.
(iii)-(a) Assume that T is a basis of open subsets. Any open subset U ⊂ X

has a cover {Ui}i∈I by elements Ui ∈ T . For any i ∈ I, the morphism N (Ui) −→
N ′′(Ui) is surjective. The result follows taking the product over N.

(iii)-(b) Assume that T is a basis of compact subsets. For any K ∈ T , the
morphism N (K) −→ N ′′(K) is surjective. Hence, there exists a basis V of open
subsets such that for any x ∈ X and any V 3 x in V , there exists V ′ ∈ V with
x ∈ V ′ ⊂ V and the image of N (V ′) −→ N ′′(V ′) contains the image of N ′′(V ) in
N ′′(V ′). The result follows as in (iii)-(a) by taking the product over N.

Corollary 2.6. The following sheaves are acyclic for the functor ( • )~:

(i) R-constructible sheaves of C-vector spaces on a real analytic manifold X,
(ii) coherent modules over the ring OX of holomorphic functions on a complex

analytic manifold X,
(iii) coherent modules over the ring DX of linear differential operators on a com-

plex analytic manifold X.

Proof. The statements follow by applying Proposition 2.5 for the following choices
of T .
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(i) Let F be an R-constructible sheaf. Then for any x ∈ X one has Fx
∼←−

RΓ(Ux;F ) for Ux in a fundamental system of open neighborhoods of x. Take for
T the union of these fundamental systems.

(ii) Take for T the family of open Stein subsets.
(iii) Let M be a coherent DX -module. The problem being local, we may

assume that M is endowed with a good filtration. Then take for T the family of
compact Stein subsets.

Example 2.7. Let X = R, R0 = CX , Z = {1/n : n = 1, 2, . . . } ∪ {0} and U =
X \Z. One has the isomorphisms (C~)X ' (CX)~ ' (CX)R~ and (C~)U ' (CU )~.
Considering the exact sequences

0 −→ (C~)U −→ (C~)X −→ (C~)Z −→ 0,

0 −→ (CU )~ −→ (CX)~ −→ (CZ)~ −→ H1(CU )R~ −→ 0,

we get H1(CU )R~ ' (CZ)~/(C~)Z , whose stalk at the origin does not vanish.
Hence CU is not acyclic for the functor ( • )~.

Assume now that

A0 = R0 and A = R0[[~]]

satisfy either Assumption 1.7 or Assumption 1.8 (where condition (i) is clear) and
that A0 is syzygic. Note that by Proposition 2.5 one has A ' (A0)R~.

Proposition 2.8. For N ∈ Db
coh(A0):

(i) there is an isomorphism N R~ ∼−→ A
L
⊗A0

N induced by (2.2),
(ii) there is an isomorphism gr~(N R~) ' N .

Proof. Since A0 is syzygic, we may locally represent N by a bounded complex L
•

of free A0-modules of finite rank. Then (i) is obvious. As for (ii), both complexes
are isomorphic to the mapping cone of ~ : (L • )~ −→ (L • )~.

In particular, the functor ( • )~ is exact on Modcoh(A0) and preserves coher-
ence. One thus gets a functor ( • )R~ : Db

coh(A0) −→ Db
coh(A ).

The subanalytic site. The subanalytic site associated to an analytic manifold
X has been introduced and studied in [11, Chapter 7] (see also [15] for a detailed
and systematic study as well as for complementary results). Denote by OpX the
category of open subsets of X, the morphisms being the inclusion morphisms, and
by OpXsa

the full subcategory consisting of relatively compact subanalytic open
subsets of X. The site Xsa is the presite OpXsa

endowed with the Grothendieck
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topology for which the coverings are those admitting a finite subcover. One calls
Xsa the subanalytic site associated to X. Denote by ρ : X −→ Xsa the natural
morphism of sites. Recall that the inverse image functor ρ−1, besides the usual
right adjoint given by the direct image functor ρ∗, admits a left adjoint denoted ρ!.
Consider the diagram

Db(CX)
Rρ∗ //

( • )R~

��

Db(CXsa)
ρ−1

oo

( • )R~

��
Db(C~

X)
Rρ∗ // Db(C~

Xsa
)

ρ−1
oo

Lemma 2.9. (i) The functors ρ−1 and ( • )R~ commute, that is, for G ∈
Db(CXsa) we have (ρ−1G)R~ ' ρ−1(GR~) in Db(C~

X).
(ii) The functors Rρ∗ and ( • )R~ commute, that is, for F ∈ Db(CX) we have

(Rρ∗F )R~ ' Rρ∗(FR~) in Db(C~
Xsa

).

Proof. (i) Since it admits a left adjoint, the functor ρ−1 commutes with projective
limits. It follows that for G ∈ Mod(CXsa) one has an isomorphism

ρ−1(G~) −→ (ρ−1G)~.

To conclude, it remains to show that (ρ−1( • ))R~ is the derived functor of (ρ−1( • ))~.
Recall that an objectG ofMod(CXsa) is quasi-injective if the functorHomCXsa

( • , G)
is exact on the category ModR-c(CX). By a result of [15], if G ∈ Mod(CXsa) is
quasi-injective, then ρ−1G is soft. Hence, ρ−1G is injective for the functor ( • )~ by
Proposition 2.5.

(ii) By (i) we can apply Lemma 2.4.

§3. D[[~]]-modules and propagation

Let now X be a complex analytic manifold of complex dimension dX . As usual,
denote by CX the constant sheaf with stalk C, by OX the structure sheaf and by
DX the ring of linear differential operators on X. We will use the notation

D′ : Db(CX)op −→ Db(CX), F 7→ RHomCX (F,CX),

D : Db
coh(DX)op −→ Db

coh(DX), M 7→ RHomDX
(M ,DX ⊗OX

Ω⊗−1
X ) [dX ],

Sol : Db
coh(DX)op −→ Db(CX), M 7→ RHomDX

(M ,OX),

DR: Db
coh(DX) −→ Db(CX), M 7→ RHomDX

(OX ,M ),

where ΩX denotes the line bundle of holomorphic forms of maximal degree and
Ω⊗−1
X the dual bundle.
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As shown in Corollary 2.6, the sheaves CX , OX and DX are all acyclic for the
functor ( • )~. We will be interested in the formal extensions

C~
X = CX [[~]], O~

X = OX [[~]], D~
X = DX [[~]].

In the following, we shall treat left D~
X -modules, but all results apply to right

modules since the categories Mod(D~
X) and Mod(D~,op

X ) are equivalent.

Proposition 3.1. Assumption 1.7 is satisfied by the C~-algebras D~
X and D~,op

X .

Proof. Assumption 1.7 holds for A = D~
X , A0 = DX , Modgood(A0|U ) the category

of good DU -modules (see [7]) and for B the family of Stein compact subsets of X.

In particular, by Theorem 1.9, D~
X is right and left Noetherian (and thus

coherent). Moreover, by Theorem 1.13 any object of Db
coh(D~

X) can be locally
represented by a bounded complex of free D~

X -modules of finite rank.
We will use the notation

D′~ : Db(C~
X)op −→ Db(C~

X), F 7→ RHomC~
X

(F,C~
X),

D~ : Db
coh(D~

X)op −→ Db
coh(D~

X), M 7→ RHomD~
X

(M ,D~
X ⊗OX

Ω⊗−1
X ) [dX ],

Sol~ : Db
coh(D~

X)op −→ Db(C~), M 7→ RHomD~
X

(M ,O~
X),

DR~ : Db
coh(D~

X) −→ Db(C~), M 7→ RHomD~
X

(O~
X ,M ).

By Proposition 2.8 and Lemma 2.3, for N ∈ Db
coh(DX) one has

N R~ ' D~
X

L
⊗DX

N ,(3.1)

gr~(N R~) ' N ,(3.2)

Sol~(N R~) ' Sol(N )R~.(3.3)

Definition 3.2. For M ∈ Mod(D~
X), denote by M~-tor its submodule consisting

of sections locally annihilated by some power of ~ and set M~-tf = M /M~-tor. We
say that M ∈ Mod(D~

X) is an ~-torsion module if M~-tor
∼−→M and that M has

no ~-torsion (or is ~-torsion free) if M
∼−→M~-tf.

