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Abstract

Among other things, we show that Mordell-Weil groups of finitely many different
abelian fibrations of a hyperkähler manifold have essentially no relation, as its bira-
tional transformation. Precise definition of the terms “essentially no relation” will be
given in Introduction.

§1. Introduction—Background and the Statement of Main Result

Let M be a hyperkähler manifold M , i.e., a simply-connected compact
Kähler manifold admitting an everywhere non-degenerate global holomorphic
2-form σM s.t. H0(M, Ω2

M ) = CσM . In this note, we assume that M is
projective. We denote by BirM the group of birational transformations of M .
A morphism ϕ : M −→ B onto a normal projective variety B is called an abelian
fibration if its generic fiber Mη(� O) is a positive dimensional abelian variety
defined over C(B). The group Mη(C(B)), called the Mordell-Weil group of
ϕ and denoted from now by MW(ϕ), can be naturally regarded as an abelian
subgroup of Bir M . In [Og3] (see also [Og4]), we have shown the following:
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Theorem 1.1.
(1) Let G < Bir M . Then either G > Z∗Z or G is an almost abelian group

of rank at most Max (1, ρ(M) − 2), the latter of which is finitely generated.
(2) Assume that M admits 2 different abelian fibrations ϕi : M −→ Bi s.t.

rank MW(ϕi) > 0 (i = 1, 2). Let fi ∈ MW(ϕi) s.t. ord fi = ∞. Then the
subgroup 〈f1, f2〉 of Bir M contains Z ∗ Z as its subgroup.

Unfortunately, the proof in [Og3], which is based on Tits’ alternative [Ti]
together with properties of Salem polynomial (cf. [Mc]), tells us no explicit
way to find Z ∗ Z in 〈f1, f2〉. Then F. Campana asked the following:

Question 1.2. Under the same condition as in Theorem (1.1)(2),

〈f1, f2〉 = 〈f1〉 ∗ 〈f2〉 � Z ∗ Z

for suitably chosen fi ∈ MW(ϕi) (i = 1, 2)?

In the view of an observation of Cantat [Ca], one might ask an even
stronger:

Question 1.3. Under the same condition as in Theorem (1.1)(2),

〈f1, f2〉 = 〈f1〉 ∗ 〈f2〉 � Z ∗ Z

for any fi ∈ MW(ϕi) s.t. ord (fi) = ∞ (i = 1, 2) at least when dimM = 2?

The aim of this note is to give an affirmative answer to the first question
in a slightly more general form and a negative answer to the second questions,
via an elementary consideration in hyperbolic geometry. An applicability of
hyperbolic geometry is suggested by S. Cantat in connection with [Og3].

Definition 1.4. Let Z+ be the set of positive integers and let Λ be a
(possibly infinite) subset of Z+. Let G be a group. We say that subgroups
Gi (i ∈ Λ) of G have essentially no relation if there are finite index subgroups
Hi < Gi s.t. the group 〈Hi|i ∈ Λ〉(⊂ G) generated by Hi (i ∈ Λ) is the free
product ∗i∈ΛHi.

Our main result is the following:

Theorem 1.5.
(1) Let ϕi : M −→ Bi (i = 1, 2, . . . , s) be mutually different abelian fibra-

tions on a hyperkähler manifold M s.t. rankMW (ϕi) =: ri > 0. Then, in
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Bir M , the Mordell-Weil groups MW(ϕi) (i = 1, 2, . . . , s) have essentially no
relation, i.e., there are finite index subgroups Hi < MW(ϕi) s.t.

〈H1, H2, . . . , Hs〉 = H1 ∗ H2 ∗ · · · ∗ Hs � Zr1 ∗ Zr2 ∗ · · · ∗ Zrs .

In particular, for given gi ∈ MW(ϕi) with ord gi = ∞, there are positive inte-
gers mi (i = 1, 2, . . . , s) s.t.

