Corrigendum to "Decay of Solutions of Wave-type Pseudo-differential Equations over p-adic Fields"

By

W. A. Zuniga-Galindo*

1. The proof of Theorem 4 in [7] contains a gap. This theorem deals with the asymptotic estimation of exponential sums depending on several parameters (or oscillatory integrals depending on several parameters). By using a result due to Cluckers [3, Theorem 6.1], a more general version of Theorem 4 can be proved easily, however, the decay rate obtained is not optimal. With the notation given in [7], the statement and the proof of Theorem 4 should be corrected as follows.

Theorem 4. Let $\phi(x) \in R_{K}[x], x=\left(x_{1}, \ldots, x_{n-1}\right)$, be a non-constant polynomial such that $C_{\phi}(K)=\{0\} \subset K^{n-1}$. Let $d_{j}(\phi)$ be the degree of ϕ with respect the variable x_{j}, and let $\beta_{\phi}:=\max _{j} d_{j}(\phi)$. Let Θ_{S} be the characteristic function of a compact open set S, let

$$
Y=\left\{x \in K^{n} \mid x_{n}=\phi\left(x_{1}, \ldots, x_{n-1}\right)\right\},
$$

and let $d \mu_{Y}=\Theta_{S} d \sigma_{Y}$. Then

$$
\begin{equation*}
\left|\widehat{d \mu_{Y}(\xi)}\right| \leq C\|\xi\|_{K}^{-\beta}, \tag{1}
\end{equation*}
$$

for $0 \leq \beta \leq \beta_{\phi}-\epsilon$, with $\epsilon>0$.
Proof. By passing to a sufficiently fine covering we may suppose that

$$
\widehat{d \mu_{Y}(\xi)}=\int_{\left(z_{0}+\pi^{e} 0\right.} \Psi\left(-\xi_{n} \phi(x)-\left[x, \xi^{\prime}\right]\right)|d x| .
$$

[^0]By applying Theorem 6.1 of [3], we have

$$
\left|\widehat{d \mu_{Y}(\xi)}\right| \leq C\left(\log _{q}\|\xi\|_{K}\right)^{n-1}\|\xi\|_{K}^{-\beta_{\phi}},
$$

and then

$$
\left|\widehat{d \mu_{Y}(\xi)}\right| \leq C\|\xi\|_{K}^{-\beta}, \text { for } 0 \leq \beta \leq \beta_{\phi}-\epsilon, \epsilon>0
$$

It is important to mention that Cluckers' Theorem 6.1 is established only for \mathbb{Q}_{p}, however this result is valid for any p-adic field. Indeed, the proof of this result is based on a result of Chubarikov [2, Lemma 3] whose proof uses inductively an estimation for one-dimensional exponential sums due to I. M. Vinogradov (see e.g. [1, Theorem 2.1]). The proof of this last estimation as given in [1] can be adapted to the case of p-adic fields easily using the notion of dilation as in [8].

The Cluckers' result does not give an optimal decay rate, and then β_{ϕ} is not optimal (see also [9]).
2. The following remark should be added after Theorem 4.

Remark 1. If $\phi(x)=\sum_{i=1}^{n-1} a_{i} x_{i}^{2}$, then the phase of $\widehat{d \mu_{Y}(\xi)}$ around any critical point has the form $\sum_{i=1}^{n-1} a_{i}^{\prime} x_{i}^{2}$. By using [7, Theorem 3], one verifies that the decay rate around any critical point is $\frac{n-1}{2}$, therefore Theorem 4 holds for $0 \leq \beta \leq \frac{n-1}{2}=\beta_{\phi}$. Note that by the principle of stationary phase the contribution of the non-critical points can be neglected (see [7, Theorem 1]). If $n=1$ and $\phi(x)=x^{d}, d>1$, the phase of $\widehat{d \mu_{Y}(\xi)}$ around a critical point can take the form $x^{f} p(x), 2 \leq f \leq d, p(x) \neq 0$ locally. By using the fact the real parts of the possible poles of the corresponding local zeta functions have the form $\frac{-1}{f}, 2 \leq f \leq d$, and Theorem 8.4.2 in [4], one verifies that Theorem 4 holds for $0 \leq \beta \leq \frac{1}{d}=\beta_{\phi}$.

In the case of real numbers the results described in the previous remark are well-known (see e.g. [6]).
3. The hypothesis "let $\phi(x) \in K[x], x=\left(x_{1}, \ldots, x_{n-1}\right)$, be a nondegenerate polynomial with respect to its Newton polyhedron $\Gamma(\phi)$ " should be replace by "let $\phi(x) \in R_{K}[x], x=\left(x_{1}, \ldots, x_{n-1}\right)$, be a non-constant polynomial such that $C_{\phi}(K)=\{0\} \subset K^{n-1 "}$ in the Theorems 5 and 6 . The proofs do not need any modification. The new versions are as follows.