Denote by nM the kernel of ~n+1 : M −→M . Then M~-tor is the sheaf associ-
ated with the increasing union of the nM ’s. Hence, if M is coherent, the increasing
family {nM }n is locally stationary and M~-tor as well as M~-tf are coherent.

Characteristic variety. Recall the following definition.
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Definition 3.3. (i) For C an abelian category, a function c : Ob(C ) −→ Set is
called additive if c(M) = c(M ′) ∪ c(M ′′) for any short exact sequence 0 −→
M ′ −→M −→M ′′ −→ 0.

(ii) For T a triangulated category, a function c : Ob(T ) −→ Set is called additive
if c(M) = c(M [1]) and c(M) ⊂ c(M ′) ∪ c(M ′′) for any distinguished triangle
M ′ −→M −→M ′′

+1−−→.

Note that an additive function c on C naturally extends to the derived cate-
gory D(C ) by setting c(M) =

⋃
i c(H

i(M)).
For N a coherent DX -module, denote by char(N ) its characteristic variety,

a closed involutive subvariety of the cotangent bundle T ∗X. The characteristic
variety is additive on Modcoh(DX). For N ∈ Db

coh(DX) one sets char(N ) =⋃
i char(Hi(N )).

Definition 3.4. The characteristic variety of M ∈ Db
coh(D~

X) is defined by

char~(M ) = char(gr~(M )).

To M ∈ Modcoh(D~
X) one associates the coherent DX -modules

0M = Ker(~ : M −→M ) = H−1(gr~ M ),(3.4)

M0 = Coker(~ : M −→M ) = H0(gr~ M ).(3.5)

Lemma 3.5. For M ∈ Modcoh(D~
X) an ~-torsion module, one has

char~(M ) = char(M0) = char(0M ).

Proof. By definition, char~(M ) = char(M0) ∪ char(0M ). It is thus enough to
prove the equality char(M0) = char(0M ).

Since the statement is local we may assume that ~NM = 0 for some N ∈ N.
We proceed by induction on N .

For N = 1 we have M 'M0 ' 0M , and the statement is obvious.
Assume that the statement has been proved for N − 1. The short exact se-

quence

(3.6) 0 −→ ~M −→M −→M0 −→ 0

induces the distinguished triangle

gr~ ~M −→ gr~ M −→ gr~ M0
+1−−→ .

Noticing that M0 ' (M0)0 ' 0(M0), the associated long exact cohomology se-
quence gives

0 −→ 0(~M ) −→ 0M −→M0 −→ (~M )0 −→ 0.
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By inductive hypothesis we have char(0(~M )) = char((~M )0), and we deduce
char(M0) = char(M0) by additivity of char.

Proposition 3.6. (i) For M ∈ Modcoh(D~
X) one has

char~(M ) = char(M0).

(ii) The characteristic variety char~ is additive both on Modcoh(D~
X) and on

Db
coh(D~

X).

Proof. (i) As char(gr~ M ) = char(M0) ∪ char(0M ), it is enough to prove the
inclusion

(3.7) char(0M ) ⊂ char(M0).

Consider the short exact sequence 0 −→ M~-tor −→ M −→ M~-tf −→ 0. Since M~-tf
has no ~-torsion, 0(M~-tf) = 0. The associated long exact cohomology sequence
thus gives

0(M~-tor) ' 0M , 0 −→ (M~-tor)0 −→M0 −→ (M~-tf)0 −→ 0.

We deduce

char(0M ) = char(0(M~-tor)) = char((M~-tor)0) ⊂ char(M0),

where the second equality follows from Lemma 3.5.
(ii) It is enough to prove the additivity on Modcoh(D~

X), i.e. the equality

char~(M ) = char~(M ′) ∪ char~(M ′′)

for 0 −→M ′ −→M −→M ′′ −→ 0 a short exact sequence of coherent D~
X -modules.

The associated distinguished triangle gr~ M ′ −→ gr~ M −→ gr~ M ′′ +1−−→ in-
duces the long exact cohomology sequence

0(M ′′) −→ (M ′)0 −→M0 −→ (M ′′)0 −→ 0.

By additivity of char( • ), the exactness of this sequence at the first, second and
third term from the right, respectively, gives

char~(M ′′) ⊂ char~(M ),

char~(M ) ⊂ char~(M ′) ∪ char~(M ′′),

char~(M ′) ⊂ char(0(M ′′)) ∪ char~(M ).

Finally, note that char(0(M ′′)) ⊂ char~(M ′′) ⊂ char~(M ).
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In view of Proposition 3.6 (i), in order to define the characteristic variety of a
coherent D~

X -module M one could avoid derived categories considering char(M0)
instead of char(gr~ M ). The next lemma shows that these definitions are still
compatible for M ∈ Db

coh(D~
X).

Lemma 3.7. For M ∈ Db
coh(D~

X) one has⋃
i
char(Hi(gr~ M )) =

⋃
i
char((HiM )0).

Proof. By additivity of char, the short exact sequence

(3.8) 0 −→ (HiM )0 −→ Hi(gr~ M ) −→ 0(Hi+1M ) −→ 0

from [13, Lemma 1.4.2] induces the relations

char((HiM )0) ⊂ char(Hi(gr~ M )),

char(Hi(gr~ M )) = char((HiM )0) ∪ char(0(Hi+1M )).

One concludes by noticing that (3.7) gives

char(0(Hi+1M )) ⊂ char((Hi+1M )0).

Proposition 3.8. Let M ∈ Mod(D~
X) be an ~-torsion module. Then M is co-

herent as a D~
X-module if and only if it is coherent as a DX-module, and in this

case one has char~(M ) = char(M ).

Proof. As in the proof of Lemma 3.5 we assume that ~NM = 0 for some N ∈ N.
Since coherence is preserved by extension and since the characteristic varieties of
D~
X -modules and DX -modules are additive, we can argue by induction on N using

the exact sequence (3.6). We are thus reduced to the case N = 1, where M = M0

and the statement becomes obvious.

From (3.2) we obtain

Proposition 3.9. For N ∈ Db
coh(DX) one has char~(N ~) = char(N ).

Holonomic modules. Recall that a coherent DX -module (or an object of the
derived category) is called holonomic if its characteristic variety is isotropic. We
refer e.g. to [7, Chapter 5] for the notion of regularity.

Definition 3.10. We say that M ∈ Db
coh(D~

X) is holonomic, or regular holo-
nomic, if so is gr~(M ). We denote by Db

hol(D
~
X) the full triangulated subcategory

of Db
coh(D~

X) of holonomic objects and by Db
rh(D~

X) the full triangulated subcate-
gory of regular holonomic objects.
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Note that a coherent D~
X -module is holonomic if and only if its characteristic

variety is isotropic.

Example 3.11. Let N be a regular holonomic DX -module. Then

(i) N itself, considered as a D~
X -module, is regular holonomic, as follows from

the isomorphism gr~ N ' N ⊕N [1];
(ii) N ~ is a regular holonomic D~

X -module, as follows from the isomorphism
gr~ N ~ ' N . In particular, O~

X is regular holonomic.

Remark 3.12. We denote by Modrh(DX) the category of regular holonomic DX -
modules and by Modrh(D~

X) the subcategory of Mod(D~
X) of regular holonomic

objects in the above sense. The proofs of Lemma 3.5 and Proposition 3.6 adapt to
the notion of regular holonomy and give the following results:

(i) For M ∈ Modcoh(D~
X) an ~-torsion module,

M ∈ Modrh(D~
X) ⇔ M0 ∈ Modrh(DX) ⇔ 0M ∈ Modrh(DX).

(ii) For M ∈ Modcoh(D~
X),

M ∈ Modrh(D~
X) ⇔ M0 ∈ Modrh(DX).

