Regular Holonomic $\mathscr{D}[[\hbar]]$-modules

Dedicated to Professor Mikio Sato on the occasion of his 80th birthday with our deep admiration and warmest regards
by
Andrea D'Agnolo, Stéphane Guillermou and Pierre Schapira

Abstract

We describe the category of regular holonomic modules over the ring $\mathscr{D}[[\hbar]]$ of linear differential operators with a formal parameter \hbar. In particular, we establish the RiemannHilbert correspondence and discuss the additional t-structure related to \hbar-torsion.

2010 Mathematics Subject Classification: 32C38, 46L65. Keywords: D-modules, deformation-quantization, Riemann-Hilbert correspondence, torsion pairs.

Introduction

On a complex manifold X, we will be interested in the study of holonomic modules over the ring $\mathscr{D}_{X}[[\hbar]]$ of differential operators with a formal parameter \hbar. Such modules naturally appear when studying deformation quantization modules (DQ-modules) along a smooth Lagrangian submanifold of a complex symplectic manifold (see [13, Chapter 7]).

In this paper, after recalling the tools from [13] that we shall use, we explain some basic notions of $\mathscr{D}_{X}[[\hbar]]$-modules theory. For example, it follows easily from general results on modules over $\mathbb{C}[[\hbar]]$-algebras that given two holonomic $\mathscr{D}_{X}[[\hbar]]$ -

[^0]modules \mathscr{M} and \mathscr{N}, the complex $\operatorname{R} \mathscr{H} \operatorname{om}_{\mathscr{D}_{X}[[\hbar]]}(\mathscr{M}, \mathscr{N})$ is constructible over $\mathbb{C}[[\hbar]]$
 incides with the characteristic variety of \mathscr{M}.

Then we establish our main result, the Riemann-Hilbert correspondence for regular holonomic $\mathscr{D}_{X}[[\hbar]]$-modules, an \hbar-variant of Kashiwara's classical theorem. In other words, we show that the solution functor with values in $\mathscr{O}_{X}[[\hbar]]$ induces an equivalence between the derived category of regular holonomic $\mathscr{D}_{X}[[\hbar]]$-modules and that of constructible sheaves over $\mathbb{C}[[\hbar]]$. A quasi-inverse is obtained by constructing the "sheaf" of holomorphic functions with temperate growth and a formal parameter \hbar in the subanalytic site. This needs some care since the literature on this subject is written in the framework of sheaves over a field and does not immediately apply to the ring $\mathbb{C}[[\hbar]]$.

We also discuss the t-structure related to \hbar-torsion. Indeed, as we work over the ring $\mathbb{C}[[\hbar]]$ and not over a field, the derived category of holonomic $\mathscr{D}_{X}[[\hbar]]$ modules (or, equivalently, that of constructible sheaves over $\mathbb{C}[[\hbar]]$) has an additional t-structure related to \hbar-torsion. We will show how the duality functor interchanges it with the natural t-structure.

We end this paper by describing some natural links between the ring $\mathscr{D}_{X}[[\hbar]]$ and deformation quantization algebras, as mentioned above.

Historical remark. As is well-known, holonomic modules play an essential role in mathematics. They appeared independently in the work of M. Kashiwara 4] and J. Bernstein [1], but they were first invented by Mikio Sato in a series of (unfortunately unpublished) lectures at Tokyo University in the 60's. (See [17] for a more detailed history.)

Notation and conventions

We shall mainly follow the notation of 12. In particular, if \mathscr{C} is an abelian category, we denote by $\mathrm{D}(\mathscr{C})$ the derived category of \mathscr{C} and by $\mathrm{D}^{*}(\mathscr{C})(*=+,-$, b) the full triangulated subcategory consisting of objects with cohomology bounded from below (resp. bounded from above, resp. bounded).

For a sheaf \mathscr{R} of rings on a topological space X, or more generally on a site, we denote by $\operatorname{Mod}(\mathscr{R})$ the category of left \mathscr{R}-modules and we write $\mathrm{D}^{*}(\mathscr{R})$ instead of $\mathrm{D}^{*}(\operatorname{Mod}(\mathscr{R}))(*=\emptyset,+,-, \mathrm{b})$. We denote by $\operatorname{Mod}_{\text {coh }}(\mathscr{R})$ the full abelian subcategory of $\operatorname{Mod}(\mathscr{R})$ of coherent objects, and by $D_{\text {coh }}^{\mathrm{b}}(\mathscr{R})$ the full triangulated subcategory of $\mathrm{D}^{\mathrm{b}}(\mathscr{R})$ of objects with coherent cohomology groups.

If R is a ring (a sheaf of rings over a point), we write for short $\mathrm{D}_{f}^{\mathrm{b}}(R)$ instead of $\mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(R)$.

§1. Formal deformations (after [13])

We review here some definitions and results from 13 that we shall use in this paper.

Modules over $\mathbb{Z}[\hbar]$-algebras. Let X be a topological space. One says that a sheaf of $\mathbb{Z}_{X}[\hbar]$-modules \mathscr{M} has no \hbar-torsion if $\hbar: \mathscr{M} \rightarrow \mathscr{M}$ is injective; and one says that \mathscr{M} is \hbar-complete if $\mathscr{M} \rightarrow \underset{n}{\lim _{n}} \mathscr{M} / \hbar^{n} \mathscr{M}$ is an isomorphism.

Let \mathscr{R} be a sheaf of $\mathbb{Z}_{X}[\hbar]$-algebras, and assume that \mathscr{R} has no \hbar-torsion. Set

$$
\mathscr{R}^{\text {loc }}:=\mathbb{Z}\left[\hbar, \hbar^{-1}\right] \otimes_{\mathbb{Z}[\hbar]} \mathscr{R}, \quad \mathscr{R}_{0}:=\mathscr{R} / \hbar \mathscr{R},
$$

and consider the functors

$$
\begin{gathered}
(\cdot)^{\mathrm{loc}}: \operatorname{Mod}(\mathscr{R}) \rightarrow \operatorname{Mod}\left(\mathscr{R}^{\mathrm{loc}}\right), \quad \mathscr{M} \mapsto \mathscr{M}^{\mathrm{loc}}:=\mathscr{R}^{\mathrm{loc}} \otimes_{\mathscr{R}} \mathscr{M} \\
\operatorname{gr}_{\hbar}: \mathrm{D}(\mathscr{R}) \rightarrow \mathrm{D}\left(\mathscr{R}_{0}\right), \quad \mathscr{M} \mapsto \operatorname{gr}_{\hbar}(\mathscr{M}):=\mathscr{R}_{0} \stackrel{\mathrm{Q}}{\mathscr{R}}^{\mathscr{M}} .
\end{gathered}
$$

Note that $(\cdot)^{\text {loc }}$ is exact and that for $\mathscr{M}, \mathscr{N} \in \mathrm{D}^{\mathrm{b}}(\mathscr{R})$ and $\mathscr{P} \in \mathrm{D}^{\mathrm{b}}\left(\mathscr{R}^{\mathrm{op}}\right)$ one has isomorphisms

$$
\begin{align*}
\operatorname{gr}_{\hbar}\left(\mathscr{P} \otimes_{\mathscr{R}} \mathscr{M}\right) & \simeq \operatorname{gr}_{\hbar} \mathscr{P}_{\otimes_{\mathscr{R}_{0}}} \operatorname{gr}_{\hbar} \mathscr{M}, \tag{1.1}\\
\operatorname{gr}_{\hbar}\left(\mathrm{R}_{\mathscr{H}} \text { om }_{\mathscr{R}}(\mathscr{M}, \mathscr{N})\right) & \simeq \mathrm{R} \mathscr{H} o m_{\mathscr{R}_{0}}\left(\operatorname{gr}_{\hbar}(\mathscr{M}), \operatorname{gr}_{\hbar}(\mathscr{N})\right) . \tag{1.2}
\end{align*}
$$

Here, the functor gr_{\hbar} on the left hand side acts on $\mathbb{Z}_{X}[\hbar]$-modules.

Cohomologically \hbar-complete sheaves

Definition 1.1. One says that an object \mathscr{M} of $\mathrm{D}(\mathscr{R})$ is cohomologically \hbar-complete if $\mathrm{R} \mathscr{H}^{(0} m_{\mathscr{R}}\left(\mathscr{R}^{\mathrm{loc}}, \mathscr{M}\right)=0$.

Hence, the full subcategory of cohomologically \hbar-complete objects is triangulated. In fact, it is the right orthogonal complement to the full subcategory $\mathrm{D}\left(\mathscr{R}^{\mathrm{loc}}\right)$ of $\mathrm{D}(\mathscr{R})$.

Remark that $\mathscr{M} \in \mathrm{D}(\mathscr{R})$ is cohomologically \hbar-complete if and only if its image in $\mathrm{D}\left(\mathbb{Z}_{X}[\hbar]\right)$ is cohomologically \hbar-complete.

Proposition 1.2. Let $\mathscr{M} \in \mathrm{D}(\mathscr{R})$. Then \mathscr{M} is cohomologically \hbar-complete if and only if

$$
\underset{U \ni x}{\lim _{\rightrightarrows}} \operatorname{Ext}_{\mathbb{Z}[\hbar]}^{j}\left(\mathbb{Z}\left[\hbar, \hbar^{-1}\right], H^{i}(U ; \mathscr{M})\right)=0
$$

for any $x \in X$, any integer $i \in \mathbb{Z}$ and any $j=0,1$. Here, U ranges over an open neighborhood system of x.

Corollary 1.3. Let $\mathscr{M} \in \operatorname{Mod}(\mathscr{R})$. Assume that \mathscr{M} has no \hbar-torsion, is \hbar complete and there exists a base \mathfrak{B} of open subsets such that $H^{i}(U ; \mathscr{M})=0$ for any $i>0$ and any $U \in \mathfrak{B}$. Then \mathscr{M} is cohomologically \hbar-complete.

The functor gr_{\hbar} is conservative on the category of cohomologically \hbar-complete objects:

Proposition 1.4. Let $\mathscr{M} \in \mathrm{D}(\mathscr{R})$ be a cohomologically \hbar-complete object. If $\operatorname{gr}_{\hbar}(\mathscr{M})=0$, then $\mathscr{M}=0$.

Proposition 1.5. If $\mathscr{M} \in \mathrm{D}(\mathscr{R})$ is cohomologically \hbar-complete, then the object $\mathrm{R} \mathscr{H o m}_{\mathscr{R}}(\mathscr{N}, \mathscr{M}) \in \mathrm{D}\left(\mathbb{Z}_{X}[\hbar]\right)$ is cohomologically \hbar-complete for any $\mathscr{N} \in \mathrm{D}(\mathscr{R})$.

Proposition 1.6. Let $f: X \rightarrow Y$ be a continuous map, and $\mathscr{M} \in \mathrm{D}\left(\mathbb{Z}_{X}[\hbar]\right)$. If \mathscr{M} is cohomologically \hbar-complete, then so is $\mathrm{R} f_{*} \mathscr{M}$.
Reductions to $\hbar=0$. Now we assume that X is a Hausdorff locally compact topological space.

By a basis \mathfrak{B} of compact subsets of X, we mean a family of compact subsets such that for any $x \in X$ and any open neighborhood U of x, there exists $K \in \mathfrak{B}$ such that $x \in \operatorname{Int}(K) \subset K \subset U$.

Let \mathscr{A} be a $\mathbb{Z}[\hbar]$-algebra, and recall that we set $\mathscr{A}_{0}=\mathscr{A} / \hbar \mathscr{A}$. Consider the following conditions:
(i) \mathscr{A} has no \hbar-torsion and is \hbar-complete,
(ii) \mathscr{A}_{0} is a left Noetherian ring,
(iii) there exists a basis \mathfrak{B} of compact subsets of X and a prestack $U \mapsto$ $\operatorname{Mod}_{\text {good }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)(U$ open in $X)$ such that
(a) for any $K \in \mathfrak{B}$ and any open subset U such that $K \subset U$, there exists $K^{\prime} \in \mathfrak{B}$ such that $K \subset \operatorname{Int}\left(K^{\prime}\right) \subset K^{\prime} \subset U$,
(b) $U \mapsto \operatorname{Mod}_{\text {good }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$ is a full subprestack of $U \mapsto \operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$,
(c) for any $K \in \mathfrak{B}$, any open set U containing K, any $j>0$ and any $\mathscr{M} \in \operatorname{Mod}_{\text {good }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$, one has $H^{j}(K ; \mathscr{M})=0$,
(d) for any open subset U and any $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$, if $\left.\mathscr{M}\right|_{V}$ belongs to $\operatorname{Mod}_{\text {good }}\left(\left.\mathscr{A}_{0}\right|_{V}\right)$ for any relatively compact open subset V of U, then \mathscr{M} belongs to $\operatorname{Mod}_{\text {good }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$,
(e) for any U open in $X, \operatorname{Mod}_{\text {good }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$ is stable under subobjects, quotients and extensions in $\operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$,
(f) for any U open in X and any $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$, there exists an open covering $U=\bigcup_{i} U_{i}$ such that $\left.\mathscr{M}\right|_{U_{i}} \in \operatorname{Mod}_{\text {good }}\left(\left.\mathscr{A}_{0}\right|_{U_{i}}\right)$,
(g) $\mathscr{A}_{0} \in \operatorname{Mod}_{\text {good }}\left(\mathscr{A}_{0}\right)$,
(iii) ${ }^{\prime}$ there exists a basis \mathfrak{B} of open subsets of X such that for any $U \in \mathfrak{B}$, any $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$ and any $j>0$, one has $H^{j}(U ; \mathscr{M})=0$.

We will suppose that \mathscr{A} and \mathscr{A}_{0} satisfy either Assumption 1.7 or Assumption 1.8 below.

Assumption 1.7. \mathscr{A} and \mathscr{A}_{0} satisfy conditions (i)-(iii) above.
Assumption 1.8. \mathscr{A} and \mathscr{A}_{0} satisfy conditions (i), (ii) and (iii)' above.

Theorem 1.9.

(i) \mathscr{A} is a left Noetherian ring.
(ii) Any coherent \mathscr{A}-module \mathscr{M} is \hbar-complete.
(iii) Let $\mathscr{M} \in \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(\mathscr{A})$. Then \mathscr{M} is cohomologically \hbar-complete.

Corollary 1.10. The functor $\mathrm{gr}_{\hbar}: \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(\mathscr{A}) \rightarrow \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{A}_{0}\right)$ is conservative.
Theorem 1.11. Let $\mathscr{M} \in \mathrm{D}^{+}(\mathscr{A})$ and assume:
(a) \mathscr{M} is cohomologically \hbar-complete,
(b) $\operatorname{gr}_{\hbar}(\mathscr{M}) \in \mathrm{D}_{\text {coh }}^{+}\left(\mathscr{A}_{0}\right)$.

Then $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{+}(\mathscr{A})$ and for all $i \in \mathbb{Z}$ we have the isomorphism

$$
H^{i}(\mathscr{M}) \xrightarrow{\sim} \lim _{\underset{n}{ }} H^{i}\left(\mathscr{A} / \hbar^{n} \mathscr{A} \stackrel{\mathrm{Q}}{\mathscr{A}_{\mathscr{A}}} \mathscr{M}\right) .
$$

Theorem 1.12. Assume that $\mathscr{A}_{0}^{\mathrm{op}}=\mathscr{A}^{\mathrm{op}} / \hbar \mathscr{A}^{\mathrm{op}}$ is a Noetherian ring and the flabby dimension of X is finite. Let \mathscr{M} be an \mathscr{A}-module. Assume the following conditions:
(a) \mathscr{M} has no \hbar-torsion,
(b) \mathscr{M} is cohomologically \hbar-complete,
(c) $\mathscr{M} / \hbar \mathscr{M}$ is a flat \mathscr{A}_{0}-module.

Then \mathscr{M} is a flat \mathscr{A}-module.
If moreover $\mathscr{M} / \hbar \mathscr{M}$ is a faithfully flat \mathscr{A}_{0}-module, then \mathscr{M} is a faithfully flat \mathscr{A}-module.

Theorem 1.13. Let $d \in \mathbb{N}$. Assume that \mathscr{A}_{0} is d-syzygic, i.e., any coherent \mathscr{A}_{0} module locally admits a projective resolution of length $\leq d$ by free \mathscr{A}_{0}-modules of finite rank. Then
(a) \mathscr{A} is $(d+1)$-syzygic.
(b) Let \mathscr{M}^{\bullet} be a complex of \mathscr{A}-modules concentrated in degrees $[a, b]$ and with coherent cohomology groups. Then locally there exists a quasi-isomorphism $\mathscr{L}^{\bullet} \rightarrow \mathscr{M}^{\bullet}$ where \mathscr{L}^{\bullet} is a complex of free \mathscr{A}-modules of finite rank concentrated in degrees $[a-d-1, b]$.

Proposition 1.14. Let $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}(\mathscr{A})$ and let $a \in \mathbb{Z}$. The conditions below are equivalent:
(i) $H^{a}\left(\operatorname{gr}_{\hbar}(\mathscr{M})\right) \simeq 0$,
(ii) $H^{a}(\mathscr{M}) \simeq 0$ and $H^{a+1}(\mathscr{M})$ has no \hbar-torsion.

Cohomologically \hbar-complete sheaves on real manifolds. Let now X be a real analytic manifold. Recall from [9] that the microsupport of $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbb{Z}_{X}\right)$ is a closed involutive subset of the cotangent bundle $T^{*} X$ denoted by $\mathrm{SS}(F)$. The microsupport is additive on $\mathrm{D}^{\mathrm{b}}\left(\mathbb{Z}_{X}\right)$ (cf. Definition 3.3 (ii) below). Considering the distinguished triangle $F \xrightarrow{\hbar} F \rightarrow \operatorname{gr}_{\hbar} F \xrightarrow{+1}$, one gets

$$
\begin{equation*}
\mathrm{SS}\left(\operatorname{gr}_{\hbar}(F)\right) \subset \mathrm{SS}(F) \tag{1.3}
\end{equation*}
$$

Proposition 1.15. Let $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbb{Z}_{X}[\hbar]\right)$ and assume that F is cohomologically \hbar-complete. Then

$$
\begin{equation*}
\mathrm{SS}(F)=\mathrm{SS}\left(\operatorname{gr}_{\hbar}(F)\right) \tag{1.4}
\end{equation*}
$$

Proof. It is enough to show that $\mathrm{SS}(F) \subset \mathrm{SS}\left(\operatorname{gr}_{\hbar}(F)\right)$. For $V \subset U$ open subsets, consider the distinguished triangle

$$
\mathrm{R} \Gamma(U ; F) \rightarrow \mathrm{R} \Gamma(V ; F) \rightarrow G \xrightarrow{+1} .
$$

By Proposition 1.6, $\mathrm{R} \Gamma(U ; F)$ and $\mathrm{R} \Gamma(V ; F)$ are cohomologically \hbar-complete, and thus so is G. One has the distinguished triangle

$$
\mathrm{R} \Gamma\left(U ; \mathrm{gr}_{\hbar} F\right) \rightarrow \mathrm{R} \Gamma\left(V ; \mathrm{gr}_{\hbar} F\right) \rightarrow \mathrm{gr}_{\hbar} G \xrightarrow{+1} .
$$

By the definition of microsupport, it is enough to prove that $\mathrm{gr}_{\hbar} G=0$ implies $G=0$. This follows from Proposition 1.4 .