Theorem 5. Let $\phi(x) \in R_{K}[x], x=\left(x_{1}, \ldots, x_{n-1}\right)$, be a non-constant polynomial such that $C_{\phi}(K)=\{0\} \subset K^{n-1}$. Let

$$
Y=\left\{x \in K^{n} \mid x_{n}=\phi\left(x_{1}, \ldots, x_{n-1}\right)\right\}
$$

with the measure $d \mu_{Y, S}=\Theta_{S} d \sigma_{Y}$, where Θ_{S} is the characteristic function of a compact open subset S of K^{n}. Then

$$
\left(\int_{Y}|\mathcal{F} g(\xi)|_{K}^{2} d \mu_{Y}(\xi)\right)^{\frac{1}{2}} \leq C(Y)\|g\|_{L^{\rho}}
$$

holds for each $1 \leq \rho<\frac{2\left(1+\beta_{\phi}\right)}{2+\beta_{\phi}}$.
Theorem 6 (Main Result). \quad Let $\phi(\xi) \in R_{K}[\xi], \xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$, be a non-constant polynomial such that $C_{\phi}(K)=\{0\} \subset K^{n}$. Let

$$
(H \Phi)(t, x)=\mathcal{F}_{(\tau, \xi) \rightarrow(t, x)}^{-1}\left(|\tau-\phi(\xi)|_{K} \mathcal{F}_{(t, x) \rightarrow(\tau, \xi)} \Phi\right), \Phi \in \mathbb{S}\left(K^{n+1}\right),
$$

be a pseudo-differential operator with symbol $|\tau-\phi(\xi)|_{K}$. Let $u(x, t)$ be the solution of the following initial value problem:

$$
\left\{\begin{array}{l}
(H u)(x, t)=0, x \in K^{n}, t \in K \\
u(x, 0)=f_{0}(x)
\end{array}\right.
$$

where $f_{0}(x) \in \mathbb{S}\left(K^{n}\right)$. Then

$$
\|u(x, t)\|_{L^{\sigma}\left(K^{n+1}\right)} \leq A\left\|f_{0}(x)\right\|_{L^{2}\left(K^{n}\right)}
$$

for $\frac{2\left(1+\beta_{\phi}\right)}{\beta_{\phi}}<\sigma \leq \infty$.
4. The last subsection (Wave-type Equations with Quasi-homogeneous Symbols) should be rewritten as follows.

§ 5.2 Wave-type Equations with Homogeneous Symbols

In the cases $\phi(\xi)=a_{1} \xi_{1}^{2}+\cdots+a_{n} \xi_{n}^{2}$ and $n=1, \phi(\xi)=\xi^{d}$ by using Remark 1, we have the following estimations for the solution of Cauchy problem (1).

Theorem 7. If $\phi(\xi)=a_{1} \xi_{1}^{2}+\cdots+a_{n} \xi_{n}^{2}$, then

$$
\|u(x, t)\|_{L^{\frac{2(2+n)}{n}}\left(K^{n+1}\right)} \leq C\left\|f_{0}(x)\right\|_{L^{2}\left(K^{n}\right)} .
$$

Theorem 8. If $n=1$ and $\phi(\xi)=\xi^{d}$, then

$$
\|u(x, t)\|_{L^{2(d+1)}\left(K^{2}\right)} \leq C\left\|f_{0}(x)\right\|_{L^{2}(K)}
$$

In particular if $d=3$, then

$$
\|u(x, t)\|_{L^{8}\left(K^{2}\right)} \leq C\left\|f_{0}(x)\right\|_{L^{2}(K)} .
$$

Acknowledgement

The author wishes to thank to Ben Lichtin for pointing out the gap in the proof of Theorem 4, and for many useful discussions about this result.

References

[1] G. I. Arkhipov, V. N. Chubarikov and A. A. Karatsuba, Trigonometric sums in number theory and analysis, Translated from the 1987 Russian original, Walter de Gruyter GmbH \& Co. KG, Berlin, 2004.
[2] V. N. Čubarikov, Multiple rational trigonometric sums and multiple integrals, Mat. Zametki 20 (1976), no. 1, 61-68, English transl.: Math Notes 20 (1976).
[3] R. Cluckers, Multivariate Igusa theory: decay rates of exponential sums, Int. Math. Res. Not. 2004, no. 76, 4093-4108.
[4] J. Igusa, An introduction to the theory of local zeta functions, Amer. Math. Soc., Providence, RI, 2000.
[5] A. N. Kochubei, A Schrödinger-type equation over the field of p-adic numbers, J. Math. Phys. 34 (1993), no. 8, 3420-3428.
[6] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[7] W. A. Zuniga-Galindo, Decay of solutions of wave-type pseudo-differential equations over p-adic fields, Publ. Res. Inst. Math. Sci. 42 (2006), no. 2, 461-479.
[8] \qquad , Igusa's local zeta functions of semiquasihomogeneous polynomials, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3193-3207.
[9] _ Multiparametric Exponential Sums Associated with Quasi-homogeneous Mappings, to appear in Finite Fields and their Applications.

[^0]: Communicated by Y. Takahashi. Received February 15, 2007. Revised May 8, 2007. 2000 Mathematics Subject Classification(s): Primary 35S99, 47S10; Secondary 11S40.
 Key words: Non-archimedan pseudo-differential equations, restriction of Fourier transforms, exponential sums modulo p^{m}, Igusa local zeta function.
 *Department of Mathematics and Computer Science, Barry University, 11300 N.E. Second Avenue, Miami Shores, Florida 33161, USA.
 e-mail: wzuniga@math.cinvestav.mx.
 Current address: CINVESTAV-I.P.N. Departamento de Matemáticas, AV. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, México D.F., México.