In this case, 0M ∈ Modrh(DX).

Now for M ∈ Db
coh(D~

X) the exact sequence (3.8) shows that, for any i,

Hi(gr~ M ) ∈ Modrh(DX) ⇔ (HiM )0, 0(Hi+1M ) ∈ Modrh(DX).

By the above we deduce that M ∈ Db
rh(D~

X) if and only if (HiM )0 ∈ Modrh(DX)
for all i. This is again equivalent to HiM ∈ Modrh(D~

X) for all i.

Propagation. Denote by Db
C-c(C~

X) the full triangulated subcategory of Db(C~
X)

consisting of objects with C-constructible cohomology over the ring C~.

Theorem 3.13. Let M ,N ∈ Db
coh(D~

X). Then

SS(RHomD~
X

(M ,N )) = SS(RHomDX
(gr~(M ), gr~(N ))).

If moreover M and N are holonomic, then RHomD~
X

(M ,N ) is an object of
Db

C-c(C~
X).

Proof. Set F = RHomD~
X

(M ,N ). By Theorem 1.9 and Proposition 1.5, F is
cohomologically ~-complete. Hence SS(F ) = SS(gr~(F )) by Proposition 1.15. If
moreover M and N are holonomic, then gr~ F is C-constructible. The equal-
ity SS(F ) = SS(gr~(F )) implies that F is weakly C-constructible. Moreover, the
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finiteness of the stalks gr~(F )x ' gr~(Fx) over C implies the finiteness of Fx over
C~ by Theorem 1.11 applied with X = {pt} and A = C~.

Applying Theorem 3.13, and [9, Theorem 11.3.3], we get:

Corollary 3.14. Let M ∈ Db
coh(D~

X). Then

SS(Sol~(M )) = SS(DR~(M )) = char~(M ).

If moreover M is holonomic, then Sol~(M ) and DR~(M ) belong to Db
C-c(C~

X).

Theorem 3.15. Let M ∈ Db
hol(D

~
X). Then there is a natural isomorphism in

Db
C-c(C~

X)

(3.9) Sol~(M ) ' D′~(DR~(M )).

Proof. The natural C~-linear morphism

RHomD~
X

(O~
X ,M )

L
⊗C~

X
RHomD~

X
(M ,O~

X) −→ RHomD~
X

(O~
X ,O

~
X) ' C~

X

induces the morphism in Db
C-c(C~

X)

(3.10) α : RHomD~
X

(M ,O~
X) −→ D′~(RHomD~

X
(O~

X ,M )).

(Note that, choosing M = D~
X , this morphism defines the morphism O~

X −→
D′~(Ω~

X [−dX ]).) The morphism (3.10) induces an isomorphism

gr~(α) : RHomDX
(gr~(M ),OX) −→ D′(RHomDX

(OX , gr~(M ))).

It is thus an isomorphism by Corollary 1.17.

§4. Formal extension of tempered functions

Let us start by reviewing after [11, Chapter 7] the construction of the sheaves
of tempered distributions and of C∞-functions with temperate growth on the
subanalytic site.

Let X be a real analytic manifold, and U an open subset. One says that
a function f ∈ C∞X (U) has polynomial growth at p ∈ X if, for a local coordinate
system (x1, . . . , xn) around p, there exist a sufficiently small compact neighborhood
K of p and a positive integer N such that

sup
x∈K∩U

(dist(x,K \ U))N |f(x)| <∞.

One says that f is tempered at p if all its derivatives are of polynomial growth at
p. One says that f is tempered if it is tempered at any point of X. One denotes
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by C∞,tX (U) the C-vector subspace of C∞(U) consisting of tempered functions. It
then follows from a theorem of Łojasiewicz that U 7→ C∞,tX (U) (U ∈ OpXsa

) is a
sheaf on Xsa. We denote it by C∞,tXsa

or simply C∞,tX if there is no risk of confusion.

Lemma 4.1. One has Hj(U ; C∞,tX ) = 0 for any U ∈ OpXsa
and any j > 0.

This result is well-known (see [10, Chapter 1]), but we recall its proof for the
reader’s convenience.

Proof. Consider the full subcategory J of Mod(CXsa) whose objects are sheaves
F such that for any pair U, V ∈ OpXsa

, the Mayer–Vietoris sequence

0 −→ F (U ∪ V ) −→ F (U)⊕ F (V ) −→ F (U ∩ V ) −→ 0

is exact. Let us check that this category is injective with respect to the functor
Γ(U ; • ). The only non-obvious fact is that if 0 −→ F ′ −→ F −→ F ′′ −→ 0 is an
exact sequence and that F ′ belongs to J , then F (U) −→ F ′′(U) is surjective. Let
t ∈ F ′′(U). There exist a finite covering U =

⋃
i∈I Ui and si ∈ F (Ui) whose image

in F ′′(Ui) is t|Ui . Then the proof goes by induction on the cardinality of I using
the property of F ′ and standard arguments. To conclude, note that C∞,tX belongs
to J thanks to Łojasiewicz’s result (see [14]).

Let DbX be the sheaf of distributions on X. For U ∈ OpXsa
, denote by

DbtX(U) the space of tempered distributions on U , defined by the exact sequence

0 −→ ΓX\U (X; DbX) −→ Γ(X; DbX) −→ DbtX(U) −→ 0.

Again, it follows from a theorem of Łojasiewicz that U 7→ Dbt(U) is a sheaf on
Xsa. We denote it by DbtXsa

or simply DbtX if there is no risk of confusion. The
sheaf DbtX is quasi-injective, that is, the functor HomCXsa

( • ,DbtX) is exact in
the category ModR-c(CX). Moreover, for U ∈ OpXsa

, HomCXsa
(CU ,DbtX) is also

quasi-injective and RHomCXsa
(CU ,DbtX) is concentrated in degree 0. Note that

the sheaf
Γ[U ]DbX := ρ−1HomCXsa

(CU ,DbtX)

is a C∞X -module, so that in particular RΓ(V ; Γ[U ]DbX) is concentrated in degree 0
for V ⊂ X an open subset.

Formal extensions. By Proposition 2.5 the sheaves C∞,tX , DbtX and Γ[U ]DbX are
acyclic for the functor ( • )~. We set

C∞,t,~X := (C∞,tX )~, Dbt,~X := (DbtX)~, Γ[U ]Db
~
X := (Γ[U ]DbX)~.

Note that, by Lemmas 2.3 and 2.9,

Γ[U ]Db
~
X ' ρ−1HomCXsa

(CU ,Dbt,~X ).
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By Proposition 2.2 we get:

Proposition 4.2. The sheaves C∞,t,~X , Dbt,~X and Γ[U ]Db
~
X are cohomologically

~-complete.

Now assume X is a complex manifold. Denote by X the complex conjugate
manifold and by XR the underlying real analytic manifold, identified with the
diagonal ofX×X. One defines the sheaf (in fact, an object of the derived category)
of tempered holomorphic functions by

Ot
X := RHomρ!DX

(ρ!OX ,C
∞,t
X ) ∼−→ RHomρ!DX

(ρ!OX ,Db
t
X).

Here and below, we write C∞,tX and DbtX instead of C∞,t
XR and DbtXR , respectively.

We set
Ot,~
X := (Ot

X)R~,

a cohomologically ~-complete object of Db(C~
Xsa

). By Lemma 2.3,

Ot,~
X ' RHomρ!DX

(ρ!OX ,C
∞,t,~
X ) ∼−→ RHomρ!DX

(ρ!OX ,Db
t,~
X ).

Note that gr~(Ot,~
X ) ' Ot

X in Db(CXsa).

§5. Riemann–Hilbert correspondence

Let X be a complex analytic manifold. Consider the functors

TH: Db
C-c(CX) −→ Db

rh(DX)op, F 7→ ρ−1RHomCXsa
(ρ∗F,Ot

X),

TH~ : Db
C-c(C~

X) −→ Db(D~
X)op, F 7→ ρ−1RHomC~

Xsa
(ρ∗F,O

t,~
X ).

