
�

�

�

�

�

�

�

�

Publ. RIMS, Kyoto Univ.
43 (2007), 1157–1182

Dynamical Yang-Baxter Maps with
an Invariance Condition

By

Youichi Shibukawa∗

Abstract

By means of left quasigroups L = (L, ·) and ternary systems, we construct dy-
namical Yang-Baxter maps associated with L, L, and (·) satisfying an invariance
condition that the binary operation (·) of the left quasigroup L defines. Conversely,
this construction characterize such dynamical Yang-Baxter maps. The unitary con-
dition of the dynamical Yang-Baxter map is discussed. Moreover, we establish a
correspondence between two dynamical Yang-Baxter maps constructed in this paper.
This correspondence produces a version of the vertex-IRF correspondence.

§1. Introduction

Much attention has been directed to the quantum dynamical Yang-Baxter
equation (QDYBE), a generalization of the quantum Yang-Baxter equation
(QYBE) (for example, see [4]). The dynamical Yang-Baxter map (dynamical
YB map) [13] is a set-theoretical solution to a version of the QDYBE.

Let H and X be nonempty sets, and φ a map from H × X to H. A map
R(λ) : X×X → X×X (λ ∈ H) is a dynamical YB map associated with H, X,
and φ, iff, for every λ ∈ H, R(λ) satisfies the following equation on X×X×X.

(1.1) R23(λ)R13(φ(λ, X(2)))R12(λ) = R12(φ(λ, X(3)))R13(λ)R23(φ(λ, X(1))).
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1158 Youichi Shibukawa

Here R12(λ), R12(φ(λ, X(3))), R23(φ(λ, X(1))), and others are the maps from
X × X × X to itself defined as follows: for u, v, w ∈ X,

R12(λ)(u, v, w) = (R(λ)(u, v), w);

R12(φ(λ, X(3)))(u, v, w) = R12(φ(λ, w))(u, v, w);

R23(φ(λ, X(1)))(u, v, w) = (u, R(φ(λ, u))(v, w)).

If a map R(λ) is a dynamical YB map associated with H, X, and φ, then we
denote it by (R(λ); H, X, φ). Two dynamical YB maps (R(1)(λ1); H1, X1, φ1)
and (R(2)(λ2); H2, X2, φ2) are equal, iff

(1.2) H1 = H2, X1 = X2, φ1 = φ2, and R(1)(λ) = R(2)(λ)

for all λ ∈ H1(= H2).
By the definition of the dynamical YB map, the Yang-Baxter map (YB

map) [15], a set-theoretical solution to the QYBE [2, 16], is a dynamical YB
map that is independent of the dynamical parameter λ. Geometric crystals
[3], crystals [7], and semigroups of I-type [6] produce YB maps, and so do
bijective 1-cocycles [5, 10]. Let A and G be groups such that A acts on G, and
π : A → G a bijective 1-cocycle of the group A with coefficients in the group
G. This triplet (A, G, π) gives birth to a bijective YB map [10, Theorems 1
and 2] with the invariance condition (4.6) (this invariance condition is called
the compatibility condition in [10]).

By generalizing this method, dynamical YB maps were constructed in
[13]. Let LP = (LP, ·, eLP ) be a loop (see Definition 2.4), G = (G, ∗, eG)
a group, and π : LP → G a set-theoretical bijection satisfying π(eLP ) =
eG. Here eLP and eG are the unit elements of LP and G, respectively. This
triplet (LP, G, π) produces a bijective dynamical YB map R(G)(λ) (2.6) with
the invariance condition (2.5) (see below Theorem 2.5). We characterized this
dynamical YB map (Theorem 2.5).

However, this characterization is inadequate; some dynamical YB maps
with the invariance condition are not constructed in this way.

This paper clarifies a characterization of dynamical YB maps with the
invariance condition. Let L = (L, ·) be a left quasigroup (see Definition 2.1),
M = (M, µ) a ternary system (Definition 3.1) satisfying (3.5) and (3.6), and π

a bijection from L to M . The triplet (L, M, π) produces a dynamical YB map
(R(L,M,π)(λ); L, L, (·)) (3.3) (Theorem 3.2). This dynamical YB map satisfies
the invariance condition (3.4) that the binary operation (·) of the left quasigroup
L defines. This construction gives a characterization of the dynamical YB maps
with the invariance condition (4.5) (Theorem 4.7). If the binary operation (·)
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of L is associative, then every YB map on L×L with the invariance condition
(4.6) is produced by a ternary system satisfying (3.5) and (3.6) (see Remark
4.8).

The organization of this paper is as follows. After summarizing the results
of the work [13] in Section 2, we construct the dynamical YB map R(L,M,π)(λ)
(3.3) with the invariance condition in Section 3 (Theorem 3.2). This dynam-
ical YB map R(L,M,π)(λ) is a generalization of the YB map in [10] and the
dynamical YB map in [13] (see Remarks 2.6 and 6.7). The dynamical YB map
R(L,M,π)(λ) and the corresponding dynamical braiding map σ(L,M,π)(λ) (3.11)
are expressed by means of the maps s(a) (3.7) and s (3.8) (see Lemma 3.5 and
(7.3)), which satisfy the braid group relation (3.9). This braid group relation
and Lemma 3.5 simplify the proof that the YB maps and the dynamical YB
maps in [10, 13] satisfy (1.1).

By means of categories A and D (Propositions 4.3 and 4.6), we characterize
the dynamical YB maps associated with L, L, and (·) satisfying the invariance
condition (4.5) in Sections 4 and 5 (Theorem 4.7).

Section 6 describes several examples of the ternary systems satisfying (3.5)
and (3.6). For each M = (G, µG

1 ) (6.2), (G, µG
2 ) (6.3), (G, µG

3 ) (6.7), we give a
characterization of the dynamical YB maps R(L,M,π)(λ).

Sections 7 and 8 deal with properties of the dynamical YB map R(L,M,π)(λ).
Let M be a ternary system constructed in Section 6. In Section 7, we give

a necessary and sufficient condition for the dynamical YB map R(L,M,π)(λ)
to satisfy the unitary condition (2.8) (see Propositions 7.1, 7.3, and 7.5). Eq.
(7.3) explains the reason that only the property (7.1) of the ternary system M

is needed in order for the dynamical YB map R(L,M,π)(λ) to satisfy the unitary
condition (Theorem 2.7).

Section 8 gives a correspondence between two dynamical YB maps called
an IRF-IRF correspondence (Proposition 8.1); furthermore, a vertex-IRF cor-
respondence (8.1) is discussed. Eq. (7.3) induces this IRF-IRF correspondence.
A motivation for producing these correspondences is the exchange matrix con-
struction of the dynamical R-matrix by means of the fusion matrix (see Remark
8.2).

To end Introduction, the author would like to thank Professor Yas-Hiro
Quano for advising him to investigate the vertex-IRF correspondence.
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Table 1. Multiplication table of ({1, 2, 3}, ∗)

∗ 1 2 3

1 1 3 2
2 2 1 3
3 3 2 1

§2. Background Information

In this section, we briefly summarize the results of the work [13] after
introducing definitions and notations used in this work.

Definition 2.1. (L, ·) is said to be a left quasigroup, iff L is a non-empty
set, together with a binary operation (·) having the property that, for all u,
w ∈ L, there uniquely exists v ∈ L such that u · v = w (cf. right quasigroups in
[14, Section I.4.3]).

By this definition, the left quasigroup (L, ·) has another binary operation
\L called the left division [14, Section I.2.2]; we denote by u\L w the unique
element v ∈ L satisfying u · v = w.

(2.1) u\L w = v ⇔ u · v = w.