For \mathbb{K} a commutative unital Noetherian ring, one denotes by $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X}\right)$ the full subcategory of $\operatorname{Mod}\left(\mathbb{K}_{X}\right)$ consisting of \mathbb{R}-constructible sheaves and by $\mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)$ the full triangulated subcategory of $\mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)$ consisting of objects with \mathbb{R}-constructible cohomology (see [9, §8.4]). In this paper, we shall mainly be interested in the case where \mathbb{K} is either \mathbb{C} or the ring of formal power series in an indeterminate \hbar, which we denote by

$$
\mathbb{C}^{\hbar}:=\mathbb{C}[[\hbar]] .
$$

Proposition 1.16. Let $F \in \mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$. Then F is cohomologically \hbar-complete.
Proof. This follows from Proposition 1.2 since for any $x \in X$ one has $\mathrm{R} \Gamma(U ; F) \xrightarrow{\sim} F_{x}$ for U in a fundamental system of neighborhoods of x.

Corollary 1.17. The functor $\mathrm{gr}_{\hbar}: \mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right) \rightarrow \mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}\right)$ is conservative.
Corollary 1.18. For $F \in \mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$, one has the equality

$$
\mathrm{SS}\left(\operatorname{gr}_{\hbar}(F)\right)=\mathrm{SS}(F)
$$

Proposition 1.19. For $F \in \mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$ and $i \in \mathbb{Z}$ one has $\operatorname{supp} H^{i}(F) \subset$ supp $H^{i}\left(\operatorname{gr}_{\hbar} F\right)$. In particular if $H^{i}\left(\operatorname{gr}_{\hbar} F\right)=0$ then $H^{i}(F)=0$.

Proof. We apply Proposition 1.14 to F_{x} for any $x \in X$.

§2. Formal extension

Let X be a topological space, or more generally a site, and let \mathscr{R}_{0} be a sheaf of rings on X. In this section, we let

$$
\mathscr{R}:=\mathscr{R}_{0}[[\hbar]]=\prod_{n \geq 0} \mathscr{R}_{0} \hbar^{n}
$$

be the formal extension of \mathscr{R}_{0}, whose sections on an open subset U are formal series $r=\sum_{n=0}^{\infty} r_{n} \hbar^{n}$, with $r_{n} \in \Gamma\left(U ; \mathscr{R}_{0}\right)$. Consider the associated functor
where $\mathscr{R}_{n}:=\mathscr{R} / \hbar^{n+1} \mathscr{R}$ is regarded as an $\left(\mathscr{R}, \mathscr{R}_{0}\right)$-bimodule. Since \mathscr{R}_{n} is free of finite rank over \mathscr{R}_{0}, the functor $(\cdot)^{\hbar}$ is left exact. We denote by $(\cdot)^{\mathrm{R} \hbar}$ its right derived functor.

Proposition 2.1. For $\mathscr{N} \in \mathrm{D}^{\mathrm{b}}\left(\mathscr{R}_{0}\right)$ one has

$$
\mathscr{N}^{\mathrm{R} \hbar} \simeq \mathrm{R} \mathscr{H} o m_{\mathscr{R}_{0}}\left(\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R}, \mathscr{N}\right)
$$

where $\mathscr{R}^{\text {loc }} / \hbar \mathscr{R}$ is regarded as an $\left(\mathscr{R}_{0}, \mathscr{R}\right)$-bimodule .
Proof. It is enough to prove that for $\mathscr{N} \in \operatorname{Mod}\left(\mathscr{R}_{0}\right)$ one has

$$
\mathscr{N}^{\hbar} \simeq \mathscr{H} o m_{\mathscr{R}_{0}}\left(\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R}, \mathscr{N}\right)
$$

Using the right \mathscr{R}_{0}-module structure of \mathscr{R}_{n}, set $\mathscr{R}_{n}^{*}=\mathscr{H}^{(0} m_{\mathscr{R}_{0}}\left(\mathscr{R}_{n}, \mathscr{R}_{0}\right)$. Then \mathscr{R}_{n}^{*} is an $\left(\mathscr{R}_{0}, \mathscr{R}\right)$-bimodule, and

$$
\left.\mathscr{N}^{\hbar}={\underset{n}{\rightleftarrows}}_{\lim _{n}}^{\mathscr{R}_{n}} \otimes_{\mathscr{R}_{0}} \mathscr{N}\right) \simeq \mathscr{H} m_{\mathscr{R}_{0}}\left(\underset{n}{\left(\lim _{\longrightarrow}\right.} \mathscr{R}_{n}^{*}, \mathscr{N}\right)
$$

Since

$$
\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R} \simeq \underset{n}{\lim }\left(\hbar^{-n} \mathscr{R} / \hbar \mathscr{R}\right),
$$

it is enough to prove that there is an isomorphism of $\left(\mathscr{R}_{0}, \mathscr{R}\right)$-bimodules

$$
\mathscr{H} m_{\mathscr{R}_{0}}\left(\mathscr{R}_{n}, \mathscr{R}_{0}\right) \simeq \hbar^{-n} \mathscr{R} / \hbar \mathscr{R} .
$$

Recalling that $\mathscr{R}_{n}=\mathscr{R} / \hbar^{n+1} \mathscr{R}$, this follows from the pairing

$$
\left(\mathscr{R} / \hbar^{n+1} \mathscr{R}\right) \otimes_{\mathscr{R}_{0}}\left(\hbar^{-n} \mathscr{R} / \hbar \mathscr{R}\right) \rightarrow \mathscr{R}_{0}, \quad f \otimes g \mapsto \operatorname{Res}_{\hbar=0}(f g d \hbar / \hbar) .
$$

Note that the isomorphism of ($\left.\mathscr{R}, \mathscr{R}_{0}\right)$-bimodules

$$
\mathscr{R} \simeq\left(\mathscr{R}_{0}\right)^{\hbar}=\mathscr{H o m} \mathscr{R}_{0}\left(\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R}, \mathscr{R}_{0}\right)
$$

induces a natural morphism

$$
\begin{equation*}
\mathscr{R}_{\otimes_{\mathscr{R}_{0}}}^{\mathrm{L}} \mathscr{N} \rightarrow \mathscr{N}^{\mathrm{R} \hbar} \quad \text { for } \mathscr{N} \in \mathrm{D}^{\mathrm{b}}\left(\mathscr{R}_{0}\right) \tag{2.2}
\end{equation*}
$$

Proposition 2.2. For $\mathscr{N} \in \mathrm{D}^{\mathrm{b}}\left(\mathscr{R}_{0}\right)$, the formal extension $\mathscr{N}^{\mathrm{R} \hbar}$ is cohomologically \hbar-complete.

Proof. The statement follows from $\left(\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R}\right) \stackrel{\mathrm{L}}{\otimes_{\mathscr{R}}} \mathscr{R}^{\mathrm{loc}} \simeq 0$ and from the isomorphism

$$
\mathrm{R} \mathscr{H} o m_{\mathscr{R}}\left(\mathscr{R}^{\mathrm{loc}}, \mathscr{N}^{\mathrm{R} \hbar}\right) \simeq \mathrm{R} \mathscr{H} o m_{\mathscr{R}_{0}}\left(\left(\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R}\right) \stackrel{\mathrm{\otimes}}{\mathscr{R}}^{\mathrm{L}} \mathscr{R}^{\mathrm{loc}}, \mathscr{N}\right) .
$$

Lemma 2.3. Assume that \mathscr{R}_{0} is an \mathscr{S}_{0}-algebra, for \mathscr{S}_{0} a commutative sheaf of rings, and let $\mathscr{S}=\mathscr{S}_{0}[[\hbar]]$. For $\mathscr{M}, \mathscr{N} \in \mathrm{D}^{\mathrm{b}}\left(\mathscr{R}_{0}\right)$ we have an isomorphism in $\mathrm{D}^{\mathrm{b}}(\mathscr{S})$

$$
\mathrm{R} \mathscr{H} o m_{\mathscr{R}_{0}}(\mathscr{M}, \mathscr{N})^{\mathrm{R} \hbar} \simeq \mathrm{R} \mathscr{H}^{\left(0 m_{\mathscr{R}_{0}}\right.}\left(\mathscr{M}, \mathscr{N}^{\mathrm{R} \hbar}\right) .
$$

Proof. Note the isomorphisms

$$
\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R} \simeq \mathscr{R}_{0} \otimes_{\mathscr{S}_{0}}\left(\mathscr{S}^{\mathrm{loc}} / \hbar \mathscr{S}\right) \simeq \mathscr{R}_{0}{\stackrel{\mathrm{Q}}{\mathscr{S}_{0}}}^{\mathrm{L}}\left(\mathscr{S}^{\mathrm{loc}} / \hbar \mathscr{S}\right)
$$

as $\left(\mathscr{R}_{0}, \mathscr{S}\right)$-bimodules. Then one has

$$
\begin{aligned}
\operatorname{R} \mathscr{H o m} \mathscr{R}_{0}(\mathscr{M}, \mathscr{N})^{\mathrm{R} \hbar} & =\mathrm{R} \mathscr{H} o m_{\mathscr{S}_{0}}\left(\mathscr{S}^{\mathrm{loc}} / \hbar \mathscr{S}, \mathrm{R} \mathscr{H}_{0} m_{\mathscr{R}_{0}}(\mathscr{M}, \mathscr{N})\right) \\
& \simeq \mathrm{R} \mathscr{H} o m_{\mathscr{R}_{0}}\left(\mathscr{M}, \mathrm{R} \mathscr{H} o m_{\mathscr{S}_{0}}\left(\mathscr{S}^{\mathrm{loc}} / \hbar \mathscr{S}, \mathscr{N}\right)\right) \\
& \simeq \mathrm{R} \mathscr{H} o m_{\mathscr{R}_{0}}\left(\mathscr{M}, \mathrm{R} \mathscr{H} o m_{\mathscr{R}_{0}}\left(\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R}, \mathscr{N}\right)\right) \\
& =\mathrm{R} \mathscr{H} o m_{\mathscr{R}_{0}}\left(\mathscr{M}, \mathscr{N}^{\mathrm{R} \hbar}\right) .
\end{aligned}
$$

Lemma 2.4. Let $f: X \rightarrow Y$ be a morphism of sites, and assume that $\left(f^{-1} \mathscr{R}_{0}\right)^{\hbar} \simeq$ $f^{-1} \mathscr{R}$. Then the functors $\mathrm{R} f_{*}$ and $(\cdot)^{\mathrm{R} \hbar}$ commute, that is, for $\mathscr{P} \in \mathrm{D}^{\mathrm{b}}\left(f^{-1} \mathscr{R}_{0}\right)$ we have $\left(\mathrm{R} f_{*} \mathscr{P}\right)^{\mathrm{R} \hbar} \simeq \mathrm{R} f_{*}\left(\mathscr{P}^{\mathrm{R} \hbar}\right)$ in $\mathrm{D}^{\mathrm{b}}(\mathscr{R})$.

Proof. One has the isomorphism

$$
\begin{aligned}
\mathrm{R} f_{*}\left(\mathscr{P}^{\mathrm{R} \hbar}\right) & =\mathrm{R} f_{*} \mathrm{R} \mathscr{H}^{\circ} m_{f^{-1} \mathscr{R}_{0}}\left(f^{-1}\left(\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R}\right), \mathscr{P}\right) \\
& \simeq \mathrm{R} \mathscr{H} m_{\mathscr{R}_{0}}\left(\mathscr{R}^{\mathrm{loc}} / \hbar \mathscr{R}, \mathrm{R} f_{*} \mathscr{P}\right)=\mathrm{R} f_{*}(\mathscr{P})^{\mathrm{R} \hbar} .
\end{aligned}
$$

Proposition 2.5. Let \mathscr{T} be either a basis of open subsets of the site X or, assuming that X is a locally compact topological space, a basis of compact subsets. Denote by $J_{\mathscr{T}}$ the full subcategory of $\operatorname{Mod}\left(\mathscr{R}_{0}\right)$ consisting of \mathscr{T}-acyclic objects, i.e., sheaves \mathscr{N} for which $H^{k}(S ; \mathscr{N})=0$ for all $k>0$ and all $S \in \mathscr{T}$. Then $J_{\mathscr{T}}$ is injective with respect to the functor $(\cdot)^{\hbar}$. In particular, for $\mathscr{N} \in J_{\mathscr{T}}$, we have $\mathscr{N}^{\hbar} \simeq \mathscr{N}^{\mathrm{R} \hbar}$.

Proof. (i) Since injective sheaves are \mathscr{T}-acyclic, $J_{\mathscr{T}}$ is cogenerating.
(ii) Consider an exact sequence $0 \rightarrow \mathscr{N}^{\prime} \rightarrow \mathscr{N} \rightarrow \mathscr{N}^{\prime \prime} \rightarrow 0$ in $\operatorname{Mod}\left(\mathscr{R}_{0}\right)$. Clearly, if both \mathscr{N}^{\prime} and \mathscr{N} belong to $J_{\mathscr{T}}$, then so does $\mathscr{N}^{\prime \prime}$.
(iii) Consider an exact sequence as in (ii) and assume that $\mathscr{N}^{\prime} \in J_{\mathscr{T}}$. We have to prove that $0 \rightarrow \mathscr{N}^{\prime, \hbar} \rightarrow \mathscr{N}^{\hbar} \rightarrow \mathscr{N}^{\prime \prime, \hbar} \rightarrow 0$ is exact. Since $(\cdot)^{\hbar}$ is left exact, it is enough to prove that $\mathscr{N}^{\hbar} \rightarrow \mathscr{N}^{\prime \prime, \hbar}$ is surjective. Noticing that $\mathscr{N}^{\hbar} \simeq \prod_{\mathbb{N}} \mathscr{N}$ as \mathscr{R}_{0}-modules, it is enough to prove that $\prod_{\mathbb{N}} \mathscr{N} \rightarrow \prod_{\mathbb{N}} \mathscr{N}^{\prime \prime}$ is surjective.
(iii)-(a) Assume that \mathscr{T} is a basis of open subsets. Any open subset $U \subset X$ has a cover $\left\{U_{i}\right\}_{i \in I}$ by elements $U_{i} \in \mathscr{T}$. For any $i \in I$, the morphism $\mathscr{N}\left(U_{i}\right) \rightarrow$ $\mathscr{N}^{\prime \prime}\left(U_{i}\right)$ is surjective. The result follows taking the product over \mathbb{N}.
(iii)-(b) Assume that \mathscr{T} is a basis of compact subsets. For any $K \in \mathscr{T}$, the morphism $\mathscr{N}(K) \rightarrow \mathscr{N}^{\prime \prime}(K)$ is surjective. Hence, there exists a basis \mathscr{V} of open subsets such that for any $x \in X$ and any $V \ni x$ in \mathscr{V}, there exists $V^{\prime} \in \mathscr{V}$ with $x \in V^{\prime} \subset V$ and the image of $\mathscr{N}\left(V^{\prime}\right) \rightarrow \mathscr{N}^{\prime \prime}\left(V^{\prime}\right)$ contains the image of $\mathscr{N}^{\prime \prime}(V)$ in $\mathscr{N}^{\prime \prime}\left(V^{\prime}\right)$. The result follows as in (iii)-(a) by taking the product over \mathbb{N}.

Corollary 2.6. The following sheaves are acyclic for the functor $(\cdot)^{\hbar}$:
(i) \mathbb{R}-constructible sheaves of \mathbb{C}-vector spaces on a real analytic manifold X,
(ii) coherent modules over the ring \mathscr{O}_{X} of holomorphic functions on a complex analytic manifold X,
(iii) coherent modules over the ring \mathscr{D}_{X} of linear differential operators on a complex analytic manifold X.

Proof. The statements follow by applying Proposition 2.5 for the following choices of \mathscr{T}.
(i) Let F be an \mathbb{R}-constructible sheaf. Then for any $x \in X$ one has $F_{x} \sim$ $\mathrm{R} \Gamma\left(U_{x} ; F\right)$ for U_{x} in a fundamental system of open neighborhoods of x. Take for \mathscr{T} the union of these fundamental systems.
(ii) Take for \mathscr{T} the family of open Stein subsets.
(iii) Let \mathscr{M} be a coherent \mathscr{D}_{X}-module. The problem being local, we may assume that \mathscr{M} is endowed with a good filtration. Then take for \mathscr{T} the family of compact Stein subsets.

Example 2.7. Let $X=\mathbb{R}, \mathscr{R}_{0}=\mathbb{C}_{X}, Z=\{1 / n: n=1,2, \ldots\} \cup\{0\}$ and $U=$ $X \backslash Z$. One has the isomorphisms $\left(\mathbb{C}^{\hbar}\right)_{X} \simeq\left(\mathbb{C}_{X}\right)^{\hbar} \simeq\left(\mathbb{C}_{X}\right)^{\mathrm{R} \hbar}$ and $\left(\mathbb{C}^{\hbar}\right)_{U} \simeq\left(\mathbb{C}_{U}\right)^{\hbar}$. Considering the exact sequences

$$
\begin{aligned}
& 0 \rightarrow\left(\mathbb{C}^{\hbar}\right)_{U} \rightarrow\left(\mathbb{C}^{\hbar}\right)_{X} \rightarrow\left(\mathbb{C}^{\hbar}\right)_{Z} \rightarrow 0 \\
& 0 \rightarrow\left(\mathbb{C}_{U}\right)^{\hbar} \rightarrow\left(\mathbb{C}_{X}\right)^{\hbar} \rightarrow\left(\mathbb{C}_{Z}\right)^{\hbar} \rightarrow H^{1}\left(\mathbb{C}_{U}\right)^{\mathrm{R} \hbar} \rightarrow 0
\end{aligned}
$$

we get $H^{1}\left(\mathbb{C}_{U}\right)^{\mathrm{R} \hbar} \simeq\left(\mathbb{C}_{Z}\right)^{\hbar} /\left(\mathbb{C}^{\hbar}\right)_{Z}$, whose stalk at the origin does not vanish. Hence \mathbb{C}_{U} is not acyclic for the functor $(\cdot)^{\hbar}$.

Assume now that

$$
\mathscr{A}_{0}=\mathscr{R}_{0} \quad \text { and } \quad \mathscr{A}=\mathscr{R}_{0}[[\hbar]]
$$

satisfy either Assumption 1.7 or Assumption 1.8 (where condition (i) is clear) and that \mathscr{A}_{0} is syzygic. Note that by Proposition 2.5 one has $\mathscr{A} \simeq\left(\mathscr{A}_{0}\right)^{\mathrm{R} \hbar}$.

Proposition 2.8. For $\mathscr{N} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{A}_{0}\right)$:
(i) there is an isomorphism $\mathscr{N}^{\mathrm{R} \hbar} \xrightarrow{\sim} \mathscr{A}^{\mathrm{L}}{\underset{\mathscr{A}}{0}} \mathscr{N}$ induced by (2.2),
(ii) there is an isomorphism $\operatorname{gr}_{\hbar}\left(\mathscr{N}^{\mathrm{R} \hbar}\right) \simeq \mathscr{N}$.

Proof. Since \mathscr{A}_{0} is syzygic, we may locally represent \mathscr{N} by a bounded complex \mathscr{L}^{\bullet} of free \mathscr{A}_{0}-modules of finite rank. Then (i) is obvious. As for (ii), both complexes are isomorphic to the mapping cone of $\hbar:\left(\mathscr{L}^{\bullet}\right)^{\hbar} \rightarrow\left(\mathscr{L}^{\bullet}\right)^{\hbar}$.

In particular, the functor $(\cdot)^{\hbar}$ is exact on $\operatorname{Mod}_{\text {coh }}\left(\mathscr{A}_{0}\right)$ and preserves coherence. One thus gets a functor $(\cdot)^{\mathrm{R} \hbar}: \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{A}_{0}\right) \rightarrow \mathrm{D}_{\text {coh }}^{\mathrm{b}}(\mathscr{A})$.

