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Magnetic Pseudodifferential Operators

By

Viorel Iftimie, Marius Măntoiu and Radu Purice∗

Abstract

In previous papers, a generalization of the Weyl calculus was introduced in con-
nection with the quantization of a particle moving in R

n under the influence of a
variable magnetic field B. It incorporates phase factors defined by B and reproduces
the usual Weyl calculus for B = 0. In the present article we develop the classical pseu-
dodifferential theory of this formalism for the standard symbol classes Sm

ρ,δ. Among
others, we obtain properties and asymptotic developments for the magnetic symbol
multiplication, existence of parametrices, boundedness and positivity results, proper-
ties of the magnetic Sobolev spaces. In the case when the vector potential A has all
the derivatives of order ≥ 1 bounded, we show that the resolvent and the fractional
powers of an elliptic magnetic pseudodifferential operator are also pseudodifferential.
As an application, we get a limiting absorption principle and detailed spectral results
for self-adjoint operators of the form H = h(Q, ΠA), where h is an elliptic symbol, Q
denotes multiplication with the variables ΠA = D−A, D is the operator of derivation
and A is the vector potential corresponding to a short-range magnetic field.

Introduction

One of the different, but related, points of view on the usual Weyl calculus
says that the correspondence symbol �→ operator, f �→ Op(f), is a functional
calculus for the family of operators Q1, . . . , Qn; D1, . . . , Dn on L2(Rn), where
Qj is the multiplication with the variable xj and Dj = −i∂j . The familiar
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notation Op(f) = f(Q, D) keeps track of this fact. The relative sophistication
of this formalism has its roots in the non-commutativity of the basic operators:

(0.1) i[Qj , Qk] = 0 = i[Dj , Dk], i[Dj , Qk] = δj,k.

For a nonrelativistic quantum particle in Rn placed in a magnetic field B

deriving from a vector potential A, the basic self-adjoint operators (quantum
observables) are the positions Q1, . . . , Qn and the magnetic momenta ΠA

1 :=
D1 − A1, . . . , ΠA

n := D1 − An, satisfying the commutation relations

(0.2) i[Qj , Qk] = 0, i[ΠA
j , Qk] = δjk, i[ΠA

j , ΠA
k ] = Bjk,

where Bjk is (the operator of multiplication by) the component (jk) of the
magnetic field. These relations are a representation by unbounded operators of
a Lie algebra that has infinite dimension if Bjk are not all polynomial functions.
For the case of a constant magnetic field such a calculus has been developped
in [BMGH], or in [B] for the case of a lattice.

It is natural to look for a pseudodifferential calculus adapted to such a
situation. At first sight, a procedure could be to replace in the explicit formula
for Op(f) the symbol f(x, ξ) by f(x, ξ−A(x)), obtaining an operator OpA(f).
Although largely used in the literature (see [GMS], [Ic1], [Ic2], [II], [IT1], [IT2],
[ITs1], [ITs2], [NU1], [NU2], [Pa], [Um]), this point of view does not seem
adequate, due to the fact that the operators OpA(f), although representing
physical observables, are not gauge covariant. Two vector potentials A and A′

connected by A′ = A + dϕ for some smooth real function ϕ, being assigned to
the same magnetic field B = dA = dA′, should produce unitarily equivalent
operators OpA(f) and OpA′(f) for all reasonable f . In Section 6 we are going to
exibit large classes of symbols f (including the third order monomial f(x, ξ) =
ξjξkξl) for which the expected equality OpA+dϕ(f) = eiϕOpA(f)e−iϕ fails.
The pseudodifferential calculus with a magnetic field has been used in several
papers dealing with the Peierls substitution ([DS], [HS1], [HS2], [N], [PST],
[T]). Although gauge covariance is not essential for the technical arguments
used in this context, it is possible that our formalism may bring some new
insight and even technical advantages.

The right formalism was proposed independently and with different em-
phases in [KO1], [KO2] and [MP1], [MP2] where a gauge covariant functional
calculus OpA(f) is defined. It was generalized and related to a C∗-algebraic
formalism in [MPR1], and applied to the strict deformation quantization in the
sense of Rieffel for systems in a magnetic field in [MP3] and [MP4]. We shall
remind very briefly this pseudodifferential point of view in Section 1, while
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the other sections will be dedicated to our actual purposes: a development
of the calculus for Hörmander symbol classes Sm

ρ,δ and applications. For the
time being, we have only succeeded to treat smooth, bounded magnetic fields
having bounded derivatives of all orders. Since, however, no decay at infinity is
requested, we belive that the theory we develop is general enough to support
nontrivial applications.

In Section 2 we show first that for f ∈ Sm
ρ,δ, (ρ ≥ 0, δ < 1), OpA(f) leaves

the Schwartz space invariant. Afterwards, we study the product f ◦B g for f, g

belonging to Hörmander’s classes of symbols Sm
ρ,δ, (0 ≤ δ < ρ ≤ 1). This is

basic for the rest of the article. We give an asymptotic series for f ◦B g, that
shows that the first term of the commutator f ◦Bg−g◦Bf is the Poisson bracket
{f, g}B assigned to the magnetic symplectic form σB . Another consequence is
the existence of a parametrix for elliptic magnetic pseudodifferential operators.

In Section 3 we prove that OpA(f) is bounded in L2(Rn) if f ∈ S0
ρ,δ and

0 ≤ δ ≤ ρ ≤ 1, δ < 1. The case δ = ρ is a magnetic version of the Calderon-
Vaillancourt theorem transcripted for the Weyl calculus (cf. [Fo]).

Section 4 is dedicated to the study of magnetic Sobolev spaces. Previously,
they were considered only in situations when a vector potential can be chosen
with bounded derivatives of strictly positive order, cf. [GMS] and [Pa].

In Section 5 we show that an elliptic magnetic pseudodifferential opera-
tor is self-adjoint on the corresponding Sobolev spaces. For convenient vector
potentials, the Schwartz space is a core. As a consequence of a G̊arding-type
inequality, we also treat semiboundedness.

Throughout the paper we suppose the magnetic field B to have bounded
components together with all their derivatives. In Section 6 we shall moreover
assume that B = dA for some smooth vector potential A having bounded
derivatives of any strictly positive order. This facilitates certain arguments; in
particular it leads to a connection between our magnetic calculus and the Weyl
calculus for a certain A-dependent Hörmander-type metric, and this allows the
transcription of certain classical results ([Ho1], [Ho2], [Bo3]) to our framework.

As said before, many authors use for a symbol p(x, ξ) the magnetic quan-
tization OpA(p) that does not provide a gauge covariant calculus. In Section
6, as a continuation of the analysis in Subsection IV D of [MP2], we shall
compare this procedure with our gauge covariant quantization and prove that
OpA(p) − OpA(p) is a pseudodifferential operator of strictly smaller order. In
fact we prove that under the above hypothesis on the magnetic field B, one
can pass from the functional calculus OpA to the functional calculus OpA and
in the opposite direction. Using the Weyl-Hörmander-Bony calculus we ob-
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tain a Fefferman-Phong type theorem and prove that the resolvent and the
powers of a magnetic self-adjoint elliptic pseudo-differential operator are also
pseudodifferential. In particular we are able to compare three candidates for
the relativistic Schrödinger Hamiltonian with magnetic field:

√
(D − A)2 + 1,

OpA(〈ξ〉) and OpA(〈ξ〉).
The last section is devoted to the spectral analysis (obtaining a limiting

absorption principle) for a class of elliptic pseudodifferential operators obtained
through a quantization (either by Weyl calculus, or by OpA, or OpA), for a
symbol of the form p = p0 + pS + pL, where p0 does not depend on x, pS is
a symbol with “short range” behaviour and pL is a symbol with “long range”
behaviour. We assume that all the derivatives of the magnetic field B verify
conditions of type “short range” at infinity, and our example 3 shows that these
hypothesis are in some sense optimal. The spectral analysis of OpA(〈ξ〉) has
been done in [Um] but without considering the problem of a limiting absorption
principle; moreover, as shown in Example 2, our hypothesis are more general.

An earlier version of this paper, with some proofs given in extenso, may
be found on the ArXiv electronic archieve [IMP].

Notations and conventions

We denote: X ≡ Rn with elements x, y, z, X ∗ the dual of X with ele-
ments ξ, η, ζ, 〈ξ, x〉 the duality form, Ξ = R2n = X ⊕ X ∗ the phase space
with elements X = (x, ξ), Y = (y, η), Z = (z, ζ), it is a symplectic space with
the canonical symplectic form [[Y, Z]] = 〈η, z〉 − 〈ζ, y〉. On X we consider the
usual Lebesgue measure, but on X ∗ and Ξ, respectively, it will be convenient
to use d̄ξ = (2π)−ndξ and d̄X = π−ndX. If Y ∼= Rm we set BC∞(Y)
the subspace of bounded functions in C∞(Y) having bounded derivatives of
any order, C∞

pol(Y) is the space of all C∞ functions on Y with the absolute
value of each derivative dominated by an (arbitrary) polynomial and C∞

pol,u(Y)
the subspace of C∞

pol(Y) consisting of elements whose all derivatives are dom-
inated by a fixed polynomial of given (arbitrary) degree. S(Y) will be the
Schwartz space on Y , with dual S ′(Y) and antidual S∗(Y); we denote by (u, v),
(u ∈ S∗(Y), v ∈ S(Y)) the application of anti-duality. We use standard multi-
index notations: α = (α1, . . . , αm) ∈ Nm, |α| = α1 + · · ·+αm, α! = α1! . . . αm!,
∂α

y = ∂α1
y1

. . . ∂αm
ym

or ∂α = ∂α1
1 . . . ∂αm

m , Dα = i−|α|∂α, where m = dimY .
We frequently consider integrals as converging in S∗, in particular as os-

cillatory integrals.
We denote by B(H1,H2) the Banach space of all linear bounded operators

T : H1 → H2, with H1, H2 Hilbert (or Banach) spaces. In fact we preserve this
notation even if H1, H2 are topological vector spaces, to signify continuous,
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linear operators. For B(H,H) we abbreviate B(H). K(H1,H2) will denote
compact operators. Bp(H) will be the Schatten-von Neumann class of order
p ∈ [1,∞] on H.