Definition 2.2. A quasigroup (Q, ·) is a left quasigroup satisfying that,
for all v, w ∈ Q, there uniquely exists u ∈ Q such that u · v = w (see [12,
Definition I.1.1] and [14, Section I.2]).

The binary operation on a quasigroup is not always associative.

Example 2.3. We define the binary operation (∗) on the set {1, 2, 3}
of three elements by Table 1. Here 1∗2 = 3. Then ({1, 2, 3}, ∗) is a quasigroup,
because each element in {1, 2, 3} appears once and only once in each row and
in each column of Table 1 [12, Theorem I.1.3]. This binary operation (∗) is not
associative, since (1 ∗ 2) ∗ 3 �= 1 ∗ (2 ∗ 3).

Definition 2.4. A loop (LP, ·, eLP ) is a quasigroup (LP, ·) satisfying
that there exists an element eLP ∈ LP such that u · eLP = eLP · u = u for all
u ∈ LP [12, Definition I.1.10].

Because the above element eLP ∈ LP is uniquely determined, we call eLP

the unit element of the loop (LP, ·, eLP ).
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The group is a loop. To be more precise, the group is an associative
quasigroup, and vice versa [12, Theorem I.1.7 and Definition I.1.9].

We shall simply denote by L, Q, and LP a left quasigroup (L, ·), a quasi-
group (Q, ·), and a loop (LP, ·, eLP ), respectively; moreover, the symbol uv will
be used in place of u · v.

Next task is to demonstrate the main theorem of [13]. Let LP = (LP, ·,
eLP ) be a loop, G = (G, ∗, eG) a group, and π : LP → G a (set-theoretical)
bijection satisfying π(eLP ) = eG. For u ∈ LP , we define the map θ(u) from G

to itself by

(2.2) θ(u)(x) = π(u)−1 ∗ π(uπ−1(x)) (x ∈ G).

Here π(u)−1 is the inverse of the element π(u) of the group G. This map θ(u)
is bijective; θ(u)−1(x) = π(u\LP π−1(π(u) ∗ x)) (x ∈ G).

Let ξ
(G)
λ (u) and η

(G)
λ (u) (λ, u ∈ LP ) denote the following maps from LP

to itself: for v ∈ LP ,

ξ
(G)
λ (u)(v) = π−1θ(λ)−1θ(λu)π(v);(2.3)

η
(G)
λ (u)(v) = (λξλ(v)(u))\LP ((λv)u).(2.4)

Theorem 3.7 in [13] implies Theorem 2.5.

Theorem 2.5. Let ξλ(u) and ηλ(v) (λ, u, v ∈ LP ) be maps from LP to
itself. The following conditions are equivalent :

(1) There exist a group G = (G, ∗, eG) and a bijection π : LP → G satisfying
π(eLP ) = eG, ξλ(u) = ξ

(G)
λ (u), and ηλ(v) = η

(G)
λ (v) for all λ, u, v ∈ LP ;

(2) The maps ξλ(u) and ηλ(v) satisfy the properties below.

ξλ(u)ξλu(v) = ξλ(λ\LP ((λu)v)) (∀λ, u, v ∈ LP ),

ηλξλ(u)(v)(w)(ηλ(v)(u)) = ηλ((λu)\LP (((λu)v)w))(u)

(∀λ, u, v, w ∈ LP ),

(λξλ(u)(v))ηλ(v)(u) = (λu)v (∀λ, u, v ∈ LP ),(2.5)

ξλ(eLP ) = ηλ(eLP ) = idLP (∀λ ∈ LP ).

We define the map R(G)(λ) (λ ∈ LP ) from LP × LP to itself by

(2.6) R(G)(λ)(u, v) = (η(G)
λ (v)(u), ξ(G)

λ (u)(v)) (u, v ∈ LP ).

From Propositions 3.3 and 5.1 in [13] and the above theorem, this map R(G)(λ)
is a bijective dynamical YB map associated with LP , LP , and (·).
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Remark 2.6. This method produces all YB maps constructed in the work
[10]. We suppose that LP is a group and that the map θ(u) satisfies

(2.7) θ(uv) = θ(u)θ(v) (∀u, v ∈ LP ).

The definition (2.2) of the map θ(u) and (2.7) immediately induce that π is
a bijective 1-cocycle of LP with coefficients in G [10, (8)]. Because of (2.3)
and (2.7), the map ξ

(G)
λ (u) (2.3) is independent of the dynamical parameter λ.

Since LP is a group, the map η
(G)
λ (v) (2.4) is also independent of λ. By the

definition of the YB map in [10, Case 2 in the proof of Theorem 2], the map
R(G)(λ) (2.6) is the YB map in [10].

Next we shall show a necessary and sufficient condition for the dynamical
YB map R(G)(λ) (2.6) to satisfy the unitary condition.

Let R(λ) be a dynamical YB map associated with H, X, and φ. This
dynamical YB map R(λ) is said to satisfy the unitary condition [13, Section
5], iff

(2.8) R(λ)PXR(λ) = PX (∀λ ∈ H).

Here we denote by PX the map from X × X to itself defined by

(2.9) PX(u, v) = (v, u) (u, v ∈ X).

Theorem 2.7 (Corollary 5.6 in [13]). The dynamical YB map R(G)(λ)
(2.6) satisfies the unitary condition, if and only if the group G is abelian.

Before ending this section, let us introduce dynamical braiding maps (see
[13, Section 2]).

Definition 2.8. Let H and X be nonempty sets, and φ a map from
H × X to H. A map σ(λ) : X × X → X × X (λ ∈ H) is a dynamical braiding
map associated with H, X, and φ, iff, for every λ ∈ H, σ(λ) satisfies the
following equation on X × X × X.

σ(λ)12σ(φ(λ, X(1)))23σ(λ)12 = σ(φ(λ, X(1)))23σ(λ)12σ(φ(λ, X(1)))23.

The concepts of the dynamical braiding map and the dynamical YB map
are exactly the same.

Proposition 2.9 (Proposition 2.1 in [13]). Let R(λ) and σ(λ) (λ ∈ H)
be maps from X × X to itself satisfying σ(λ) = PXR(λ) for all λ ∈ H. Here
PX is the map (2.9). The map R(λ) is a dynamical YB map associated with H,
X, and φ, if and only if the map σ(λ) is a dynamical braiding map associated
with H, X, and φ.
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§3. Construction

Our main aim in the present section is to show how to construct dynamical
YB maps. This is a generalization of the works [10, 13] (see Remarks 2.6 and
6.7).

Definition 3.1. A ternary system (M, µ) is a pair of a nonempty set
M and a ternary operation µ : M × M × M → M .

We shall simply denote by M a ternary system (M, µ).
Let L = (L, ·) be a left quasigroup, M = (M, µ) a ternary system, and

π : L → M a (set-theoretical) bijection. For λ, u ∈ L, we define the maps
ξ
(L,M,π)
λ (u) : L → L and η

(L,M,π)
λ (u) : L → L as follows: for v ∈ L,

ξ
(L,M,π)
λ (u)(v) = λ\L π−1(µ(π(λ), π(λu), π((λu)v)));(3.1)

η
(L,M,π)
λ (u)(v) = (λξ

(L,M,π)
λ (v)(u))\L ((λv)u).(3.2)

Here \L is the left division (2.1) of the left quasigroup L.
Let R(L,M,π)(λ) (λ ∈ L) denote the map from L × L to itself defined by

(3.3) R(L,M,π)(λ)(u, v) = (η(L,M,π)
λ (v)(u), ξ(L,M,π)

λ (u)(v)) (u, v ∈ L).