The subanalytic site. The subanalytic site associated to an analytic manifold X has been introduced and studied in [11, Chapter 7] (see also [15] for a detailed and systematic study as well as for complementary results). Denote by Op_{X} the category of open subsets of X, the morphisms being the inclusion morphisms, and by $\mathrm{Op}_{X_{\mathrm{sa}}}$ the full subcategory consisting of relatively compact subanalytic open subsets of X. The site X_{sa} is the presite $\mathrm{Op}_{X_{\mathrm{sa}}}$ endowed with the Grothendieck
topology for which the coverings are those admitting a finite subcover. One calls X_{sa} the subanalytic site associated to X. Denote by $\rho: X \rightarrow X_{\mathrm{sa}}$ the natural morphism of sites. Recall that the inverse image functor ρ^{-1}, besides the usual right adjoint given by the direct image functor ρ_{*}, admits a left adjoint denoted $\rho_{!}$. Consider the diagram

Lemma 2.9. (i) The functors ρ^{-1} and $(\cdot)^{\mathrm{R} \hbar}$ commute, that is, for $G \in$ $\mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X_{\mathrm{sa}}}\right)$ we have $\left(\rho^{-1} G\right)^{\mathrm{R} \hbar} \simeq \rho^{-1}\left(G^{\mathrm{R} \hbar}\right)$ in $\mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$.
(ii) The functors $\mathrm{R} \rho_{*}$ and $(\cdot)^{\mathrm{R} \hbar}$ commute, that is, for $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}\right)$ we have $\left(\mathrm{R} \rho_{*} F\right)^{\mathrm{R} \hbar} \simeq \mathrm{R} \rho_{*}\left(F^{\mathrm{R} \hbar}\right)$ in $\mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}\right)$.

Proof. (i) Since it admits a left adjoint, the functor ρ^{-1} commutes with projective limits. It follows that for $G \in \operatorname{Mod}\left(\mathbb{C}_{X_{\text {sa }}}\right)$ one has an isomorphism

$$
\rho^{-1}\left(G^{\hbar}\right) \rightarrow\left(\rho^{-1} G\right)^{\hbar} .
$$

To conclude, it remains to show that $\left(\rho^{-1}(\cdot)\right)^{\mathrm{R} \hbar}$ is the derived functor of $\left(\rho^{-1}(\cdot)\right)^{\hbar}$. Recall that an object G of $\operatorname{Mod}\left(\mathbb{C}_{X_{\mathrm{sa}}}\right)$ is quasi-injective if the functor $\operatorname{Hom}_{\mathbb{C}_{X_{\mathrm{sa}}}}(\cdot, G)$ is exact on the category $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{C}_{X}\right)$. By a result of [15], if $G \in \operatorname{Mod}\left(\mathbb{C}_{X_{\mathrm{sa}}}\right)$ is quasi-injective, then $\rho^{-1} G$ is soft. Hence, $\rho^{-1} G$ is injective for the functor $(\cdot)^{\hbar}$ by Proposition 2.5
(ii) By (i) we can apply Lemma 2.4 .

§3. $\mathscr{D}[[\hbar]]$-modules and propagation

Let now X be a complex analytic manifold of complex dimension d_{X}. As usual, denote by \mathbb{C}_{X} the constant sheaf with stalk \mathbb{C}, by \mathscr{O}_{X} the structure sheaf and by \mathscr{D}_{X} the ring of linear differential operators on X. We will use the notation

$$
\begin{aligned}
\mathrm{D}^{\prime}: \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}\right)^{\mathrm{op}} \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}\right), & F & \mapsto \mathrm{R} \mathscr{H}_{o m_{\mathbb{C}_{X}}}\left(F, \mathbb{C}_{X}\right), \\
\mathbb{D}: \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)^{\mathrm{op}} \rightarrow \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}\right), & \mathscr{M} & \mapsto \mathrm{R} \mathscr{H} m_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{D}_{X} \otimes_{\mathscr{O}_{X}} \Omega_{X}^{\otimes-1}\right)\left[d_{X}\right], \\
\mathrm{Sol}: \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)^{\mathrm{op}} \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}\right), & \mathscr{M} & \mapsto \mathrm{R} \mathscr{H} m_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{O}_{X}\right), \\
\mathrm{DR}: \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}\right), & \mathscr{M} & \mapsto \mathrm{R} \mathscr{H} \operatorname{mom}_{\mathscr{D}_{X}}\left(\mathscr{O}_{X}, \mathscr{M}\right),
\end{aligned}
$$

where Ω_{X} denotes the line bundle of holomorphic forms of maximal degree and $\Omega_{X}^{\otimes-1}$ the dual bundle.

As shown in Corollary 2.6 the sheaves $\mathbb{C}_{X}, \mathscr{O}_{X}$ and \mathscr{D}_{X} are all acyclic for the functor $(\bullet)^{\hbar}$. We will be interested in the formal extensions

$$
\mathbb{C}_{X}^{\hbar}=\mathbb{C}_{X}[[\hbar]], \quad \mathscr{O}_{X}^{\hbar}=\mathscr{O}_{X}[[\hbar]], \quad \mathscr{D}_{X}^{\hbar}=\mathscr{D}_{X}[[\hbar]] .
$$

In the following, we shall treat left \mathscr{D}_{X}^{\hbar}-modules, but all results apply to right modules since the categories $\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$ and $\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar, \text { op }}\right)$ are equivalent.

Proposition 3.1. Assumption 1.7 is satisfied by the \mathbb{C}^{\hbar}-algebras \mathscr{D}_{X}^{\hbar} and $\mathscr{D}_{X}^{\hbar, \text { op }}$.
Proof. Assumption 1.7 holds for $\mathscr{A}=\mathscr{D}_{X}^{\hbar}, \mathscr{A}_{0}=\mathscr{D}_{X}, \operatorname{Mod}_{\text {good }}\left(\left.\mathscr{A}_{0}\right|_{U}\right)$ the category of good \mathscr{D}_{U}-modules (see [7]) and for \mathfrak{B} the family of Stein compact subsets of X.

In particular, by Theorem 1.9, \mathscr{D}_{X}^{\hbar} is right and left Noetherian (and thus coherent). Moreover, by Theorem 1.13 any object of $D_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ can be locally represented by a bounded complex of free \mathscr{D}_{X}^{\hbar}-modules of finite rank.

We will use the notation

$$
\begin{aligned}
\mathrm{D}_{\hbar}^{\prime}: \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)^{\mathrm{op}} \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right), & F & \mapsto \mathrm{R} \mathscr{H} o m_{\mathbb{C}_{X}^{\hbar}}\left(F, \mathbb{C}_{X}^{\hbar}\right), \\
\mathbb{D}_{\hbar}: \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)^{\mathrm{op}} \rightarrow \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right), & \mathscr{M} & \mapsto \mathrm{R} \mathscr{H} m_{\mathscr{D}_{X}^{\hbar}}\left(\mathscr{M}, \mathscr{D}_{X}^{\hbar} \otimes_{\mathscr{O}_{X}} \Omega_{X}^{\otimes-1}\right)\left[d_{X}\right], \\
\mathrm{Sol}_{\hbar}: \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)^{\mathrm{op}} \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}^{\hbar}\right), & \mathscr{M} & \mapsto \mathrm{R} \mathscr{H} o m_{\mathscr{D}_{X}^{\hbar}}\left(\mathscr{M}, \mathscr{O}_{X}^{\hbar}\right), \\
\mathrm{DR}_{\hbar}: \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}^{\hbar}\right), & \mathscr{M} & \mapsto \mathrm{R} \mathscr{H} \text { m }_{\mathscr{D}_{X}^{\hbar}}\left(\mathscr{O}_{X}^{\hbar}, \mathscr{M}\right) .
\end{aligned}
$$

By Proposition 2.8 and Lemma 2.3. for $\mathscr{N} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)$ one has

$$
\begin{align*}
\mathscr{N}^{\mathrm{R} \hbar} & \simeq \mathscr{D}_{X}^{\hbar} \stackrel{\mathrm{L}}{\otimes_{\mathscr{D}}} \tag{3.1}\\
\operatorname{gr}_{\hbar}\left(\mathscr{N}^{\mathrm{R} \hbar}\right) & \simeq \mathscr{N}, \tag{3.2}\\
\operatorname{Sol}_{\hbar}\left(\mathscr{N}^{\mathrm{R} \hbar}\right) & \simeq \operatorname{Sol}(\mathscr{N})^{\mathrm{R} \hbar} . \tag{3.3}
\end{align*}
$$

Definition 3.2. For $\mathscr{M} \in \operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$, denote by $\mathscr{M}_{\hbar \text {-tor }}$ its submodule consisting of sections locally annihilated by some power of \hbar and set $\mathscr{M}_{\hbar \text {-tf }}=\mathscr{M}^{(} \mathscr{M}_{\hbar \text {-tor }}$. We say that $\mathscr{M} \in \operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$ is an \hbar-torsion module if $\mathscr{M}_{\hbar \text {-tor }} \xrightarrow{\sim} \mathscr{M}$ and that \mathscr{M} has no \hbar-torsion (or is \hbar-torsion free) if $\mathscr{M} \xrightarrow{\sim} \mathscr{M}_{\hbar \text {-tf }}$.

Denote by ${ }_{n} \mathscr{M}$ the kernel of $\hbar^{n+1}: \mathscr{M} \rightarrow \mathscr{M}$. Then $\mathscr{M}_{\hbar \text {-tor }}$ is the sheaf associated with the increasing union of the ${ }_{n} \mathscr{M}$'s. Hence, if \mathscr{M} is coherent, the increasing family $\left\{{ }_{n} \mathscr{M}\right\}_{n}$ is locally stationary and $\mathscr{M}_{\hbar \text {-tor }}$ as well as $\mathscr{M}_{\hbar \text {-tf }}$ are coherent.

Characteristic variety. Recall the following definition.

Definition 3.3. (i) For \mathscr{C} an abelian category, a function $c: \operatorname{Ob}(\mathscr{C}) \rightarrow$ Set is called additive if $c(M)=c\left(M^{\prime}\right) \cup c\left(M^{\prime \prime}\right)$ for any short exact sequence $0 \rightarrow$ $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$.
(ii) For \mathscr{T} a triangulated category, a function $c: \operatorname{Ob}(\mathscr{T}) \rightarrow$ Set is called additive if $c(M)=c(M[1])$ and $c(M) \subset c\left(M^{\prime}\right) \cup c\left(M^{\prime \prime}\right)$ for any distinguished triangle $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \xrightarrow{+1}$.

Note that an additive function c on \mathscr{C} naturally extends to the derived category $\mathrm{D}(\mathscr{C})$ by setting $c(M)=\bigcup_{i} c\left(H^{i}(M)\right)$.

For \mathscr{N} a coherent \mathscr{D}_{X}-module, denote by $\operatorname{char}(\mathscr{N})$ its characteristic variety, a closed involutive subvariety of the cotangent bundle $T^{*} X$. The characteristic variety is additive on $\operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}\right)$. For $\mathscr{N} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)$ one sets char $(\mathscr{N})=$ $\bigcup_{i} \operatorname{char}\left(H^{i}(\mathscr{N})\right)$.

Definition 3.4. The characteristic variety of $\mathscr{M} \in \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ is defined by

$$
\operatorname{char}_{\hbar}(\mathscr{M})=\operatorname{char}\left(\operatorname{gr}_{\hbar}(\mathscr{M})\right)
$$

To $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}^{\hbar}\right)$ one associates the coherent \mathscr{D}_{X}-modules

$$
\begin{align*}
{ }_{0} \mathscr{M} & =\operatorname{Ker}(\hbar: \mathscr{M} \rightarrow \mathscr{M})=H^{-1}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right) \tag{3.4}\\
\mathscr{M}_{0} & =\operatorname{Coker}(\hbar: \mathscr{M} \rightarrow \mathscr{M})=H^{0}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right) \tag{3.5}
\end{align*}
$$

Lemma 3.5. For $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}\left(\mathscr{D}_{X}^{\hbar}\right)$ an \hbar-torsion module, one has

$$
\operatorname{char}_{\hbar}(\mathscr{M})=\operatorname{char}\left(\mathscr{M}_{0}\right)=\operatorname{char}(0 \mathscr{M}) .
$$

Proof. By definition, $\operatorname{char}_{\hbar}(\mathscr{M})=\operatorname{char}\left(\mathscr{M}_{0}\right) \cup \operatorname{char}\left({ }_{0} \mathscr{M}\right)$. It is thus enough to prove the equality $\operatorname{char}\left(\mathscr{M}_{0}\right)=\operatorname{char}\left({ }_{0} \mathscr{M}\right)$.

Since the statement is local we may assume that $\hbar^{N} \mathscr{M}=0$ for some $N \in \mathbb{N}$. We proceed by induction on N.

For $N=1$ we have $\mathscr{M} \simeq \mathscr{M}_{0} \simeq{ }_{0} \mathscr{M}$, and the statement is obvious.
Assume that the statement has been proved for $N-1$. The short exact sequence

$$
\begin{equation*}
0 \rightarrow \hbar \mathscr{M} \rightarrow \mathscr{M} \rightarrow \mathscr{M}_{0} \rightarrow 0 \tag{3.6}
\end{equation*}
$$

induces the distinguished triangle

$$
\operatorname{gr}_{\hbar} \hbar \mathscr{M} \rightarrow \operatorname{gr}_{\hbar} \mathscr{M} \rightarrow \operatorname{gr}_{\hbar} \mathscr{M}_{0} \xrightarrow{+1} .
$$

Noticing that $\mathscr{M}_{0} \simeq\left(\mathscr{M}_{0}\right)_{0} \simeq{ }_{0}\left(\mathscr{M}_{0}\right)$, the associated long exact cohomology sequence gives

$$
0 \rightarrow{ }_{0}(\hbar \mathscr{M}) \rightarrow{ }_{0} \mathscr{M} \rightarrow \mathscr{M}_{0} \rightarrow(\hbar \mathscr{M})_{0} \rightarrow 0 .
$$

By inductive hypothesis we have $\operatorname{char}\left({ }_{0}(\hbar \mathscr{M})\right)=\operatorname{char}\left((\hbar \mathscr{M})_{0}\right)$, and we deduce $\operatorname{char}\left(\mathscr{M}_{0}\right)=\operatorname{char}\left(\mathscr{M}_{0}\right)$ by additivity of char.

Proposition 3.6. (i) For $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}^{\hbar}\right)$ one has

$$
\operatorname{char}_{\hbar}(\mathscr{M})=\operatorname{char}\left(\mathscr{M}_{0}\right)
$$

(ii) The characteristic variety char ${ }_{\hbar}$ is additive both on $\operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}^{\hbar}\right)$ and on $\mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$.

Proof. (i) As $\operatorname{char}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right)=\operatorname{char}\left(\mathscr{M}_{0}\right) \cup \operatorname{char}\left({ }_{0} \mathscr{M}\right)$, it is enough to prove the inclusion

$$
\begin{equation*}
\operatorname{char}\left({ }_{0} \mathscr{M}\right) \subset \operatorname{char}\left(\mathscr{M}_{0}\right) . \tag{3.7}
\end{equation*}
$$

Consider the short exact sequence $0 \rightarrow \mathscr{M}_{\hbar \text {-tor }} \rightarrow \mathscr{M} \rightarrow \mathscr{M}_{\hbar \text {-tf }} \rightarrow 0$. Since $\mathscr{M}_{\hbar \text {-tf }}$ has no \hbar-torsion, ${ }_{0}\left(\mathscr{M}_{\hbar \text {-tf }}\right)=0$. The associated long exact cohomology sequence thus gives

$$
{ }_{0}\left(\mathscr{M}_{\hbar \text {-tor }}\right) \simeq{ }_{0} \mathscr{M}, \quad 0 \rightarrow\left(\mathscr{M}_{\hbar \text {-tor }}\right)_{0} \rightarrow \mathscr{M}_{0} \rightarrow\left(\mathscr{M}_{\hbar \text {-tf }}\right)_{0} \rightarrow 0 .
$$

We deduce

$$
\operatorname{char}(0 \mathscr{M})=\operatorname{char}\left(0\left(\mathscr{M}_{\hbar \text {-tor }}\right)\right)=\operatorname{char}\left(\left(\mathscr{M}_{\hbar \text {-tor }}\right)_{0}\right) \subset \operatorname{char}\left(\mathscr{M}_{0}\right)
$$

where the second equality follows from Lemma 3.5
(ii) It is enough to prove the additivity on $\operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}^{\hbar}\right)$, i.e. the equality

$$
\operatorname{char}_{\hbar}(\mathscr{M})=\operatorname{char}_{\hbar}\left(\mathscr{M}^{\prime}\right) \cup \operatorname{char}_{\hbar}\left(\mathscr{M}^{\prime \prime}\right)
$$

for $0 \rightarrow \mathscr{M}^{\prime} \rightarrow \mathscr{M} \rightarrow \mathscr{M}^{\prime \prime} \rightarrow 0$ a short exact sequence of coherent \mathscr{D}_{X}^{\hbar}-modules.
The associated distinguished triangle $\operatorname{gr}_{\hbar} \mathscr{M}^{\prime} \rightarrow \operatorname{gr}_{\hbar} \mathscr{M} \rightarrow \mathrm{gr}_{\hbar} \mathscr{M}^{\prime \prime} \xrightarrow{+1}$ induces the long exact cohomology sequence

$$
{ }_{0}\left(\mathscr{M}^{\prime \prime}\right) \rightarrow\left(\mathscr{M}^{\prime}\right)_{0} \rightarrow \mathscr{M}_{0} \rightarrow\left(\mathscr{M}^{\prime \prime}\right)_{0} \rightarrow 0
$$

By additivity of $\operatorname{char}(\cdot)$, the exactness of this sequence at the first, second and third term from the right, respectively, gives

$$
\begin{aligned}
\operatorname{char}_{\hbar}\left(\mathscr{M}^{\prime \prime}\right) & \subset \operatorname{char}_{\hbar}(\mathscr{M}) \\
\operatorname{char}_{\hbar}(\mathscr{M}) & \subset \operatorname{char}_{\hbar}\left(\mathscr{M}^{\prime}\right) \cup \operatorname{char}_{\hbar}\left(\mathscr{M}^{\prime \prime}\right) \\
\operatorname{char}_{\hbar}\left(\mathscr{M}^{\prime}\right) & \left.\subset \operatorname{char}_{0}\left(\mathscr{M}^{\prime \prime}\right)\right) \cup \operatorname{char}_{\hbar}(\mathscr{M})
\end{aligned}
$$

Finally, note that $\operatorname{char}\left(0\left(\mathscr{M}^{\prime \prime}\right)\right) \subset \operatorname{char}_{\hbar}\left(\mathscr{M}^{\prime \prime}\right) \subset \operatorname{char}_{\hbar}(\mathscr{M})$.

In view of Proposition 3.6 (i), in order to define the characteristic variety of a coherent \mathscr{D}_{X}^{\hbar}-module \mathscr{M} one could avoid derived categories considering char $\left(\mathscr{M}_{0}\right)$ instead of $\operatorname{char}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right)$. The next lemma shows that these definitions are still compatible for $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$.