Given a Riemannian metric g
X

on Ξ and a positive function M : Ξ → R∗
+,

we define the symbol space S(M, g) to be the space of C∞ functions f : Ξ → C

such that

sup
X,Tj∈Ξ

g
X

(Tj)≤1

(
M(X)−1 |∂T1 . . . ∂Tk

f(X)|) < ∞, ∀k ∈ N,

where we denote by ∂T f the derivative of f with respect to the direction T ∈ Ξ.
We denote by Ψ(M, g) the family of Weyl operators Op(f) with f ∈ S(M, g).

If M(X) = 〈ξ〉m and the metric has the form

gX = 〈ξ〉2δ|dx|2 + 〈ξ〉−2ρ|dξ|2

for ρ, δ and m real numbers and 〈ξ〉 := (1 + |ξ|2)1/2, we denote S(M, g) by
Sm

ρ,δ(Ξ). We still use the notations

Sm(Ξ) := Sm
1,0(Ξ), S−∞(Ξ) =

⋂
m∈R

Sm
ρ,δ(Ξ).

Explicitly, a function f ∈ C∞(Ξ) belongs to Sm
ρ,δ(Ξ) if for any multi-indices α

and β in Nn there exists a finite constant Cαβ such that∣∣∣(∂α
x ∂β

ξ f
)

(X)
∣∣∣ ≤ Cαβ 〈ξ〉m−ρ|β|+δ|α|, ∀X = (x, ξ) ∈ Ξ.

§1. The Magnetic Functional Calculus

The mathematical framework that we consider is supposed to modelize a
quantum particle without internal structure moving in X = R

n, in the presence
of a non-uniform magnetic field. The magnetic field is described by a closed 2-
form B on X ≡ Rn. In the standard coordinate system on Rn, it is represented
by a function taking real antisymmetric matrix values B = (Bjk) with 1 ≤
j ≤ n, 1 ≤ k ≤ n and verifying the relation ∂jBkl + ∂kBlj + ∂lBjk = 0. We
shall always assume that Bjk ∈ C∞

pol(X ), although this is not necessary for all
constructions or assertions. Anyhow, later on, even stronger assumptions on B

will be imposed.
Any such field B may be written as the exterior differential dA of a 1-form

A, the vector potential; by using coordinates, one has Bjk = ∂jAk − ∂kAj for
each j, k = 1, . . . , N . The components of the vector potential will always be
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taken of class C∞
pol(X ), in order to define multipliers for S(X ) and S∗(X ). This

is, indeed, always possible, as can be seen by considering the transversal gauge

(1.1) Aj(x) = −
n∑

k=1

∫ 1

0

ds Bjk(sx)sxk.

In the magnetic pseudodifferential calculus that we shall develop there are
two phase factors that play an important role, one defined by B and the other
by A. Given a k-form C on X and a compact piecewise smooth k-surface
γ ⊂ X, we denote by ΓC(γ) the usual invariant integral of C on γ. We shall
encounter circulations of the 1-form A along linear segments γ = [x, y] defined
by its ends x, y and fluxes of the 2-form B through triangles γ = 〈x, y, z〉 defined
by its vertices x, y, z. By Stokes’ theorem, one has

(1.2) ΓB(〈x, y, z〉) = ΓA([x, y]) + ΓA([y, z]) + ΓA([z, x]).

We shall constantly use the notations:

ΛA(x, y) : = exp{−iΓA([x, y])},(1.3)

ΩB(x, y, z) : = exp{−iΓB(〈x, y, z〉)},(1.4)

ωB(x, y, z) : = exp{−4iFB(x, y, z)}(1.5)

= ΩB(x − y + z, x − y − z, x + y − z).

Lemma 1.1. If the components of B are of class C∞
pol(X ), ∀γ ∈ N3n

∃p(γ) ∈ N such that
∣∣∂γ

x,y,zωB(x, y, z)}∣∣ ≤ Cγ(1 + |x| + |y| + |z|)p(γ).
If the components of the magnetic field B are of class BC∞(X ), then

1. ∂xj
FB =

∑n
k=1 (Djkyk + Ejkzk), ∂yj

FB =
∑n

k=1

(
D′

jkyk + E′
jkzk

)
,

∂zj
FB =

∑n
k=1

(
D′′

jkyk + E′′
jkzk

)
, where the coefficients Djk, . . . , E′′

jk are

of class BC∞(X 3).

2.
∣∣(∂α

x ∂β
y ∂γ

z ωB

)
(x, y, z)

∣∣ ≤ Cα,β,γ(〈y〉 + 〈z〉)|α|+|β|+|γ|, ∀(α, β, γ) ∈ [Nn]3,
where Cα,β,γ are positive constants.

3. |(∂α
z ωB)(x, y, z)| ≤ Cα(〈x − z〉 + 〈y − z〉)|α|, ∀α ∈ Nn, where Cα are

positive constants.

Proof. By straightforward computation.

In a former paper [MP2] we have shown that for f ∈ S∗(Ξ) and u ∈ S(X ),
the formula (properly interpreted)

(1.6)
[
OpA(f)u

]
(x) =

∫∫
X×X∗

dy d̄η ei〈x−y,η〉ΛA(x, y)f
(

x + y

2
, η

)
u(y)
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defines an integral operator OpA(f)∈B(S(X ),S∗(X )), and in fact OpA gives an
isomorphism between S∗(Ξ) and B(S(X ),S∗(X )) (as linear topological spaces)
that restricts to an isomorphism between S(Ξ) and B(S∗(X ),S(X )). Let us
remark here that for any test functions u and v in S(X ) and any distribu-
tion f ∈ S∗(X ), we have the relation

(
OpA(f)u , v

)
=

(
u , OpA(f)v

)
, where

(f, u) := (f, u). In particular, if f is a real distribution, then OpA(f) is a symet-
ric operator in B(S(X ),S∗(X )). In [MP2] we show that OpA induces a unitary
map from L2(Ξ) to B2(L2(X )), the ideal of all Hilbert-Schmidt operators. The
family OpA(f) with f being the Fourier tranform of an arbitrary function in
L1(Ξ), is dense in the closed ideal K(L2(X )) of all compact operators.

An important property is gauge covariance. Let A and A′ be two vector
potentials of class C∞

pol, defining the same magnetic field, dA = B = dA′.
Then there exists a real function ϕ ∈ C∞

pol(X) such that A′ = A + ∇ϕ and
eiϕ(Q)OpA(f)e−iϕ(Q) = OpA+∇ϕ(f) for any f ∈ S ′(Ξ) and all such functions
ϕ; this second identity is valid in B [S(X ),S∗(X )].

If f̃ is the Fourier transform of f ∈ S∗(Ξ) in the second variable we can
write [

OpA(f)u
]
(x) = (2π)−n

∫
X

dy ΛA(x, y) f̃

(
x + y

2
, y − x

)
u(y).

For f, g ∈ S(Ξ), the product OpA(f)OpA(g) is smoothing, consequently of the
form OpA(f ◦B g), defining the Magnetic Moyal product f ◦B g in S(Ξ). We use
the above formula twice and (1.2), compute its partial Fourier transform (in
the second variable) by the usual integral formula and obtain again an element
in S(Ξ). After some changes of variables and using Fubini Theorem we get:

(1.7) (f ◦B g)(X) =
∫
Ξ

∫
Ξ

d̄Y d̄Z e−2i[[Y,Z]] ωB(x, y, z) f(X − Y ) g(X − Z).

One can extend the validity of (1.7) by duality, using the fact that for any
functions f and g in S(Ξ) we have∫

Ξ

dX (f ◦B g)(X) =
∫

Ξ

dX f(X)g(X) = 〈f, g〉 ≡ (f, g).

Thus for f, g, h ∈ S(Ξ) we have 〈f◦Bg, h〉 = 〈f, g◦Bh〉 = 〈g, h◦Bf〉. Considering
〈·, ·〉 as duality between S ′(Ξ) and S(Ξ), we define for F ∈ S ′(Ξ) and f ∈ S(Ξ):
〈F ◦B f, h〉 := 〈F, f ◦B h〉, 〈f ◦B F, h〉 := 〈F, h ◦B f〉, ∀h ∈ S(Ξ), getting two
bilinear continuous mappings with good associativity properties. A substantial
extension of the magnetic Moyal product is obtained in [MP2] on the following
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class of distributions

MB(Ξ) :=
{
F ∈ S ′(Ξ) | F ◦B f ∈ S(Ξ), f ◦B F ∈ S(Ξ), ∀f ∈ S(Ξ)

}
,

called the magnetic Moyal algebra.
For F, G in MB(Ξ), we define 〈F ◦B G, h〉 := 〈F, G ◦B h〉, ∀h ∈ S(Ξ).

The set MB(Ξ) together with the composition law ◦B defined above and the
complex conjugation F �→ F is an unital ∗-algebra, containing S(Ξ) as a self-
adjoint two-sided ideal. Maybe the most important fact is that OpA is an
isomorphism of ∗-algebras betweeen MB(Ξ) and B[S(X )]∩B[S ′(X )]. We have
that C∞

pol,u(Ξ) ⊂ MB(Ξ) ([MP2]). We also have the following result.

Lemma 1.2. If the components of B are of class C∞
pol(X ), then for any

m ∈ R, any ρ ≥ 0 and any δ < 1 we have Sm
ρ,δ(Ξ) ⊂ MB(Ξ).