Since L is a left quasigroup, (3.2) is equivalent to the following invariance
condition of the map R(L,M,π)(λ) (see Remark 4.4).

(3.4) (λξ
(L,M,π)
λ (u)(v))η(L,M,π)

λ (v)(u) = (λu)v (∀λ, u, v ∈ L).

Theorem 3.2. The map R(L,M,π)(λ) (3.3) is a dynamical YB map as-
sociated with L, L, and (·), if and only if the ternary system M satisfies the
following equations for all a, b, c, d ∈ M :

µ(a, µ(a, b, c), µ(µ(a, b, c), c, d)) = µ(a, b, µ(b, c, d));(3.5)

µ(µ(a, b, c), c, d) = µ(µ(a, b, µ(b, c, d)), µ(b, c, d), d).(3.6)

This theorem induces that the triplet (L, M, π) with (3.5) and (3.6) gives
birth to a dynamical YB map R(L,M,π)(λ) (3.3) associated with L, L, and (·)
satisfying the invariance condition (3.4).

Section 6 describes several ternary systems with (3.5) and (3.6).
Let a be an element of the ternary system M . For the proof of Theorem 3.2,

we need the maps s(a) : M ×M → M ×M and s : M ×M ×M → M ×M ×M :
for x, y, z ∈ M ,

s(a)(x, y) = (µ(a, x, y), y);(3.7)

s(x, y, z) = (x, µ(x, y, z), z).(3.8)
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Lemma 3.3. The maps s(a)12 and s satisfy the braid group relation

(3.9) s(a)12ss(a)12 = ss(a)12s (∀a ∈ M),

if and only if the ternary system M satisfies (3.5) and (3.6).

Proof. The proof is straightforward.

Let λ be an element of the left quasigroup L, and let fλ denote the following
map from L × L × L to itself.

(3.10) fλ(u, v, w) = (λu, (λu)v, ((λu)v)w) (u, v, w ∈ L).

Lemma 3.4. The map fλ is bijective; f−1
λ (u, v, w) = (λ\L u, u\L v,

v\L w) (u, v, w ∈ L).

We define the maps σ(L,M,π)(λ) : L × L → L × L and σ(L,M,π)(λL(1))23 :
L × L × L → L × L × L as follows: for u, v, w ∈ L,

σ(L,M,π)(λ)(u, v) = (ξ(L,M,π)
λ (u)(v), η(L,M,π)

λ (v)(u));(3.11)

σ(L,M,π)(λL(1))23(u, v, w) = (u, σ(L,M,π)(λu)(v, w)).

Lemma 3.5. The maps σ(L,M,π)(λ)12 and σ(L,M,π)(λL(1))23 are ex-
pressed by means of the maps s(π(λ)) and s, respectively :

σ(L,M,π)(λ)12 = f−1
λ (π−1 × π−1 × π−1)s(π(λ))12(π × π × π)fλ;

σ(L,M,π)(λL(1))23 = f−1
λ (π−1 × π−1 × π−1)s(π × π × π)fλ.

Proof of Theorem 3.2. From Lemmas 3.3, 3.4, and 3.5, σ(L,M,π)(λ) is a
dynamical braiding map associated with L, L, and (·) (see Definition 2.8), if
and only if the ternary system M satisfies (3.5) and (3.6).

Proposition 2.9, (3.3), and (3.11) complete the proof.

§4. Characterization

This section clarifies a characterization of the dynamical YB map with
the invariance condition (4.5); this map is exactly the dynamical YB map
R(L,M,π)(λ) (3.3) constructed in the previous section.

To give a characterization, we need categories A and D (cf. [13, Section
3]). For category theory, see [8, 11]. Let L = (L, ·) be a left quasigroup (see
Definition 2.1), M = (M, µ) a ternary system (Definition 3.1) satisfying (3.5)
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and (3.6), and π : L → M a bijection. We denote by LMB the set of all such
triplets (L, M, π).

Triplets (L, (M, µ), π) and (L′, (M ′, µ′), π′) ∈ LMB are equivalent, iff L =
L′ as left quasigroups and the map h := π′π−1 : M → M ′ is a homomorphism
of ternary systems; that is, the map h : M → M ′ satisfies

(4.1) h(µ(a, b, c)) = µ′(h(a), h(b), h(c)) (∀a, b, c ∈ M).

This is an equivalence relation, and we write it in the form (L, M, π) ∼ (L′,
M ′, π′).

Let [(L, M, π)] denote the equivalence class to which (L, M, π) ∈ LMB

belongs, Ob(A) the class of all equivalence classes with respect to this relation.
By the definition of the relation ∼, all the left quasigroups L in repre-

sentatives (L, M, π) of V ∈ Ob(A) are the same. We denote by LV the left
quasigroup L.

Definition 4.1. Let V and V ′ be elements of Ob(A). We say that
f : V → V ′ is an element of Hom(A), iff f : LV → LV ′ is a homomorphism
of left quasigroups such that π′fπ−1 : M → M ′ is a homomorphism (4.1) of
ternary systems for all representatives (LV , M, π) ∈ V and (LV ′ , M ′, π′) ∈ V ′.

Remark 4.2. On account of the definition of the equivalence relation ∼,
f : V → V ′ ∈ Hom(A), iff f : LV → LV ′ is a homomorphism of left quasigroups
and there exist representatives (LV , M, π) ∈ V and (LV ′ , M ′, π′) ∈ V ′ such that
π′fπ−1 : M → M ′ is a homomorphism of ternary systems.

Proposition 4.3. A is a category : its objects are the elements of Ob(A);
its morphisms are the elements of Hom(A); the identity id and the composition
◦ of the category A are defined as follows:

for V ∈ Ob(A), idV (u) = u (u ∈ LV );(4.2)

for f : V → V ′, g : V ′ → V ′′ ∈ Hom(A) (V, V ′, V ′′ ∈ Ob(A)),

(g ◦ f)(u) = g(f(u)) (u ∈ LV ).(4.3)

The next task is to introduce a category D. Let L = (L, ·) be a left
quasigroup, and R(λ) (λ ∈ L) a map from L×L to itself. We denote by ξλ(u)
and ηλ(v) (λ, u, v ∈ L) the following maps from L to L.

(4.4) (ηλ(v)(u), ξλ(u)(v)) = R(λ)(u, v).

Let us suppose that this map R(λ) is a dynamical YB map associated with
L, L, and (·) satisfying the invariance condition below:

(4.5) (λξλ(u)(v))ηλ(v)(u) = (λu)v (∀λ, u, v ∈ L).
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Remark 4.4. To be more precise, Eq. (4.5) is the invariance condition
for the corresponding dynamical braiding map σ(λ) = PLR(λ) (for the map
PL, see (2.9)).

We denote by Ob(D) the class of all such pairs (L, R(λ)).

Definition 4.5. Let V = (L, R(λ)) and V ′ = (L′, R′(λ′)) be elements
of Ob(D). We say that f : V → V ′ is an element of Hom(D), iff f : L → L′ is
a homomorphism of left quasigroups satisfying R′(f(λ))(f × f) = (f × f)R(λ)
for all λ ∈ L.

Proposition 4.6. D is a category : its objects are the elements of Ob(D);
its morphisms are the elements of Hom(D); the definitions of the identity id
and the composition ◦ are similar to (4.2) and (4.3).

Theorem 4.7 gives a characterization of the dynamical YB maps with the
invariance condition (4.5).

Theorem 4.7. The category A is isomorphic to the category D.

The next section will be devoted to the proof of this theorem; we shall
explicitly construct functors S : A → D and T : D → A satisfying TS = idA
and ST = idD.