Lemma 3.7. For $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ one has

$$
\bigcup_{i} \operatorname{char}\left(H^{i}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right)\right)=\bigcup_{i} \operatorname{char}\left(\left(H^{i} \mathscr{M}\right)_{0}\right)
$$

Proof. By additivity of char, the short exact sequence

$$
\begin{equation*}
0 \rightarrow\left(H^{i} \mathscr{M}\right)_{0} \rightarrow H^{i}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right) \rightarrow_{0}\left(H^{i+1} \mathscr{M}\right) \rightarrow 0 \tag{3.8}
\end{equation*}
$$

from [13, Lemma 1.4.2] induces the relations

$$
\begin{aligned}
\operatorname{char}\left(\left(H^{i} \mathscr{M}\right)_{0}\right) & \subset \operatorname{char}\left(H^{i}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right)\right) \\
\operatorname{char}\left(H^{i}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right)\right) & =\operatorname{char}\left(\left(H^{i} \mathscr{M}\right)_{0}\right) \cup \operatorname{char}\left({ }_{0}\left(H^{i+1} \mathscr{M}\right)\right)
\end{aligned}
$$

One concludes by noticing that (3.7) gives

$$
\operatorname{char}\left({ }_{0}\left(H^{i+1} \mathscr{M}\right)\right) \subset \operatorname{char}\left(\left(H^{i+1} \mathscr{M}\right)_{0}\right)
$$

Proposition 3.8. Let $\mathscr{M} \in \operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$ be an \hbar-torsion module. Then \mathscr{M} is coherent as a \mathscr{D}_{X}^{\hbar}-module if and only if it is coherent as a \mathscr{D}_{X}-module, and in this case one has $\operatorname{char}_{\hbar}(\mathscr{M})=\operatorname{char}(\mathscr{M})$.

Proof. As in the proof of Lemma 3.5 we assume that $\hbar^{N} \mathscr{M}=0$ for some $N \in \mathbb{N}$. Since coherence is preserved by extension and since the characteristic varieties of \mathscr{D}_{X}^{\hbar}-modules and \mathscr{D}_{X}-modules are additive, we can argue by induction on N using the exact sequence 3.6 . We are thus reduced to the case $N=1$, where $\mathscr{M}=\mathscr{M}_{0}$ and the statement becomes obvious.

From (3.2) we obtain
Proposition 3.9. For $\mathscr{N} \in \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)$ one has $\operatorname{char}_{\hbar}\left(\mathscr{N}^{\hbar}\right)=\operatorname{char}(\mathscr{N})$.
Holonomic modules. Recall that a coherent \mathscr{D}_{X}-module (or an object of the derived category) is called holonomic if its characteristic variety is isotropic. We refer e.g. to [7, Chapter 5] for the notion of regularity.

Definition 3.10. We say that $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ is holonomic, or regular holonomic, if so is $\operatorname{gr}_{\hbar}(\mathscr{M})$. We denote by $\mathrm{D}_{\text {hol }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ the full triangulated subcategory of $\mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ of holonomic objects and by $\mathrm{D}_{\mathrm{rh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ the full triangulated subcategory of regular holonomic objects.

Note that a coherent \mathscr{D}_{X}^{\hbar}-module is holonomic if and only if its characteristic variety is isotropic.

Example 3.11. Let \mathscr{N} be a regular holonomic \mathscr{D}_{X}-module. Then
(i) \mathscr{N} itself, considered as a \mathscr{D}_{X}^{\hbar}-module, is regular holonomic, as follows from the isomorphism $\mathrm{gr}_{\hbar} \mathscr{N} \simeq \mathscr{N} \oplus \mathscr{N}[1] ;$
(ii) \mathscr{N}^{\hbar} is a regular holonomic \mathscr{D}_{X}^{\hbar}-module, as follows from the isomorphism $\operatorname{gr}_{\hbar} \mathscr{N}^{\hbar} \simeq \mathscr{N}$. In particular, \mathscr{O}_{X}^{\hbar} is regular holonomic.

Remark 3.12. We denote by $\operatorname{Mod}_{\text {rh }}\left(\mathscr{D}_{X}\right)$ the category of regular holonomic $\mathscr{D}_{X^{-}}$ modules and by $\operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}^{\hbar}\right)$ the subcategory of $\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$ of regular holonomic objects in the above sense. The proofs of Lemma 3.5 and Proposition 3.6 adapt to the notion of regular holonomy and give the following results:
(i) For $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}^{\hbar}\right)$ an \hbar-torsion module,

$$
\mathscr{M} \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}^{\hbar}\right) \Leftrightarrow \mathscr{M}_{0} \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}\right) \Leftrightarrow{ }_{0} \mathscr{M} \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}\right) .
$$

(ii) For $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}^{\hbar}\right)$,

$$
\mathscr{M} \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}^{\hbar}\right) \Leftrightarrow \mathscr{M}_{0} \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}\right) .
$$

In this case, ${ }_{0} \mathscr{M} \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}\right)$.
Now for $\mathscr{M} \in \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ the exact sequence (3.8) shows that, for any i,

$$
H^{i}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right) \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}\right) \Leftrightarrow\left(H^{i} \mathscr{M}\right)_{0},{ }_{0}\left(H^{i+1} \mathscr{M}\right) \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}\right)
$$

By the above we deduce that $\mathscr{M} \in \mathrm{D}_{\mathrm{rh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ if and only if $\left(H^{i} \mathscr{M}\right)_{0} \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}\right)$ for all i. This is again equivalent to $H^{i} \mathscr{M} \in \operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}^{\hbar}\right)$ for all i.

Propagation. Denote by $D_{\mathbb{C}-c}^{b}\left(\mathbb{C}_{X}^{\hbar}\right)$ the full triangulated subcategory of $\mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$ consisting of objects with \mathbb{C}-constructible cohomology over the ring \mathbb{C}^{\hbar}.
Theorem 3.13. Let $\mathscr{M}, \mathscr{N} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$. Then

$$
\mathrm{SS}\left(\operatorname{R} \mathscr{H} o m_{\mathscr{D}_{X}^{\hbar}}(\mathscr{M}, \mathscr{N})\right)=\mathrm{SS}\left(\mathrm{R}_{\mathscr{H} o m_{\mathscr{D}}}\left(\operatorname{gr}_{\hbar}(\mathscr{M}), \operatorname{gr}_{\hbar}(\mathscr{N})\right)\right) .
$$

If moreover \mathscr{M} and \mathscr{N} are holonomic, then $\mathrm{R} \mathscr{H}_{\operatorname{om}_{\mathscr{D}_{X}^{\hbar}}}(\mathscr{M}, \mathscr{N})$ is an object of $\mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$.

Proof. Set $F=\mathrm{R} \mathscr{H} \operatorname{com}_{\mathscr{D}_{X}^{\hbar}}(\mathscr{M}, \mathscr{N})$. By Theorem 1.9 and Proposition $1.5, F$ is cohomologically \hbar-complete. Hence $\mathrm{SS}(F)=\mathrm{SS}\left(\mathrm{gr}_{\hbar}(F)\right)$ by Proposition 1.15. If moreover \mathscr{M} and \mathscr{N} are holonomic, then $\operatorname{gr}_{\hbar} F$ is \mathbb{C}-constructible. The equality $\operatorname{SS}(F)=\mathrm{SS}\left(\operatorname{gr}_{\hbar}(F)\right)$ implies that F is weakly \mathbb{C}-constructible. Moreover, the
finiteness of the stalks $\operatorname{gr}_{\hbar}(F)_{x} \simeq \operatorname{gr}_{\hbar}\left(F_{x}\right)$ over \mathbb{C} implies the finiteness of F_{x} over \mathbb{C}^{\hbar} by Theorem 1.11 applied with $X=\{\mathrm{pt}\}$ and $\mathscr{A}=\mathbb{C}^{\hbar}$.

Applying Theorem 3.13, and [9, Theorem 11.3.3], we get:
Corollary 3.14. Let $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$. Then

$$
\mathrm{SS}\left(\operatorname{Sol}_{\hbar}(\mathscr{M})\right)=\operatorname{SS}\left(\mathrm{DR}_{\hbar}(\mathscr{M})\right)=\operatorname{char}_{\hbar}(\mathscr{M})
$$

If moreover \mathscr{M} is holonomic, then $\operatorname{Sol}_{\hbar}(\mathscr{M})$ and $\mathrm{DR}_{\hbar}(\mathscr{M})$ belong to $\mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$.
Theorem 3.15. Let $\mathscr{M} \in \mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$. Then there is a natural isomorphism in $\mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$

$$
\begin{equation*}
\operatorname{Sol}_{\hbar}(\mathscr{M}) \simeq \mathrm{D}_{\hbar}^{\prime}\left(\mathrm{DR}_{\hbar}(\mathscr{M})\right) \tag{3.9}
\end{equation*}
$$

Proof. The natural \mathbb{C}^{\hbar}-linear morphism

$$
\mathrm{R} \mathscr{H} \operatorname{om}_{\mathscr{D}_{X}^{\hbar}}\left(\mathscr{O}_{X}^{\hbar}, \mathscr{M}\right){\stackrel{\otimes}{\mathbb{C}_{X}^{\hbar}}} \mathrm{R} \mathscr{H} o m_{\mathscr{D}_{X}^{\hbar}}\left(\mathscr{M}, \mathscr{O}_{X}^{\hbar}\right) \rightarrow \mathrm{R} \mathscr{H}_{0} m_{\mathscr{D}_{X}^{\hbar}}\left(\mathscr{O}_{X}^{\hbar}, \mathscr{O}_{X}^{\hbar}\right) \simeq \mathbb{C}_{X}^{\hbar}
$$

induces the morphism in $D_{\mathbb{C}-c}^{b}\left(\mathbb{C}_{X}^{\hbar}\right)$
(Note that, choosing $\mathscr{M}=\mathscr{D}_{X}^{\hbar}$, this morphism defines the morphism $\mathscr{O}_{X}^{\hbar} \rightarrow$ $\mathrm{D}_{\hbar}^{\prime}\left(\Omega_{X}^{\hbar}\left[-d_{X}\right]\right)$. .) The morphism (3.10) induces an isomorphism

$$
\operatorname{gr}_{\hbar}(\alpha): \mathrm{R}_{\mathscr{H} o m_{\mathscr{D}_{X}}}\left(\operatorname{gr}_{\hbar}(\mathscr{M}), \mathscr{O}_{X}\right) \rightarrow \mathrm{D}^{\prime}\left(\mathrm{R}_{\mathscr{H} o m_{\mathscr{D}_{X}}}\left(\mathscr{O}_{X}, \operatorname{gr}_{\hbar}(\mathscr{M})\right)\right)
$$

It is thus an isomorphism by Corollary 1.17

$\S 4$. Formal extension of tempered functions

Let us start by reviewing after [11, Chapter 7] the construction of the sheaves of tempered distributions and of C^{∞}-functions with temperate growth on the subanalytic site.

Let X be a real analytic manifold, and U an open subset. One says that a function $f \in \mathscr{C}_{X}^{\infty}(U)$ has polynomial growth at $p \in X$ if, for a local coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ around p, there exist a sufficiently small compact neighborhood K of p and a positive integer N such that

$$
\sup _{x \in K \cap U}(\operatorname{dist}(x, K \backslash U))^{N}|f(x)|<\infty
$$

One says that f is tempered at p if all its derivatives are of polynomial growth at p. One says that f is tempered if it is tempered at any point of X. One denotes
by $\mathscr{C}_{X}^{\infty, t}(U)$ the \mathbb{C}-vector subspace of $\mathscr{C}^{\infty}(U)$ consisting of tempered functions. It then follows from a theorem of Łojasiewicz that $U \mapsto \mathscr{C}_{X}^{\infty, t}(U)\left(U \in \mathrm{Op}_{X_{\mathrm{sa}}}\right)$ is a sheaf on X_{sa}. We denote it by $\mathscr{C}_{X_{\mathrm{sa}}}^{\infty, t}$ or simply $\mathscr{C}_{X}^{\infty, t}$ if there is no risk of confusion.
Lemma 4.1. One has $H^{j}\left(U ; \mathscr{C}_{X}^{\infty, t}\right)=0$ for any $U \in \mathrm{Op}_{X_{\mathrm{sa}}}$ and any $j>0$.
This result is well-known (see [10, Chapter 1]), but we recall its proof for the reader's convenience.

Proof. Consider the full subcategory \mathscr{J} of $\operatorname{Mod}\left(\mathbb{C}_{X_{\text {sa }}}\right)$ whose objects are sheaves F such that for any pair $U, V \in \mathrm{Op}_{X_{\mathrm{sa}}}$, the Mayer-Vietoris sequence

$$
0 \rightarrow F(U \cup V) \rightarrow F(U) \oplus F(V) \rightarrow F(U \cap V) \rightarrow 0
$$

is exact. Let us check that this category is injective with respect to the functor $\Gamma(U ; \bullet)$. The only non-obvious fact is that if $0 \rightarrow F^{\prime} \rightarrow F \rightarrow F^{\prime \prime} \rightarrow 0$ is an exact sequence and that F^{\prime} belongs to \mathscr{J}, then $F(U) \rightarrow F^{\prime \prime}(U)$ is surjective. Let $t \in F^{\prime \prime}(U)$. There exist a finite covering $U=\bigcup_{i \in I} U_{i}$ and $s_{i} \in F\left(U_{i}\right)$ whose image in $F^{\prime \prime}\left(U_{i}\right)$ is $\left.t\right|_{U_{i}}$. Then the proof goes by induction on the cardinality of I using the property of F^{\prime} and standard arguments. To conclude, note that $\mathscr{C}_{X}^{\infty, t}$ belongs to \mathscr{J} thanks to Łojasiewicz's result (see [14]).

Let $\mathscr{D} b_{X}$ be the sheaf of distributions on X. For $U \in \mathrm{Op}_{X_{\mathrm{sa}}}$, denote by $\mathscr{D} b_{X}^{t}(U)$ the space of tempered distributions on U, defined by the exact sequence

$$
0 \rightarrow \Gamma_{X \backslash U}\left(X ; \mathscr{D} b_{X}\right) \rightarrow \Gamma\left(X ; \mathscr{D} b_{X}\right) \rightarrow \mathscr{D} b_{X}^{t}(U) \rightarrow 0
$$

Again, it follows from a theorem of Łojasiewicz that $U \mapsto \mathscr{D} b^{t}(U)$ is a sheaf on X_{sa}. We denote it by $\mathscr{D} b_{X_{\mathrm{sa}}}^{t}$ or simply $\mathscr{D} b_{X}^{t}$ if there is no risk of confusion. The sheaf $\mathscr{D} b_{X}^{t}$ is quasi-injective, that is, the functor $\mathscr{H} O m_{\mathbb{C}_{X_{\mathrm{sa}}}}\left(\cdot, \mathscr{D} b_{X}^{t}\right)$ is exact in the category $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{C}_{X}\right)$. Moreover, for $U \in \operatorname{Op}_{X_{\mathrm{sa}}}, \mathscr{H}_{\mathrm{Xm}_{\mathrm{S}_{X_{\mathrm{sa}}}}}\left(\mathbb{C}_{U}, \mathscr{D} b_{X}^{t}\right)$ is also quasi-injective and $\mathrm{R} \mathscr{H} o m_{\mathbb{C}_{X_{\mathrm{sa}}}}\left(\mathbb{C}_{U}, \mathscr{D} b_{X}^{t}\right)$ is concentrated in degree 0 . Note that the sheaf

$$
\Gamma_{[U]} \mathscr{D} b_{X}:=\rho^{-1} \mathscr{H} o m_{\mathbb{C}_{X_{\mathrm{sa}}}}\left(\mathbb{C}_{U}, \mathscr{D} b_{X}^{t}\right)
$$

is a \mathscr{C}_{X}^{∞}-module, so that in particular $\mathrm{R} \Gamma\left(V ; \Gamma_{[U]} \mathscr{D} b_{X}\right)$ is concentrated in degree 0 for $V \subset X$ an open subset.
Formal extensions. By Proposition 2.5 the sheaves $\mathscr{C}_{X}^{\infty, t}, \mathscr{D} b_{X}^{t}$ and $\Gamma_{[U]} \mathscr{D} b_{X}$ are acyclic for the functor $(\cdot)^{\hbar}$. We set

$$
\mathscr{C}_{X}^{\infty, t, \hbar}:=\left(\mathscr{C}_{X}^{\infty, t}\right)^{\hbar}, \quad \mathscr{D} b_{X}^{t, \hbar}:=\left(\mathscr{D} b_{X}^{t}\right)^{\hbar}, \quad \Gamma_{[U]} \mathscr{D} b_{X}^{\hbar}:=\left(\Gamma_{[U]} \mathscr{D} b_{X}\right)^{\hbar} .
$$

Note that, by Lemmas 2.3 and 2.9,

$$
\Gamma_{[U]} \mathscr{D} b_{X}^{\hbar} \simeq \rho^{-1} \mathscr{H} o m_{\mathbb{C}_{X_{\mathrm{sa}}}}\left(\mathbb{C}_{U}, \mathscr{D} b_{X}^{t, \hbar}\right)
$$

By Proposition 2.2 we get:
Proposition 4.2. The sheaves $\mathscr{C}_{X}^{\infty, t, \hbar}, \mathscr{D} b_{X}^{t, \hbar}$ and $\Gamma_{[U]} \mathscr{D} b_{X}^{\hbar}$ are cohomologically \hbar-complete.

Now assume X is a complex manifold. Denote by \bar{X} the complex conjugate manifold and by $X^{\mathbb{R}}$ the underlying real analytic manifold, identified with the diagonal of $X \times \bar{X}$. One defines the sheaf (in fact, an object of the derived category) of tempered holomorphic functions by

$$
\mathscr{O}_{X}^{t}:=\mathrm{R}{\mathscr{H} o m_{\rho_{!}}^{\bar{D}}}\left(\rho_{!} \mathscr{O}_{\bar{X}}, \mathscr{C}_{X}^{\infty, t}\right) \xrightarrow{\sim} \operatorname{R} \mathscr{H}^{\infty} m_{\rho_{!} \mathscr{\mathscr { D }}}\left(\rho_{!} \mathscr{O}_{\bar{X}}, \mathscr{D} b_{X}^{t}\right) .
$$

Here and below, we write $\mathscr{C}_{X}^{\infty, t}$ and $\mathscr{D} b_{X}^{t}$ instead of $\mathscr{C}_{X^{\mathbb{R}}}^{\infty, t}$ and $\mathscr{D} b_{X^{\mathbb{R}}}^{t}$, respectively. We set

$$
\mathscr{O}_{X}^{t, \hbar}:=\left(\mathscr{O}_{X}^{t}\right)^{\mathrm{R} \hbar}
$$

a cohomologically \hbar-complete object of $\mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}\right)$. By Lemma 2.3 ,

$$
\mathscr{O}_{X}^{t, \hbar} \simeq \mathrm{R} \mathscr{H} o m_{\rho!\mathscr{D}_{\bar{X}}}\left(\rho_{!} \mathscr{O}_{\bar{X}}, \mathscr{C}_{X}^{\infty, t, \hbar}\right) \xrightarrow{\sim} \mathrm{R} \mathscr{H} o m_{\rho!\mathscr{D}_{\bar{X}}}\left(\rho_{!} \mathscr{O}_{\bar{X}}, \mathscr{D} b_{X}^{t, \hbar}\right) .
$$

Note that $\operatorname{gr}_{\hbar}\left(\mathscr{O}_{X}^{t, \hbar}\right) \simeq \mathscr{O}_{X}^{t}$ in $\mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X_{\mathrm{sa}}}\right)$.

§5. Riemann-Hilbert correspondence

Let X be a complex analytic manifold. Consider the functors

$$
\begin{aligned}
\mathrm{TH}: \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}\right) \rightarrow \mathrm{D}_{\mathrm{rh}}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)^{\mathrm{op}}, & F \mapsto \rho^{-1} \mathrm{R} \mathscr{H} o m_{\mathbb{C}_{X_{\mathrm{sa}}}}\left(\rho_{*} F, \mathscr{O}_{X}^{t}\right), \\
\mathrm{TH}_{\hbar}: \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)^{\mathrm{op}}, & F \mapsto \rho^{-1} \mathrm{R} \mathscr{H} m_{\mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}}\left(\rho_{*} F, \mathscr{O}_{X}^{t, \hbar}\right) .
\end{aligned}
$$

The classical Riemann-Hilbert correspondence of Kashiwara [6] states that the functors Sol and TH are equivalences of categories between $\mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}\right)$ and $\mathrm{D}_{\mathrm{rh}}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)^{\mathrm{op}}$ quasi-inverse to each other. In order to obtain a similar statement for \mathbb{C}_{X} and \mathscr{D}_{X} replaced with \mathbb{C}_{X}^{\hbar} and \mathscr{D}_{X}^{\hbar}, respectively, we start by establishing some lemmas.