Proof. We must prove that, for any couple (f, ϕ) ∈ Sm
ρ,δ(Ξ) × S(Ξ), we

have f ◦B ϕ ∈ S(Ξ). We have to study the oscillatory integral in (1.7) for
(f, ϕ) ∈ Sm

ρ,δ(Ξ) × S(Ξ). We choose χ ∈ C∞
0 (Ξ) with χ(0) = 1, and for any

ε > 0 we define fε(X) := χ(εX)f(X). We show that the limit lim
ε→0

(fε ◦B ϕ)
exists pointwise and is independent of the choice of χ. Integrating by parts we
get

(1.8) (fε ◦Bϕ)(X) =
∫

Ξ

∫
Ξ

d̄Y d̄Z e−2i[[Y,Z]]〈y〉−2Nζ 〈η〉−2Nz fε(X − Y )

× LNz
z

[
ωB(x, y, z)LNζ

ζ ϕ(X − Z)
]
,

with Lz = 1−(1/4)∆z and Lζ = 1−(1/4)∆ζ . The integrals are well defined, due
to the decay assumptions on ϕ. We choose first Nz ≥ (1/2)(m+n+1) and then
Nζ ≥ (1/2)(q(2Nz)+n+1), where q(N) := max{p(γ) | |γ| ≤ N} and p(γ) as in
the first statement of Lemma 1.1. Thus we can take the limit ε → 0 and obtain
for (f ◦Bϕ)(X) an identity similar to (1.8). This equation is clearly independent
on the choice of χ and of the exact choices of Nz and Nζ (by integration by
parts). For any k ∈ N we may choose Nz ≥ (1/2)(m + k(|δ|+ |ρ|) + n + 1) and
Nζ ≥ (1/2)(q(2Nz+k)+n+1) in order to prove (by further integration by parts
with respect to y and η) that f ◦B ϕ ∈ Ck(Ξ). In conclusion f ◦B ϕ ∈ C∞(Ξ).
If we consider a multiindex α = (αx, αξ) ∈ N2n and integrate by parts with
respect to y and η, we prove that ∂α

X(f ◦B ϕ) is a finite linear combination of
terms of the form
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I(X) =
∫

Ξ

∫
Ξ

d̄Y d̄Z e−2i[[Y,Z]]〈z〉−2Nη〈ζ〉−2Ny

×
(
∂β′

η 〈η〉−2Nz

) (
∂γ′

y 〈y〉−2Nζ

){
∂γ′′

y ∂δ′
z ∂

α′
x

x ωB(x, y, z)
}

×
{

∂
α′′

x
x ∂

α′
ξ

ξ ∂δ′′
z ∂λ

ζ ϕ(X − Z)
}{

∂
α′′′

x
x ∂

α′′
ξ

ξ ∂γ′′′
y ∂β′′

η f(X − Y )
}

,

with α′
x + α′′

x + α′′′
x = αx, α′

ξ + α′′
ξ = αξ, |α| = k, |β′| + |β′′| ≤ 2Nη, |γ′| +

|γ′′| + |γ′′′| ≤ 2Ny, |δ′| + |δ′′| ≤ 2Nz and |λ| ≤ 2Nζ . Then taking into account
that ϕ ∈ S(Ξ), we can choose Ny, Nη, Nz, Nζ as functions of k and l so that
|I(X)| ≤ Cl〈X〉−l. We may suppose that δ ∈ (0, 1). Let us remark that

〈ξ − η〉m−ρ|α′′
ξ +β′′|+δ|α′′′

x +γ′′′| ≤ C〈ξ〉m+δ(k+2Ny)〈η〉|m|+δ(k+2Ny),

〈x − z〉−t ≤ C〈x〉−t〈z〉t, 〈ξ − ζ〉−s ≤ C〈ξ〉−s〈ζ〉s.
We choose first Ny ≥ (1/2)(1− δ)−1(n + 1 + l + m + kδ) in order to verify the
integrability condition with respect to ζ ∈ X . Then we choose s = l+m+δ(k+
2Ny), and obtain a factor 〈ξ〉−l. We can also choose Nz ≥ (1/2)(n + 1 + |m|+
(k + 2Ny)δ) in order to verify the integrability condition with respect to η ∈ X
and t = l + q(2Ny + 2Nz + k) to obtain a factor 〈x〉−l. We end up by choosing
Nη ≥ (1/2)(n+1+l+2q(2Ny+2Nz+k)) and Nζ ≥ (1/2)(n+1+q(2Ny+2Nz+k))
in order to get the integrability with respect to (y, z) ∈ X × X .

§2. The Magnetic Composition of Symbols

Our first task is to extend the magnetic composition law to classes of sym-
bols and obtain a precise asymptotic development for this composition, gener-
alizing the well known formulae from usual pseudodifferential calculus. This
will be a key technical ingredient in the following developments, in particular
leading to the existence of parametrices for elliptic operators.

If the magnetic field B has components of class BC∞(X ), by arguments
similar to those above, for any f ∈ Sm1(Ξ) and g ∈ Sm2(Ξ), the magnetic Moyal
product f ◦Bg belongs to Sm1+m2(Ξ). Our sharp estimations on the flux of the
magnetic field (Lemma 1.1) will make possible a precise result concerning the
asymptotic development of f ◦Bg.

An important ingredient for the estimation of the integral appearing in
(1.7) is a ‘stationary phase’ result, for which we introduce some notations. For
any ϕ ∈ C∞(X 3) we define the following first order differential operator (with
respect to the variables U = (u, µ) ∈ Ξ and V = (v, ν) ∈ Ξ), having coefficients
that only depend on (x, y, z):

MB(ϕ) := [ωB(x, y, z)]−1
n∑

j=1

[
∂yj

(ωBϕ) ∂νj
− ∂zj

(ωBϕ) ∂µj

]
.
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We shall denote

[[∂U , ∂V ]] := 〈∂µ, ∂v〉 − 〈∂u, ∂ν〉 ≡
n∑

j=1

(
∂µj

∂vj
− ∂uj

∂νj

)

and for t ∈ R \ {0} and ϕ ∈ C∞
pol(X 3) we define:

Lϕ(t) :=
1
2i

{
2ϕ[[∂U , ∂V ]] + t−1M0(ϕ)

}
.

Lemma 2.1. Let ϕ ∈ C∞
pol(X 3).

1. We have the following equality :∫
Ξ

∫
Ξ

d̄Y d̄Z exp{−2i[[Y, Z]]}ϕ(x, y, z) = ϕ(x, 0, 0)

(the integral being interpreted as an oscillatory integral).

2. If h ∈ S(Ξ × Ξ), for any t ∈ R∗ we have∫
Ξ

∫
Ξ

d̄Y d̄Z e−2i[[Y,Z]]ϕ(x, y, z)h(X − tY, X − tZ) = ϕ(x, 0, 0)h(X, X)

+t2
∫ 1

0

sds

∫
Ξ

∫
Ξ

d̄Y d̄Z e−2i[[Y,Z]] [Lϕ(st)h] (X − stY, X − stZ).

Proof. (1) Let us fix χ ∈ C∞
0 (X ) such that χ(0) = 1. For any ε > 0 we

define

Iε : =
∫

Ξ

∫
Ξ

d̄Y d̄Z χ(εy)χ(εη)χ(εz)χ(εζ) exp{−2i[[Y, Z]]}ϕ(x, y, z)

= (2π)−2n

∫
X

∫
X

dy dz χ(−(ε2/2)y)χ((ε2/2)z)χ̂(y)χ̂(z)ϕ(x,−(ε/2)y, (ε/2)z).

By the dominated convergence theorem, it goes to ϕ(x, 0, 0) for ε → 0.
(2) We perform a first order Taylor expansion of h(X − tY, X − tZ) with

respect to t. The first term on the right-hand side is given by 1. For the second
term we integrate by parts, using the identity yje

−2i[[Y,Z]] = 1
2i∂ζj

e−2i[[Y,Z]] and
similar ones for y replaced with η, z and ζ.

To any differential operator P :=
∑

cαβ(x, y, z)∂α
U∂β

V , of order m with
respect to the variables U and V , we associate another differential operator
MB(P ) defined by MB(P ) :=

∑
MB(cαβ)∂α

U∂β
V . This operator will evidently

have the same form, but will be of order m + 1.
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For any sequence of positive numbers {tj ∈ R
∗ | j ∈ N

∗}, let t(k) :=
t1 ·. . .·tk (for k ∈ N∗) and let us define by recurrence the sequence of differential
operators:

L0 := 1,

L1(t1) := ω−1
B LωB (t1),

Lj+1(t1, . . . , tj+1) := L1(t(j+1))Lj(t1, . . . , tj) +
M0 (Lj(t1, . . . , tj))

2it(j+1)
.

Theorem 2.2. Let us assume that all the components of the magnetic
field B are of class BC∞(X ). If f ∈ Sm1

ρ,δ (Ξ) and g ∈ Sm2
ρ,δ (Ξ), with m1 ∈ R,

m2 ∈ R, 0 ≤ δ < ρ ≤ 1, then f ◦B g ∈ Sm1+m2
ρ,δ (Ξ) and we have the following

asymptotic development :

f ◦Bg ∼
∞∑

j=0

hj , hj ∈ S
m1+m2−j(ρ−δ)
ρ,δ (Ξ), h0(X) = f(X)g(X),

hj(X) =
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

dt1dt2 . . . dtj t2j−1
1 t2j−3

2 · . . . · tj
×[Lj(t1, . . . , tj)(f(U)g(V ))]

∣∣
U=V =X
y=z=0

.

Proof. We shall verify by induction that for any k ≥ 1 we have

(2.1) f ◦Bg =
k−1∑
j=0

hj + Rk,

where

Rk(X) =
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

dt1dt2 . . . dtk t2k−1
1 t2k−3

2 · . . . · tk
∫

Ξ

∫
Ξ

d̄Y d̄Z e−2i[[Y,Z]]

× ωB(x, y, z) [Lk(t1, . . . , tk) (f(U) ⊗ g(V ))]
∣∣
U=X−t(k)Y

V =X−t(k)Z

.