Remark 4.8. Theorem 4.7 produces an application of YB maps. Let L

be an associative left quasigroup and R a YB map defined on the set L × L.
We denote by ξ(u) and η(v) (u, v ∈ L) the maps from L to itself defined by
(η(v)(u), ξ(u)(v)) = R(u, v). We suppose that these maps satisfy the invariance
condition

(4.6) ξ(u)(v)η(v)(u) = uv (∀u, v ∈ L).

Because the binary operation of L is associative, (4.6) is equivalent to the
invariance condition (4.5), and (L, R) is an object of the category D as a result.
From Theorem 4.7 (and its proof), this YB map R is constructed by a ternary
system (Definition 3.1) satisfying (3.5) and (3.6).

§5. Proof of Theorem 4.7

This section presents the proof of Theorem 4.7. We shall first define a
functor S : A → D.
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Lemma 5.1. Let ((L, ·), (M, µ), π) and ((L′, ·′), (M ′, µ′), π′) be ele-
ments of LMB. The following conditions are equivalent :

(1) (L, M, π) ∼ (L′, M ′, π′);

(2) (R(L,M,π)(λ); L, L, (·)) = (R(L′,M ′,π′)(λ); L′, L′, (·′)) (1.2); that is, L = L′

as left quasigroups, and R(L,M,π)(λ) = R(L,M ′,π′)(λ) for all λ ∈ L(= L′).

Proof. On account of (3.2), the condition (2) is equivalent to the condition
(3) below.

(3) L = L′ as left quasigroups, and ξ
(L,M,π)
λ (u) = ξ

(L,M ′,π′)
λ (u) for all λ, u ∈ L.

We shall only show (1) from (3). It suffices to prove that the map h =
π′π−1 : M → M ′ is a homomorphism (4.1) of ternary systems.

Let a, b, and c be elements of M . We define the elements λ, u, and
v of the left quasigroup L by λ = π−1(a), u = π−1(a)\L π−1(b), and v =
π−1(b)\L π−1(c). Here \L is the left division (2.1) of L. Because of (3.1),

π−1(µ(a, b, c)) = λ(λ\L π−1(µ(π(λ), π(λu), π((λu)v))))

= λξ
(L,M,π)
λ (u)(v).

It follows from the condition (3) that

π−1(µ(a, b, c)) = π′−1(µ′(h(a), h(b), h(c))).

Hence, the map h is a homomorphism of ternary systems.

Let V = [(LV , M, π)] be an object of the category A. From Lemma 5.1,
we can define the dynamical YB map RV (λ) associated with LV , LV , and (·),
by using the dynamical YB map R(LV ,M,π)(λ) (3.3);

(5.1) RV (λ) = R(LV ,M,π)(λ).

Let V be an object of the category A. We define S(V ) by S(V ) =
(LV , RV (λ)).

Lemma 5.2. For V ∈ Ob(A), S(V ) is an object of the category D.

Proof. The proof is immediate from (3.4) and Theorem 3.2.

Lemma 5.3. Let V and V ′ be objects of the category A. If f : V →
V ′ ∈ Hom(A), then f is a morphism of the category D whose source and target
are S(V ) and S(V ′), respectively.
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Proof. Let (L, (M, µ), π) and (L′, (M ′, µ′), π′) be representatives of V and
V ′, respectively.

We shall demonstrate that R(L′,M ′,π′)(f(λ))(f × f) = (f × f)R(L,M,π)(λ)
for all λ ∈ L. Let u and v be elements of the left quasigroup L. Because
the map π′fπ−1 : M → M ′ is a homomorphism (4.1) of ternary systems (see
Definition 4.1),

f(π−1(µ(π(λ), π(λu), π((λu)v))))(5.2)

= π′−1(µ′(π′(f(λ)), π′(f(λu)), π′(f((λu)v)))).

Since the map f : L → L′ is a homomorphism of left quasigroups, (3.1)
and (5.2) induce that

f(ξ(L,M,π)
λ (u)(v)) = f(λ)\L f(π−1(µ(π(λ), π(λu), π((λu)v))))(5.3)

= ξ
(L′,M ′,π′)
f(λ) (f(u))(f(v)).

The above equation and (3.2) lead to that

(5.4) f(η(L,M,π)
λ (v)(u)) = η

(L′,M ′,π′)
f(λ) (f(u))(f(v)),

because the map f : L → L′ is a homomorphism of left quasigroups.
From (5.3) and (5.4), R(L′,M ′,π′)(f(λ))(f ×f) = (f ×f)R(L,M,π)(λ) for all

λ ∈ L. Thus f : S(V ) → S(V ′) is a morphism of the category D.

For f : V → V ′ ∈ Hom(A), we define S(f) : S(V ) → S(V ′) ∈ Hom(D) by
S(f) = f .

Proposition 5.4. S is a functor from the category A to the category
D.

The next task is to introduce a functor T : D → A. Let V = (L, R(λ)) be
an object of the category D. We define the maps ξλ(u) and ηλ(v) (λ, u, v ∈ L)
from L to L by (4.4). Let µL denote the ternary operation on L defined by

(5.5) µL(a, b, c) = aξa(a\L b)(b\L c) (a, b, c ∈ L).

Lemma 5.5. The ternary operation µL (5.5) satisfies (3.5) and (3.6).

Proof. Let λ be an element of the left quasigroup L. We define the maps
s(λ) : L × L → L × L and s : L × L × L → L × L × L as follows:

s(λ)(a, b) = (µL(λ, a, b), b) (a, b ∈ L);

s(a, b, c) = (a, µL(a, b, c), c) (a, b, c ∈ L).
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On account of Lemma 3.3, it suffices to prove that the maps s(λ)12 and s satisfy
the braid group relation (3.9).

Let σ(λ) denote the map from L × L to itself defined by σ(λ) = PLR(λ).
Here PL is the map (2.9). The maps σ(λ)12 and σ(λL(1))23 are expressed as
follows (cf. Lemma 3.5):

σ(λ)12 = f−1
λ s(λ)12fλ; σ(λL(1))23 = f−1

λ sfλ.

Here fλ is the bijection (3.10) (see Lemma 3.4).
Because σ(λ) is a dynamical braiding map associated with L, L, and (·)

(see Definition 2.8 and Proposition 2.9), the maps s(λ)12 and s satisfy (3.9).
This completes the proof.

Corollary 5.6. The triplet (L, (L, µL), idL) is an element of the set
LMB.

Let V = (L, R(λ)) be an object of the category D. We define T (V ) ∈
Ob(A) by T (V ) = [(L, (L, µL), idL)].

Lemma 5.7. Let V and V ′ be objects of the category D. If f : V →
V ′ ∈ Hom(D), then f is a morphism of the category A whose source and target
are T (V ) and T (V ′), respectively.

Proof. Let (L, R(λ)) and (L′, R′(λ′)) denote the objects V and V ′, respec-
tively. We define the maps ξλ(u) : L → L, ηλ(v) : L → L, ξ′λ′(u′) : L′ → L′, and
η′

λ′(v′) : L′ → L′ (λ, u, v ∈ L, λ′, u′, v′ ∈ L′) by (4.4): (ηλ(v)(u), ξλ(u)(v)) =
R(λ)(u, v); (η′

λ′(v′)(u′), ξ′λ′(u′)(v′)) = R′(λ′)(u′, v′). Let µL and µL′ denote the
ternary operations on L and L′ defined by (5.5), respectively.