Lemma 5.1. For $\mathscr{M}, \mathscr{N} \in \mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ one has a natural isomorphism in $\mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$

$$
\mathrm{R} \mathscr{H} \operatorname{om}_{\mathscr{D}_{X}^{\hbar}}(\mathscr{M}, \mathscr{N}) \xrightarrow{\sim} \mathrm{R} \mathscr{H} \operatorname{Om}_{\mathbb{C}_{X}^{\hbar}}\left(\operatorname{Sol}_{\hbar}(\mathscr{N}), \operatorname{Sol}_{\hbar}(\mathscr{M})\right) .
$$

Proof. Applying the functor gr_{\hbar} to this morphism, we get an isomorphism by the classical Riemann-Hilbert correspondence. Then the result follows from Corollary 1.17 and Theorem 3.13

Note that there is an isomorphism in $\mathrm{D}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)$

$$
\begin{equation*}
\operatorname{gr}_{\hbar}\left(\mathrm{TH}_{\hbar}(F)\right) \simeq \mathrm{TH}\left(\operatorname{gr}_{\hbar}(F)\right) \tag{5.1}
\end{equation*}
$$

Lemma 5.2. The functor TH_{\hbar} induces a functor

$$
\begin{equation*}
\mathrm{TH}_{\hbar}: \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right) \rightarrow \mathrm{D}_{\mathrm{rh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)^{\mathrm{op}} \tag{5.2}
\end{equation*}
$$

Proof. Let $F \in \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$. By (5.1) and the classical Riemann-Hilbert correspondence we know that $\mathrm{gr}_{\hbar}\left(\mathrm{TH}_{\hbar}(F)\right)$ is regular holonomic, and in particular coherent. It is thus left to prove that $\mathrm{TH}_{\hbar}(F)$ is coherent. Note that our problem is of local nature.

We use the Dolbeault resolution of $\mathscr{O}_{X}^{t, \hbar}$ with coefficients in $\mathscr{D} b_{X}^{t, \hbar}$ and we choose a resolution of F as given in Proposition A.2 (i). We find that $\mathrm{TH}_{\hbar}(F)$ is isomorphic to a bounded complex \mathscr{M}^{\bullet}, where the \mathscr{M}^{i} are locally finite sums of sheaves of the type $\Gamma_{[U]} \mathscr{D} b^{t, \hbar}$ with $U \in \mathrm{Op}_{X_{\mathrm{sa}}}$. It follows from Proposition 4.2 that $\mathrm{TH}_{\hbar}(F)$ is cohomologically \hbar-complete, and we conclude by Theorem 1.11 with $\mathscr{A}=\mathscr{D}_{X}^{\hbar}$.

Lemma 5.3. We have $\mathrm{R} \mathscr{H}^{\text {om }}{ }_{\rho!\mathscr{D}_{X}^{\hbar}}\left(\rho_{!} \mathscr{O}_{X}^{\hbar}, \mathscr{O}_{X}^{t, \hbar}\right) \simeq \mathbb{C}_{X_{\mathrm{sa}}}$.
Proof. This isomorphism is given by the sequence

$$
\begin{aligned}
\mathrm{R} \mathscr{H o m}_{\rho!\mathscr{O}}^{\hbar}\left(\rho_{!} \mathscr{O}_{X}^{\hbar}, \mathscr{O}_{X}^{t, \hbar}\right) & \simeq \mathrm{R} \mathscr{H}_{\operatorname{Hom}_{\rho!\mathscr{D} X}}\left(\rho_{!} \mathscr{O}_{X}, \mathscr{O}_{X}^{t, \hbar}\right) \simeq \mathrm{R} \mathscr{H}_{\operatorname{Om}_{\rho!\mathscr{D}}}\left(\rho_{!} \mathscr{O}_{X}, \mathscr{O}_{X}^{t}\right)^{\mathrm{R} \hbar} \\
& \simeq\left(\rho_{*} \mathrm{R} \mathscr{H}_{\operatorname{Om}_{\mathscr{D}_{X}}}\left(\mathscr{O}_{X}, \mathscr{O}_{X}\right)\right)^{\mathrm{R} \hbar} \simeq\left(\mathbb{C}_{X_{\mathrm{sa}}}\right)^{\mathrm{R} \hbar} \simeq \mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}
\end{aligned}
$$

where the first isomorphism is an extension of scalars, the second follows from Lemma 2.3 and the third is given by the adjunction between $\rho_{!}$and ρ^{-1}.

Theorem 5.4. The functors Sol_{\hbar} and TH_{\hbar} are equivalences of categories between $\mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$ and $\mathrm{D}_{\mathrm{rh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)^{\mathrm{op}}$ quasi-inverse to each other.

Proof. In view of Lemma 5.1, the functor Sol_{\hbar} is fully faithful. It is then enough to show that $\operatorname{Sol}_{\hbar}\left(\mathrm{TH}_{\hbar}(F)\right) \simeq F$ for $F \in \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$. By Theorem 3.15, this is equivalent to $\mathrm{DR}_{\hbar}\left(\mathrm{TH}_{\hbar} F\right) \simeq \mathrm{D}_{\hbar}^{\prime} F$. Since we already know by Lemma 5.2 that $\mathrm{TH}_{\hbar}(F)$ is holonomic, we may use (3.9). We have the sequence of isomorphisms

$$
\begin{aligned}
& \simeq \mathrm{R} \mathscr{H} o m_{\rho_{!} \mathscr{D}_{X}^{\hbar}}\left(\rho_{!} \mathscr{O}_{X}^{\hbar}, \mathrm{R} \mathscr{H} o m_{\mathbb{C}_{X_{\mathrm{s}}}^{\hbar}}\left(\rho_{*} F, \mathscr{O}_{X}^{t, \hbar}\right)\right) \\
& \simeq \operatorname{R} \mathscr{H} \operatorname{om}_{\mathbb{C}_{\mathrm{x}_{\mathrm{sa}}}^{\hbar}}\left(\rho_{*} F, \mathrm{R} \mathscr{H} \operatorname{Oom}_{\rho!\mathscr{D}_{X}^{\hbar}}\left(\rho_{!} \mathscr{O}_{X}^{\hbar}, \mathscr{O}_{X}^{t, \hbar}\right)\right) \\
& \simeq \mathrm{R} \mathscr{H} \operatorname{om}_{\mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}}\left(\rho_{*} F, \mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}\right) \simeq \mathrm{R} \mathscr{H}^{\left(0 m_{\mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}}\right.}\left(\rho_{*} F, \rho_{*} \mathbb{C}_{X}^{\hbar}\right) \simeq \rho_{*} \mathrm{D}_{\hbar}^{\prime} F,
\end{aligned}
$$

where we have used the adjunction between $\rho_{!}$and ρ^{-1}, the isomorphism of Lemma 5.3 and the commutation of ρ_{*} with R \mathscr{H} om. One concludes by recalling the isomorphism of functors $\rho^{-1} \rho_{*} \simeq \mathrm{id}$.
t-structure. Recall the definition of the middle perversity t-structure for complex constructible sheaves. Let \mathbb{K} denote either the field \mathbb{C} or the ring \mathbb{C}^{\hbar}. For $F \in$ $\mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)$, we have $F \in{ }^{p} \mathrm{D}_{\mathbb{\mathbb { C }}-\mathrm{c}}^{\leq 0}\left(\mathbb{K}_{X}\right)$ if and only if

$$
\begin{equation*}
\forall i \in \mathbb{Z} \quad \operatorname{dim} \operatorname{supp} H^{i}(F) \leq d_{X}-i \tag{5.3}
\end{equation*}
$$

and $F \in{ }^{p} \mathrm{D}_{\overline{\mathbb{C}}-\mathrm{c}}^{\geq 0}\left(\mathbb{K}_{X}\right)$ if and only if, for any locally closed complex analytic subset $S \subset X$,

$$
\begin{equation*}
H_{S}^{i}(F)=0 \quad \text { for all } i<d_{X}-\operatorname{dim}(S) \tag{5.4}
\end{equation*}
$$

One denotes by $\operatorname{Perv}\left(\mathbb{K}_{X}\right)$ the heart of this t-structure.
With the above convention, the de Rham functor

$$
\text { DR: } \mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}\right) \rightarrow^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}\right)
$$

is t-exact, when $\mathrm{D}_{\text {hol }}^{\mathrm{b}}\left(\mathscr{D}_{X}\right)$ is equipped with the natural t-structure.
Theorem 5.5. The de Rham functor $\mathrm{DR}_{\hbar}: \mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right) \rightarrow{ }^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$ is t-exact, and induces a t-exact equivalence between $\mathrm{D}_{\mathrm{rh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ and ${ }^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$. In particular, it induces an equivalence between $\operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}^{\hbar}\right)$ and $\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)$.
Proof. (i) Let $\mathscr{M} \in \mathrm{D}_{\text {hol }}^{\leq 0}\left(\mathscr{D}_{X}^{\hbar}\right)$. Let us prove that $\mathrm{DR}_{\hbar} \mathscr{M} \in{ }^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\leq 0}\left(\mathbb{C}_{X}^{\hbar}\right)$. Since $\mathrm{DR}_{\hbar} \mathscr{M}$ is constructible, by Proposition 1.19 it is enough to check (5.3) for $\operatorname{gr}_{\hbar}\left(\mathrm{DR}_{\hbar} \mathscr{M}\right) \simeq \mathrm{DR}\left(\mathrm{gr}_{\hbar} \mathscr{M}\right)$. In other words, it is enough to check that $\mathrm{DR}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right)$ $\in{ }^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\leq 0}\left(\mathbb{C}_{X}\right)$. Since $\operatorname{gr}_{\hbar} \mathscr{M} \in \mathrm{D}_{\text {hol }}^{\leq 0}\left(\mathscr{D}_{X}\right)$, this result follows from the t-exactness of the functor DR .
(ii) Let $\mathscr{M} \in \mathrm{D}_{\mathrm{hol}}^{\geq 0}\left(\mathscr{D}_{X}^{\hbar}\right)$. Let us prove that $\mathrm{DR}_{\hbar} \mathscr{M} \in{ }^{p} \mathrm{D}_{\overline{\mathbb{C}} \mathrm{c}}^{\geq 0}\left(\mathbb{C}_{X}^{\hbar}\right)$. We set $\mathscr{N}=\left(H^{0} \mathscr{M}\right)_{\hbar \text {-tor }}$. We have a morphism $u: \mathscr{N} \rightarrow \mathscr{M}$ induced by $H^{0} \mathscr{M} \rightarrow \mathscr{M}$ and we let \mathscr{M}^{\prime} be the mapping cone of u. We have a distinguished triangle

$$
\mathrm{DR}_{\hbar} \mathscr{N} \rightarrow \mathrm{DR}_{\hbar} \mathscr{M} \rightarrow \mathrm{DR}_{\hbar} \mathscr{M}^{\prime} \xrightarrow{+1}
$$

so that it is enough to show that $\mathrm{DR}_{\hbar} \mathscr{N}$ and $\mathrm{DR}_{\hbar} \mathscr{M}^{\prime}$ belong to ${ }^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\geq 0}\left(\mathbb{C}_{X}^{\hbar}\right)$.
(ii-a) By Propositions 3.6 (ii) and 3.8, \mathscr{N} is holonomic as a \mathscr{D}_{X}-module. Hence $\mathrm{DR}_{\hbar} \mathscr{N} \simeq \operatorname{DR} \mathscr{N}$ is a perverse sheaf (over \mathbb{C}) and satisfies (5.4). Since (5.4) does not depend on the coefficient ring, $\mathrm{DR}_{\hbar} \mathscr{N} \in{ }^{p} \mathrm{D}_{\mathbb{\mathbb { C }}-\mathrm{c}}^{\geq 0}\left(\mathbb{C}_{X}^{\hbar}\right)$.
(ii-b) We note that $H^{0} \mathscr{M}^{\prime} \simeq\left(H^{0} \mathscr{M}\right)_{\hbar \text {-tf }}$. Hence by Proposition 1.14. $\mathrm{gr}_{\hbar} \mathscr{M}^{\prime} \in$ $\mathrm{D}_{\text {hol }}^{\geq 0}\left(\mathscr{D}_{X}\right)$ and $\mathrm{DR}\left(\operatorname{gr}_{\hbar} \mathscr{M}^{\prime}\right) \in{ }^{p} \mathrm{D}_{\mathbb{\mathbb { C }}-\mathrm{c}}^{\geq 0}\left(\mathbb{C}_{X}\right)$, that is, $\mathrm{DR}\left(\operatorname{gr}_{\hbar} \mathscr{M}^{\prime}\right)$ satisfies 5.4. Let $S \subset X$ be a locally closed complex subanalytic subset. We have

$$
\operatorname{R\Gamma }_{S}\left(\mathrm{DR}\left(\operatorname{gr}_{\hbar} \mathscr{M}^{\prime}\right)\right) \simeq \operatorname{gr}_{\hbar}\left(\mathrm{R}_{S}\left(\mathrm{DR}_{\hbar} \mathscr{M}^{\prime}\right)\right)
$$

and it follows from Proposition 1.19 that $\mathrm{DR}_{\hbar} \mathscr{M}^{\prime}$ also satisfies (5.4) and thus belongs to ${ }^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\geq 0}\left(\mathbb{C}_{X}^{\hbar}\right)$.
(iii) Consider the restriction $\mathrm{DR}_{\hbar}: \mathrm{D}_{\mathrm{rh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right) \rightarrow{ }^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$ to regular holonomic complexes. In view of Lemma A.1 it follows from Theorems 5.4 and 3.15 that the functor $\mathrm{TH}_{\hbar} \circ \mathrm{D}_{\hbar}^{\prime}$ is a quasi-inverse to DR_{\hbar}. As quasi-inverse to a t-exact functor, $\mathrm{TH}_{\hbar} \circ \mathrm{D}_{\hbar}^{\prime}$ is also t-exact. Thus DR_{\hbar} is a t-exact equivalence, and it induces an equivalence between the respective hearts, i.e. between $\operatorname{Mod}_{\mathrm{rh}}\left(\mathscr{D}_{X}^{\hbar}\right)$ and $\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)$.

§6. Duality and \hbar-torsion

The duality functors \mathbb{D} on $\mathrm{D}_{\mathrm{rh}}\left(\mathscr{D}_{X}\right)$ and D^{\prime} on ${ }^{p} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}\right)$ are t-exact. We will discuss here the finer t-structures needed in order to obtain a similar result when replacing \mathbb{C}_{X} and \mathscr{D}_{X} by their formal extensions \mathbb{C}_{X}^{\hbar} and \mathscr{D}_{X}^{\hbar}.

Following [2, Chapter I.2], let us start by recalling some facts related to torsion pairs and t-structures. We need in particular Proposition 6.2 below, which can also be found in [3].

Definition 6.1. Let \mathscr{C} be an abelian category. A torsion pair on \mathscr{C} is a pair $\left(\mathscr{C}_{\text {tor }}, \mathscr{C}_{\text {tf }}\right)$ of full subcategories such that
(i) for all objects T in $\mathscr{C}_{\text {tor }}$ and F in $\mathscr{C}_{\text {tf }}$, we have $\operatorname{Hom}_{\mathscr{C}}(T, F)=0$,
(ii) for any object M in \mathscr{C}, there are objects $M_{\text {tor }}$ in $\mathscr{C}_{\text {tor }}$ and $M_{\text {tf }}$ in $\mathscr{C}_{\text {tf }}$ and a short exact sequence $0 \rightarrow M_{\text {tor }} \rightarrow M \rightarrow M_{\mathrm{tf}} \rightarrow 0$.

Proposition 6.2. Let D be a triangulated category endowed with a t-structure $\left({ }^{p} \mathrm{D}^{\leq 0},{ }^{p} \mathrm{D}^{\geq 0}\right)$. Let us denote its heart by \mathscr{C} and its cohomology functors by ${ }^{p} H^{i}: \mathrm{D} \rightarrow \mathscr{C}$. Suppose that \mathscr{C} is endowed with a torsion pair $\left(\mathscr{C}_{\mathrm{tor}}, \mathscr{C}_{\mathrm{tf}}\right)$. Then we can define a new t-structure (${ }^{\pi} \mathrm{D}^{\leq 0},{ }^{\pi} \mathrm{D}^{\geq 0}$) on D by setting

$$
{ }^{\pi} \mathrm{D}^{\leq 0}=\left\{M \in{ }^{p} \mathrm{D}^{\leq 1}:{ }^{p} H^{1}(M) \in \mathscr{C}_{\text {tor }}\right\}, \quad{ }^{\pi} \mathrm{D}^{\geq 0}=\left\{M \in{ }^{p} \mathrm{D}^{\geq 0}:{ }^{p} H^{0}(M) \in \mathscr{C}_{\mathrm{tf}}\right\} .
$$

With the notation of Definition 3.2 there is a natural torsion pair attached to $\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$ given by the full subcategories

$$
\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)_{\hbar \text {-tor }}=\left\{\mathscr{M}: \mathscr{M}_{\hbar \text {-tor }} \xrightarrow{\sim} \mathscr{M}\right\}, \quad \operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)_{\hbar-\mathrm{tf}}=\left\{\mathscr{M}: \mathscr{M} \xrightarrow{\sim} \mathscr{M}_{\hbar \text {-tf }}\right\} .
$$

Definition 6.3. (a) We call the torsion pair on $\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$ defined above, the \hbar-torsion pair.
(b) We denote by $\left(\mathrm{D}^{\leq 0}\left(\mathscr{D}_{X}^{\hbar}\right), \mathrm{D} \geq^{0}\left(\mathscr{D}_{X}^{\hbar}\right)\right)$ the natural t-structure on $\mathrm{D}\left(\mathscr{D}_{X}^{\hbar}\right)$.
(c) We denote by $\left({ }^{t} \mathrm{D}^{\leq 0}\left(\mathscr{D}_{X}^{\hbar}\right),{ }^{t} \mathrm{D}^{\geq 0}\left(\mathscr{D}_{X}^{\hbar}\right)\right)$ the t-structure on $\mathrm{D}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ associated via Proposition 6.2 with the \hbar-torsion pair on $\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$.

Proposition 1.14 implies the following equivalences for $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$:

$$
\begin{align*}
\mathscr{M} \in{ }^{t} \mathrm{D}^{\geq 0}\left(\mathscr{D}_{X}^{\hbar}\right) & \Leftrightarrow \operatorname{gr}_{\hbar} \mathscr{M} \in \mathrm{D}^{\geq 0}\left(\mathscr{D}_{X}\right), \tag{6.1}\\
\mathscr{M} \in \mathrm{D}^{\leq 0}\left(\mathscr{D}_{X}^{\hbar}\right) & \Leftrightarrow \operatorname{gr}_{\hbar} \mathscr{M} \in \mathrm{D}^{\leq 0}\left(\mathscr{D}_{X}\right) . \tag{6.2}
\end{align*}
$$

Proposition 6.4. Let \mathscr{M} be a holonomic \mathscr{D}_{X}^{\hbar}-module.
(i) If \mathscr{M} has no \hbar-torsion, then $\mathbb{D}_{\hbar} \mathscr{M}$ is concentrated in degree 0 and has no \hbar-torsion.
(ii) If \mathscr{M} is an \hbar-torsion module, then $\mathbb{D}_{\hbar} \mathscr{M}$ is concentrated in degree 1 and is an \hbar-torsion module.