The classical Riemann–Hilbert correspondence of Kashiwara [6] states that the
functors Sol and TH are equivalences of categories between Db

C-c(CX) and
Db

rh(DX)op quasi-inverse to each other. In order to obtain a similar statement
for CX and DX replaced with C~

X and D~
X , respectively, we start by establishing

some lemmas.

Lemma 5.1. For M ,N ∈ Db
hol(D

~
X) one has a natural isomorphism in Db

C-c(C~
X)

RHomD~
X

(M ,N ) ∼−→ RHomC~
X

(Sol~(N ),Sol~(M )).

Proof. Applying the functor gr~ to this morphism, we get an isomorphism by the
classical Riemann–Hilbert correspondence. Then the result follows from Corol-
lary 1.17 and Theorem 3.13.

Note that there is an isomorphism in Db(DX)

(5.1) gr~(TH~(F )) ' TH(gr~(F )).
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Lemma 5.2. The functor TH~ induces a functor

(5.2) TH~ : Db
C-c(C~

X) −→ Db
rh(D~

X)op.

Proof. Let F ∈ Db
C-c(C~

X). By (5.1) and the classical Riemann–Hilbert correspon-
dence we know that gr~(TH~(F )) is regular holonomic, and in particular coherent.
It is thus left to prove that TH~(F ) is coherent. Note that our problem is of local
nature.

We use the Dolbeault resolution of Ot,~
X with coefficients in Dbt,~X and we

choose a resolution of F as given in Proposition A.2(i). We find that TH~(F ) is
isomorphic to a bounded complex M

• , where the M i are locally finite sums of
sheaves of the type Γ[U ]Db

t,~ with U ∈ OpXsa
. It follows from Proposition 4.2 that

TH~(F ) is cohomologically ~-complete, and we conclude by Theorem 1.11 with
A = D~

X .

Lemma 5.3. We have RHomρ!D~
X

(ρ!O~
X ,O

t,~
X ) ' C~

Xsa
.

Proof. This isomorphism is given by the sequence

RHomρ!D~
X

(ρ!O
~
X ,O

t,~
X ) ' RHomρ!DX

(ρ!OX ,O
t,~
X ) ' RHomρ!DX

(ρ!OX ,O
t
X)R~

' (ρ∗RHomDX
(OX ,OX))R~ ' (CXsa)R~ ' C~

Xsa
,

where the first isomorphism is an extension of scalars, the second follows from
Lemma 2.3 and the third is given by the adjunction between ρ! and ρ−1.

Theorem 5.4. The functors Sol~ and TH~ are equivalences of categories between
Db

C-c(C~
X) and Db

rh(D~
X)op quasi-inverse to each other.

Proof. In view of Lemma 5.1, the functor Sol~ is fully faithful. It is then enough
to show that Sol~(TH~(F )) ' F for F ∈ Db

C-c(C~
X). By Theorem 3.15, this is

equivalent to DR~(TH~F ) ' D′~F . Since we already know by Lemma 5.2 that
TH~(F ) is holonomic, we may use (3.9). We have the sequence of isomorphisms

ρ∗RHomD~
X

(O~
X ,TH~(F )) = ρ∗RHomD~

X
(O~

X , ρ
−1RHomC~

Xsa
(ρ∗F,O

t,~
X ))

' RHomρ!D~
X

(ρ!O
~
X ,RHomC~

Xsa
(ρ∗F,O

t,~
X ))

' RHomC~
Xsa

(ρ∗F,RHomρ!D~
X

(ρ!O
~
X ,O

t,~
X ))

' RHomC~
Xsa

(ρ∗F,C~
Xsa

) ' RHomC~
Xsa

(ρ∗F, ρ∗C~
X) ' ρ∗D′~F,

where we have used the adjunction between ρ! and ρ−1, the isomorphism of
Lemma 5.3 and the commutation of ρ∗ with RHom. One concludes by recall-
ing the isomorphism of functors ρ−1ρ∗ ' id.
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t-structure. Recall the definition of the middle perversity t-structure for complex
constructible sheaves. Let K denote either the field C or the ring C~. For F ∈
Db

C-c(KX), we have F ∈ pD≤0
C-c(KX) if and only if

(5.3) ∀i ∈ Z dim suppHi(F ) ≤ dX − i,

and F ∈ pD≥0
C-c(KX) if and only if, for any locally closed complex analytic subset

S ⊂ X,

(5.4) Hi
S(F ) = 0 for all i < dX − dim(S).

One denotes by Perv(KX) the heart of this t-structure.
With the above convention, the de Rham functor

DR: Db
hol(DX) −→ pDb

C-c(CX)

is t-exact, when Db
hol(DX) is equipped with the natural t-structure.

Theorem 5.5. The de Rham functor DR~ : Db
hol(D

~
X) −→ pDb

C-c(C~
X) is t-exact,

and induces a t-exact equivalence between Db
rh(D~

X) and pDb
C-c(C~

X). In particular,
it induces an equivalence between Modrh(D~

X) and Perv(C~
X).

Proof. (i) Let M ∈ D≤0
hol(D

~
X). Let us prove that DR~M ∈ pD≤0

C-c(C~
X). Since

DR~M is constructible, by Proposition 1.19 it is enough to check (5.3) for
gr~(DR~M ) ' DR(gr~ M ). In other words, it is enough to check that DR(gr~ M )
∈ pD≤0

C-c(CX). Since gr~ M ∈ D≤0
hol(DX), this result follows from the t-exactness of

the functor DR.
(ii) Let M ∈ D≥0

hol(D
~
X). Let us prove that DR~M ∈ pD≥0

C-c(C~
X). We set

N = (H0M )~-tor. We have a morphism u : N −→M induced by H0M −→M and
we let M ′ be the mapping cone of u. We have a distinguished triangle

DR~N −→ DR~M −→ DR~M ′ +1−−→

so that it is enough to show that DR~N and DR~M ′ belong to pD≥0
C-c(C~

X).
(ii-a) By Propositions 3.6(ii) and 3.8, N is holonomic as a DX -module. Hence

DR~N ' DRN is a perverse sheaf (over C) and satisfies (5.4). Since (5.4) does
not depend on the coefficient ring, DR~N ∈ pD≥0

C-c(C~
X).

(ii-b) We note thatH0M ′ ' (H0M )~-tf. Hence by Proposition 1.14, gr~ M ′ ∈
D≥0

hol(DX) and DR(gr~ M ′) ∈ pD≥0
C-c(CX), that is, DR(gr~ M ′) satisfies (5.4). Let

S ⊂ X be a locally closed complex subanalytic subset. We have

RΓS(DR(gr~ M ′)) ' gr~(RΓS(DR~M ′))

and it follows from Proposition 1.19 that DR~M ′ also satisfies (5.4) and thus
belongs to pD≥0

C-c(C~
X).
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(iii) Consider the restriction DR~ : Db
rh(D~

X) −→ pDb
C-c(C~

X) to regular holo-
nomic complexes. In view of Lemma A.1, it follows from Theorems 5.4 and 3.15
that the functor TH~ ◦D′~ is a quasi-inverse to DR~. As quasi-inverse to a t-exact
functor, TH~ ◦ D′~ is also t-exact. Thus DR~ is a t-exact equivalence, and it in-
duces an equivalence between the respective hearts, i.e. between Modrh(D~

X) and
Perv(C~

X).

§6. Duality and ~-torsion

The duality functors D on Drh(DX) and D′ on pDb
C-c(CX) are t-exact. We will

discuss here the finer t-structures needed in order to obtain a similar result when
replacing CX and DX by their formal extensions C~

X and D~
X .

Following [2, Chapter I.2], let us start by recalling some facts related to torsion
pairs and t-structures. We need in particular Proposition 6.2 below, which can also
be found in [3].