We shall show that f : (L, µL) → (L′, µL′) is a homomorphism (4.1) of
ternary systems. By Definition 4.5, R′(f(λ))(f × f) = (f × f)R(λ) for all
λ ∈ L. As a result, f(ξλ(u)(v)) = ξ′f(λ)(f(u))(f(v)) for all λ, u, v ∈ L. Because
f : L → L′ is a homomorphism of left quasigroups, the above equation and the
definition (5.5) of µL and µL′ induce that f(µL(a, b, c)) = µL′(f(a), f(b), f(c))
for all a, b, c ∈ L. That is, f : (L, µL) → (L′, µL′) is a homomorphism of ternary
systems.

Since (L, (L, µL), idL) ∈ T (V ), (L′, (L′, µL′), idL′) ∈ T (V ′), and id−1
L′ f idL :

(L, µL) → (L′, µL′) is a homomorphism of ternary systems, Remark 4.2 gives
rise to that f : T (V ) → T (V ′) is a morphism of the category A.

For f : V → V ′ ∈ Hom(D), we define T (f) : T (V ) → T (V ′) ∈ Hom(A) by
T (f) = f .
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Proposition 5.8. T is a functor from the category D to the category
A.

Proof of Theorem 4.7. We shall only demonstrate that TS(V ) = V for
V ∈ Ob(A).

Let (LV , (M, µ), π) be a representative of V . By the definitions, S(V ) =
(LV , R(LV ,M,π)(λ)) and TS(V ) = [(LV , (LV , µLV

), idLV
)] (see (5.1) and (5.5)).

For the proof, it suffices to show that (LV , (LV , µLV
), idLV

) ∼ (LV , M, π).
Let a, b, and c be elements of LV . From (3.1) and (5.5),

π(µLV
(a, b, c)) = π(aξ(LV ,M,π)

a (a\LV
b)(b\LV

c)) = µ(π(a), π(b), π(c)).

Hence, the map πid−1
LV

: (LV , µLV
) → (M, µ) is a homomorphism (4.1) of

ternary systems, and consequently, (LV , (LV , µLV
), idLV

) ∼ (LV , M, π).

§6. Examples of Ternary Systems

This section describes several ternary systems (Definition 3.1) satisfying
(3.5) and (3.6). Later we shall characterize the dynamical YB maps R(L,M,π)(λ)
(3.3) constructed by means of these ternary systems.

Example 6.1. Let M be a nonempty set, and f a map from the set M

to M . We define the ternary operations on M by:

µ(a, b, c) = f(a) (∀a, b, c ∈ M);

µ(a, b, c) = f(c) (∀a, b, c ∈ M).

Each ternary system (M, µ) defined above satisfies (3.5) and (3.6).

Remark 6.2. Example 6.1 satisfying f = idM produces degenerate YB
maps in [1].

(1) Let µ denote the ternary operation on L defined by µ(a, b, c) = c. If
L is a left quasigroup together with the binary operation uv := v, then
R(L,(L,µ),idL)(λ)(u, v) = (v, v) (λ, u, v ∈ L). This is the map PL∆2 in [1].
Here PL is the map (2.9).

(2) If L = (L, ·, eL) is a group and µ(a, b, c) = c (a, b, c ∈ L), then R(L,M,π)(λ) is
the map PLµ1 in [1]. If L = (L, ·, eL) is an abelian group and µ(a, b, c) = a

(a, b, c ∈ L), then R(L,M,π)(λ) is the map PLµ2 in [1].
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Example 6.3. Let M be a nonempty set, and f a map from M to M

satisfying f2 = f . We define the ternary operation on M by

µ(a, b, c) = f(b) (∀a, b, c ∈ M).

This ternary system (M, µ) satisfies (3.5) and (3.6).

Example 6.4. Let M1 = (M1, µ1) and M2 = (M2, µ2) be ternary sys-
tems satisfying (3.5) and (3.6). We denote by M the direct product M1 × M2

of the sets M1 and M2; in addition, let us define the ternary operation µ on
the set M by

µ(a, b, c) = (µ1(a1, b1, c1), µ2(a2, b2, c2))

(a = (a1, a2), b = (b1, b2), c = (c1, c2) ∈ M = M1 × M2).

This ternary system (M, µ) satisfies (3.5) and (3.6).

We shall introduce three ternary operations µG
1 (6.2), µG

2 (6.3), and µG
3

(6.7) produced by left quasigroups.
Let G = (G, ∗) be a left quasigroup (see Definition 2.1) satisfying that

(6.1) (a ∗ c)\G ((a ∗ b) ∗ c) = (a′ ∗ c)\G ((a′ ∗ b) ∗ c) (∀a, a′, b, c ∈ G).

Here \G is the left division (2.1) of G. Groups, the quasigroup ({1, 2, 3}, ∗) in
Example 2.3, and the left quasigroups having the right distributive law

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) (∀x, y, z ∈ G)

satisfy (6.1) (see below the proof of Proposition 7.3). For distributive quasi-
groups, see [12, Section V.2].

We define the ternary operations µG
1 and µG

2 on the left quasigroup G by:

µG
1 (a, b, c) = a ∗ (b\G c) (a, b, c ∈ G);(6.2)

µG
2 (a, b, c) = c ∗ (b\G a) (a, b, c ∈ G).(6.3)

Proposition 6.5. These ternary systems (G, µG
1 ) and (G, µG

2 ) satisfy
(3.5) and (3.6).

Proof. We shall only prove that the ternary system (G, µG
1 ) satisfies (3.5)

and (3.6).
The following lemma gives rise to (3.5). Its proof is immediate from (6.2).

Lemma 6.6. For a, b, c, d ∈ G, µG
1 (a, b, µG

1 (b, c, d)) = µG
1 (a, c, d).
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We shall prove (3.6). In view of (6.2),

LHS of (3.6)

= (a ∗ (b\G c)) ∗ (c\G d)

= (a ∗ (c\G d)) ∗ ((a ∗ (c\G d))\G ((a ∗ (b\G c)) ∗ (c\G d))),

RHS of (3.6)

= (a ∗ (c\G d)) ∗ ((b ∗ (c\G d))\G d)

= (a ∗ (c\G d)) ∗ ((b ∗ (c\G d))\G ((b ∗ (b\G c)) ∗ (c\G d))).

The right-hand-sides of the above equations are the same, because of (6.1).

Remark 6.7. Every dynamical YB map R(G)(λ) (2.6) constructed in the
work [13] is produced by the ternary system (G, µG

1 ) (6.2). Let L be a loop,
G = (G, ∗, eG) a group, and π : L → G a bijection satisfying π(eL) = eG. Here
eG is the unit element of the group G. By the definitions (2.2) of the maps
θ(u) and θ(u)−1, the map ξ

(G)
λ (u) (2.3) (λ, u ∈ L) is expressed as

(6.4) ξ
(G)
λ (u)(v) = λ\L π−1(µG

1 (π(λ), π(λu), π((λu)v))) (v ∈ L).

On account of (2.3), (2.4), (3.1), and (3.2), (6.4) induces that all the dynamical
YB maps R(G)(λ) are constructed by means of the ternary systems (G, µG

1 ).

Next task is to define the ternary operation µG
3 (6.7).

Let G = (G, ∗) be a left quasigroup. We suppose that G satisfies the
following for all a, b, c, d ∈ G:

(b ∗ c) ∗ (a\G ((a ∗ c) ∗ ((b ∗ c)\G (b ∗ d))))(6.5)

= b ∗ (a\G ((a ∗ c) ∗ d));

(a ∗ c) ∗ ((b ∗ c)\G (b ∗ d))(6.6)

= ((a ∗ c) ∗ d) ∗ ((b ∗ (a\G ((a ∗ c) ∗ d)))\G (b ∗ d)).