〈gm1
1 , gm2

2 , . . . , gms
s 〉 = 〈gm1

1 〉 ∗ 〈gm2
2 〉 ∗ · · · ∗ 〈gms

s 〉 � Z ∗Z ∗ · · · ∗Z (s−factors) .

(2) Let ϕi : M −→ Bi (i ∈ Z+) be mutually different abelian fibrations on a
hyperkähler manifold M s.t. rankMW (ϕi) =: ri > 0. Then, there is an infinite
subset Λ of Z+ s.t. the Mordell-Weil groups MW(ϕi) (i ∈ Λ) have essentially
no relation in BirM , i.e., there are finite index subgroups Hi < MW(ϕi) s.t.

〈Hi|i ∈ Λ〉 = ∗i∈ΛHi � ∗i∈ΛZri .

(3) There are a K3 surface S admitting 2 different abelian (i.e. Jacobian)
fibrations ϕi : S −→ P1 and elements fi ∈ MW(ϕi) with ord fi = ∞ (i = 1, 2)
s.t. in AutS,

〈f1 , f2〉 � Z/2 ∗ Z/3 , whence, 〈f1 , f2〉 
= 〈f1〉 ∗ 〈f2〉(� Z ∗ Z) ,

but, for each integer n ≥ 2,

〈fn
1 , fn

2 〉 = 〈fn
1 〉 ∗ 〈fn

2 〉 � Z ∗ Z .

As we shall show in Example (4.1), there are K3 surfaces and hyperkähler
manifolds admitting infinitely many different abelian fibrations of positive
Mordell-Weil rank.

§2. From Hyperkähler Manifold to Hyperbolic Geometry

In this section, we recall some important theorems which make a clear
bridge between groups of birational autmorphisms of a projective hyperkähler
manifold and elementary hyperbolic geometry.

Throughout this section, M is a (not necessarily projective) hyperkähler
manifold. By [Be] (see also [GHJ, Part III]), there is a natural symmetric
bilinear form called Beauville form, (∗, ∗∗) : H2(M,Z) × H2(M,Z) −→ Z.
Let NS(M) be the Néron-Severi group of M , i.e., the subgroup of H2(M,Z)
generated by the first Chern classes of holomorphic line bundles. We regard
NS(M) as a (possibly degenerate) sublattice of H2(M,Z) by (∗, ∗∗). We denote
by ρ(M) the Picard number of M , i.e., the rank of NS(M).

The following theorem due to Huybrechts [Hu] (see also [GHJ, Part III]
for (1) and [Og2] for (3)) is quite essential:
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Theorem 2.1.
(1) M is projective iff NS(M) is hyperbolic, i.e., non-degenerate, of sig-

nature (1, ρ(M) − 1).
(2) Let g be a bimeromorphic automorphism of M . Then the natural action

g∗ on H2(M,Z) is a Hodge isometry of M . Moreover, the induced representaion
Bir M −→ O(H2(M,Z)) has finite kernel.

(3) When M is projective, the induced representaion BirM −→ O(NS(M))
has finite kernel.

The statements (1) and (3) make first bridge between Bir M and geometry
of the hyperbolic lattice NS(M), when M is projective.

Let M be a projective hyperkähler manifold admitting an abelian fibration
ϕ : M −→ B (See Introduction for the precise definition). The morphism ϕ

is given by the complete linear system |H| of some nef divisor H on M . This
H is of the form ϕ∗HB, where h is a very ample divisor on B. For a general
manifold, there are lot of choices of such H (even up to multiple). However,
for a hyperkähler manifold, a result due to Matsushita [Ma] says:

Theorem 2.2. The base space B is Q-factorial and of Picard number
1 (and of dimension dim M/2). In particular, the choice of H is unique up to
multiple. Moreover, (H2) = 0.

As an immediate consequence of Theorems (2.1), (2.2) with Theorem
(1.1)(1), we obtain the following bridge between the Mordell-Weil group
MW(ϕ) and geometry of the hyperbolic lattice NS(M):

Corollary 2.3. Under the notations above, let OH(NS(M))(⊂
O(NS(M))) be the stabilizer subgroup of the class H ∈ NS(M). Then, we
have a natural representaion MW(ϕ) −→ OH(NS(M)) with finite kernel.