Definition 6.1. Let C be an abelian category. A torsion pair on C is a pair
(Ctor,Ctf) of full subcategories such that

(i) for all objects T in Ctor and F in Ctf, we have HomC (T, F ) = 0,
(ii) for any object M in C , there are objects Mtor in Ctor and Mtf in Ctf and a

short exact sequence 0 −→Mtor −→M −→Mtf −→ 0.

Proposition 6.2. Let D be a triangulated category endowed with a t-structure
(pD≤0, pD≥0). Let us denote its heart by C and its cohomology functors by
pHi : D −→ C . Suppose that C is endowed with a torsion pair (Ctor,Ctf). Then
we can define a new t-structure (πD≤0, πD≥0) on D by setting

πD≤0 = {M ∈ pD≤1 : pH1(M) ∈ Ctor}, πD≥0 = {M ∈ pD≥0 : pH0(M) ∈ Ctf}.

With the notation of Definition 3.2, there is a natural torsion pair attached
to Mod(D~

X) given by the full subcategories

Mod(D~
X)~-tor = {M : M~-tor

∼−→M }, Mod(D~
X)~-tf = {M : M

∼−→M~-tf}.

Definition 6.3. (a) We call the torsion pair on Mod(D~
X) defined above, the

~-torsion pair.
(b) We denote by (D≤0(D~

X),D≥0(D~
X)) the natural t-structure on D(D~

X).
(c) We denote by (tD≤0(D~

X), tD≥0(D~
X)) the t-structure on Db(D~

X) associated
via Proposition 6.2 with the ~-torsion pair on Mod(D~

X).
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Proposition 1.14 implies the following equivalences for M ∈ Db
coh(D~

X):

M ∈ tD≥0(D~
X) ⇔ gr~ M ∈ D≥0(DX),(6.1)

M ∈ D≤0(D~
X) ⇔ gr~ M ∈ D≤0(DX).(6.2)

Proposition 6.4. Let M be a holonomic D~
X-module.

(i) If M has no ~-torsion, then D~M is concentrated in degree 0 and has no
~-torsion.

(ii) If M is an ~-torsion module, then D~M is concentrated in degree 1 and is an
~-torsion module.

Proof. By (1.2) we have gr~(D~M ) ' D(gr~ M ). Since gr~ M is concentrated
in degrees 0 and −1, with holonomic cohomology, D(gr~ M ) is concentrated in
degrees 0 and 1. By Proposition 1.14, D~M itself is concentrated in degrees 0
and 1 and H0(D~M ) has no ~-torsion.

(i) The short exact sequence

0 −→M
~−→M −→M /~M −→ 0

induces the long exact sequence

· · · −→ H1(D~(M /~M )) −→ H1(D~M ) ~−→ H1(D~M ) −→ 0.

By Nakayama’s lemma H1(D~M ) = 0 as required.
(ii) Since M is locally annihilated by some power of ~, the cohomology groups

Hi(D~M ) also are ~-torsion modules. As H0(D~M ) has no ~-torsion, we get
H0(D~M ) = 0.

Theorem 6.5. The duality functor D~ : Db
hol(D

~
X)op −→ tDb

hol(D
~
X) is t-exact.

In other words, D~ interchanges D≤0
hol(D

~
X) with tD≥0

hol(D
~
X) and D≥0

hol(D
~
X) with

tD≤0
hol(D

~
X).

Proof. (i) Let us first prove, for M ∈ Db
hol(D

~
X),

(6.3) M ∈ D≤0
hol(D

~
X) ⇔ D~(M ) ∈ tD≥0

hol(D
~
X).

By (1.2) we have gr~(D~M ) ' D(gr~ M ) and we know that the analog of (6.3)
holds true for DX -modules:

N ∈ D≤0
hol(DX) ⇔ D(N ) ∈ D≥0

hol(DX).

Hence (6.3) follows easily from (6.1) and (6.2).
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(ii) We recall the general fact for a t-structure (D,D≤0,D≥0) and A ∈ D:

A ∈ D≤0 ⇔ Hom(A,B) = 0 for any B ∈ D≥1,

A ∈ D≥0 ⇔ Hom(B,A) = 0 for any B ∈ D≤−1.

Since D~ is an involutive equivalence of categories we deduce from (6.3) the dual
statement:

M ∈ D≥0
hol(D

~
X) ⇔ D~(M ) ∈ tD≤0

hol(D
~
X).

Remark 6.6. The above result can be stated as follows in the language of quasi-
abelian categories of [19]. We will follow the notation of [8, Chapter 2]. The cate-
gory C = Mod(D~

X)~-tf is quasi-abelian. Hence its derived category has a natural
generalized t-structure (D≤s(C ),D>s−1(C ))s∈ 1

2 Z. Note that D[−1/2,0](C ) is equiv-
alent to Mod(D~

X), and D[0,1/2](C ) is equivalent to the heart of tDb(D~
X). Then

Theorem 6.5 states that the duality functor D~ is t-exact on Db
hol(C ).

Recall that Perv(C~
X) denotes the heart of the middle perversity t-structure

on Db
C-c(C~

X). Consider the full subcategories of Perv(C~
X)

Perv(C~
X)~-tor = {F : locally ~NF = 0 for some N ∈ N},

Perv(C~
X)~-tf = {F : F has no non-zero subobjects in Perv(C~

X)~-tor}.

Lemma 6.7. (i) Let F ∈ Perv(C~
X). Then the inductive system of sub-perverse

sheaves Ker(~n : F −→ F ) is locally stationary.
(ii) The pair (Perv(C~

X)~-tor,Perv(C~
X)~-tf) is a torsion pair.

Proof. (i) Set M = D~TH~(F ). By the Riemann–Hilbert correspondence, one
has Ker(~n : F −→ F ) ' DR~(Ker(~n : M −→ M )). Since M is coherent, the
inductive system Ker(~n : M −→M ) is locally stationary. Hence so is the system
Ker(~n : F −→ F ).

(ii) By (i) it makes sense to define, for F ∈ Perv(C~
X),

F~-tor =
⋃
n

Ker(~n : F −→ F ), F~-tf = F/F~-tor.

It is easy to check that F~-tor ∈ Perv(C~
X)~-tor and F~-tf ∈ Perv(C~

X)~-tf. Then
property (ii) in Definition 6.1 is clear. For property (i) let u : F −→ G be a morphism
in Perv(C~

X) with F ∈ Perv(C~
X)~-tor and G ∈ Perv(C~

X)~-tf. Then Imu is also in
Perv(C~

X)~-tor and so it is zero by the definition of Perv(C~
X)~-tf.

Denote by (πD≤0
C-c(C~

X), πD≥0
C-c(C~

X)) the t-structure on DC-c(C~
X) induced by

the perversity t-structure and this torsion pair as in Proposition 6.2. We also set
πPerv(C~

X) = πD≤0
C-c(C~

X) ∩ πD≥0
C-c(C~

X).
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Theorem 6.8. There is a quasi-commutative diagram of t-exact functors

Db
hol(D

~
X)op DR~ //

D~

��

pDb
C-c(C~

X)op

D′~
��

tDb
hol(D

~
X)

DR~ // πDb
C-c(C~

X)

where the duality functors are equivalences of categories and the de Rham functors
become equivalences when restricted to the subcategories of regular objects.

Example 6.9. Let X = C, U = X \{0} and denote by j : U ↪→ X the embedding.
Let L be the local system on U with stalk C~ and monodromy 1 + ~. The sheaf
Rj∗L ' D′h(j!(D′hL)) is perverse for both t-structures, as is the sheaf H0(Rj∗L) =
j∗L ' j!L. The sheaf H1(Rj∗L) ' C{0} has ~-torsion. From the distinguished

triangle j∗L −→ Rj∗L −→ C{0}[−1] +1−−→, one gets the short exact sequences

0 −→ j∗L −→ Rj∗L −→ C{0}[−1] −→ 0 in Perv(C~
X),

0 −→ C{0}[−2] −→ j∗L −→ Rj∗L −→ 0 in πPerv(C~
X).