Proof. By 1.2 we have $\operatorname{gr}_{\hbar}\left(\mathbb{D}_{\hbar} \mathscr{M}\right) \simeq \mathbb{D}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right)$. Since $\operatorname{gr}_{\hbar} \mathscr{M}$ is concentrated in degrees 0 and -1 , with holonomic cohomology, $\mathbb{D}\left(\mathrm{gr}_{\hbar} \mathscr{M}\right)$ is concentrated in degrees 0 and 1 . By Proposition $1.14, \mathbb{D}_{\hbar} \mathscr{M}$ itself is concentrated in degrees 0 and 1 and $H^{0}\left(\mathbb{D}_{\hbar} \mathscr{M}\right)$ has no \hbar-torsion.
(i) The short exact sequence

$$
0 \rightarrow \mathscr{M} \xrightarrow{\hbar} \mathscr{M} \rightarrow \mathscr{M} / \hbar \mathscr{M} \rightarrow 0
$$

induces the long exact sequence

$$
\cdots \rightarrow H^{1}\left(\mathbb{D}_{\hbar}(\mathscr{M} / \hbar \mathscr{M})\right) \rightarrow H^{1}\left(\mathbb{D}_{\hbar} \mathscr{M}\right) \xrightarrow{\hbar} H^{1}\left(\mathbb{D}_{\hbar} \mathscr{M}\right) \rightarrow 0
$$

By Nakayama's lemma $H^{1}\left(\mathbb{D}_{\hbar} \mathscr{M}\right)=0$ as required.
(ii) Since \mathscr{M} is locally annihilated by some power of \hbar, the cohomology groups $H^{i}\left(\mathbb{D}_{\hbar} \mathscr{M}\right)$ also are \hbar-torsion modules. As $H^{0}\left(\mathbb{D}_{\hbar} \mathscr{M}\right)$ has no \hbar-torsion, we get $H^{0}\left(\mathbb{D}_{\hbar} \mathscr{M}\right)=0$.

Theorem 6.5. The duality functor $\mathbb{D}_{\hbar}: \mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)^{\mathrm{op}} \rightarrow{ }^{t} \mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ is t-exact. In other words, \mathbb{D}_{\hbar} interchanges $\mathrm{D}_{\mathrm{hol}}^{\leq 0}\left(\mathscr{D}_{X}^{\hbar}\right)$ with ${ }^{t} \mathrm{D}_{\mathrm{hol}}^{\geq 0}\left(\mathscr{D}_{X}^{\hbar}\right)$ and $\mathrm{D}_{\mathrm{hol}}^{\geq 0}\left(\mathscr{D}_{X}^{\hbar}\right)$ with ${ }^{t} \mathrm{D}_{\mathrm{hol}}^{\leq 0}\left(\mathscr{D}_{X}^{\hbar}\right)$.

Proof. (i) Let us first prove, for $\mathscr{M} \in \mathrm{D}_{\text {hol }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$,

$$
\begin{equation*}
\mathscr{M} \in \mathrm{D}_{\mathrm{hol}}^{\leq 0}\left(\mathscr{D}_{X}^{\hbar}\right) \Leftrightarrow \mathbb{D}_{\hbar}(\mathscr{M}) \in{ }^{t} \mathrm{D}_{\mathrm{hol}}^{\geq 0}\left(\mathscr{D}_{X}^{\hbar}\right) . \tag{6.3}
\end{equation*}
$$

By (1.2) we have $\operatorname{gr}_{\hbar}\left(\mathbb{D}_{\hbar} \mathscr{M}\right) \simeq \mathbb{D}\left(\operatorname{gr}_{\hbar} \mathscr{M}\right)$ and we know that the analog of 6.3) holds true for \mathscr{D}_{X}-modules:

$$
\mathscr{N} \in \mathrm{D}_{\mathrm{hol}}^{\leq 0}\left(\mathscr{D}_{X}\right) \Leftrightarrow \mathbb{D}(\mathscr{N}) \in \mathrm{D}_{\mathrm{hol}}^{\geq 0}\left(\mathscr{D}_{X}\right) .
$$

Hence (6.3) follows easily from (6.1) and 6.2.
(ii) We recall the general fact for a t-structure ($\mathrm{D}, \mathrm{D} \leq 0, \mathrm{D} \geq^{0}$) and $A \in \mathrm{D}$:

$$
\begin{aligned}
& A \in \mathrm{D}^{\leq 0} \Leftrightarrow \operatorname{Hom}(A, B)=0 \text { for any } B \in \mathrm{D}^{\geq 1} \\
& A \in \mathrm{D}^{\geq 0} \Leftrightarrow \operatorname{Hom}(B, A)=0 \text { for any } B \in \mathrm{D}^{\leq-1}
\end{aligned}
$$

Since \mathbb{D}_{\hbar} is an involutive equivalence of categories we deduce from (6.3) the dual statement:

$$
\mathscr{M} \in \mathrm{D}_{\mathrm{hol}}^{\geq 0}\left(\mathscr{D}_{X}^{\hbar}\right) \Leftrightarrow \mathbb{D}_{\hbar}(\mathscr{M}) \in{ }^{t} \mathrm{D}_{\mathrm{hol}}^{\leq 0}\left(\mathscr{D}_{X}^{\hbar}\right) .
$$

Remark 6.6. The above result can be stated as follows in the language of quasiabelian categories of [19]. We will follow the notation of [8, Chapter 2]. The category $\mathscr{C}=\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)_{\hbar \text {-tf }}$ is quasi-abelian. Hence its derived category has a natural generalized t-structure $\left(\mathrm{D}^{\leq s}(\mathscr{C}), \mathrm{D}^{>s-1}(\mathscr{C})\right)_{s \in \frac{1}{2} \mathbb{Z}}$. Note that $\mathrm{D}^{[-1 / 2,0]}(\mathscr{C})$ is equivalent to $\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$, and $\mathrm{D}^{[0,1 / 2]}(\mathscr{C})$ is equivalent to the heart of ${ }^{t} \mathrm{D}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$. Then Theorem 6.5 states that the duality functor \mathbb{D}_{\hbar} is t-exact on $\mathrm{D}_{\text {hol }}^{\mathrm{b}}(\mathscr{C})$.

Recall that $\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)$ denotes the heart of the middle perversity t-structure on $\mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$. Consider the full subcategories of $\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)$

$$
\begin{aligned}
\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tor }} & =\left\{F: \text { locally } \hbar^{N} F=0 \text { for some } N \in \mathbb{N}\right\} \\
\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tf }} & =\left\{F: F \text { has no non-zero subobjects in } \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tor }}\right\}
\end{aligned}
$$

Lemma 6.7. (i) Let $F \in \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)$. Then the inductive system of sub-perverse sheaves $\operatorname{Ker}\left(\hbar^{n}: F \rightarrow F\right)$ is locally stationary.
(ii) The pair $\left(\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tor }}, \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tf }}\right)$ is a torsion pair.

Proof. (i) Set $\mathscr{M}=\mathbb{D}_{\hbar} \mathrm{TH}_{\hbar}(F)$. By the Riemann-Hilbert correspondence, one has $\operatorname{Ker}\left(\hbar^{n}: F \rightarrow F\right) \simeq \operatorname{DR}_{\hbar}\left(\operatorname{Ker}\left(\hbar^{n}: \mathscr{M} \rightarrow \mathscr{M}\right)\right)$. Since \mathscr{M} is coherent, the inductive system $\operatorname{Ker}\left(\hbar^{n}: \mathscr{M} \rightarrow \mathscr{M}\right)$ is locally stationary. Hence so is the system $\operatorname{Ker}\left(\hbar^{n}: F \rightarrow F\right)$.
(ii) By (i) it makes sense to define, for $F \in \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)$,

$$
F_{\hbar \text {-tor }}=\bigcup_{n} \operatorname{Ker}\left(\hbar^{n}: F \rightarrow F\right), \quad F_{\hbar \text {-tf }}=F / F_{\hbar \text {-tor }}
$$

It is easy to check that $F_{\hbar \text {-tor }} \in \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tor }}$ and $F_{\hbar \text {-tf }} \in \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tf }}$. Then property (ii) in Definition6.1 is clear. For property (i) let $u: F \rightarrow G$ be a morphism in $\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)$ with $F \in \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tor }}$ and $G \in \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tf }}$. Then $\operatorname{Im} u$ is also in $\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tor }}$ and so it is zero by the definition of $\operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)_{\hbar \text {-tf }}$.

Denote by $\left({ }^{\pi} \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\leq 0}\left(\mathbb{C}_{X}^{\hbar}\right),{ }^{\pi} \mathrm{D}_{\mathbb{C} \text {-c }}^{\geq 0}\left(\mathbb{C}_{X}^{\hbar}\right)\right)$ the t-structure on $\mathrm{D}_{\mathbb{C}-\mathrm{c}}\left(\mathbb{C}_{X}^{\hbar}\right)$ induced by the perversity t-structure and this torsion pair as in Proposition 6.2. We also set ${ }^{\pi} \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)={ }^{\pi} \mathrm{D}_{\mathbb{\mathbb { C }}-\mathrm{c}}^{\leq 0}\left(\mathbb{C}_{X}^{\hbar}\right) \cap{ }^{\pi} \mathrm{D}_{\mathbb{\mathbb { C }}-\mathrm{c}}^{\geq 0}\left(\mathbb{C}_{X}^{\hbar}\right)$.

Theorem 6.8. There is a quasi-commutative diagram of t-exact functors

where the duality functors are equivalences of categories and the de Rham functors become equivalences when restricted to the subcategories of regular objects.

Example 6.9. Let $X=\mathbb{C}, U=X \backslash\{0\}$ and denote by $j: U \hookrightarrow X$ the embedding. Let L be the local system on U with stalk \mathbb{C}^{\hbar} and monodromy $1+\hbar$. The sheaf $\mathrm{R} j_{*} L \simeq \mathrm{D}_{h}^{\prime}\left(j_{!}\left(\mathrm{D}_{h}^{\prime} L\right)\right)$ is perverse for both t-structures, as is the sheaf $H^{0}\left(\mathrm{R} j_{*} L\right)=$ $j_{*} L \simeq j_{!} L$. The sheaf $H^{1}\left(\mathrm{R} j_{*} L\right) \simeq \mathbb{C}_{\{0\}}$ has \hbar-torsion. From the distinguished triangle $j_{*} L \rightarrow \mathrm{R} j_{*} L \rightarrow \mathbb{C}_{\{0\}}[-1] \xrightarrow{+1}$, one gets the short exact sequences

$$
\begin{array}{ll}
0 \rightarrow j_{*} L \rightarrow \mathrm{R} j_{*} L \rightarrow \mathbb{C}_{\{0\}}[-1] \rightarrow 0 & \text { in } \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right) \\
0 \rightarrow \mathbb{C}_{\{0\}}[-2] \rightarrow j_{*} L \rightarrow \mathrm{R} j_{*} L \rightarrow 0 & \text { in }{ }^{\pi} \operatorname{Perv}\left(\mathbb{C}_{X}^{\hbar}\right)
\end{array}
$$

§7. $\mathscr{D}((\hbar))$-modules
Denote by

$$
\mathbb{C}^{\hbar, \text { loc }}:=\mathbb{C}((\hbar))=\mathbb{C}\left[\left[\hbar^{-1}, \hbar\right]\right]
$$

the field of Laurent series in \hbar, that is, the fraction field of \mathbb{C}^{\hbar}. Recall the exact functor

$$
\begin{equation*}
(\bullet)^{\text {loc }}: \operatorname{Mod}\left(\mathbb{C}_{X}^{\hbar}\right) \rightarrow \operatorname{Mod}\left(\mathbb{C}_{X}^{\hbar, \text { loc }}\right), \quad F \mapsto \mathbb{C}^{\hbar, \text { loc }} \otimes_{\mathbb{C}^{\hbar}} F, \tag{7.1}
\end{equation*}
$$

and note that by [9, Proposition 5.4.14] one has the inclusion

$$
\begin{equation*}
\mathrm{SS}\left(F^{\mathrm{loc}}\right) \subset \mathrm{SS}(F) \tag{7.2}
\end{equation*}
$$

For $G \in \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}\right)$, we write $G^{\hbar \text {,loc }}$ instead of $\left(G^{\hbar}\right)^{\text {loc }}$. We will consider in particular

$$
\mathscr{O}_{X}^{\hbar, \text { loc }}=\mathscr{O}_{X}((\hbar)), \quad \mathscr{D}_{X}^{\hbar, \text { loc }}=\mathscr{D}_{X}((\hbar)) .
$$

Lemma 7.1. Let \mathscr{M} be a coherent $\mathscr{D}_{X}^{\hbar, \text { loc }}$-module. Then \mathscr{M} is pseudo-coherent over \mathscr{D}_{X}^{\hbar}. In other words, if $\mathscr{L} \subset \mathscr{M}$ is a finitely generated \mathscr{D}_{X}^{\hbar}-module, then \mathscr{L} is \mathscr{D}_{X}^{\hbar}-coherent.
Proof. The proof follows from [7, Appendix, A1].
Definition 7.2. A lattice \mathscr{L} of a coherent $\mathscr{D}_{X}^{\hbar, \text { loc }}$-module \mathscr{M} is a coherent $\mathscr{D}_{X}^{\hbar}{ }^{-}$ submodule of \mathscr{M} which generates it.

Since \mathscr{M} has no \hbar-torsion, none of its lattices has \hbar-torsion. In particular, one has $\mathscr{M} \simeq \mathscr{L}^{\text {loc }}$ and $\operatorname{gr}_{\hbar} \mathscr{L} \simeq \mathscr{L}_{0}=\mathscr{L} / \hbar \mathscr{L}$.

It follows from Lemma 7.1 that lattices locally exist: for a local system of generators $\left(m_{1}, \ldots, m_{N}\right)$ of \mathscr{M}, define \mathscr{L} as the \mathscr{D}_{X}^{\hbar}-submodule with the same generators.

Lemma 7.3. Let $0 \rightarrow \mathscr{M}^{\prime} \rightarrow \mathscr{M} \rightarrow \mathscr{M}^{\prime \prime} \rightarrow 0$ be an exact sequence of coherent $\mathscr{D}_{X}^{\hbar, \text { loc }}$-modules. Locally there exist lattices $\mathscr{L}^{\prime}, \mathscr{L}, \mathscr{L}^{\prime \prime}$ of $\mathscr{M}^{\prime}, \mathscr{M}, \mathscr{M}^{\prime \prime}$, respectively, inducing an exact sequence of \mathscr{D}_{X}^{\hbar}-modules

$$
0 \rightarrow \mathscr{L}^{\prime} \rightarrow \mathscr{L} \rightarrow \mathscr{L}^{\prime \prime} \rightarrow 0
$$

Proof. Let \mathscr{L} be a lattice of \mathscr{M} and let $\mathscr{L}^{\prime \prime}$ be its image in $\mathscr{M}^{\prime \prime}$. We set \mathscr{L}^{\prime} := $\mathscr{L} \cap \mathscr{M}^{\prime}$. These sub- \mathscr{D}_{X}^{\hbar}-modules give rise to an exact sequence.

Since $\mathscr{L}^{\prime \prime}$ is of finite type over \mathscr{D}_{X}^{\hbar}, it is a lattice of $\mathscr{M}^{\prime \prime}$. Let us show that \mathscr{L}^{\prime} is a lattice of \mathscr{M}^{\prime}. Being the kernel of a morphism $\mathscr{L} \rightarrow \mathscr{L}^{\prime \prime}$ between coherent \mathscr{D}_{X}^{\hbar}-modules, \mathscr{L}^{\prime} is coherent. To show that \mathscr{L}^{\prime} generates \mathscr{M}^{\prime}, note that any $m^{\prime} \in$ $\mathscr{M}^{\prime} \subset \mathscr{M}$ may be written as $m^{\prime}=\hbar^{-N} m$ for some $N \geq 0$ and $m \in \mathscr{L}$. Hence $m=\hbar^{N} m^{\prime} \in \mathscr{M}^{\prime} \cap \mathscr{L}=\mathscr{L}^{\prime}$.

For an abelian category \mathscr{C}, we denote by $\mathrm{K}(\mathscr{C})$ its Grothendieck group. For an object M of \mathscr{C}, we denote by $[M]$ its class in $\mathrm{K}(\mathscr{C})$. We let $\mathscr{K}\left(\mathscr{D}_{X}\right)$ be the sheaf on X associated to the presheaf

$$
U \mapsto \mathrm{~K}\left(\operatorname{Mod}_{\operatorname{coh}}\left(\left.\mathscr{D}_{X}\right|_{U}\right)\right) .
$$

We define $\mathscr{K}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right)$ in the same way.
Lemma 7.4. Let \mathscr{L} be a coherent \mathscr{D}_{X}^{\hbar}-module without \hbar-torsion. Then, for any $i>0$, the \mathscr{D}_{X}-module $\mathscr{L} / \hbar^{i} \mathscr{L}$ is coherent, and we have the equality $\left[\mathscr{L} / \hbar^{i} \mathscr{L}\right]=$ $i \cdot\left[\operatorname{gr}_{\hbar}(\mathscr{L})\right]$ in $\mathrm{K}\left(\operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}\right)\right)$.

Proof. Since the functor $(\bullet) \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar} / \hbar^{i} \mathbb{C}^{\hbar}$ is right exact, $\mathscr{L} / \hbar^{i} \mathscr{L}$ is a coherent $\mathscr{D}_{X^{-}}$ module. Since \mathscr{L} has no \hbar-torsion, multiplication by \hbar^{i} induces an isomorphism $\mathscr{L} / \hbar \mathscr{L} \xrightarrow{\sim} \hbar^{i} \mathscr{L} / \hbar^{i+1} \mathscr{L}$. We conclude by induction on i with the exact sequence

$$
0 \rightarrow \hbar^{i} \mathscr{L} / \hbar^{i+1} \mathscr{L} \rightarrow \mathscr{L} / \hbar^{i+1} \mathscr{L} \rightarrow \mathscr{L} / \hbar^{i} \mathscr{L} \rightarrow 0
$$

Lemma 7.5. For $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right), U \subset X$ an open set and $\left.\mathscr{L} \subset \mathscr{M}\right|_{U} a$ lattice of $\left.\mathscr{M}\right|_{U}$, the class $\left[\operatorname{gr}_{\hbar}(\mathscr{L})\right] \in \mathrm{K}\left(\operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{D}_{X}\right|_{U}\right)\right)$ only depends on \mathscr{M}. This defines a morphism of abelian sheaves $\mathscr{K}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right) \rightarrow \mathscr{K}\left(\mathscr{D}_{X}\right)$.