For k = 1 we apply Lemma 2.1, taking ϕ = ωB , h = f⊗g and t = 1, s = t1.
We just have to remark that in this case Lω

B
(t1) = ωBL1(t1). Regarding the

integrals as oscillatory integrals, we may assume that f and g belong to S(Ξ).
Let us suppose now that formula (2.1) is verified for some k ≥ 1. In order

to prove it for k+1 we shall rewrite the integral defining the rest Rk. We notice
that

[Lk(t1, . . . , tk)(f ⊗ g)](U, V ) =
∑
α,β

a
αβ

(x, y, z, t1, . . . , tk) (∂αf) (U)
(
∂βg

)
(V ).
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For each term we apply Lemma 2.1, taking ϕ = ωBa
αβ

, h = (∂αf)⊗ (∂βg) and
t = t1 · · · tk, s = tk+1. We remark first that∑

α,β

a
αβ

(x, 0, 0, t1, . . . , tk) (∂αf) (X)
(
∂βg

)
(X)

= [Lk(t1, . . . , tk)(f(U)g(V ))]
∣∣
U=V =X
y=z=0

.

Then

L(ω
B

a
αβ

)(t(k+1)) =
1
2i

ωB

{
2a

αβ
[[∂U , ∂V ]] + (t(k+1))−1MB(a

αβ
)
}

,

and moreover

MB(a
αβ

) = ω−1
B

n∑
j=1

[
∂yj

(ωBa
αβ

)∂νj
− ∂zj

(ωBa
αβ

)∂µj

]
= a

αβ
MB(1)+M0(aαβ

).

Putting all these together we get

L(ωBa
αβ

)(t(k+1)) = ωB

{
a

αβ
L1(t(k+1)) +

1
2i

(t(k+1))−1M0(aαβ
)
}

.

We remark further that L1(t(k+1)) is a differential operator with respect to the
variables U and V and thus commutes with multiplication with the function
a

αβ
; thus

∑
M0(aαβ

)∂α
U∂β

V = M0(Lk(t1, . . . , tk)). Finally we get Rk(X) =
hk(X) + Rk+1(X) and the proof of (2.1) is finished.

Let us show now that, for each j ∈ N, we have hj ∈ S
m1+m2−j(ρ−δ)
ρ,δ (Ξ).

This is evident for j = 0. For j ≥ 1 notice that

Lj(t1, . . . , tj) =
∑

a
α′,α′′,β′,β′′ (x, y, z; t1, . . . , tj)∂α′

u ∂α′′
µ ∂β′

v ∂β′′
ν ,

where |α′′|+ |β′′| = j, |α′|+ |β′| ≤ j and a
α′,α′′,β′,β′′ are linear combinations of

products of derivatives of FB with respect to y and z and monomials in t−1
1 ,

. . . , t−1
j , with exponents that do not exceed those of t1, . . . , tj appearing in

the integrals. Lemma 1.1 shows that for y = z = 0 the derivatives of FB are
either vanishing or at least bounded functions of x. We conclude that hj is a
linear combination of terms of the type

b(x)
[(

∂α′
x ∂α′′

ξ f
)

(X)
] [(

∂β′
x ∂β′′

ξ g
)

(X)
] ∫ 1

0

tp1
1 dt1 · · ·

∫ 1

0

t
pj

j dtj ,

where b ∈ BC∞(X ), pl ≥ 0 for any l ∈ {1, . . . , j} and |α′′| + |β′′| = j, |α′| +
|β′| ≤ j. It follows immediatly, from the hypothesis on f and g, that hj ∈
S

m1+m2−j(ρ−δ)
ρ,δ (Ξ).



�

�

�

�

�

�

�

�

Magnetic Pseudodifferential Operators 597

We shall end the proof of the Theorem by checking that for any k ≥ 1
one has Rk ∈ S

m1+m2+2n−k(ρ−δ)
ρ,δ (Ξ). We shall use once again the structure of

the operator Lj(t1, . . . , tj) that was described above. It follows that Rk can be
written as a linear combination of terms of the form

I(X) = C

∫ 1

0

· · ·
∫ 1

0

dt1 . . . dtk tp1
1 · · · tpk

k

∫
Ξ

∫
Ξ

d̄Y d̄Ze−2i[[Y,Z]]ωB(x, y, z)

×a
α′,α′′,β′,β′′ (x, y, z; t1, . . . , tk)

×
[(

∂α′
x ∂α′′

ξ f
)

(X − t1 · · · tkY )
] [(

∂β′
x ∂β′′

ξ g
)

(X − t1 · · · tkZ)
]
.

Now we no longer restrict to y = z = 0 and thus factors of the type yβzγ

may appear in the functions a
α′,α′′,β′,β′′ (that contain derivatives of FB). These

factors may be handled by integration by parts, using the exponential e−2i[[Y,Z]],
and will generate operators of the form ∂γ

η ∂β
ζ applied to the functions ∂α′

x ∂α′′
ξ f

and ∂β′
x ∂β′′

ξ g, but this will not alter their decay. We proceed as in the proof
of Lemma 1.2, and after a number of integrations by parts we write I(X) as a
linear combination of terms of the type

J(X) =
∫ 1

0

· · ·
∫ 1

0

dt1 · · · dtk tq1
1 · · · tqk

k

∫
Ξ

∫
Ξ

d̄Y d̄Ze−2i[[Y,Z]]

×〈z〉−2Nη〈ζ〉−2Ny

(
∂γ′

η 〈η〉−2Nz

)(
∂δ′

y 〈y〉−2Nζ

)
×∂δ′′

y ∂ε′
z

(
ωBa

α′,α′′,β′,β′′

)
(x, y, z)

×
(
∂α′+δ′′′

x ∂α′′+γ′′
ξ f

)
(X − t(k)Y )

(
∂β′+ε′′

x ∂β′′+λ
ξ g

)
(X − t(k)Z),

where |γ′| + |γ′′| ≤ 2Nη, |δ′| + |δ′′| + |δ′′′| ≤ 2Ny, |ε′| + |ε′′| ≤ 2Nz, |λ| ≤ 2Nζ

and qj ≥ 0 for any j ∈ {1, . . . , k}.
We fix Nη = Nζ = n in order to have integrability in the variables y and z.

Then we decompose the η-integral with respect to the two domains {|η| ≤ κ〈ξ〉}
and {|η| ≥ κ〈ξ〉} for some small fixed κ > 0, and similarly for the ζ-integration,
and thus write J(X) as a sum of 4 terms Ja(X) (with a = 1, 2, 3, 4). In order
to estimate each of these 4 terms separately we remark that we may choose
different values for the pair (Ny, Nz) in each of these terms, due to the fact
that these choices are made by integration by parts in the variables y and z.
Moreover, for any r ∈ R and for ∀Ny ≥ 0, ∀Nz ≥ 0

∫
{|η|≤κ〈ξ〉}

dη〈η〉−2Nz 〈ξ − tη〉r+2δNy ≤ C〈ξ〉r+2δNy+n.
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Taking Ny ≥ 0 and 2Nz > |r| + 2δNy + n, we have

∫
{|η|≥κ〈ξ〉}

dη〈η〉−2Nz 〈ξ − tη〉r+2δNy

≤ C

∫
{|η|≥κ〈ξ〉}

dη 〈η〉|r|+2δNy−2Nz ≤ C〈ξ〉|r|+2δNy−2Nz+n.

Let us set r1 := m1 − ρ|α′′| + δ|α′| and r2 := m2 − ρ|β′′| + δ|β′|. We denote
ΨN1,N2(t; ξ, η) := 〈ξ−tη〉N1

〈η〉N2 and we get the following upper bound for |J1(X)|

sup
0≤t≤1

∫
{|η|≤κ〈ξ〉}

dηΨr1+2δNy ,2Nz
(t; ξ, η)

∫
{|ζ|≤κ〈ξ〉}

dζΨr2+2δNz ,2Ny
(t; ξ, ζ)

≤ C〈ξ〉m1+m2−k(ρ−δ)+2n,

by choosing for this domain Ny = Nz = 0. For |J2(X)| we get the upper bound:

sup
0≤t≤1

∫
{|η|≤κ〈ξ〉}

dηΨr1+2δNy ,2Nz
(t; ξ, η)

∫
{|ζ|≥κ〈ξ〉}

dζΨr2+2δNz ,2Ny
(t; ξ, ζ)

≤ C〈ξ〉r1+2δNy+n〈ξ〉|r2|−2Ny+n = C〈ξ〉r1+|r2|+2n−2(1−δ)Ny ,

and we have to choose on this domain Nz = 0 and Ny large enough. On the
similar domain with η and ζ interchanged we have to choose Ny = 0 and Nz

large enough. For |J4(X)| we obtain the upper bound

sup
0≤t≤1

∫
{|η|≥κ〈ξ〉}

dηΨr1+2δNy ,2Nz
(t; ξ, η)

∫
{|ζ|≥κ〈ξ〉}

dζΨr2+2δNz ,2Ny
(t; ξ, ζ)

≤ C〈ξ〉|r1|+|r2|+2n−2(1−δ)(Ny+Nz)

and thus we have to choose both Ny and Nz large enough. We conclude that

|Rk(X)| ≤ C〈ξ〉m1+m2+2n−k(ρ−δ).

For the derivatives of Rk we may proceed in a similar way, since all the terms
obtained by differentiating the factor ωB with respect to x are bounded by
monomials in y and z and thus can be dealt with by integration by parts in y

and z. We get∣∣∣(∂α
x ∂β

ξ Rk

)
(X)

∣∣∣ ≤ C〈ξ〉m1+m2+2n−k(ρ−δ)−ρ|β|+δ|α|, ∀α ∈ N
n, ∀β ∈ N

n.