§7. D((~))-modules

Denote by
C~,loc := C((~)) = C[[~−1, ~]]

the field of Laurent series in ~, that is, the fraction field of C~. Recall the exact
functor

(7.1) ( • )loc : Mod(C~
X) −→ Mod(C~,loc

X ), F 7→ C~,loc ⊗C~ F,

and note that by [9, Proposition 5.4.14] one has the inclusion

(7.2) SS(F loc) ⊂ SS(F ).

For G ∈ Db(CX), we write G~,loc instead of (G~)loc. We will consider in particular

O~,loc
X = OX((~)), D~,loc

X = DX((~)).

Lemma 7.1. Let M be a coherent D~,loc
X -module. Then M is pseudo-coherent

over D~
X . In other words, if L ⊂ M is a finitely generated D~

X-module, then L

is D~
X-coherent.

Proof. The proof follows from [7, Appendix, A1].

Definition 7.2. A lattice L of a coherent D~,loc
X -module M is a coherent D~

X -
submodule of M which generates it.
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Since M has no ~-torsion, none of its lattices has ~-torsion. In particular, one
has M ' L loc and gr~ L ' L0 = L /~L .

It follows from Lemma 7.1 that lattices locally exist: for a local system of
generators (m1, . . . ,mN ) of M , define L as the D~

X -submodule with the same
generators.

Lemma 7.3. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence of coherent
D~,loc
X -modules. Locally there exist lattices L ′, L , L ′′ of M ′, M , M ′′, respec-

tively, inducing an exact sequence of D~
X-modules

0 −→ L ′ −→ L −→ L ′′ −→ 0.

Proof. Let L be a lattice of M and let L ′′ be its image in M ′′. We set L ′ :=
L ∩M ′. These sub-D~

X -modules give rise to an exact sequence.
Since L ′′ is of finite type over D~

X , it is a lattice of M ′′. Let us show that
L ′ is a lattice of M ′. Being the kernel of a morphism L −→ L ′′ between coherent
D~
X -modules, L ′ is coherent. To show that L ′ generates M ′, note that any m′ ∈

M ′ ⊂ M may be written as m′ = ~−Nm for some N ≥ 0 and m ∈ L . Hence
m = ~Nm′ ∈M ′ ∩L = L ′.

For an abelian category C , we denote by K(C ) its Grothendieck group. For
an object M of C , we denote by [M ] its class in K(C ). We let K (DX) be the
sheaf on X associated to the presheaf

U 7→ K(Modcoh(DX |U )).

We define K (D~,loc
X ) in the same way.

Lemma 7.4. Let L be a coherent D~
X-module without ~-torsion. Then, for any

i > 0, the DX-module L /~iL is coherent, and we have the equality [L /~iL ] =
i · [gr~(L )] in K(Modcoh(DX)).

Proof. Since the functor ( • )⊗C~ C~/~iC~ is right exact, L /~iL is a coherent DX -
module. Since L has no ~-torsion, multiplication by ~i induces an isomorphism
L /~L

∼−→ ~iL /~i+1L . We conclude by induction on i with the exact sequence

0 −→ ~iL /~i+1L −→ L /~i+1L −→ L /~iL −→ 0.

Lemma 7.5. For M ∈ Modcoh(D~,loc
X ), U ⊂ X an open set and L ⊂ M |U a

lattice of M |U , the class [gr~(L )] ∈ K(Modcoh(DX |U )) only depends on M . This
defines a morphism of abelian sheaves K (D~,loc

X ) −→ K (DX).

Proof. (i) We first prove that [gr~(L )] only depends on M . We consider another
lattice L ′ of M |U . Since L is a D~

X -module of finite type, and L ′ generates M ,
there exists n > 1 such that L ⊂ ~−nL ′. Similarly, there exists m > 1 with
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L ′ ⊂ ~−mL , so that we have the inclusions

~m+n+2L ⊂ ~m+n+1L ⊂ ~m+1L ′ ⊂ ~mL ′ ⊂ L .

Any inclusion A ⊂ B ⊂ C yields an identity [C/A] = [C/B] + [B/A] in the
Grothendieck group, and we obtain in particular

[~mL ′/~m+n+1L ] = [~mL ′/~m+1L ′] + [~m+1L ′/~m+n+1 L ],

[L /~m+n+1L ] = [L /~m+1L ′] + [~m+1L ′/~m+n+1 L ],

[L /~m+n+2L ] = [L /~m+1L ′] + [~m+1L ′/~m+n+2 L ].

Note that we have isomorphisms of the type ~kM1/~kM2 'M1/M2 for modules
without ~-torsion. Then Lemma 7.4 and the above equalities give:

[L ′/~n+1L ] = [gr~(L ′)] + [L ′/~nL ],

(m+ n+ 1)[gr~(L )] = [L /~m+1L ′] + [L ′/~nL ],

(m+ n+ 2)[gr~(L )] = [L /~m+1L ′] + [L ′/~n+1L ].

A suitable combination of these lines gives [gr~(L )] = [gr~(L ′)], as desired.
(ii) Now we consider an open subset V ⊂ X and M ∈ Modcoh(D~,loc

X |V ). We
choose an open covering {Ui}i∈I of V such that for each i ∈ I, M |Ui admits a
lattice, say L i. We have seen that [gr~(L i)] ∈ K(Modcoh(DX |Ui)) only depends
on M . This implies that

[gr~(L i)]|Ui,j = [gr~(L j)]|Ui,j in K(Modcoh(DX |Ui,j )).

Hence the [gr~(L i)]’s define a section, say c(M ), of K (DX) over V . By Lem-
ma 7.3, c(M ) only depends on the class [M ] in K(Modcoh(D~,loc

X |V )), and M 7→
c(M ) induces the morphism K (D~,loc

X ) −→ K (DX).

By Lemma 7.5, the following definition is correct.

Definition 7.6. The characteristic variety of a coherent D~,loc
X -module M is de-

fined by
char~,loc(M ) = char~(L ),

for L ∈Modcoh(D~
X) a (local) lattice. For M ∈Db

coh(D~,loc
X ), one sets char~,loc(M )

=
⋃
j char~,loc(Hj(M )).

Proposition 7.7. The characteristic variety char~,loc is additive both on
Modcoh(D~,loc

X ) and on Db
coh(D~,loc

X ).

Proof. This follows from Proposition 3.6(ii) and Lemma 7.3.



248 A. D’Agnolo et al.

Consider the functor

Sol~,loc : Db(D~,loc
X )op −→ Db(C~,loc

X ), M 7→ RHomD~,loc
X

(M ,O~,loc
X ).

Proposition 7.8. Let M ∈ Db
coh(D~,loc

X ). Then

SS(Sol~,loc(M )) ⊂ char~,loc(M ).

Proof. By dévissage, we can assume that M ∈ Modcoh(D~,loc
X ). Moreover, since

the problem is local, we may assume that M admits a lattice L .
One has the isomorphism Sol~,loc(M ) ' RHomD~

X
(L ,O~,loc

X ) by extension
of scalars. Taking a local resolution of L by free D~

X -modules of finite type, we
deduce that Sol~,loc(M ) ' F loc for F = Sol~(L ). The statement follows by (7.2)
and Corollary 3.14.

One says that M is holonomic if its characteristic variety is isotropic.

Proposition 7.9. The functor Sol~,loc induces a functor

Sol~,loc : Db
hol(D

~,loc
X )op −→ Db

C-c(C
~,loc
X ).

Proof. By the same arguments and with the same notation as in the proof of
Proposition 7.8, we reduce to the case Sol~,loc(M ) ' F loc, for F = Sol~(L ) and
L a lattice of M ∈ Modhol(D

~,loc
X ). Hence L is a holonomic D~

X -module, and
F ∈ Db

C-c(C~
X).