Proof. (i) We first prove that $\left[\operatorname{gr}_{\hbar}(\mathscr{L})\right]$ only depends on \mathscr{M}. We consider another lattice \mathscr{L}^{\prime} of $\left.\mathscr{M}\right|_{U}$. Since \mathscr{L} is a \mathscr{D}_{X}^{\hbar}-module of finite type, and \mathscr{L}^{\prime} generates \mathscr{M}, there exists $n>1$ such that $\mathscr{L} \subset \hbar^{-n} \mathscr{L}^{\prime}$. Similarly, there exists $m>1$ with
$\mathscr{L}^{\prime} \subset \hbar^{-m} \mathscr{L}$, so that we have the inclusions

$$
\hbar^{m+n+2} \mathscr{L} \subset \hbar^{m+n+1} \mathscr{L} \subset \hbar^{m+1} \mathscr{L}^{\prime} \subset \hbar^{m} \mathscr{L}^{\prime} \subset \mathscr{L}
$$

Any inclusion $A \subset B \subset C$ yields an identity $[C / A]=[C / B]+[B / A]$ in the Grothendieck group, and we obtain in particular

$$
\begin{aligned}
{\left[\hbar^{m} \mathscr{L}^{\prime} / \hbar^{m+n+1} \mathscr{L}\right] } & =\left[\hbar^{m} \mathscr{L}^{\prime} / \hbar^{m+1} \mathscr{L}^{\prime}\right]+\left[\hbar^{m+1} \mathscr{L}^{\prime} / \hbar^{m+n+1} \mathscr{L}\right] \\
{\left[\mathscr{L} / \hbar^{m+n+1} \mathscr{L}\right] } & =\left[\mathscr{L} / \hbar^{m+1} \mathscr{L}^{\prime}\right]+\left[\hbar^{m+1} \mathscr{L}^{\prime} / \hbar^{m+n+1} \mathscr{L}\right] \\
{\left[\mathscr{L} / \hbar^{m+n+2} \mathscr{L}\right] } & =\left[\mathscr{L} / \hbar^{m+1} \mathscr{L}^{\prime}\right]+\left[\hbar^{m+1} \mathscr{L}^{\prime} / \hbar^{m+n+2} \mathscr{L}\right]
\end{aligned}
$$

Note that we have isomorphisms of the type $\hbar^{k} \mathscr{M}_{1} / \hbar^{k} \mathscr{M}_{2} \simeq \mathscr{M}_{1} / \mathscr{M}_{2}$ for modules without \hbar-torsion. Then Lemma 7.4 and the above equalities give:

$$
\begin{aligned}
{\left[\mathscr{L}^{\prime} / \hbar^{n+1} \mathscr{L}\right] } & =\left[\operatorname{gr}_{\hbar}\left(\mathscr{L}^{\prime}\right)\right]+\left[\mathscr{L}^{\prime} / \hbar^{n} \mathscr{L}\right], \\
(m+n+1)\left[\operatorname{gr}_{\hbar}(\mathscr{L})\right] & =\left[\mathscr{L} / \hbar^{m+1} \mathscr{L}^{\prime}\right]+\left[\mathscr{L}^{\prime} / \hbar^{n} \mathscr{L}\right], \\
(m+n+2)\left[\operatorname{gr}_{\hbar}(\mathscr{L})\right] & =\left[\mathscr{L} / \hbar^{m+1} \mathscr{L}^{\prime}\right]+\left[\mathscr{L}^{\prime} / \hbar^{n+1} \mathscr{L}\right] .
\end{aligned}
$$

A suitable combination of these lines gives $\left[\operatorname{gr}_{\hbar}(\mathscr{L})\right]=\left[\mathrm{gr}_{\hbar}\left(\mathscr{L}^{\prime}\right)\right]$, as desired.
(ii) Now we consider an open subset $V \subset X$ and $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{D}_{X}^{\hbar, \text { loc }}\right|_{V}\right)$. We choose an open covering $\left\{U_{i}\right\}_{i \in I}$ of V such that for each $i \in I,\left.\mathscr{M}\right|_{U_{i}}$ admits a lattice, say \mathscr{L}^{i}. We have seen that $\left[\operatorname{gr}_{\hbar}\left(\mathscr{L}^{i}\right)\right] \in \mathrm{K}\left(\operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{D}_{X}\right|_{U_{i}}\right)\right)$ only depends on \mathscr{M}. This implies that

$$
\left.\left[\operatorname{gr}_{\hbar}\left(\mathscr{L}^{i}\right)\right]\right|_{U_{i, j}}=\left.\left[\operatorname{gr}_{\hbar}\left(\mathscr{L}^{j}\right)\right]\right|_{U_{i, j}} \quad \text { in } \mathrm{K}\left(\operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{D}_{X}\right|_{U_{i, j}}\right)\right) .
$$

Hence the $\left[\operatorname{gr}_{\hbar}\left(\mathscr{L}^{i}\right)\right]$'s define a section, say $c(\mathscr{M})$, of $\mathscr{K}\left(\mathscr{D}_{X}\right)$ over V. By Lemma 7.3. $c(\mathscr{M})$ only depends on the class $[\mathscr{M}]$ in $\mathrm{K}\left(\operatorname{Mod}_{\text {coh }}\left(\left.\mathscr{D}_{X}^{\hbar, \text { loc }}\right|_{V}\right)\right)$, and $\mathscr{M} \mapsto$ $c(\mathscr{M})$ induces the morphism $\mathscr{K}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right) \rightarrow \mathscr{K}\left(\mathscr{D}_{X}\right)$.

By Lemma 7.5, the following definition is correct.
Definition 7.6. The characteristic variety of a coherent $\mathscr{D}_{X}^{\hbar, \text { loc }}$-module \mathscr{M} is defined by

$$
\operatorname{char}_{\hbar, \operatorname{loc}}(\mathscr{M})=\operatorname{char}_{\hbar}(\mathscr{L})
$$

for $\mathscr{L} \in \operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}^{\hbar}\right)$ a (local) lattice. For $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right)$, one sets $\operatorname{char}_{\hbar, \text { loc }}(\mathscr{M})$ $=\bigcup_{j} \operatorname{char}_{\hbar, \operatorname{loc}}\left(H^{j}(\mathscr{M})\right)$.

Proposition 7.7. The characteristic variety $\operatorname{char}_{\hbar, \text { loc }}$ is additive both on $\operatorname{Mod}_{\mathrm{coh}}\left(\mathscr{D}_{X}^{\hbar, \mathrm{loc}}\right)$ and on $\mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar, \mathrm{loc}}\right)$.

Proof. This follows from Proposition 3.6 (ii) and Lemma 7.3 .

Consider the functor

$$
\mathrm{Sol}_{\hbar, \mathrm{loc}}: \mathrm{D}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar, \mathrm{loc}}\right)^{\mathrm{op}} \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar, \mathrm{loc}}\right), \quad \mathscr{M} \mapsto \mathrm{R} \mathscr{H}^{\left(m_{X}\right.} \mathscr{D}_{X}^{\hbar, \text { loc }}\left(\mathscr{M}, \mathscr{O}_{X}^{\hbar, \text { loc }}\right)
$$

Proposition 7.8. Let $\mathscr{M} \in \mathrm{D}_{\text {coh }}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right)$. Then

$$
\operatorname{SS}\left(\operatorname{Sol}_{\hbar, \operatorname{loc}}(\mathscr{M})\right) \subset \operatorname{char}_{\hbar, \operatorname{loc}}(\mathscr{M}) .
$$

Proof. By dévissage, we can assume that $\mathscr{M} \in \operatorname{Mod}_{\text {coh }}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right)$. Moreover, since the problem is local, we may assume that \mathscr{M} admits a lattice \mathscr{L}.

One has the isomorphism $\operatorname{Sol}_{\hbar, \operatorname{loc}}(\mathscr{M}) \simeq \mathrm{R} \mathscr{H} \operatorname{om}_{\mathscr{D}_{X}^{\hbar}}\left(\mathscr{L}, \mathscr{O}_{X}^{\hbar, \text { loc }}\right)$ by extension of scalars. Taking a local resolution of \mathscr{L} by free \mathscr{D}_{X}^{\hbar}-modules of finite type, we deduce that $\operatorname{Sol}_{\hbar, \text { loc }}(\mathscr{M}) \simeq F^{\text {loc }}$ for $F=\operatorname{Sol}_{\hbar}(\mathscr{L})$. The statement follows by 7.2 and Corollary 3.14

One says that \mathscr{M} is holonomic if its characteristic variety is isotropic.
Proposition 7.9. The functor $\mathrm{Sol}_{\hbar, \mathrm{loc}}$ induces a functor

$$
\operatorname{Sol}_{\hbar, \text { loc }}: \mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right)^{\mathrm{op}} \rightarrow \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar, \text { loc }}\right)
$$

Proof. By the same arguments and with the same notation as in the proof of Proposition 7.8, we reduce to the case $\operatorname{Sol}_{\hbar, \text { loc }}(\mathscr{M}) \simeq F^{\mathrm{loc}}$, for $F=\operatorname{Sol}_{\hbar}(\mathscr{L})$ and \mathscr{L} a lattice of $\mathscr{M} \in \operatorname{Mod}_{\text {hol }}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right)$. Hence \mathscr{L} is a holonomic \mathscr{D}_{X}^{\hbar}-module, and $F \in \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$.

Remark 7.10. In general the functor

$$
\mathrm{Sol}_{\hbar, \mathrm{loc}}: \mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar, \mathrm{loc}}\right)^{\mathrm{op}} \rightarrow \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar, \text { loc }}\right)
$$

is not locally essentially surjective. In fact, consider the quasi-commutative diagram of categories

By the local existence of lattices the left vertical arrow is locally essentially surjective. If $\mathrm{Sol}_{\hbar, \text { loc }}$ were also locally essentially surjective, so should be the right vertical arrow. The following example shows that it is not the case.

One can interpret this phenomenon by remarking that $D_{\text {hol }}^{b}\left(\mathscr{D}_{X}^{\hbar, \text { loc }}\right)$ is equivalent to the localization of the category $\mathrm{D}_{\mathrm{hol}}^{\mathrm{b}}\left(\mathscr{D}_{X}^{\hbar}\right)$ with respect to the morphism \hbar, in contrast to the category $D_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar, \text { loc }}\right)$.

Example 7.11. Let $X=\mathbb{C}, U=X \backslash\{0\}$ and denote by $j: U \hookrightarrow X$ the embedding. Set $F=\mathrm{R} j!L$, where L is the local system on U with stalk $\mathbb{C}^{\hbar, \text { loc }}$ and monodromy \hbar around the origin. Since \hbar is not invertible in \mathbb{C}^{\hbar}, there is no $F_{0} \in \mathrm{D}_{\mathbb{C}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{C}_{X}^{\hbar}\right)$ such that $F \simeq\left(F_{0}\right)^{\text {loc }}$.

§8. Links with deformation quantization

In this last section, we shall briefly explain how the study of deformation quantization algebras on complex symplectic manifolds is related to \mathscr{D}_{X}^{\hbar}. We follow the terminology of [13].

The cotangent bundle $\mathfrak{X}=T^{*} X$ to the complex manifold X has the structure of a complex symplectic manifold and is endowed with the \mathbb{C}^{\hbar}-algebra $\widehat{W_{X}}$, a nonhomogeneous version of the algebra of microdifferential operators. Its subalgebra $\widehat{\mathscr{W}_{\mathfrak{X}}}(0)$ of operators of order at most zero is a deformation quantization algebra. In a system (x, u) of local symplectic coordinates, $\widehat{W_{\mathfrak{X}}}(0)$ is identified with the star algebra $\left(\mathscr{O}_{\mathfrak{X}}^{\hbar}, \star\right)$ in which the star product is given by the Leibniz product

$$
\begin{equation*}
f \star g=\sum_{\alpha \in \mathbb{N}^{n}} \frac{\hbar^{|\alpha|}}{\alpha!}\left(\partial_{u}^{\alpha} f\right)\left(\partial_{x}^{\alpha} g\right) \quad \text { for } f, g \in \mathscr{O}_{\mathfrak{X}} \tag{8.1}
\end{equation*}
$$

In this section we will set for short $\mathscr{A}:=\widehat{\mathscr{W}_{\mathfrak{X}}}(0)$, so that $\mathscr{A}^{\text {loc }} \simeq \widehat{\mathscr{W}_{\mathfrak{X}}}$. Note that \mathscr{A} satisfies Assumption 1.8 .

Let us identify X with the zero section of the cotangent bundle \mathfrak{X}. Recall that X is a local model for any smooth Lagrangian submanifold of \mathfrak{X}, and that \mathscr{O}_{X}^{\hbar} is a local model of any simple \mathscr{A}-module along X. As \mathscr{O}_{X}^{\hbar} has both a \mathscr{D}_{X}^{\hbar}-module and an $\left.\mathscr{A}\right|_{X}$-module structure, there are morphisms of \mathbb{C}^{\hbar}-algebras

$$
\begin{equation*}
\left.\mathscr{D}_{X}^{\hbar} \rightarrow \mathscr{E} n d_{\mathbb{C}^{\hbar}}\left(\mathscr{O}_{X}^{\hbar}\right) \leftarrow \mathscr{A}\right|_{X} . \tag{8.2}
\end{equation*}
$$

Lemma 8.1. The morphisms in 8.2 are injective and induce an embedding $\left.\mathscr{A}\right|_{X} \hookrightarrow \mathscr{D}_{X}^{\hbar}$.

Proof. Since the problem is local, we may choose a local symplectic coordinate system (x, u) on \mathfrak{X} such that $X=\{u=0\}$. Then $\left.\mathscr{A}\right|_{X}$ is identified with $\left.\mathscr{O}_{\mathfrak{X}}^{\hbar}\right|_{X}$. As the action of u_{i} on \mathscr{O}_{X}^{\hbar} is given by $\hbar \partial_{x_{i}}$, the morphism $\left.\mathscr{A}\right|_{X} \rightarrow \mathscr{E} n d_{\mathbb{C}^{\hbar}}\left(\mathscr{O}_{X}^{\hbar}\right)$ factors through \mathscr{D}_{X}^{\hbar}, and the induced morphism $\left.\mathscr{A}\right|_{X} \rightarrow \mathscr{D}_{X}^{\hbar}$ is described by

$$
\begin{equation*}
\sum_{i \in \mathbb{N}} f_{i}(x, u) \hbar^{i} \mapsto \sum_{j \in \mathbb{N}}\left(\sum_{\alpha \in \mathbb{N}^{n},|\alpha| \leq j} \partial_{u}^{\alpha} f_{j-|\alpha|}(x, 0) \partial_{x}^{\alpha}\right) \hbar^{j} \tag{8.3}
\end{equation*}
$$

which is clearly injective.

Consider the following subsheaves of \mathscr{D}_{X}^{\hbar} :

$$
\mathscr{D}_{X}^{\hbar, m}=\prod_{i \geq 0}\left(F_{i+m} \mathscr{D}_{X}\right) \hbar^{i}, \quad \mathscr{D}_{X}^{\hbar, \mathrm{f}}=\bigcup_{m \geq 0} \mathscr{D}_{X}^{\hbar, m} .
$$

Note that $\mathscr{D}_{X}^{\hbar, 0}$ and $\mathscr{D}_{X}^{\hbar, \mathrm{f}}$ are subalgebras of \mathscr{D}_{X}^{\hbar}, that $\mathscr{D}_{X}^{\hbar, 0}$ is \hbar-complete while $\mathscr{D}_{X}^{\hbar, \mathrm{f}}$ is not, and that $\mathscr{D}_{X}^{\hbar, 0, \text { loc }} \simeq \mathscr{D}_{X}^{\hbar, \mathrm{f}, \text { loc }}$. By 8.3 , the image of $\left.\mathscr{A}\right|_{X}$ in \mathscr{D}_{X}^{\hbar} is contained in $\mathscr{D}_{X}^{\hbar, 0}$. (The ring $\mathscr{D}_{X}^{\hbar, 0}$ should be compared with the ring $\mathscr{R}_{X \times \mathbb{C}}$ of [16.)
Remark 8.2. More precisely, denote by $\mathscr{O}_{\mathfrak{X}}^{\hbar} \hat{\mid}_{X} \simeq\left(\mathscr{O}_{\mathfrak{X}} \hat{\mid}_{X}\right)^{\hbar}$ the formal completion of $\mathscr{O}_{\mathfrak{X}}^{\hbar}$ along the submanifold X. Then the star product in (8.1) extends to this sheaf, and 8.3) induces an isomorphism $\left(\mathscr{O}_{\mathfrak{X}}^{\hbar} \hat{\mid}_{X}, \star\right) \simeq \mathscr{D}_{X}^{\hbar, 0}$.

Summarizing, one has the compatible embeddings of algebras

One has

$$
\left.\left.\operatorname{gr}_{\hbar} \mathscr{A}\right|_{X} \simeq \mathscr{O}_{\mathfrak{X}}\right|_{X}, \quad \operatorname{gr}_{\hbar} \mathscr{D}_{X}^{\hbar, 0} \simeq \mathscr{O}_{\mathfrak{X}} \hat{\mid}_{X}, \quad \operatorname{gr}_{\hbar} \mathscr{D}_{X}^{\hbar, \mathrm{f}} \simeq \operatorname{gr}_{\hbar} \mathscr{D}_{X}^{\hbar} \simeq \mathscr{D}_{X}
$$

Proposition 8.3. (i) The algebra $\mathscr{D}_{X}^{\hbar, 0}$ is faithfully flat over $\left.\mathscr{A}\right|_{X}$.
(ii) The algebra $\mathscr{D}_{X}^{\hbar, \text { loc }}$ is flat over $\left.\mathscr{A}^{\mathrm{loc}}\right|_{X}$.

Proof. (i) follows from Theorem 1.12
(ii) follows from (i) and the isomorphism $\left(\mathscr{D}_{X}^{\hbar, 0}\right)^{\text {loc }} \simeq \mathscr{D}_{X}^{\hbar, \text { loc }}$.

The next examples show that the scalar extension functor

$$
\operatorname{Mod}_{\mathrm{coh}}\left(\mathscr{D}_{X}^{\hbar, 0}\right) \rightarrow \operatorname{Mod}_{\mathrm{coh}}\left(\mathscr{D}_{X}^{\hbar}\right)
$$

is neither exact nor full.
Example 8.4. Let $X=\mathbb{C}^{2}$ with coordinates (x, y). Then $\hbar \partial_{y}$ is injective as an endomorphism of $\mathscr{D}_{X}^{\hbar, 0} /\left\langle\hbar \partial_{x}\right\rangle$ but it is not injective as an endomorphism of $\mathscr{D}_{X}^{\hbar} /\left\langle\hbar \partial_{x}\right\rangle$, since ∂_{x} belongs to its kernel. This shows that \mathscr{D}_{X}^{\hbar} is not flat over $\mathscr{D}_{X}^{\hbar, 0}$.

Example 8.5. This example was communicated to us by Masaki Kashiwara. Let $X=\mathbb{C}$ with coordinate x, and denote by (x, u) the symplectic coordinates on $\mathfrak{X}=T^{*} \mathbb{C}$. Consider the cyclic \mathscr{A}-modules

$$
\mathscr{M}=\mathscr{A} /\langle x-u\rangle, \quad \mathscr{N}=\mathscr{A} /\langle x\rangle,
$$

and their images in $\operatorname{Mod}\left(\mathscr{D}_{X}^{\hbar}\right)$

$$
\mathscr{M}^{\prime}=\mathscr{D}_{X}^{\hbar} /\left\langle x-\hbar \partial_{x}\right\rangle, \quad \mathscr{N}^{\prime}=\mathscr{D}_{X}^{\hbar} /\langle x\rangle .
$$

As their supports in \mathfrak{X} differ, \mathscr{M} and \mathscr{N} are not isomorphic as \mathscr{A}-modules. On the other hand, in \mathscr{D}_{X}^{\hbar} one has the relation

$$
\begin{equation*}
x \cdot e^{\hbar \partial_{x}^{2} / 2}=e^{\hbar \partial_{x}^{2} / 2} \cdot\left(x-\hbar \partial_{x}\right), \tag{8.4}
\end{equation*}
$$

and hence an isomorphism $\mathscr{M}^{\prime} \xrightarrow{\sim} \mathscr{N}^{\prime}$ given by $[P] \mapsto\left[P \cdot e^{-\hbar \partial_{x}^{2} / 2}\right]$. In fact, one checks that

$$
\left.\mathscr{H}_{\mathscr{A}}(\mathscr{M}, \mathscr{N})\right|_{X}=0, \quad \mathscr{H} m_{\mathscr{D}_{X}^{\hbar}}\left(\mathscr{M}^{\prime}, \mathscr{N}^{\prime}\right) \simeq \mathbb{C}_{X}^{\hbar}
$$

§A. Complements on constructible sheaves

Let us review some results, well-known to specialists (see, e.g., [18, Proposition $3.10]$), but which are usually stated over a field, and we need to work here over the ring \mathbb{C}^{\hbar}.