If G is a group, G satisfies (6.5) and (6.6).
Let µG

3 denote the ternary operation on the set G defined by

(6.7) µG
3 (a, b, c) = b ∗ (a\G c) (a, b, c ∈ G).

Proposition 6.8. This ternary system (G, µG
3 ) satisfies (3.5) and (3.6).

Proof. We shall only prove that the ternary system (G, µG
3 ) satisfies (3.5).
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In view of (6.7),

LHS of (3.5)

= (b ∗ (a\G c)) ∗ (a\G (c ∗ ((b ∗ (a\G c))\G d)));

RHS of (3.5)

= b ∗ (a\G (c ∗ (b\G d)))

= b ∗ (a\G ((a ∗ (a\G c)) ∗ (b\G d))).

The right-hand-sides of the above equations are the same, because of (6.5).

Final task in this section is to characterize the dynamical YB map
R(L,M,π)(λ) (3.3) that the ternary systems (6.2), (6.3), and (6.7) define.

Let A1 denote the subcategory of the category A whose objects and mor-
phisms are defined as follows: V ∈ Ob(A) is an object of A1, iff there exists
a representative (L, (M, µ), π) of V such that the ternary operation µ on M

satisfies

µ(a, b, µ(b, c, d)) = µ(a, c, d) (∀a, b, c, d ∈ M),(6.8)

µ(a, a, b) = b (∀a, b ∈ M);(6.9)

f : V → V ′ ∈ Hom(A) is a morphism of A1, iff V, V ′ ∈ Ob(A1).
Let L be a left quasigroup, G a left quasigroup satisfying (6.1), and π

a (set-theoretical) bijection from L to G. [(L, (G, µG
1 ), π)] is an object of the

category A because of Proposition 6.5. Moreover,

Proposition 6.9. [(L, (G, µG
1 ), π)] is an object of the category A1.

Proof. The proof is immediate from (6.2) (see Lemma 6.6).

Conversely, every object of the category A1 is expressed by means of the
ternary system (G, µG

1 ).

Proposition 6.10. If V ∈ Ob(A1), then there exist a left quasigroup
(G, ∗) satisfying (6.1) and a bijection π′ : LV → G such that V = [(LV , (G,

µG
1 ), π′)].

Proof. We denote by L the left quasigroup LV . Since V ∈ Ob(A1), there
exists a representative (L, (M, µ), π) of V such that the ternary operation µ on
M satisfies (6.8) and (6.9).
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We fix any element λ ∈ L. Let α and β denote the following binary
operations on L: for u, v ∈ L,

α(u, v) = λ\L π−1(µ(π(λ), π(λu), π(λv)));(6.10)

β(u, v) = λ\L π−1(µ(π(λu), π(λ), π(λv))).(6.11)

Lemma 6.11. For all u, v ∈ L, β(u, α(u, v)) = v and α(u, β(u, v)) = v.

Proof. The proof is immediate from (6.8) and (6.9).

We denote by G and (∗) the set L and the binary operation β on the set
G(= L), respectively. The above lemma gives rise to that G = (G, ∗) is a left
quasigroup. The left division on G is the binary operation α; a\G c = α(a, c)
(a, c ∈ G).

Lemma 6.12. The left quasigroup G satisfies (6.1).

Proof. Because of (6.8), (6.10), and (6.11),

(6.12) a ∗ (b\G c) = λ\L π−1(µ(π(λa), π(λb), π(λc))) (∀a, b, c ∈ G).

Let a, a′, b, and c be elements of G(= L). In view of (6.12),

(a ∗ b) ∗ c

= (a ∗ (a′\G (a′ ∗ b))) ∗ ((a′ ∗ b)\G ((a′ ∗ b) ∗ c))

= λ\L π−1(µ(µ(π(λa), π(λa′), π(λ(a′ ∗ b))), π(λ(a′ ∗ b)), π(λ((a′ ∗ b) ∗ c))));

(a ∗ c) ∗ ((a′ ∗ c)\G ((a′ ∗ b) ∗ c))

= (a ∗ (a′\G (a′ ∗ ((a′ ∗ b)\G ((a′ ∗ b) ∗ c))))) ∗
∗((a′ ∗ ((a′ ∗ b)\G ((a′ ∗ b) ∗ c)))\G ((a′ ∗ b) ∗ c))

= λ\L π−1(µ(µ(π(λa), π(λa′), µ(π(λa′), π(λ(a′ ∗ b)), π(λ((a′ ∗ b) ∗ c)))),

µ(π(λa′), π(λ(a′ ∗ b)), π(λ((a′ ∗ b) ∗ c))), π(λ((a′ ∗ b) ∗ c)))).

With the aid of (3.6),

(a ∗ b) ∗ c = (a ∗ c) ∗ ((a′ ∗ c)\G ((a′ ∗ b) ∗ c))

for all a, a′, b, c ∈ G. This is equivalent to (6.1).

Let π′ denote the map from L to G(= L) defined by π′(u) = λ\L u (u ∈ L).
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Lemma 6.13. The map π′ is bijective; π′−1(a) = λa (a ∈ G).

Finally, we shall demonstrate that V = [(L, (G, µG
1 ), π′)]. From (6.12),

π′π−1(µ(ππ′−1(a), ππ′−1(b), ππ′−1(c))) = a ∗ (b\G c) = µG
1 (a, b, c).

Hence, the map ππ′−1 : (G, µG
1 ) → M is a homomorphism (4.1) of ternary sys-

tems. As a result, (L, M, π) ∼ (L, (G, µG
1 ), π′); that is, V = [(L, (G, µG

1 ), π′)].
This completes the proof of Proposition 6.10.

We denote by D1 the subcategory of the category D whose objects and
morphisms are defined as follows: V = (L, R(λ)) ∈ Ob(D) is an object of D1,
iff the map ξλ(u) (λ, u ∈ L) (4.4) satisfies

ξλ(u)ξλu(v) = ξλ(λ\L ((λu)v)) (∀λ, u, v ∈ L),

ξλ(λ\L λ) = idL (∀λ ∈ L);

f : V → V ′ ∈ Hom(D) is a morphism of D1, iff V, V ′ ∈ Ob(D1).
The functors S : A → D and T : D → A induce the following.

Proposition 6.14. The category A1 is isomorphic to the category D1.

Proof. The proof is straightforward.

Let us introduce subcategories A2 and A3 (resp. D2 and D3) of the category
A (resp. D), which characterize the dynamical YB maps R(L,M,π)(λ) (3.3)
constructed by means of the ternary systems (6.3) and (6.7): V ∈ Ob(A) is an
object of A2, iff there exists a representative (L, (M, µ), π) of V such that the
ternary operation µ on M satisfies

µ(µ(a, b, c), c, d) = µ(a, b, d) (∀a, b, c, d ∈ M),(6.13)

µ(a, b, b) = a (∀a, b ∈ M);(6.14)

f : V → V ′ ∈ Hom(A) is a morphism of A2, iff V, V ′ ∈ Ob(A2); V ∈ Ob(A) is
an object of A3, iff there exists a representative (L, (M, µ), π) of V such that
the ternary operation µ on M satisfies

µ(a, b, c) = µ(d, b, µ(a, d, c)) (∀a, b, c, d ∈ M),(6.15)

µ(a, a, b) = b (∀a, b ∈ M);(6.16)

f : V → V ′ ∈ Hom(A) is a morphism of A3, iff V, V ′ ∈ Ob(A3); V =
(L, R(λ)) ∈ Ob(D) is an object of D2, iff the maps ξλ(u) and ηλ(v) (λ, u, v ∈ L)
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(4.4) satisfy

(λξλ(u)(v))ξλξλ(u)(v)(ηλ(v)(u))(w)

= λξλ(u)((λu)\L (((λu)v)w)) (∀λ, u, v, w ∈ L),

ξλ(u)((λu)\L (λu)) = λ\L λ (∀λ, u ∈ L);

f : V → V ′ ∈ Hom(D) is a morphism of D2, iff V, V ′ ∈ Ob(D2); V =
(L, R(λ)) ∈ Ob(D) is an object of D3, iff the map ξλ(u) (λ, u ∈ L) (4.4) satisfies

λξλ(v)((λv)\L ((λu)ξλu((λu)\L λ)(w)))

= (λu)ξλu((λu)\L (λv))((λv)\L (λw)) (∀λ, u, v, w ∈ L),

ξλ(λ\L λ) = idL (∀λ ∈ L);

f : V → V ′ ∈ Hom(D) is a morphism of D3, iff V, V ′ ∈ Ob(D3).
The functors S : A → D and T : D → A give rise to the following

proposition.