Remark 7.10. In general the functor

Sol~,loc : Db
hol(D

~,loc
X )op −→ Db

C-c(C
~,loc
X )

is not locally essentially surjective. In fact, consider the quasi-commutative dia-
gram of categories

Db
hol(D

~
X)op Sol~ //

( • )loc

��

Db
C-c(C~

X)

( • )loc

��
Db

hol(D
~,loc
X )op

Sol~,loc // Db
C-c(C

~,loc
X )

By the local existence of lattices the left vertical arrow is locally essentially sur-
jective. If Sol~,loc were also locally essentially surjective, so should be the right
vertical arrow. The following example shows that it is not the case.

One can interpret this phenomenon by remarking that Db
hol(D

~,loc
X ) is equiva-

lent to the localization of the category Db
hol(D

~
X) with respect to the morphism ~,

in contrast to the category Db
C-c(C

~,loc
X ).
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Example 7.11. Let X = C, U = X \ {0} and denote by j : U ↪→ X the em-
bedding. Set F = Rj!L, where L is the local system on U with stalk C~,loc

and monodromy ~ around the origin. Since ~ is not invertible in C~, there is
no F0 ∈ Db

C-c(C~
X) such that F ' (F0)loc.

§8. Links with deformation quantization

In this last section, we shall briefly explain how the study of deformation quanti-
zation algebras on complex symplectic manifolds is related to D~

X . We follow the
terminology of [13].

The cotangent bundle X = T ∗X to the complex manifold X has the structure
of a complex symplectic manifold and is endowed with the C~-algebra ŴX, a non-
homogeneous version of the algebra of microdifferential operators. Its subalgebra
ŴX(0) of operators of order at most zero is a deformation quantization algebra. In
a system (x, u) of local symplectic coordinates, ŴX(0) is identified with the star
algebra (O~

X, ?) in which the star product is given by the Leibniz product

(8.1) f ? g =
∑
α∈Nn

~|α|

α!
(∂αu f)(∂αx g) for f, g ∈ OX.

In this section we will set for short A := ŴX(0), so that A loc ' ŴX. Note that A

satisfies Assumption 1.8.
Let us identify X with the zero section of the cotangent bundle X. Recall that

X is a local model for any smooth Lagrangian submanifold of X, and that O~
X is a

local model of any simple A -module along X. As O~
X has both a D~

X -module and
an A |X -module structure, there are morphisms of C~-algebras

(8.2) D~
X −→ EndC~(O~

X)←− A |X .

Lemma 8.1. The morphisms in (8.2) are injective and induce an embedding
A |X ↪→ D~

X .

Proof. Since the problem is local, we may choose a local symplectic coordinate
system (x, u) on X such that X = {u = 0}. Then A |X is identified with O~

X|X . As
the action of ui on O~

X is given by ~∂xi , the morphism A |X −→ EndC~(O~
X) factors

through D~
X , and the induced morphism A |X −→ D~

X is described by

(8.3)
∑
i∈N

fi(x, u)~i 7→
∑
j∈N

( ∑
α∈Nn, |α|≤j

∂αu fj−|α|(x, 0)∂αx
)
~j ,

which is clearly injective.
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Consider the following subsheaves of D~
X :

D~,m
X =

∏
i≥0

(Fi+mDX) ~i, D~,f
X =

⋃
m≥0

D~,m
X .

Note that D~,0
X and D~,f

X are subalgebras of D~
X , that D~,0

X is ~-complete while D~,f
X

is not, and that D~,0,loc
X ' D~,f,loc

X . By (8.3), the image of A |X in D~
X is contained

in D~,0
X . (The ring D~,0

X should be compared with the ring RX×C of [16].)

Remark 8.2. More precisely, denote by O~
X |̂X ' (OX |̂X)~ the formal completion

of O~
X along the submanifold X. Then the star product in (8.1) extends to this

sheaf, and (8.3) induces an isomorphism (O~
X |̂X , ?) ' D~,0

X .

Summarizing, one has the compatible embeddings of algebras

A loc|X
� � // D~,0,loc

X

∼
D~,f,loc
X

� � // D~,loc
X

A |X
?�

OO

� � // D~,0
X

� � //
?�

OO

D~,f
X

� � //
?�

OO

D~
X

?�

OO

One has

gr~ A |X ' OX|X , gr~ D~,0
X ' OX |̂X , gr~ D~,f

X ' gr~ D~
X ' DX .

Proposition 8.3. (i) The algebra D~,0
X is faithfully flat over A |X .

(ii) The algebra D~,loc
X is flat over A loc|X .

Proof. (i) follows from Theorem 1.12.
(ii) follows from (i) and the isomorphism (D~,0

X )loc ' D~,loc
X .

The next examples show that the scalar extension functor

Modcoh(D~,0
X ) −→ Modcoh(D~

X)

is neither exact nor full.

Example 8.4. Let X = C2 with coordinates (x, y). Then ~∂y is injective as
an endomorphism of D~,0

X /〈~∂x〉 but it is not injective as an endomorphism of
D~
X/〈~∂x〉, since ∂x belongs to its kernel. This shows that D~

X is not flat over D~,0
X .

Example 8.5. This example was communicated to us by Masaki Kashiwara. Let
X = C with coordinate x, and denote by (x, u) the symplectic coordinates on
X = T ∗C. Consider the cyclic A -modules

M = A /〈x− u〉, N = A /〈x〉,
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and their images in Mod(D~
X)

M ′ = D~
X/〈x− ~∂x〉, N ′ = D~

X/〈x〉.

As their supports in X differ, M and N are not isomorphic as A -modules. On
the other hand, in D~

X one has the relation

(8.4) x · e~∂2
x/2 = e~∂2

x/2 · (x− ~∂x),

and hence an isomorphism M ′ ∼−→ N ′ given by [P ] 7→ [P · e−~∂2
x/2]. In fact, one

checks that

HomA (M ,N )|X = 0, HomD~
X

(M ′,N ′) ' C~
X .

§A. Complements on constructible sheaves

Let us review some results, well-known to specialists (see, e.g., [18, Proposition
3.10]), but which are usually stated over a field, and we need to work here over
the ring C~.

Let K be a commutative unital Noetherian ring of finite global dimension.
Assume that K is syzygic, i.e. any finitely generated K-module admits a finite
projective resolution by finite free modules. (For our purposes we will either have
K = C or K = C~).

Let X be a real analytic manifold. Denote by ModR-c(KX) the abelian cate-
gory of R-constructible sheaves on X and by Db

R-c(KX) the bounded derived cat-
egory of sheaves of K-modules with R-constructible cohomology. Under the above
assumptions on the base ring, by [9, Propositions 3.4.3, 8.4.9] one has

Lemma A.1. The duality functor D′K( • ) = RHomKX ( • ,KX) induces an invo-
lution of Db

R-c(KX).

For the next proposition we recall some notation and results of [6, 9]. We
consider a simplicial complex S = (S,∆), with set of vertices S and set of sim-
plices ∆. We let |S| be the realization of S. Thus |S| is the disjoint union of the
realizations |σ| of the simplices. For a simplex σ ∈ ∆, the open set U(σ) is defined
in [9, (8.1.3)]. A sheaf F of K-modules on |S| is said to be weakly S-constructible
if F ||σ| is constant for any σ ∈ ∆. An object F ∈ Db(K|S|) is said to be weakly
S-constructible if its cohomology sheaves are so. If moreover, all stalks Fx are
perfect complexes, F is called S-constructible. By [9, Proposition 8.1.4] we have
isomorphisms, for a weakly S-constructible sheaf F and for any σ ∈ ∆ and x ∈ |σ|,

Γ(U(σ);F ) ∼−→ Γ(|σ|;F ) ∼−→ Fx,(A.1)

Hj(U(σ);F ) = Hj(|σ|;F ) = 0 for j 6= 0.(A.2)
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It follows that, for a weakly S-constructible F ∈ Db(K|S|), the natural morphisms
of complexes of K-modules

(A.3) Γ(U(σ);F ) −→ Γ(|σ|;F ) −→ Fx

are quasi-isomorphisms.
For U ⊂ X an open subset, we denote by KU := (KX)U the extension by 0 of

the constant sheaf on U .