In order to end our proof we fix some p ∈ N and write the identity f ◦B

g − ∑p
j=0 hj =

∑k
j=p+1 hj + Rk, where k ≥ p + 1 is chosen large enough
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to have 2n − k(ρ − δ) ≤ −(p + 1)(ρ − δ). This gives f ◦B g − ∑p
j=0 hj ∈

Sm1+m2−(p+1)(ρ−δ)(Ξ), and thus f ◦B g ∼ ∑
j hj .

Let us explicitly compute the first terms of the asymptotic development of
the magnetic Moyal product.
1. We know from the statement of Theorem 2.2 that h0 = fg.

2. In order to compute h1, we remark that for y = z = 0 the first order
derivatives of FB vanish and thus

[L1(t1)(f ⊗ g)]
∣∣∣
y=z=0

(X, X)

= −i
n∑

j=1

[
(∂ξj

f)(X)(∂xj
g)(X) − (∂xj

f)(X)(∂ξj
g)(X)

]
.

In conclusion we have h1 = − i
2{f, g}.

3. For h2 we need to compute the explicit form of the operator L2(t1, t2). Using
Lemma 1.1 we obtain:

[M0(L1(t1))(f ⊗ g)]
∣∣∣
y=z=0

(X, X) = − 2
t1

n∑
j,k=1

Bjk(x)[(∂ξj
f) ⊗ (∂ξk

g)](X, X).

L1(t1 · t2)L1(t1)(f ⊗ g)

=−
n∑

j,k=1

(
∂µj

∂µk
∂vj

∂vk
+ ∂uj

∂uk
∂νj

∂νk
− 2∂µj

∂uk
∂vj

∂νk

)
(f ⊗ g)

+{terms vanishing for y = z = 0}.
Finally, we put everything together to obtain

h2(X) =
1
8

n∑
j,k=1

[
2∂ξj

∂xk
f ⊗ ∂xj

∂ξk
g − ∂ξj

∂ξk
f ⊗ ∂xj

∂xk
g

−∂xj
∂xk

f ⊗ ∂ξj
∂ξk

g
]
(X, X) − 1

2i

n∑
j,k=1

Bjk(x)[(∂ξj
f) ⊗ (∂ξk

g)](X, X).

In particular we have

(2.2) f ◦B g − g ◦B f ∼= 1
i
{f, g} − 1

i

n∑
j,k=1

Bjk(∂ξj
f)(∂ξk

g) =
1
i
{f, g}B

(mod. S
m1+m2−3(ρ−δ)
ρ,δ (Ξ)), with {·, ·}B the Poisson bracket associated to the

symplectic form σB defined by σB,(x,ξ)[(y, η), (z, ζ)] =
∑n

j=1(zjηj − yjζj) +∑
j,k Bjk(x)yjzk.

One of the main tools in pseudodifferential theory is the parametrix.
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Definition 2.3. A symbol a ∈ Sm
ρ,δ(Ξ) is called elliptic when there ex-

ists two positive constants R and C such that

C〈ξ〉m ≤ |a(x, ξ)|, ∀x ∈ X , ∀ξ ∈ X ∗ with |ξ| ≥ R.

The operator OpA(a) will also be called elliptic.

Theorem 2.4. Let a ∈ Sm
ρ,δ(Ξ), 0 ≤ δ < ρ ≤ 1 be an elliptic symbol.

Then there exists b ∈ S−m
ρ,δ (Ξ) such that a ◦B b− 1, b ◦B a− 1 ∈ S−∞(Ξ). Thus

for any vector potential A with components of class C∞
pol(X ) associated to B,

OpA(b) is a parametrix for OpA(a).

The proof is quite standard.

§3. Sobolev Spaces

Theorem 3.1. Suppose that the magnetic field B has components of
class BC∞. Let f ∈ S0

ρ,ρ(Ξ) for some ρ ∈ [0, 1). Then OpA(f) ∈ B(L2(X ))
and we have the inequality

(3.1)
∥∥∥OpA(f)

∥∥∥
B(L2(X))

≤ c(n) sup
|α|≤p(n)

sup
|β|≤p(n)

sup
X∈Ξ

〈ξ〉ρ(|β|−|α|)
∣∣∣∂α

x ∂β
ξ f(X)

∣∣∣ ,
where c(n), p(n) are constants depending only on n, that can be determined
explicitly.

The proof is quite standard, making use of the Cotlar-Knapp-Stein lemma
and an idea of L. Boutet de Monvel ([BM]).

Remark 3.2. Theorem 3.1 remains true also for symbols of class S0
ρ,δ(Ξ)

with 0 ≤ δ < ρ ≤ 1, due to the obvious inclusion S0
ρ,δ(Ξ) ⊂ S0

δ,δ(Ξ)

In this section we shall suppose that the components of the magnetic field
B are of class BC∞(X ); we shall work in a Schrödinger representation OpA

associated to a vector potential A (such that B = dA) with components of class
C∞

pol(Ξ).

Definition 3.3.

ΨA,m
ρ,δ (X ) :=

{
OpA(a) | a ∈ Sm

ρ,δ(Ξ)
}

, ΨA,m(X ) := ΨA,m
1,0 (X ).

Definition 3.4. For any s ∈ R+ we set

ps(ξ) := 〈ξ〉s ∈ Ss(Ξ), Ps := OpA(ps) ∈ ΨA,s(Ξ),

Hs
A(X ) :=

{
u ∈ L2(X ) | Psu ∈ L2(X )

}
.
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As a consequence of the Proposition below, the magnetic Sobolev space Hs
A(X )

(for s ∈ R+) may be defined using any elliptic operator of order s.

Proposition 3.5. For any s ∈ R+ we have:

1. Hs
A(X ) is a Hilbert space for the scalar product

(u, v)s,A := (Psu, Psv)L2 + (u, v)L2 , ∀u, v ∈ Hs
A(X ).

2. If 0 ≤ δ < ρ ≤ 1, then T ∈ ΨA,s
ρ,δ (X ) is bounded from Hs

A(X ) to L2(X ).

3. For any elliptic operator T ∈ ΨA,s
ρ,δ (X ), the map

Hs
A(X ) � u �→ ‖u‖T

s,A :=
{‖Tu‖2

L2 + ‖u‖2
L2

}1/2

defines an equivalent norm on Hs
A(X ).

Proof. The first conclusion is evident, because Ps ∈ B[S∗(X )] (Lemma
1.2). Let us fix now an operator T ∈ ΨA,s

ρ,δ (X ). We notice that, being elliptic,
Ps ∈ ΨA,s(X ) has a parametrix Qs ∈ ΨA,−s(X ) (Theorem 2.4), i.e. there
exists Rs ∈ ΨA,−∞(X ) such that QsPs = 1 + Rs. Thus, for any u ∈ Hs

A(X )
we have Tu = (TQs)Psu − (TRs)u. Theorem 2.2 implies that TQs and TRs

belong to ΨA,0
ρ,δ (X ). We use Remark 3.2 to deduce that Tu ∈ L2(X ) and

‖Tu‖2
L2 ≤ C0

(‖Psu‖2
L2 + ‖u‖2

L2

)
. Thus we get the second conclusion of the

Proposition and the inequality ‖u‖T
s,A ≤ C‖u‖s,A for any u ∈ Hs

A(X ). In order
to get the reversed inequality and thus the third conclusion of the Lemma, we
have to suppose T elliptic. Then there is a parametrix S ∈ ΨA,−s

ρ,δ (X ) for T such
that ST = 1+R, with R ∈ ΨA,−∞(X ). For u ∈ L2(X ) such that Tu ∈ L2(X ),
we obtain Psu = (PsS)Tu− (PsR)u ∈ L2(X ) and also ‖u‖s,A ≤ C‖u‖′s,A.

Lemma 3.6. If 0 ≤ s ≤ t, we have a continuous embedding Ht
A(X ) ↪→

Hs
A(X ).

Proof. Assume that u ∈ Ht
A(X ). By definition of the Sobolev space,

it follows that u ∈ L2(X ) and Ptu ∈ L2(X ). Making once again use of the
parametrix Qt ∈ ΨA,−t(X ) of Pt, we deduce that there exists some Rt ∈
ΨA,−∞(X ) such that u = QtPtu + Rtu. Thus Psu = PsQtPtu + PsRtu.
Using Theorem 2.2 we get that PsQt ∈ ΨA,−(t−s)(X ) and PsRt ∈ ΨA,−∞(X ),
so that by Remark 3.2 we deduce that ‖Psu‖L2 ≤ C(‖Ptu‖L2 + ‖u‖L2).

Lemma 3.7. Suppose given s ∈ R+, m ≤ s and T ∈ ΨA,m
ρ,δ (X ). Then

T is a bounded operator from Hs
A(X ) to Hs−m

A (X ).
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Proof. Consider u ∈ Hs
A(X ). Since m ≤ s we also have T ∈ ΨA,s

ρ,δ (X ),
thus Tu ∈ L2(X ) and ‖Tu‖L2(X )≤C‖u‖s,A. Moreover, due to our Theorem 2.2,
Ps−mT ∈ ΨA,s

ρ,δ (X ), so that we have Ps−mTu ∈ L2(X ) and ‖Ps−mTu‖L2(X )

≤ C‖u‖s,A. We conclude that Tu ∈ Hs−m
A (X ) and ‖Tu‖s−m,A ≤ C‖u‖s,A.

Remark 3.8. If the vector potential A has components of class C∞
pol(Ξ),

then R ∈ ΨA,−∞(X ) defines a linear continuous operator from S∗(X ) into
C∞(X ).

Lemma 3.9. For any s ∈ R+ we have the continuous, dense embed-
dings S(X ) ↪→ Hs

A(X ) ↪→ S∗(X ).