Let \mathbb{K} be a commutative unital Noetherian ring of finite global dimension. Assume that \mathbb{K} is syzygic, i.e. any finitely generated \mathbb{K}-module admits a finite projective resolution by finite free modules. (For our purposes we will either have $\mathbb{K}=\mathbb{C}$ or $\left.\mathbb{K}=\mathbb{C}^{\hbar}\right)$.

Let X be a real analytic manifold. Denote by $\operatorname{Mod}_{\mathbb{R}-c}\left(\mathbb{K}_{X}\right)$ the abelian category of \mathbb{R}-constructible sheaves on X and by $\mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)$ the bounded derived category of sheaves of \mathbb{K}-modules with \mathbb{R}-constructible cohomology. Under the above assumptions on the base ring, by [9, Propositions 3.4.3, 8.4.9] one has

Lemma A.1. The duality functor $\mathrm{D}_{\mathbb{K}}^{\prime}(\bullet)=\mathrm{R} \mathscr{H}$ om $\mathbb{K}_{X}\left(\bullet, \mathbb{K}_{X}\right)$ induces an involution of $\mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)$.

For the next proposition we recall some notation and results of [6, 9]. We consider a simplicial complex $\mathbf{S}=(S, \Delta)$, with set of vertices S and set of simplices Δ. We let $|\mathbf{S}|$ be the realization of \mathbf{S}. Thus $|\mathbf{S}|$ is the disjoint union of the realizations $|\sigma|$ of the simplices. For a simplex $\sigma \in \Delta$, the open set $U(\sigma)$ is defined in [9, (8.1.3)]. A sheaf F of \mathbb{K}-modules on $|\mathbf{S}|$ is said to be weakly \mathbf{S}-constructible if $\left.F\right|_{|\sigma|}$ is constant for any $\sigma \in \Delta$. An object $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)$ is said to be weakly \mathbf{S}-constructible if its cohomology sheaves are so. If moreover, all stalks F_{x} are perfect complexes, F is called \mathbf{S}-constructible. By [9, Proposition 8.1.4] we have isomorphisms, for a weakly \mathbf{S}-constructible sheaf F and for any $\sigma \in \Delta$ and $x \in|\sigma|$,

$$
\begin{gather*}
\Gamma(U(\sigma) ; F) \xrightarrow{\sim} \Gamma(|\sigma| ; F) \xrightarrow{\sim} F_{x}, \tag{A.1}\\
H^{j}(U(\sigma) ; F)=H^{j}(|\sigma| ; F)=0 \quad \text { for } j \neq 0 . \tag{A.2}
\end{gather*}
$$

It follows that, for a weakly \mathbf{S}-constructible $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)$, the natural morphisms of complexes of \mathbb{K}-modules

$$
\begin{equation*}
\Gamma(U(\sigma) ; F) \rightarrow \Gamma(|\sigma| ; F) \rightarrow F_{x} \tag{A.3}
\end{equation*}
$$

are quasi-isomorphisms.
For $U \subset X$ an open subset, we denote by $\mathbb{K}_{U}:=\left(\mathbb{K}_{X}\right)_{U}$ the extension by 0 of the constant sheaf on U.

Proposition A.2. Let $F \in \mathbb{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)$. Then
(i) F is isomorphic to a complex

$$
0 \rightarrow \bigoplus_{i_{a} \in I_{a}} \mathbb{K}_{U_{a, i_{a}}} \rightarrow \cdots \rightarrow \bigoplus_{i_{b} \in I_{b}} \mathbb{K}_{U_{b, i_{b}}} \rightarrow 0
$$

where the $\left\{U_{k, i_{k}}\right\}_{k, i_{k}}$'s are locally finite families of relatively compact subanalytic open subsets of X.
(ii) F is isomorphic to a complex

$$
0 \rightarrow \bigoplus_{i_{a} \in I_{a}} \Gamma_{V_{a, i_{a}}} \mathbb{K}_{X} \rightarrow \cdots \rightarrow \bigoplus_{i_{b} \in I_{b}} \Gamma_{V_{b, i_{b}}} \mathbb{K}_{X} \rightarrow 0
$$

where the $\left\{V_{k, i_{k}}\right\}_{k, i_{k}}$'s are locally finite families of relatively compact subanalytic open subsets of X.

Proof. (i) By the triangulation theorem for subanalytic sets (see for example [9, Proposition 8.2.5]) we may assume that F is an \mathbf{S}-constructible object in $\mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)$ for some simplicial complex $\mathbf{S}=(S, \Delta)$. For i an integer, let $\Delta_{i} \subset \Delta$ be the subset of simplices of dimension $\leq i$ and set $\mathbf{S}_{i}=\left(S, \Delta_{i}\right)$. We denote by $\mathrm{K}^{\mathrm{b}}(\mathbb{K})$ (resp. $\left.K^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)\right)$ the category of bounded complexes of \mathbb{K}-modules (resp. sheaves of \mathbb{K} modules on $|\mathbf{S}|$) with morphisms up to homotopy. We shall prove by induction on i that there exists a morphism $u_{i}: G_{i} \rightarrow F$ in $\mathrm{K}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)$ such that:
(a) the G_{i}^{k} are finite direct sums of $\mathbb{K}_{U\left(\sigma_{\alpha}\right)}$'s for some $\sigma_{\alpha} \in \Delta_{i}$,
(b) $\left.u_{i}\right|_{\left|\mathbf{S}_{i}\right|}:\left.\left.G_{i}\right|_{\left|\mathbf{S}_{i}\right|} \rightarrow F\right|_{\left|\mathbf{S}_{i}\right|}$ is a quasi-isomorphism.

The desired result is obtained for i equal to the dimension of X.
(i)-(1) For $i=0$ we consider $\left.F\right|_{\left|\mathbf{S}_{0}\right|} \simeq \bigoplus_{\sigma \in \Delta_{0}} F_{\sigma}$. The complexes $\Gamma(U(\sigma) ; F)$, $\sigma \in \Delta_{0}$, have finite bounded cohomology by the quasi-isomorphisms A.3. Hence we may choose bounded complexes of finite free \mathbb{K}-modules, $R_{0, \sigma}$, and morphisms $u_{0, \sigma}: R_{0, \sigma} \rightarrow \Gamma(U(\sigma) ; F)$ which are quasi-isomorphisms.

We have the natural isomorphism $\Gamma(U(\sigma) ; F) \simeq a_{*} \mathscr{H}^{\circ} m_{\mathbf{K}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)}\left(\mathbb{K}_{U(\sigma)}, F\right)$ in $\mathrm{K}^{\mathrm{b}}(\mathbb{K})$, where $a:|\mathbf{S}| \rightarrow \mathrm{pt}$ is the projection and \mathscr{H} om is the internal Hom functor.

We deduce the adjunction formula, for $R \in \mathrm{~K}^{\mathrm{b}}(\mathbb{K})$ and $F \in \mathrm{~K}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)$,

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{K}^{\mathrm{b}}(\mathbb{K})}(R, \Gamma(U(\sigma) ; F)) \simeq \operatorname{Hom}_{\mathbb{K}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)}\left(R_{U(\sigma)}, F\right) . \tag{A.4}
\end{equation*}
$$

Hence the $u_{0, \sigma}$ induce $u_{0}: G_{0}:=\bigoplus_{\sigma \in \Delta_{0}}\left(R_{0, \sigma}\right)_{U(\sigma)} \rightarrow F$. By A.3), $\left(u_{0}\right)_{x}$ is a quasi-isomorphism for all $x \in\left|\mathbf{S}_{0}\right|$, so that $\left.u_{0}\right|_{\left|\mathbf{S}_{0}\right|}$ also is a quasi-isomorphism, as required.
(i)-(2) We assume that u_{i} is built and let $H_{i}=M\left(u_{i}\right)[-1]$ be the mapping cone of u_{i}, shifted by -1 . By the distinguished triangle in $\mathrm{K}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)$

$$
\begin{equation*}
H_{i} \xrightarrow{v_{i}} G_{i} \xrightarrow{u_{i}} F \xrightarrow{+1} \tag{A.5}
\end{equation*}
$$

$\left.H_{i}\right|_{\left|\mathbf{S}_{i}\right|}$ is quasi-isomorphic to 0 . Hence $\left.\bigoplus_{\sigma \in \Delta_{i+1} \backslash \Delta_{i}}\left(H_{i}\right)_{|\sigma|} \rightarrow H_{i}\right|_{\left|\mathbf{S}_{i+1}\right|}$ is a quasi-isomorphism. As above we choose quasi-isomorphisms $u_{i+1, \sigma}: R_{i+1, \sigma} \rightarrow$ $\Gamma\left(U(\sigma) ; H_{i}\right), \sigma \in \Delta_{i+1} \backslash \Delta_{i}$, where the $R_{i+1, \sigma}$ are bounded complexes of finite free \mathbb{K}-modules. By (A.4) again the $u_{i+1, \sigma}$ induce a morphism in $\mathrm{K}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)$

$$
u_{i+1}^{\prime}: G_{i+1}^{\prime}:=\bigoplus_{\sigma \in \Delta_{i+1} \backslash \Delta_{i}}\left(R_{i+1, \sigma}\right)_{U(\sigma)} \rightarrow H_{i} .
$$

For $x \in\left|\mathbf{S}_{i+1}\right| \backslash\left|\mathbf{S}_{i}\right|,\left(u_{i+1}^{\prime}\right)_{x}$ is a quasi-isomorphism by A.3), and, for $x \in\left|\mathbf{S}_{i}\right|$, this is trivially true. Hence $u_{i+1}^{\prime}| | \mathbf{S}_{i+1} \mid$ is a quasi-isomorphism.

Now we let H_{i+1} and G_{i+1} be the mapping cones of u_{i+1}^{\prime} and $v_{i} \circ u_{i+1}^{\prime}$, respectively. We have distinguished triangles in $\mathrm{K}^{\mathrm{b}}\left(\mathbb{K}_{|\mathbf{S}|}\right)$

$$
\begin{equation*}
G_{i+1}^{\prime} \xrightarrow{u_{i+1}^{\prime}} H_{i} \rightarrow H_{i+1} \xrightarrow{+1}, \quad G_{i+1}^{\prime} \xrightarrow{v_{i} \circ u_{i+1}^{\prime}} G_{i} \rightarrow G_{i+1} \xrightarrow{+1} . \tag{A.6}
\end{equation*}
$$

By the construction of the mapping cone, the definition of G_{i+1}^{\prime} and the induction hypothesis, G_{i+1} satisfies property (a) above. The octahedral axiom applied to triangles A.5 and A.6 gives a morphism $u_{i+1}: G_{i+1} \rightarrow F$ and a distinguished triangle $H_{i+1} \rightarrow G_{i+1} \xrightarrow{u_{i+1}} F \xrightarrow{+1}$. By construction $\left.H_{i+1}\right|_{\left|\mathbf{S}_{i+1}\right|}$ is quasi-isomorphic to 0 so that u_{i+1} satisfies property (b) above.
(ii) Set $G=\mathrm{D}_{\mathbb{K}}^{\prime}(F)$, and represent it by a bounded complex as in (i). Since $U_{k, i_{k}}$ corresponds to an open subset of the form $U(\sigma)$ in $|\mathbf{S}|$, the sheaves $\mathbb{K}_{U_{k, i_{k}}}$ are acyclic for the functor $\mathrm{D}_{\mathbb{K}}^{\prime}$. Hence $F \simeq \mathrm{D}_{\mathbb{K}}^{\prime}(G)$ can be represented as claimed.

Lemma A.3. Let $F \rightarrow G \rightarrow 0$ be an exact sequence in $\operatorname{Mod}_{\mathbb{R} \text {-c }}\left(\mathbb{K}_{X}\right)$. Then for any relatively compact subanalytic open subset $U \subset X$, there exists a finite covering $U=\bigcup_{i \in I} U_{i}$ by subanalytic open subsets such that, for each $i \in I$, the morphism $F\left(U_{i}\right) \rightarrow G\left(U_{i}\right)$ is surjective.

Proof. As in the proof of Proposition A.2 we may assume that F, G and \mathbb{K}_{U} are constructible sheaves on the realization of some finite simplicial complex (S, Δ).

For $\sigma \in \Delta$ the morphism $\Gamma(U(\sigma) ; F) \rightarrow \Gamma(U(\sigma) ; G)$ is surjective, by A.1). Since the image of U in $|\mathbf{S}|$ is a finite union of $U(\sigma)$'s, this proves the lemma.

§B. Complements on subanalytic sheaves

We review here some well-known results (see [11, Chapter 7] and [15]) but which are usually stated over a field, and we need to work here over the ring \mathbb{C}^{\hbar}.

Let \mathbb{K} be a commutative unital Noetherian ring of finite global dimension (for our purposes we will have either $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{C}^{\hbar}$). Let X be a real analytic manifold, and consider the natural morphism $\rho: X \rightarrow X_{\mathrm{sa}}$.

Lemma B.1. The functor $\rho_{*}: \operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X}\right) \rightarrow \operatorname{Mod}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$ is exact and $\rho^{-1} \rho_{*}$ is isomorphic to the canonical functor $\operatorname{Mod}_{\mathbb{R} \text {-c }}\left(\mathbb{K}_{X}\right) \rightarrow \operatorname{Mod}\left(\mathbb{K}_{X}\right)$.

Proof. Being a direct image functor, ρ_{*} is left exact. It is right exact thanks to Lemma A.3. The composition $\rho^{-1} \rho_{*}$ is isomorphic to the identity on $\operatorname{Mod}\left(\mathbb{K}_{X}\right)$ since the open sets of the site $X_{\text {sa }}$ give a basis of the topology of X.

In the following, we denote by $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$ the image under the functor ρ_{*} of $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X}\right)$ in $\operatorname{Mod}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$. Hence ρ_{*} induces an equivalence of categories $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X}\right) \simeq \operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$. We also denote by $\mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$ the full triangulated subcategory of $\mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$ consisting of objects with cohomology in $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$.

Corollary B.2. The subcategory $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$ of $\operatorname{Mod}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$ is thick.
Proof. Since ρ_{*} is fully faithful and exact, $\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$ is stable under taking kernels and cokernels. It remains to see that, for $F, G \in \operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X}\right)$,

$$
\operatorname{Ext}_{\operatorname{Mod}_{\mathbb{R}-c}\left(\mathbb{K}_{X}\right)}^{1}(F, G) \simeq \operatorname{Ext}_{\operatorname{Mod}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)}^{1}\left(\rho_{*} F, \rho_{*} G\right)
$$

By [6] we know that the first Ext ${ }^{1}$ may as well be computed in $\operatorname{Mod}\left(\mathbb{K}_{X}\right)$. Note that the functors ρ^{-1} and $\mathrm{R} \rho_{*}$ between $\mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)$ and $\mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$ are adjoint, and moreover $\rho^{-1} \mathrm{R} \rho_{*} \simeq$ id. Thus, for $F^{\prime}, G^{\prime} \in \mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)$ we have

$$
\operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{\left.X_{\mathrm{sa}}\right)}\right)}\left(\mathrm{R} \rho_{*} F^{\prime}, \mathrm{R} \rho_{*} G^{\prime}\right) \simeq \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}\left(\mathbb{K}_{X}\right)}\left(F^{\prime}, G^{\prime}\right)
$$

and this gives the result.
This corollary gives the equivalence $D_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{K}_{X}\right) \simeq \mathrm{D}_{\mathbb{R}-\mathrm{c}}^{\mathrm{b}}\left(\mathbb{K}_{X_{\mathrm{sa}}}\right)$, both categories being equivalent to $\mathrm{D}^{\mathrm{b}}\left(\operatorname{Mod}_{\mathbb{R}-\mathrm{c}}\left(\mathbb{K}_{X}\right)\right)$.

References

[1] J. Bernstein, Modules over a ring of differential operators. Study of fundamental solutions of equations with constant coefficients, Funct. Anal. Appl. 5 (1971), 89-101. Zbl 0233.47031 MR 0290097
[2] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575. Zbl 0849.16011 MR 1327209
[3] D. Juteau, Decomposition numbers for perverse sheaves, Ann. Inst. Fourier (Grenoble) 59 (2009), 1177-1229. Zbl 1187.14022 MR 2543666
[4] M. Kashiwara, Algebraic study of systems of partial diffential equations, Thesis, Tokyo Univ., 1970, translated by A. D'Agnolo and J.-P. Schneiders, Mém. Soc. Math. France 63 (1995). Zbl 0877.35003 MR 1384226
[5] , On the maximally overdetermined systems of linear differential equations, Publ. RIMS Kyoto Univ. 10 (1975), 563-579. Zbl 0313.58019 MR 0370665
[6] , The Riemann-Hilbert problem for holonomic systems, Publ. RIMS Kyoto Univ. 20 (1984), 319-365. Zbl 0566.32023 MR 0743382
[7] ,D-modules and microlocal calculus, Transl. Math. Monogr. 217, Amer. Math. Soc., 2003. Zbl 1017.32012 MR 1943036
[8] , Equivariant derived category and representation of real semisimple Lie groups, in Representation theory and complex analysis, Lecture Notes in Math. 1931, Springer, Berlin, 2008, 137-234. Zbl 1173.22010 MR 2409699
[9] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren Math. Wiss. 292, Springer, 1990. Zbl 0709.18001 MR 1299726
[10] , Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. France 64 (1996). Zbl 0881.58060 MR 1421293
[11] _ Ind-sheaves, Astérisque 271 (2001). Zbl 0993.32009 MR 1827714
[12] , Categories and sheaves, Grundlehren Math. Wiss. 332, Springer, 2006. Zbl 1118.18001 MR 2182076
[13] , Deformation quantization modules, Astérisque (2011), to appear; arXiv:1003.3304.
[14] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, 1966. Zbl 0177.17902 MR 0212575
[15] L. Prelli, Sheaves on subanalytic sites, Rend. Sem. Mat. Univ. Padova 120 (2008), 167-216. Zbl 171.32002 MR 2492657
[16] C. Sabbah, Polarizable twistor \mathcal{D}-modules, Astérisque 300 (2005). Zbl 1085.32014 MR 2156523
[17] P. Schapira, Mikio Sato, a visionary of mathematics, Notices Amer. Math. Soc. 54 (2007), 243-245. Zbl 1142.01349 MR 2285128
[18] P. Schapira and J.-P. Schneiders, Elliptic pairs I, Astérisque 224 (1994), 5-60. Zbl 0856.58038 MR 1305642
[19] J.-P. Schneiders, Quasi-abelian categories and sheaves, Mém. Soc. Math. France 76 (1999). Zbl 0926.18004 MR 1779315

[^0]: This is a contribution to the special issue "The golden jubilee of algebraic analysis".
 Communicated by M. Kashiwara. Received September 1, 2009.
 A. D'Agnolo: Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, via Trieste 63, 35121 Padova, Italy;
 e-mail: dagnolo@math.unipd.it, web page: www.math.unipd.it/~dagnolo
 S. Guillermou: Institut Fourier, Université de Grenoble I,

 BP 74, 38402 Saint-Martin d'Hères, France;
 e-mail: Stephane.Guillermou@ujf-grenoble.fr,
 web page: www-fourier.ujf-grenoble.fr/~guillerm
 P. Schapira: Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie,

 4, place Jussieu, case 247, 75252 Paris Cedex 05, France;
 e-mail: schapira@math.jussieu.fr, web page: people.math.jussieu.fr/~schapira