Proposition A.2. Let F ∈ Db
R-c(KX). Then

(i) F is isomorphic to a complex

0 −→
⊕
ia∈Ia

KUa,ia
−→ · · · −→

⊕
ib∈Ib

KUb,ib
−→ 0,

where the {Uk,ik}k,ik ’s are locally finite families of relatively compact subana-
lytic open subsets of X.

(ii) F is isomorphic to a complex

0 −→
⊕
ia∈Ia

ΓVa,iaKX −→ · · · −→
⊕
ib∈Ib

ΓVb,ibKX −→ 0,

where the {Vk,ik}k,ik ’s are locally finite families of relatively compact subana-
lytic open subsets of X.

Proof. (i) By the triangulation theorem for subanalytic sets (see for example [9,
Proposition 8.2.5]) we may assume that F is an S-constructible object in Db(K|S|)
for some simplicial complex S = (S,∆). For i an integer, let ∆i ⊂ ∆ be the subset
of simplices of dimension ≤ i and set Si = (S,∆i). We denote by Kb(K) (resp.
Kb(K|S|)) the category of bounded complexes of K-modules (resp. sheaves of K-
modules on |S|) with morphisms up to homotopy. We shall prove by induction on
i that there exists a morphism ui : Gi −→ F in Kb(K|S|) such that:

(a) the Gki are finite direct sums of KU(σα)’s for some σα ∈ ∆i,
(b) ui||Si| : Gi||Si| −→ F ||Si| is a quasi-isomorphism.

The desired result is obtained for i equal to the dimension of X.
(i)-(1) For i = 0 we consider F ||S0| '

⊕
σ∈∆0

Fσ. The complexes Γ(U(σ);F ),
σ ∈ ∆0, have finite bounded cohomology by the quasi-isomorphisms (A.3). Hence
we may choose bounded complexes of finite free K-modules, R0,σ, and morphisms
u0,σ : R0,σ −→ Γ(U(σ);F ) which are quasi-isomorphisms.

We have the natural isomorphism Γ(U(σ);F ) ' a∗HomKb(K|S|)(KU(σ), F ) in
Kb(K), where a : |S| −→ pt is the projection and Hom is the internal Hom functor.
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We deduce the adjunction formula, for R ∈ Kb(K) and F ∈ Kb(K|S|),

(A.4) HomKb(K)(R,Γ(U(σ);F )) ' HomKb(K|S|)(RU(σ), F ).

Hence the u0,σ induce u0 : G0 :=
⊕

σ∈∆0
(R0,σ)U(σ) −→ F . By (A.3), (u0)x is a

quasi-isomorphism for all x ∈ |S0|, so that u0||S0| also is a quasi-isomorphism, as
required.

(i)-(2) We assume that ui is built and let Hi = M(ui)[−1] be the mapping
cone of ui, shifted by −1. By the distinguished triangle in Kb(K|S|)

(A.5) Hi
vi−→ Gi

ui−→ F
+1−−→

Hi||Si| is quasi-isomorphic to 0. Hence
⊕

σ∈∆i+1\∆i
(Hi)|σ| −→ Hi||Si+1| is a

quasi-isomorphism. As above we choose quasi-isomorphisms ui+1,σ : Ri+1,σ −→
Γ(U(σ);Hi), σ ∈ ∆i+1 \ ∆i, where the Ri+1,σ are bounded complexes of finite
free K-modules. By (A.4) again the ui+1,σ induce a morphism in Kb(K|S|)

u′i+1 : G′i+1 :=
⊕

σ∈∆i+1\∆i

(Ri+1,σ)U(σ) −→ Hi.

For x ∈ |Si+1| \ |Si|, (u′i+1)x is a quasi-isomorphism by (A.3), and, for x ∈ |Si|,
this is trivially true. Hence u′i+1||Si+1| is a quasi-isomorphism.

Now we let Hi+1 and Gi+1 be the mapping cones of u′i+1 and vi ◦ u′i+1,
respectively. We have distinguished triangles in Kb(K|S|)

(A.6) G′i+1

u′i+1−−−→ Hi −→ Hi+1
+1−−→, G′i+1

vi◦u′i+1−−−−−→ Gi −→ Gi+1
+1−−→ .

By the construction of the mapping cone, the definition of G′i+1 and the induction
hypothesis, Gi+1 satisfies property (a) above. The octahedral axiom applied to tri-
angles (A.5) and (A.6) gives a morphism ui+1 : Gi+1 −→ F and a distinguished tri-
angle Hi+1 −→ Gi+1

ui+1−−−→ F
+1−−→. By construction Hi+1||Si+1| is quasi-isomorphic

to 0 so that ui+1 satisfies property (b) above.
(ii) Set G = D′K(F ), and represent it by a bounded complex as in (i). Since

Uk,ik corresponds to an open subset of the form U(σ) in |S|, the sheaves KUk,ik
are

acyclic for the functor D′K. Hence F ' D′K(G) can be represented as claimed.

Lemma A.3. Let F −→ G −→ 0 be an exact sequence in ModR-c(KX). Then for
any relatively compact subanalytic open subset U ⊂ X, there exists a finite covering
U =

⋃
i∈I Ui by subanalytic open subsets such that, for each i ∈ I, the morphism

F (Ui) −→ G(Ui) is surjective.

Proof. As in the proof of Proposition A.2 we may assume that F , G and KU are
constructible sheaves on the realization of some finite simplicial complex (S,∆).
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For σ ∈ ∆ the morphism Γ(U(σ);F ) −→ Γ(U(σ);G) is surjective, by (A.1). Since
the image of U in |S| is a finite union of U(σ)’s, this proves the lemma.

§B. Complements on subanalytic sheaves

We review here some well-known results (see [11, Chapter 7] and [15]) but which
are usually stated over a field, and we need to work here over the ring C~.

Let K be a commutative unital Noetherian ring of finite global dimension (for
our purposes we will have either K = C or K = C~). Let X be a real analytic
manifold, and consider the natural morphism ρ : X −→ Xsa.

Lemma B.1. The functor ρ∗ : ModR-c(KX) −→ Mod(KXsa) is exact and ρ−1ρ∗ is
isomorphic to the canonical functor ModR-c(KX) −→ Mod(KX).

Proof. Being a direct image functor, ρ∗ is left exact. It is right exact thanks to
Lemma A.3. The composition ρ−1ρ∗ is isomorphic to the identity on Mod(KX)
since the open sets of the site Xsa give a basis of the topology of X.

In the following, we denote by ModR-c(KXsa) the image under the functor ρ∗
of ModR-c(KX) in Mod(KXsa). Hence ρ∗ induces an equivalence of categories
ModR-c(KX) ' ModR-c(KXsa). We also denote by Db

R-c(KXsa) the full triangulated
subcategory of Db(KXsa) consisting of objects with cohomology in ModR-c(KXsa).

Corollary B.2. The subcategory ModR-c(KXsa) of Mod(KXsa) is thick.

Proof. Since ρ∗ is fully faithful and exact, ModR-c(KXsa) is stable under taking
kernels and cokernels. It remains to see that, for F,G ∈ ModR-c(KX),

Ext1
ModR-c(KX)

(F,G) ' Ext1
Mod(KXsa )

(ρ∗F, ρ∗G).

By [6] we know that the first Ext1 may as well be computed in Mod(KX). Note
that the functors ρ−1 and Rρ∗ between Db(KX) and Db(KXsa) are adjoint, and
moreover ρ−1Rρ∗ ' id. Thus, for F ′, G′ ∈ Db(KX) we have

HomDb(KXsa )(Rρ∗F
′,Rρ∗G′) ' HomDb(KX)(F

′, G′),

and this gives the result.

This corollary gives the equivalence Db
R-c(KX) ' Db

R-c(KXsa), both categories
being equivalent to Db(ModR-c(KX)).
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