Proof. The existence and continuity of the two embeddings is evident.
Let us prove the density of S(X ) in Hs

A(X ). Take u ∈ Hs
A(X ). Let us choose

a sequence {vj}j∈N ⊂ S(X ) that converges to Psu in L2(X ). We consider once
again the parametrix Qs of Ps, fix a cut-off function χ ∈ C∞

0 (X ) with χ(x) = 1
for |x| ≤ 1 and set χj(x) := χ(x/j). We define uj := Qsvj −χjRsu. Evidently
uj ∈ S(X ) and Qsvj converges to QsPsu in Hs

A(X ). But QsPsu = u + Rsu,
so that the density conclusion will follow if we prove that χjRsu converges
to Rsu in Hs

A(X ). Let us put νt(ξ) :=
∑n

j=1 ξ2t
j for t ∈ N, 2t ≥ s and

T := OpA(νt) =
∑n

j=1(Dj − Aj)2t. Then T is a differential operator of order
2t and an elliptic operator in ΨA,2t(X ). A simple computation shows that
TχjRsu−χjTRsu is a finite sum of terms of the form (Dk −Ak)mkRsu, each
one multiplied by a bounded function of x (containing derivatives of χ) and a
strictly negative power of j. Thus TχjRsu converges to TRsu in L2(X ). Using
Proposition 3.5(3), we deduce the convergence of χjRsu to Rsu in H2t

A (X ), and
thus also in Hs

A(X ).

Definition 3.10. For s ∈ R+, we denote by H−s
A (X ) the anti-dual of

Hs
A(X ) endowed with the natural norm (that induces a scalar product):

‖u‖−s,A := sup
ϕ∈Hs

A\{0}

|(u, ϕ)|
‖ϕ‖s,A

.

Proposition 3.11. If s1 ≤ s2 are two real numbers, then we have a
continuous embedding Hs2

A (X ) ↪→ Hs1
A (X ).

Proof. Just use Lemma 3.6 and a duality argument.

Proposition 3.12. Let us fix s ∈ R+ \ {0}.
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1. If u ∈ S∗(X ) is of the form u = Psv + w, with v and w from L2(X ), then
u ∈ H−s

A (X ) and ‖u‖−s,A ≤ (‖v‖2
L2 + ‖w‖2

L2

)1/2.

2. Reciprocally, if u ∈ H−s
A (X ), then there exists v and w in L2(X ) such that

u = Psv + w and
(‖v‖2

L2 + ‖w‖2
L2

)1/2 ≤ ‖u‖−s,A.

In conclusion we have

H−s
A (X ) =

{
u ∈ S∗(X ) | ∃ v, w ∈ L2(X ) such that u = Psv + w

}
,

and for u ∈ H−s
A (X ) and v, w as above, ‖u‖−s,A =

(‖v‖2
L2 + ‖w‖2

L2

)1/2.

The proof uses a standard argument (see [Bo3]).

Lemma 3.13. For any s ∈ R+ we have the continuous embeddings
S(X ) ↪→ H−s

A (X ) ↪→ S∗(X ), the space S(X ) being dense in H−s
A (X ).

Proof. The continuous embeddings follow from Lemma 3.9 and the defi-
nition of H−s

A (X ) as anti-dual of Hs
A(X ). Let us fix now u ∈ H−s

A (X ). There
exists a pair {v, w} ∈ L2(X ) × L2(X ) such that u = Psv + w. Moreover, we
may approach v and w in L2-norm by sequences {vj}j∈N and {wj}j∈N from
S(X ). If we put uj := Psvj + wj and use Proposition 3.12, we deduce that

‖uj − u‖−s,A ≤ (‖vj − v‖2
L2 + ‖wj − w‖2

L2

)1/2 −→
j→∞

0.

Proposition 3.14. For s and m real numbers, any T ∈ ΨA,m
ρ,δ (X ) is

bounded as operator from Hs
A(X ) to Hs−m

A (X ).

Proof. The case s ≥ 0 and m ≤ s is the content of Lemma 3.7. By duality
we obtain also the case s ≤ 0 and m ≥ s. If s ≥ 0 and m > s, let us choose
u ∈ Hs

A(X ) and write once again u = QsPsu + Rsu, with Qs ∈ ΨA,−s and
Rs ∈ ΨA,−∞. Thus Tu = (TQs)Psu + TRsu. We have Psu ∈ L2(X ), TQs ∈
ΨA,m−s

ρ,δ and m− s ≥ 0, so that we conclude that (TQs)Psu ∈ Hs−m
A (X ). We

also remark that TRs ∈ ΨA,−∞, so that TRsu ∈ L2(X ) ⊂ Hs−m
A (X ). The

case s ≤ 0 and m < s follows from Proposition 3.12.

Definition 3.15. We define H−∞
A (X ) := ∪s∈RHs

A(X ) endowed with
the inductive limit topology and H∞

A (X ) := ∩s∈RHs
A(X ) endowed with the

projective limit topology.
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Proposition 3.16. Let T ∈ ΨA,m
ρ,δ (X ); then

1. T induces linear continuous maps H−∞
A (X ) → H−∞

A (X ) and H∞
A (X ) →

H∞
A (X ).

2. If m = −∞, T induces a linear continuous map H−∞
A (X ) → H∞

A (X ).

3. If T is an elliptic operator and we have u ∈ H−∞
A (X ) and Tu ∈ Hs

A(X ),
then u ∈ Hs+m

A (X ).

The proof is straightforward.

Remark 3.17. The property (3) of Proposition 3.16 may be completed as
follows: If T is an elliptic operator and u ∈ S∗(X ), then we have sing supp Tu =
sing supp u; in particular, if Tu ∈ C∞(X ) then u ∈ C∞(X ).

The above statement follows from Lemma 3.8 and from the fact that any
operator T ∈ ΨA,m

ρ,δ (X ) is pseudo-local (i.e. sing supp Tu ⊂ sing supp u). In
fact, the integral kernel of T is the product of the C∞ function exp{−iΓA

([x, y])} and the distribution defined by the oscillatory integral
∫
X d̄ξ ei〈x−y,ξ〉t(

x+y
2 , ξ

)
, that is a C∞ function outside the diagonal of X × X .

Lemma 3.18. For any m ∈ N we have the equality

(3.2) Hm
A (X ) =

{
u ∈ L2(X ) | (D − A)αu ∈ L2(X ), ∀α ∈ N

n with |α| ≤ m
}

,

where (D−A)α = (D1−A1)α1 · · · (Dn−An)αn . Moreover, we have the following

equivalent norm on Hm
A (X ): ‖u‖m,A ∼

(∑
|α|≤m ‖(D − A)αu‖2

L2

)1/2

.

Proof. Let us denote by M the linear space defined in (3.2) endowed
with the norm ‖ · ‖M defined by the formula above. Remark that Dj − Aj =
OpA(ξj) ∈ ΨA,1(X ), so that (D − A)α ∈ ΨA,m(X ) for |α| ≤ m. In conclusion,
for u ∈ Hm

A (X ) we have (D−A)αu ∈ L2(X ), and ‖(D−A)αu‖L2 ≤ C‖u‖m,A.
Reciprocally, let u ∈ M. We consider the operator E = OpA(νm) ∈ ΨA,2m(X )
(with the notation introduced in the proof of Lemma 3.9), that is elliptic. Thus
we can find F ∈ ΨA,−2m(X ) and R ∈ ΨA,−∞(X ) such that FE−1 = R. Due to
our choice of u and the definition of M, we have (Dj −Aj)mu ∈ L2(X ) for any
j ∈ {1, . . . , n} and thus Eu ∈ H−m

A (X ). We get u = F (Eu) − Ru ∈ Hm
A (X ),

and we finish the proof by the closed graph theorem, due to the fact that M
is a Hilbert space.
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Remark 3.19. Let us point out here that for any real function φ ∈
C∞

pol(X ), the multiplication with eiφ defines a unitary operator intertwining
the Sobolev spaces Hs

A+∇φ(X ) and Hs
A(X ).

§4. Self-Adjointness and Semiboundedness

Theorem 4.1. Suppose given a magnetic field B with components of
class BC∞(X ). Let p ∈ Sm

ρ,δ(Ξ) be real with m ≥ 0, 0 ≤ ρ < δ ≤ 1; if m > 0
we also assume that p is elliptic. Let us set P := OpA(p) in a Schrödinger
representation defined by a vector potential A associated to B (i.e. B = dA),
having components of class C∞

pol(X ). Then P defines a self-adjoint operator P̃

on the domain D(P̃ ) := Hm
A (X ) and S(X ) is a core for P̃ .

Proof. The operator P is symmetric on S(X ), which is dense in Hm
A (X ).

The case m = 0 is clear, because P is a bounded operator. For m > 0 we can
define P̃ on D(P̃ ) := Hm

A (X ) using Proposition 3.14 and obtain a symmetric
operator. If v ∈ D(P̃ ∗), there exists f ∈ L2(X ) such that (P̃ u, v)L2 = (u, f)L2

for any u ∈ S(X ). Thus Pv = f (as distributions) and v ∈ Hm
A (X ) = D(P ),

proving self-adjointness. The last statement follows from the fact that the
topology of Hm

A (X ) may be defined by the graph norm of P (see Lemma
3.5(3)) and from the density of S(X ) in Hm

A (X ) (Lemma 3.9).

We intend to prove a magnetic version of the G̊arding inequality. The
following Lemma is an adaptation to the case B �= 0 of Lemma 2.2.2 in [Ho].

Lemma 4.2. Let 0 ≤ δ < ρ ≤ 1 and suppose that f is a real valued
symbol of class S0

ρ,δ(Ξ) such that there exists a real valued symbol f0 ∈ S0
ρ,δ(Ξ)

satisfying inf
X∈Ξ

f0(X) > 0 and f − f0 ∈ S
−(ρ−δ)
ρ,δ (Ξ). Then there exists a real

valued symbol g ∈ S0
ρ,δ(Ξ) such that f − g ◦B g ∈ S−∞(Ξ).