§3. From Group Theory and Elementary Hyperbolic Geometry

(3.1) The next Theorem and its proof are taken from Tits’ article [Ti].
This simple theorem is very useful in our proof of Theorems (1.5) and (3.2).

Theorem 3.1. Let Λ be a (possibly infinite) subset of Z+ of cardinality
|Λ| ≥ 2. Let G be a group which acts faithfully on a non-empty set S. Let Gi

(i ∈ Λ) be subgroups of G, let Si (i ∈ Λ) be subsets of S s.t. S \ ∪i∈ΛSi 
= ∅,
and let p be an element of S \ ∪i∈ΛSi. Put G0

i := Gi \ {id} and S̃i := Si ∪ {p}.
Suppose that G0

i (S̃j) ⊂ Si for all pairs i 
= j. Then 〈Gi|i ∈ Λ〉 = ∗iΛGi.
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Proof. Consider g1g2 · · · gm, where gk ∈ G0
ik

and i1 
= i2 
= · · · 
= im. Us-
ing |Λ| ≥ 2, one can choose an integer i ∈ Λ s.t. i 
= im. Then G0

im
(S̃i) ⊂ Sim

,
G0

im−1
G0

im
(S̃i) ⊂ Sim−1 , and finally G0

i1
G0

i2
· · ·G0

im−1
G0

im
(S̃i) ⊂ Si1 . Thus

g1g2 · · · gm(p) ⊂ Si1 . Hence g1g2 · · · gm(p) 
= p by p 
∈ Si1 , and therefore
g1g2 · · · gm 
= id.

(3.2) By a hyperbolic lattice N = (N, (∗, ∗∗)) of rank ρ, we mean a pair of
a free Z-module N of finite rank ρ and a Z-valued non-degenerate symmetric
bilinear form (∗, ∗∗) on N with signature (1, ρ − 1). We denote by O(N) the
group of isometries of N . What we need from elementary hyperbolic geometry
is the following:

Theorem 3.2. Let N = (N, (∗, ∗∗)) be a hyperbolic lattice of rank ρ.
Let Λ̃ be a (possibly infinite) subset of Z+ of cardinality |Λ̃| ≥ 2. Suppose that
vi (i ∈ Λ̃) are primitive elements of N \{0} s.t. (v2

i ) = 0 and vi 
= ±vj if i 
= j,
and that Gi � Zri (i ∈ Λ̃, ri > 0) are subgroups of O(N) s.t. Gi(vi) = vi.
Then:

(1) Assume that |Λ̃| < ∞, say, Λ̃ = {1, 2, . . . , s}. Then Gi (i = 1, 2, . . . , s)
have essentially no relation.

(2) Assume that |Λ̃| = ∞. Then there is an infinite subset Λ of Λ̃ s.t. Gi

(i ∈ Λ) have essentially no relation.

Remark 3.3. The statement similar to (1) should be known for experts.
In the rest of this section, we shall give a unform, self-contained proof of (1)
and (2).

Proof. We denote the scalar extension N ⊗ K of N by a field K by NK .
Whenever we discuss topology, we regard NR � Rρ as the Euclidean space by
a suitable Euclidean norm || ∗ ||.

1. Let C be the positive cone of N , that is, one of the two connected
components of {x ∈ NR|(x, x) > 0}. We denote by C the closure of C in NR,
and by ∂C, the boundary of C. We define S := {x ∈ ∂C | ||x|| = 1}. This space
S can be identified with the set of the rays {R+x |x ∈ ∂C \{0}}, by the natural
bijection R+x ↔ x/||x||, and is also homeomorphic to the sphere Sρ−2. We
denote x/||x|| by x and call it the unit vector corresponding to x.