Proposition 6.15. The categories A2 and A3 are isomorphic to the
categories D2 and D3, respectively.

The proof of the following proposition is immediate from (6.3).

Proposition 6.16. Let L be a left quasigroup, G a left quasigroup sat-
isfying (6.1), and π a (set-theoretical) bijection from L to G. Then [(L, (G, µG

2 ),
π)] is an object of the category A2.

Proposition 6.17. If V ∈ Ob(A2), then there exist a left quasigroup
(G, ∗) satisfying (6.1) and a bijection π′ : LV → G such that V = [(LV , (G, µG

2 ),
π′)].

Proof. The proof is similar to that of Proposition 6.10. For the reason
that V ∈ Ob(A2), there exists a representative (LV , (M, µ), π) of V such that
the ternary operation µ on M satisfies (6.13) and (6.14).

Let G denote the set LV . We fix any element λ ∈ G(= LV ). Let us define
the binary operation ∗ on G(= LV ) by

a ∗ b = λ\LV
π−1(µ(π(λb), π(λ), π(λa))) (a, b ∈ G).

Then (G, ∗) is a left quasigroup; the left division \G is as follows.

a\G c = λ\LV
π−1(µ(π(λc), π(λa), π(λ))) (a, c ∈ G(= LV )).
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The following equation induces that (G, ∗) satisfies (6.1) (cf. Lemma 6.12).

c ∗ (b\G a) = λ\LV
π−1(µ(π(λa), π(λb), π(λc))) (∀a, b, c ∈ G).

Moreover, we denote by π′ the bijection from LV to G(= LV ) defined by
π′(u) = λ\LV

u (u ∈ LV ). The triplet (LV , (G, µG
2 ), π′) is a representative of

V ; that is, V = [(LV , (G, µG
2 ), π′)].

Let L be a left quasigroup, G a left quasigroup satisfying (6.5) and (6.6),
and π a (set-theoretical) bijection from L to G. Then [(L, (G, µG

3 ), π)] is an
object of the category A by virtue of Proposition 6.8.

Proposition 6.18. [(L, (G, µG
3 ), π)] is an object of the category A3.

Proposition 6.19. If V ∈ Ob(A3), then there exist a left quasigroup
(G, ∗) satisfying (6.5) and (6.6), and a bijection π′ : LV → G such that V =
[(LV , (G, µG

3 ), π′)].

Proof. Because V ∈ Ob(A3), there exists a representative (LV , (M, µ), π)
of V such that the ternary operation µ on M satisfies (6.15) and (6.16).

Let G denote the set LV . We fix any element λ ∈ G(= LV ). Let us define
the binary operation ∗ on G(= LV ) by

a ∗ b = λ\LV
π−1(µ(π(λ), π(λa), π(λb))) (a, b ∈ G).

Then (G, ∗) is a left quasigroup satisfying (6.5) and (6.6); the left division \G

is as follows.

a\G c = λ\LV
π−1(µ(π(λa), π(λ), π(λc))) (a, c ∈ G(= LV )).

The proof of (6.5) and (6.6) is due to the following (cf. Lemma 6.12).

b ∗ (a\G c) = λ\LV
π−1(µ(π(λa), π(λb), π(λc))) (∀a, b, c ∈ G).

In addition, we denote by π′ the bijection from LV to G(= LV ) defined by
π′(u) = λ\LV

u (u ∈ LV ).
These (G, ∗) and π′ are what we desire.

§7. Unitary Condition

Let (L, M, π) be an element of LMB. In this section, we discuss the
unitary condition (2.8) of the dynamical YB map R(L,M,π)(λ) (3.3).
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Proposition 7.1. The dynamical YB map R(L,M,π)(λ) satisfies the
unitary condition, if and only if the ternary operation µ on M satisfies that

(7.1) µ(a, µ(a, b, c), c) = b (∀a, b, c ∈ M).

Proof. Let λ be an element of the left quasigroup L. We define the map
f̃λ : L × L → L × L by

(7.2) f̃λ(u, v) = (λu, (λu)v) (u, v ∈ L).

Lemma 7.2. The map f̃λ is bijective; f̃−1
λ (u, v) = (λ\L u, u\L v) (u, v

∈ L). Here \L is the left division (2.1) of L.

By using the maps PL (2.9), s(π(λ)) (3.7), f̃λ (7.2), and f̃−1
λ , the dynamical

YB map R(L,M,π)(λ) is expressed as follows.

(7.3) R(L,M,π)(λ) = PLf̃−1
λ (π−1 × π−1)s(π(λ))(π × π)f̃λ.

Since the map π : L → M is bijective, the unitary condition of the dynamical
YB map R(L,M,π)(λ) is equivalent to that s(a)2 = idM×M for all a ∈ M .

The rest of the proof is immediate from the definition (3.7) of the map
s(a).

Let M denote one of the ternary systems in Section 6. By using Proposition
7.1, we shall clarify a necessary and sufficient condition for the dynamical YB
map R(L,M,π)(λ) (3.3) to satisfy the unitary condition.

Let us suppose that M is a ternary system in Example 6.1. From Proposi-
tion 7.1, the dynamical YB map R(L,M,π)(λ) does not satisfy the unitary con-
dition, unless |M | = 1. If |M | = 1, then the dynamical YB map R(L,M,π)(λ) =
idL×L; hence, it is trivial that the dynamical YB map R(L,M,π)(λ) satisfies the
unitary condition.

Next we suppose that M is a ternary system in Example 6.3. The dynam-
ical YB map R(L,M,π)(λ) satisfies the unitary condition, if and only if the map
f is the identity map idM . If f = idM , then R(L,M,π)(λ) = PL (2.9).

Proposition 7.3. Let M be a ternary system (G, µG
1 ) (6.2) or (G, µG

2 )
(6.3). The dynamical YB map R(L,M,π)(λ) satisfies the unitary condition, if
and only if

(7.4) (a ∗ b) ∗ c = (a ∗ c) ∗ b (∀a, b, c ∈ G).
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Proof. Let G = (G, ∗) be a left quasigroup satisfying (6.1). We shall only
show this proposition in the case that M = (G, µG

1 ).
Let us suppose that the dynamical YB map R(L,M,π)(λ) satisfies the uni-

tary condition. It follows from (6.2) and Proposition 7.1 that

a ∗ ((a ∗ c)\G ((a ∗ b) ∗ c)) = µG
1 (a, µG

1 (a, a ∗ b, (a ∗ b) ∗ c), (a ∗ b) ∗ c)

= a ∗ b (∀a, b, c ∈ G).