Theorem 4.3. Let B be a magnetic field with components of class
BC∞(X ). Let m ∈ R, 0 ≤ δ < ρ ≤ 1, p ∈ Sm

ρ,δ(Ξ). Suppose that there
exist two constants R and C such that Re p(x, ξ) ≥ C|ξ|m for |ξ| ≥ R. Let us
set P := OpA(p) in any Schrödinger representation defined by a vector poten-
tial A associated to B, whose components are of class C∞

pol(X ). Then ∀s ∈ R

there exist two finite positive constants C0 and C1 such that

Re(Pu, u)L2 ≥ C0‖u‖2
m/2,A − C1‖u‖2

s,A, ∀u ∈ H∞
A (X ).
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Proof. We assume first that m = 0. We can choose a positive constant d

and a cut-off function χ ∈ C∞
0 (X ∗) such that χ(ξ) ≥ 0 and χ(ξ) = 1 on a given

neighbourhood (large enough) of the origin 0 ∈ X ∗, so that for p̃ := p + dχ ∈
S0

ρ,δ(Ξ) we have Re(p̃(x, ξ)) ≥ c > 0. Hence it is evident that we can take from
the begining Re p(x, ξ) ≥ c > 0. Using Lemma 4.2, we deduce the existence of
g ∈ S0

ρ,δ(Ξ)R and real r0 ∈ S−∞(Ξ) such that Re p − c
2 − g ◦B g = r0. We get

Re (Pu, u)L2 =
c

2
‖u‖2

L2 +
∥∥∥OpA(g)u

∥∥∥2

L2
+

(
OpA(r0)u, u

)
L2

, ∀u ∈ H∞
A (X ),

and thus the inequality for m = 0.
For the case m �= 0, notice that the operator Q := P−m/2PP−m/2 satisfies

the conditions of the case m = 0. Thus ∀s′ ∈ R

Re(Qv, v)L2 ≥ C ′
0‖v‖2

L2 − C ′
1‖v‖2

s′,A, ∀v ∈ H∞
A (X ).

For u ∈ H∞
A (X ) we denote v = Q−m/2u ∈ H∞

A (X ) where Q−m/2 ∈ ΨA,m/2(X )
and P−m/2Q−m/2 = 1+R′, Q−m/2P−m/2 = 1+R′′, with R′ and R′′ belonging
to ΨA,−∞(X ). We conclude that

Re (P (1 + R′)u, (1 + R′)u)L2 ≥ C ′
0

∥∥Q−m/2u
∥∥2

L2 − C ′
1

∥∥Q−m/2u
∥∥2

s′,A .

To obtain the stated inequality, we remark that for functions f and g in H∞
A (X )

and t ∈ R we have |(f, g)L2 | ≤ C‖f‖t,A ‖g‖−t,A, and that ∀s ∈ R

‖u‖m/2,A ≤ ∥∥P−m/2Q−m/2u
∥∥

m/2,A
+ ‖R′u‖m/2,A

≤ C
(∥∥Q−m/2u

∥∥
L2 + ‖u‖s,A

)
.

Corollary 4.4. Under the hypothesis of Theorem 4.1, if p ≥ 0 for |ξ| ≥
R, the self-adjoint operator P is lower semibounded.

Proof. The single non-trivial case is m > 0. Taking s = 0 in Theorem 4.3
one gets (Pu, u)L2 ≥ C0‖u‖2

m/2,A −C1‖u‖2
L2 ≥ −C1‖u‖2

L2 , ∀u ∈ H∞
A (X ).

§5. Vector Potentials with Bounded Derivatives of Strictly
Positive Order

In this Section we are going to assume (even when it is not stated explicitly)
that the magnetic field B can be deduced from a vector potential A satisfying

| (∂αAj) (x)| ≤ Cα, ∀j = 1, . . . , n, ∀α ∈ N
n, |α| ≥ 1,

that implies evidently that all the components of B are of class BC∞.
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§5.1. General facts

We illustrate our assumption on B by two examples.

Example 1. Assume that the components {Bjk}1≤j<k≤n
of the mag-

netic field are C∞ real valued functions, periodic with respect to a lattice
Γ ⊂ X . It has been proved (see [HH] and [If]) that there exists a constant
magnetic field B◦ = {B◦

jk}1≤j<k≤n
and a potential vector Ã of class C∞ and

Γ-periodic, such that B − B◦ = dÃ. If A◦ is a linear vector potential defining
the magnetic field B◦, then A := A◦ + Ã has all the derivatives (of strictly
positive order) bounded and B = dA.

Example 2. Let us assume Bjk ∈ C∞ ∩ L∞, and |(∂αBjk)(x)| ≤
cα〈x〉−1 for all multiindices α with |α| ≥ 1. We define the associated transversal
gauge vector potential (1.1). Then for any α with |α| ≥ 1 we get that outside
the ball of radius 1

|(∂αAj) (x)| ≤ C|x|
∫ 1

0

ds s1+|α| (1 + s|x|)−1 + C1 ≤ C2.

Definition 5.1. For 0≤δ<ρ≤1 we consider the following metric on Ξ:

gA
X

≡ gA
(x,ξ)

:= 〈ξ − A(x)〉2δ|dx|2 + 〈ξ − A(x)〉−2ρ|dξ|2,

and its symplectic inverse (with respect to the canonical symplectic form [[., .]])

gA,σ
X

≡ gA,σ
(x,ξ)

:= 〈ξ − A(x)〉2ρ|dx|2 + 〈ξ − A(x)〉−2δ|dξ|2.

Let µA(X) := 〈ξ − A(x)〉 ≥ 1, νA(X) := ξ − A(x) ∈ X ∗.

The following facts follow by straightforward arguments.

Lemma 5.2. The metric defined in Definition 5.1 has the following
properties :

a) It is a Hörmander metric, i.e.:

• (slow variation) there exists C > 0 such that gA
X

(X − Y ) ≤ C−1

implies (gA
X

/gA
Y

)±1 ≤ C

• (temperedness condition) there exist C > 0 and N ∈ N such that
(gA

X
/gA

Y
)±1 ≤ C

(
1 + gA,σ

X
(X − Y )

)N for any X, Y in Ξ,

• (uncertainty condition) gA
X

≤ gA,σ
X

.
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b) It is a conformal metric, i.e. gA,σ
X

= λA(X)2gA
X
, where we have defined

λA(X)2 := inf
{
gA,σ

X
(T ) | gA

X
(T ) = 1

}
.

c) It is geodesically tempered, i.e. it verifies the temperedness condition with
respect to the geodesic distance associated to gA,σ

X
.

Lemma 5.3. For any m ∈ R the function MA
m(X) := 〈ξ − A(x)〉m is a

gA-weight for the metric gA defined in Definition 5.1, i.e. it is

• (gA-continuous) There exists C > 0 such that gA
X

(X − Y ) ≤ C−1 implies
(MA

m(X)/MA
m(Y ))±1 ≤ C,

• (gA-tempered) There exists C > 0 and N ∈ N such that[
MA

m(X)/MA
m(Y )

]±1 ≤ C
[
1 + gA,σ

X
(X − Y )

]N .

Definition 5.4. We consider the following spaces of symbols associated
to the metric gA of Definition 5.1 and a gA-weight M :

• SA
ρ,δ(M) ≡ S(M, gA) the symbols q ∈ C∞(Ξ) such that ∀(α, β) ∈ Nn×Nn,∣∣∣(∂α

x ∂β
ξ q)(x, ξ)

∣∣∣ ≤ Cαβ M(X)µA(X)−ρ|β|+δ|α|.

• SA,+
ρ,δ the symbols q ∈ C∞(Ξ) such that ∀α, β ∈ Nn, with |α|+ |β| ≥ 1, we

have
∣∣∣(∂α

x ∂β
ξ q)(x, ξ)

∣∣∣ ≤ Cαβ µA(X)ρ−δ−ρ|β|+δ|α|,

• SA,m
ρ,δ := SA

ρ,δ(µ
m) for m ∈ R (we call this m the order of the Weyl operator

associated to a symbol of this class).

If ρ = 1 and δ = 0 the indices ρ and δ will be omitted from the above notations.
By a slight abuse, for any p ∈ C∞(Ξ) we set (p ◦ νA)(X) := p(x, νA(X)).

Remark 5.5. For p ∈ C∞(Ξ) it is clear that p ∈ Sm
ρ,δ(Ξ) if and only if

p ◦ νA ∈ SA,m
ρ,δ . This allows us to define asymptotic sums of symbols from

SA,m
ρ,δ . In fact, for a sequence {qj}j∈N

with qj ∈ S
A,mj

ρ,δ and {mj}j∈N
decreasing,

with lim
j→∞

mj = −∞, there exists q ∈ SA,m0
ρ,δ , uniquely defined modulo SA,−∞ :=

∩
m∈R

SA,m
ρ,δ , such that q−∑k−1

j=0 qj ∈ SA,mk

ρ,δ , ∀k ≥ 1. We shall write q ∼ ∑∞
j=0 qj .

Remark 5.6. The symbol p ∈ Sm
ρ,δ(Ξ) is elliptic if and only if p ◦ νA is

elliptic for the metric gA (i.e. 1 + |(p ◦ νA)(x, ξ)| ≥ c[µA(x, ξ)]m).
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§5.2. Comparison of two quantizations

We shall use the notation Op(p) ≡ Op0(p) for the usual Weyl quantization.
As mentioned in the Introduction, OpA(p) := Op(p ◦ νA) is sometimes used as
the quantization of the symbol f . We show now explicitly that it lacks gauge
covariance, completing the discussion in [MP2].

For f ∈ Sm(Ξ), A ∈ C∞
pol(X ,X ∗) and ϕ ∈ C∞

pol(X ) real valued, set

F (f, A, ϕ) := eiϕOp(f ◦ νA)e−iϕ − Op(f ◦ νA+∇ϕ).

It is an operator with distribution kernel

[K(f, A, ϕ)](x, y) = exp
{

i

〈
x − y, A

(
x + y

2

)〉}
Φ(x, y)f̃

(
x + y

2
, x − y

)
,

where f̃ is the Fourier transform of f in the second variable and

Φ(x, y) := exp {i[ϕ(x) − ϕ(y)]} − exp
{

i

〈
x − y, (∇ϕ)

(
x + y

2

)〉}
.