2. Let v be a primitive element of N \ {0} s.t. (v2) = 0. Following [Th,
Problem 2.5.24], we consider the spaces:

L̃Q := {x ∈ NQ|(x, v) = 1} , L̃ := {x ∈ NR|(x, v) = 1} ;

LQ := L̃Q/Qv , L := L̃/Rv ;
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P := {x ∈ ∂C | (x, v) = 1} ⊂ L̃ .

Here, since v ∈ N and (v, v) = 0, the mapping av : x �→ x + av, a ∈ Q (resp.
a ∈ R) defines a faithful action of Qv (resp. of Rv) on L̃Q (resp. on L̃).

Remark 3.4. Though the rational spaces L̃Q and LQ are not explicitly
considered in [Th], it is important to consider these spaces for our proof.

By definition, the space LQ (resp. L) is a (ρ − 2)-dimensional rational
(resp. real) affine space. Or more explicitly, by taking a point in u ∈ LQ as 0
and by taking a rational basis of the tangent space at u, we can identify LQ

(resp. L) with the vector space Qρ−2 (resp. Rρ−2). Under these identifications,
we have also L = (LQ)R. By p : L̃Q −→ LQ and p : L̃ −→ L, we denote the
natural quotient maps. We define the map π by π : P −→ S; x �→ x/||x||.

Let G � Zr be an abelian subgroup of O(N) s.t. Gv = v. The group
G acts on L̃Q, L̃, LQ, L, P and S. Here the action of G on S is defined by
x �→ g(x)/||g(x)||. By definiton, the actions of G on these spaces are equivariant
under p and π.

3. In this paragraph, again closely following [Th, Problem 2.5.14], we shall
prove three lemmas, which are crucial in our proof of Theorem (3.2). We use
the same notations as in the previous paragraphs.

Lemma 3.5. The map p|P : P −→ L is a homeomorphism and the
map

ι := π ◦ (p|P )−1 : L −→ S

is a homeomorphism onto S \ {v}, i.e., S is a one point compactification of
the real affine space L through ι. Moreover, the actions of G on L and S are
equivariant under ι.

Proof. The last assertion follows from the last statement in the paragraph
2. Let us show the first two assertions. For a given x ∈ L̃, there is a unique α

s.t. (x + αv, x + αv) = 0, namely α = −(x, x)/2. Since (x + αv, v) = 1 > 0, we
have x + αv ∈ ∂C, and therefore x + αv ∈ P . By the uniqueness of α, the map
x + Rv �→ x + αv is well-defined and gives the inverse q : L −→ P of p|P .

By (v, v) = 0, we have π(P ) ⊂ S \ {v}. Let x ∈ ∂C \ {0}. By the Schwartz
inequality, we have (x, v) > 0 unless x ∈ Rv. Thus, for x ∈ S \ {v}, we have
x/(x, v) ∈ P and π(x/(x, v)) = x. Thus, x �→ x/(x, v) gives the inverse of
π : P −→ S \ {v}. Hence ι = π ◦ q satisfies the requirement.

Lemma 3.6. There is a finite index subgroup G′ of G s.t. G′ acts on
the real affine space L as parallel transformations. Moreover, the action of G′

on L is faithful and discrete.
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Remark 3.7. For both statements, it seems quite essential that the action
G is defined over the lattice N , or in other words, over Z. Being parallel
transformations is false even for a cyclic orthogonal subgroup of NQ fixing
some non-zero rational vector v with (v, v) = 0, as there is an infinite-order
3 × 3 rotation matrix of rational entries. An account of [Ha, Page 135] seems
to miss this point.

Proof. Since v is a primitive vector with (v, v) = 0, one can choose an
integral basis of v⊥N as 〈v , w1 , . . . , wn 〉. We also choose u ∈ NQ s.t. (v, u) = 1.
Such u exists, as N is non-degenerate. Then 〈v, w1, . . . , wn, u〉 forms Q-basis
of NQ. In this notation, ρ = n + 2.