This is equivalent to (7.4), since G is a left quasigroup.
Conversely, we suppose that Eq. (7.4) holds. With the aid of (6.2),

LHS of (7.1) = a ∗ ((a ∗ (b\G c))\G c)(7.5)

= a ∗ ((a ∗ (b\G c))\G ((a ∗ (a\G b)) ∗ (b\G c)))

for all a, b, c ∈ G. By virtue of (7.4),

RHS of (7.5) = a ∗ ((a ∗ (b\G c))\G ((a ∗ (b\G c)) ∗ (a\G b)))

= b.

Because of Proposition 7.1, the dynamical YB map R(L,M,π)(λ) satisfies the
unitary condition.

Let G be an abelian group or the quasigroup ({1, 2, 3}, ∗) in Example 2.3.
This G satisfies (7.4) (the proof is straightforward); in addition, (7.4) induces
that G satisfies (6.1).

Remark 7.4. If the left quasigroup G is a group, then (7.4) is equiva-
lent to that the group G is abelian. Hence, Remark 6.7 and Proposition 7.3
reproduce Theorem 2.7.

The proof of the proposition below is similar to that of Proposition 7.3.

Proposition 7.5. Let M be a ternary system (G, µG
3 ) (6.7). The dy-

namical YB map R(L,M,π)(λ) satisfies the unitary condition, if and only if

(a ∗ b) ∗ b = a (∀a, b ∈ G).

§8. IRF-IRF Correspondence

Let Li = (Li, •i) (i = 1, 2) be left quasigroups (see Definition 2.1), M =
(M, µ) a ternary system (Definition 3.1) satisfying (3.5) and (3.6), and πi :
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Li → M (i = 1, 2) bijections. Let λ1 and λ2 be elements of the left quasigroups
L1 and L2, respectively.

To end this paper, we establish a correspondence between two dynamical
YB maps R(L1,M,π1)(λ1) and R(L2,M,π2)(λ2) (3.3) called an IRF-IRF corre-
spondence (Proposition 8.1). Let f̃

(i)
λi

(i = 1, 2) denote the map from Li × Li

to itself defined by (7.2). By means of these maps, we define the map J(λ1) :
L1 × L1 → L2 × L2 as follows.

J(λ1) = f̃
(2)−1

π−1
2 π1(λ1)

(π−1
2 π1 × π−1

2 π1)f̃
(1)
λ1

PL1 .

Here PL1 is the map (2.9). Let us define the maps R(L2,M,π2) 21(λ2) : L2 ×
L2 → L2 × L2 and J21(λ1) : L1 × L1 → L2 × L2 by R(L2,M,π2) 21(λ2) =
PL2R

(L2,M,π2)(λ2)PL2 and J21(λ1) = PL2J(λ1)PL1 .
Eq. (7.3) plays an essential role in the proof of Proposition 8.1.

Proposition 8.1. R(L1,M,π1)(λ1) = J(λ1)−1R(L2,M,π2) 21(π−1
2 π1(λ1))

J21(λ1).

Proof. Let a denote the element π1(λ1) of the ternary system M . From
(7.3),

s(a) = (πi × πi)f̃
(i)

π−1
i (a)

PLi
R(Li,M,πi)(π−1

i (a))f̃ (i)−1

π−1
i (a)

(π−1
i × π−1

i )

for i = 1, 2. This equation immediately induces Proposition 8.1.

This IRF-IRF correspondence is said to be a vertex-IRF correspondence,
iff the dynamical YB map R(L2,M,π2)(λ2) is independent of the dynamical pa-
rameter λ2; hence, R(L2,M,π2)(λ2) is a YB map. We denote by R(L2,M,π2) the
YB map R(L2,M,π2)(λ2). The vertex-IRF correspondence is as follows (cf. [4,
Definition 5.4] and [9, (4.10)]).

(8.1) R(L1,M,π1)(λ1) = J(λ1)−1R(L2,M,π2) 21J21(λ1).

Remark 8.2. The maps J(λ1) and R(L1,M,π1)(λ1) correspond to the fu-
sion matrix and the exchange matrix, respectively (see [4, Sections 5.1 and 5.2]
and [9, Sections 3 and 4]).

Let V = (L, R(λ)) be an object of the category D1. We shall discuss a
vertex-IRF correspondence whose IRF part is this dynamical YB map R(λ).

Proposition 8.3. The dynamical YB map R(λ) has at least one vertex-
IRF correspondence.
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Proof. From Propositions 6.10 and 6.14, there exist a left quasigroup
(G, ∗) satisfying (6.1) and a bijection π:L→G such that R(λ)=R(L,(G,µG

1 ),π) (λ)
(3.3).

Let ◦ denote the binary operation on the set L defined by u ◦ v =
π−1(π(u) ∗ π(v)) (u, v ∈ L).

Lemma 8.4. L′ = (L, ◦) is a left quasigroup; the left division \L′ (2.1)
of L′ is defined by u\L′ w = π−1(π(u)\G π(w)) (u, w ∈ L′).

Proof. The proof is straightforward, because G is a left quasigroup and
π is a bijection.

By virtue of (3.1), (6.2), and the definition of the binary operation ◦,

ξ
(L′,(G,µG

1 ),π)
λ (u)(v)(8.2)

= λ\L′ π−1(µG
1 (π(λ), π(λ ◦ u), π((λ ◦ u) ◦ v)))

= v

for all λ, u, v ∈ L′. With the aid of (3.2), (8.2), and Lemma 8.4,

η
(L′,(G,µG

1 ),π)
λ (v)(u) = π−1((π(λ) ∗ π(v))\G ((π(λ) ∗ π(u)) ∗ π(v)))

for all λ, u, v ∈ L′. This element η
(L′,(G,µG

1 ),π)
λ (v)(u) is independent of λ because

of (6.1). Hence, the dynamical YB map R(L′,(G,µG
1 ),π)(λ) is a YB map.

From Proposition 8.1, the dynamical YB map R(λ) = R(L,(G,µG
1 ),π)(λ)

has a vertex-IRF correspondence whose vertex counterpart is this YB map
R(L′,(G,µG

1 ),π)(λ).

We can construct objects V = (L, R(λ)) of the category D1 such that
each R(λ) really depends on the dynamical parameter λ. Let G = (G, ∗) be a
quasigroup satisfying (6.1) (see Definition 2.2), and let ◦ denote the following
binary operation on G: a ◦ b = b (a, b ∈ G). Then L′ = (G, ◦) is a left
quasigroup, and (3.3) gives rise to that

(8.3) R(L′,(G,µG
1 ),idG)(λ)(u, v) = (v, λ ∗ (u\G v)) (∀λ, u, v ∈ G).

On account of Propositions 6.9 and 6.14, the pair (L′, R(L′,(G,µG
1 ),idG)(λ)) is an

object of the category D1.
We suppose that R(L′,(G,µG

1 ),idG)(λ) = R(L′,(G,µG
1 ),idG)(λ′). Then λ∗

(u\G v) = λ′ ∗ (u\G v) for all u, v ∈ G. This equation induces that λ = λ′,
because G is a quasigroup. Hence, the dynamical YB map R(L′,(G,µG

1 ),idG)(λ)
is dependent on λ, unless |G| = 1.
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Remark 8.5. Let L and G be groups, and π a bijective 1-cocycle of
the group L with coefficients in the group G. From Remarks 2.6 and 6.7,
R(L,(G,µG

1 ),π)(λ) is the YB map in [10]. Let us suppose that |L| �= 1 (hence
|G| �= 1). The YB map R(L,(G,µG

1 ),π)(λ) has a vertex-IRF correspondence whose
IRF counterpart is the dynamical YB map R(L′,(G,µG

1 ),idG)(λ) (λ ∈ L′(= G))
(8.3).
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