Let g ∈ G. Since g(v) = v and g(v⊥N ) = v⊥N , the matrix representation
M(g) of g w.r.t. the basis above is of the form:

M(g) :=


1 ta(g) c(g)

o A(g) b(g)
0 to d(g)


 .

Here A(g) is the matrix representation of the action of g on the lattice N :=
v⊥NS(M)/Zv w.r.t. its integral basis 〈[wi]〉ni=1. Thus A(g) is an integral matrix,
while b(g) ∈ Qn is, in general, a rational vector. Since N is of negative definite,
its orthogonal transformation A(g) is diagonalizable, and the eigenvalues of
A(g) are of absolute value 1. On the other hand, since A(g) is an integral
matrix, its eigenvalues are algebraic integers. Thus, by Kronecker’s theorem,
the eigenvalues of A(g) are roots of 1. Since A(g) is diagonalizable, A(g) is
then of finite order. Let us denote by m(g) the order of A(g).

Let 〈gi〉ri=1 be a generator of the free abelian group G. Put g′i := g
2m(g̃i)
i

and define the subgroup G′ of G by G′ := 〈g′1, g′2, . . . , g′r〉. Since G is a finitely
generated abelian group, G′ is a finite index subgroup of G. Moreover, for each
g ∈ G′, we have A(g) = In (the identity matrix) and d(g) = 1, i.e.,

M(g) :=


1 ta(g) c(g)

o In b(g)
0 to 1


 .

For d(g) = 1, observe that detM(g̃i) = ±1, whence detM(g̃2m(g̃i)
i ) = 1,

and therefore detM(g) = 1 for g ∈ G′.
Let Q ∈ L. Then Q is uniquely expressed in the form:

Q = [u] +
n∑

i=1

xi(Q)[wi] ,
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and the vector valued function x := (xi)n
i=1 gives an affine coordinate of both

L and LQ. Under this coordinate, one can identify LQ = Qn, L = (Qn)⊗R =
Rn. Then, by the shape of M(g), the action of g ∈ G′ on L = Rn is the
parallel transformation by b(g) ∈ Qn. This shows the first statement. For
the discreteness and faithfulness of the action of G′ on L = Rn, it suffices to
show the claim below. Indeed, 〈r(g′i)〉ri=1 then forms a part of real basis of
L = (Qn) ⊗ R.

Claim 3.8. The map r : G′ � Zr −→ Qn; g �→ b(g) is an injective
group homomorphism.

Remark 3.9. Note that the map (a, b) �→ a + b
√

2 defines an injective
group homomorphism from Z2 to the group R of the parallel transformations
of R, but the image {a + b

√
2|a, b ∈ Z} is not discrete in R. So, the fact that

G acts on the underlying rational space LQ seems crucial for the discreteness.

Proof. Assume that b(g) = o. Then, by the shape of M(g), we have
g(v) = v, g(wi) = wi + ai(g), g(u) = u + c(g)v. From

(u, u) = (g(u), g(u)) = (u, u) + 2c(g)(u, v) = (u, u) + 2c(g) ,

we have c(g) = 1. Then, from

(u, wi) = (g(u), g(wi)) = (u, wi) + ai(g)(u, v) = (u, wi) + ai(g) ,

we have ai(g) = 0. Hence M(g) = In+2, i.e., g = id.

Lemma 3.10. Let U ⊂ S be a compact neighborhood of the unit vector
v and let V be a non-empty compact subset of S \ {v}. Then, there is a finite
index subgroup H of G s.t. (H \ {id})(V ) ⊂ U .

Proof. Identifying L with S \{v} by ι (see Lemma (3.5)), we may assume
that

V ⊂ L and B := {x ∈ L| ||x|| > r} ⊂ U \ {v} ⊂ L

for some r > 0. Here || ∗ || is some Euclidean norm of L (w.r.t. some fixed
origin).

Let G′ � Zr be a finite index subgroup of G in Lemma (3.6). Then, G′

acts on L by parallel transformations, say by {t(g) ∈ Rn|g ∈ G}. Since the
action of G′ is discrete by Lemma (3.6), we have inf {||t(g)||; g ∈ G′ \{id}} > 0.

Thus, there is some positive integer c s.t. gc(V ) ⊂ B for all g ∈ G′ \ {id}.
Set H := {gc|g ∈ G′}. Since G′ is a finitely generated abelian group, this set
H is a finite index subgroup of G′. This H satisfies the requirement.
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4. Now we shall complete the proof of Theorem (3.2).
Let us first assume that |Λ̃| = ∞. Then the sequence {vi}i∈Λ̃(⊂ S) has

an infinite subsequence which converges to some point v∞ ∈ S. Getting rid of
the terms vi = v∞ from this subsequence, we obtain a subsequence {vi}i∈Λ s.t.
limi−→∞ vi = v∞ and vi 
= v∞ for all i ∈ Λ. Then minj∈(Λ\{i})∪{∞} ||vi−vj || >

0 for each i ∈ Λ. Thus, we can choose open neighborhoods Vi(⊂ S) of vi (i ∈ Λ)
s.t. the closure V i (i ∈ Λ) are compact, v∞ 
∈ V i for each i ∈ Λ and V i∩V j = ∅
whenever i 
= j. Then take open neighborhoods U0

i of vi s.t. Ui := U0
i ⊂ Vi. We

put Ũi = Ui ∪ {v∞} for each i ∈ Λ. Then, using compactness of S and Lemma
(3.10) applied for v = vi (i ∈ Λ) inductively, we find finite index subgroups Hi

of Gi (i ∈ Λ) s.t. (Hi \ {id})(∪j �=iŨj) ⊂ Ui. In particular, (Hi \ {id})(Ũj) ⊂ Ui

whenever i 
= j.
Next consider the case where |Λ̃| < ∞. In this case, we put Λ = Λ̃. Since Λ

is a finite set, we can choose a point p ∈ S and compact neighborhoods Ui(⊂ S)
of vi (i ∈ Λ) s.t. p 
∈ Ui for each i ∈ Λ and Ui ∩ Uj = ∅ whenever i 
= j. We
also put Ũi = Ui ∪ {p} for each i ∈ Λ. Then, there are finite index subgroups
Hi of Gi (i ∈ Λ) s.t. (Hi \ {id})(Ũj) ⊂ Ui whenever i 
= j.

In both cases 〈Hi|i ∈ Λ〉 = ∗i∈ΛHi by Theorem (2.1). This completes the
proof.

§4. Synthesis

In this section, we shall show Theorem (1.5).

Proof of Theorem (1.5)(1), (2).
Let vi ∈ NS(M) be the primitive nef element which is proportional to the

divisor Hi defining ϕi. Then (v2
i ) = 0 by Theorem (2.2). Let vi ∈ S be the

unit element corresponding to vi. We note that vi 
= vj if i 
= j.
Let Gi := Im (MW(ϕi) −→ O(NS(M))). Then Gi preserves vi and the

kernel of MW(ϕi) −→ Gi is finite by Corollary (1.3). Hence, the result follows
from Theorem (3.2).

Proof of Theorem (1.5)(2).
Let E be an elliptic curve. Let us consider the product abelian surface

A := E ×E, and its associated Kummer K3 surface S := KmA. By definition,
S is the minimal resolution of the quotient surface A/ι (ι is defined below).

Let p̃i : A −→ E be the projection to the i-th factor, and let pi : S −→ P1

be the Jacobian fibration on S, induced by p̃i.
Let

f̃2 :=

(
1 1
0 1

)
, f̃1 :=

(
1 0
1 1

)
, ι :=

(
−1 0
0 −1

)
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and put G̃ := 〈f̃1, f̃2〉 in SL (2,Z). Then G̃ = SL(2,Z) and SL(2,Z) acts
faithfully on A by f̃2(x, y) = (x + y, y), f̃1(x, y) = (x, x + y). By the shape of
f̃i, we see that f̃i ∈ MW (p̃i) and ord f̃i = ∞. Since f̃iι = ιf̃i, we also see that
f̃i descends to fi ∈ MW(pi) and ord fi = ∞.

Set G := 〈f1, f2〉 in AutS. Then, G � SL(2,Z)/〈ι〉 = PSL(2,Z).
We shall show that (S, f1, f2) satisfies the requirement.
It is well-known that PSL(2,Z) � Z/2 ∗ Z/3 (see eg. [Kn, Page 147]). In

particular, 〈f1, f2〉 
= 〈f1〉∗〈f2〉; if otherwise, Z/2∗Z/3 � Z∗Z, a contradiction.
It remains to show that 〈fn

1 , fn
2 〉 = 〈fn

1 〉 ∗ 〈fn
2 〉 for each n ≥ 2. Our proof

of this fact closely follows [Ha, Example 1]. Note that PSL(2,Z) < PGL(2,Z).
In PGL(2,Z), we put

g2 := fn
2 =

(
1 n

0 1

)
, g1 := fn

1 :=

(
1 0
n 1

)
, j :=

(
0 1
1 0

)
.

Then j2 = id and g1 = jg2j in PGL(2,Z). So, if there would be a non-trivial
relation among g1 and g2, say, h(g1, g2) = id, then substituting gl

1 = jgl
2j into

the relation h(g1, g2) = id, we would have a non-trivial relation among g2 and
j. Thus, we suffice to show that 〈g2, j〉 = 〈g2〉 ∗ 〈j〉 in PGL(2,Z).

To prove this claim, we consider the natural fractional linear action of
PGL(2,Z) on P1 = C ∪ {∞}, and the following subsets and a point of P1:

U1 := {z ∈ C | |z| < 1}, U2 := {z ∈ C | |Re z| > 1}∪{∞}, P := 2
√−1 
∈ U1∪U2.

Then j(U2 ∪ {P}) ⊂ U1 and gk
2 (U1 ∪{P}) ⊂ U2 for each k 
= 0 (by n ≥ 2).

Thus, by Theorem (2.1), we have 〈g2 , j〉 = 〈g2〉 ∗ 〈j〉, and we are done.

Example 4.1. Let ϕ : S −→ P1 be a (necessarily projective) Jacobian
K3 surface s.t. rank MW(ϕ) = 18 and ρ(S) = 20, which are maximum. Such
a Jacobian K3 surface exists by [Co] and [Ni]. It is also known that, given a
Jacobian K3 surface S′, one can find such a Jacobian K3 surface S arbitrarily
close to S′ in the period domain ([Og1]). In AutS and AutS[n], we can find
an infinite sequence of subgroups

Z18 ⊂ Z18 ∗ Z18 ⊂ Z18 ∗ Z18 ∗ Z18 · · · ⊂ ∗sZ18 ⊂ · · · .

Here S[n] is the Hilbert scheme of n-points on S, which is a hyperkähler manifold
of dimension 2n ([Be]).

Proof. Let e ∈ PicS � NS(S) be the fiber class of ϕ. Since ϕ has at
least three singular fibers (see eg., [Ca], [VZ]), the subgroup Autϕ := {f ∈
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AutS | f∗(e) = e} of AutS is an almost abelian group (of rank 18). On the
other hand, since ρ(S) = 20, we have Z ∗ Z ⊂ AutS by [Og3]. In particular,
AutS is not an almost abelian group.

Hence the coset Aut S/Autϕ is an infinite set. Thus, the AutS-orbit
of e is an infinite set as well. Therefore, S admits infinitely many different
Jacobian fibrations with Mordell-Weil rank 18. Now the result for S follows
from Theorem (1.5)(2). The Mordell-Weil group of a Jacobian fibration S −→
P1 can be naturally embedded into the Mordell-Weil group of the induced
abelian fibration S[n] −→ Pn. This implies the result for S[n].
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