Thus gauge covariance is equivalent with the vanishing of the tempered dis-
tribution exp{i〈y, A(x)〉}Φ(x + y/2, x − y/2)f̃(x, y). An easy argument proves
that φ vanishes identically if and only if ϕ is a polynomial of degree ≤ 2. This
can easily be used to prove the lack of gauge covariance for an enormous class of
symbols f . Let us consider the monomial f(x, ξ) = (ξ+A(x))α, α ∈ N; one has
F (f, A, ϕ) = 0 if and only if ∂β

y [Φ(x + y/2, x − y/2)] |y=0 = 0 for any β ≤ α.
Simple calculations show that this holds if |β| ≤ 2 but is no longer true for
|β| ≥ 3, (one checks easily that f(x, ξ) = (ξj + Aj(x))(ξk + Ak(x))(ξl + Al(x))
is indeed a counterexample). Let us also notice that the Fourier transform of
f(x, ξ) = 〈ξ〉 is a distribution f̃ with singular support X × {0} and analytic
outside. In fact some straightforward computation proves that f̃ is rotation
invariant and verifies an ordinary differential equation (in the radial variable)
with analytic coefficients. Thus it is nonzero on a dense set in X × X and in
order to have gauge covariance, the function Φ should be identically zero and
this is not the case if ϕ is not a second order polynomial. Thus we conclud that
OpA(〈ξ〉) does not provide a gauge covariant quantization.

In spite of all these, it is useful to express OpA(p) as OpA(q) for some
symbol q, but keeping in mind that this operator is the magnetic quantization
of p and not of q. We are going to explore this in the sequel. We define
ΓA([x, y]) := 〈x − y, ΓA(x, y)〉 so that ΓA(x, y) =

∫ 1

0
ds A((1 − s)x + sy).
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Proposition 5.7. For any p ∈ Sm
ρ,δ(Ξ) there exists a unique q ∈ Sm

ρ,δ(Ξ)
such that OpA(p) = Op(q ◦ νA). Besides, we have q ◦ νA ∼ ∑∞

j=0 qA
j , where

qA
j (X) :=

∑
|α|=j

1
α!

{
(−Dy)α∂α

ξ

[
p(x, ξ − ΓA(x + y/2, x − y/2)

]}∣∣∣∣
y=0

.

In particular qA
0 = p ◦ νA, qA

1 = 0, qA
j ∈ S

A,m−(j+1)ρ
ρ,δ (∀j ≥ 1), q − p ∈

Sm−3ρ
ρ,δ (Ξ).

Proof. It is easy to see that the usual Weyl symbol of the operator OpA(p)
is

q̃A(X) =
∫∫

X×X∗
dyd̄η ei〈y,η〉 p

(
x, ξ + η − ΓA(x + (y/2), x − (y/2))

)
.

We use the Taylor expansion of p(x, ζ + η) and some standard estimations for
the integrals in order to obtain the formulae of the Proposition.

Remark 5.8. If p ∈ S2(Ξ) is a polynomial of degree less then or equal to
2 in the variable ξ ∈ X ∗ (with coefficients depending on the variable x ∈ X ),
we have q = p in the above Proposition and thus we get OpA(p) = Op(p ◦ νA).

Proposition 5.9 (Converse of Proposition 5.7). For any q ∈ Sm
ρ,δ(Ξ),

there exists a unique p ∈ Sm
ρ,δ(Ξ) such that OpA(p) = Op(q ◦ νA).

Proof. We proceed as in the proof of Proposition 5.7 using the formula:

p(X) =
∫∫

X×X∗
dyd̄η ei〈y,η〉q (x, ξ + η + ΓA(x + y/2, x − y/2) − A(x)).

.

Remark 5.10. The Propositions 5.7 and 5.9 imply that, under the hy-
pothesis of Section 5, the properties of the magnetic pseudodifferential oper-
ators may be obtained through the usual Weyl functional calculus associated
to the metric gA ([Bo3], [Ho1], [Ho2]). An example is the following Fefferman-
Phong theorem:

Corollary 5.11. Let us choose p ∈ S
2(ρ−δ)
ρ,δ (Ξ) with p ≥ 0. Then there

exists a constant C > 0 such that
(
OpA(p)u, u

)
L2

≥ −C‖u‖2
L2 , ∀u ∈ S(X ).
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Proof. Choosing p as in the statement of the Corollary and using Propo-
sition 5.7, we conclude that there exist q ∈ S

2(ρ−δ)
ρ,δ (Ξ) and r ∈ S−ρ−2δ

ρ,δ (Ξ)
such that q = p + r and OpA(p) = Op(q ◦ ν). The condition p ≥ 0 im-
plies that OpA(p) is symetric and thus q and r will be real. Thus we can
write OpA(p) = Op(p ◦ νA) + Op(r ◦ νA) and p ◦ νA ∈ S

A,2(ρ−δ)
ρ,δ . As a con-

sequence of the Fefferman-Phong inequality ([Ho2], T.18.6.8), there exists a
constant C0 > 0 such that

(
Op(p ◦ νA)u, u

)
L2 ≥ −C0 ‖u‖2

L2 , ∀u ∈ S(X ). Us-
ing Proposition 5.9 we deduce the existence of a symbol r0 ∈ S−ρ−2δ

ρ,δ (Ξ) such
that Op(r◦νA) = OpA(r0), that is a bounded operator in L2(X ) due to the fact
that ρ + 2δ ≥ 0 and to Remark 3.2. We conclude that there exists a constant
C1 > 0 such that

(
Op(r ◦ νA)u, u

)
L2 ≥ −C1 ‖u‖2

L2 , ∀u ∈ S(X ).

§5.3. Resolvents and fractional powers of elliptic magnetic
pseudodifferential operators

Due to the fact that the Hörmander metric gA is conformal and geodesi-
cally temperate we can use a Theorem of Bony ([Bo1]) characterizing pseu-
dodifferential operators by commutators and prove that the resolvent and the
powers of an elliptic magnetic self-adjoint pseudodifferential operator are also
of this type.

Theorem 5.12 (Bony). Let q ∈ S∗(Ξ) and Q := Op(q). Then q ∈
SA,m

ρ,δ if and only if Q ∈ B(Hm
A , L2(X )) and for any finite family {bj}1≤j≤k

⊂
SA,+

ρ,δ we have ad(Op(b1)) · · · ad(Op(bk))Q ∈ B(Hm
A , L2(X )).

Corollary 5.13. Under the hypothesis of Theorem 4.1 let P := OpA(p).
We also denote by P the induced self-adjoint operator in L2(X ) (with domain
Hm

A ). Then for any z ∈ C \ σ(P ) we have (P − z)−1 = OpA(p̃z) with p̃z ∈
S−m

ρ,δ (Ξ).

Proof. Obviously (P − z)−1 ∈ B(H−m
A , L2(X )). Using Proposition 5.7,

there exists q ∈ SA,m
ρ,δ such that OpA(p) = Op(q). For a finite family {bj}1≤j≤k

⊂ SA,+
ρ,δ , the arguments in [Bo1] imply that ad(Op(b1)) · · · ad(Op(bk))Op(q) is

a Weyl operator having a symbol of class SA,m
ρ,δ . A simple computation shows

that the operator ad(Op(b1)) · · · ad(Op(bk))(P − z)−1 is a finite sum of terms
of the form ±(P − z)−1Ka1(P − z)−1 · · · (P − z)−1Kal

(P − z)−1, where l ≤ k

and each factor Ka is of the form

Ka = Π
j∈Ja

ad(Op(bj))P = Π
j∈Ja

ad(Op(bj))Op(q),
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with Ja finite subset of {1, . . . , k}. We conclude that Ka ∈ B(L2(X ), H−m
A ),

and thus

ad(Op(b1)) · · · ad(Op(bk))(P − z)−1 ∈ B(H−m
A , L2(X )).

Using Theorem 5.12, we conclude the existence of a symbol q̃z ∈ SA,−m
ρ,δ such

that (P − z)−1 = Op(q̃z). By Proposition 5.9, we deduce the existence of a
symbol p̃z ∈ S−m

ρ,δ (Ξ) such that OpA(p̃z) = Op(q̃z) = (P − z)−1.

Remark 5.14. From Theorem 5.12 it follows directly that an operator
OpA(p) (with p ∈ S∗(Ξ)) is a “smoothing” one, i.e. transforms H−∞

A into
H∞

A , if and only if it belongs to ΨA,−∞(Ξ).

In order to study the fractional powers of operators as in Corollary 5.13
we first remark from Corollary 4.4 that (for the case n ≥ 2 and replacing if
necessary p by −p) OpA(p) is lower semibounded. Thus in this case (adding
if necessary a sufficiently large constant) we may suppose that p ≥ 1 and
OpA(p) ≥ 1. We can work with the usual Weyl quantization, because (having
assumed that the magnetic field B admits a vector potential with bounded
derivatives of any strictly positive order) the two quantization are in a one-
to-one correspondence that associates to elliptic magnetic operators, operators
that are elliptic with respect to the metric gA.

Given p ∈ Sm
ρ,δ(Ξ), resp. p ∈ SA,m

ρ,δ , we call a principal symbol of OpA(p),
resp. Op(p), any element p0 ∈ Sm

ρ,δ(Ξ), resp. p0 ∈ SA,m
ρ,δ , satisfying p − p0 ∈

S
m−(ρ−δ)
ρ,δ (Ξ), resp. p − p0 ∈ S

A,m−(ρ−δ)
ρ,δ .

Theorem 5.15. Let m > 0, p ∈ SA,m
ρ,δ a real elliptic symbol, such that

p ≥ 1 and P := Op(p) ≥ 1. Then for any s ∈ R we have P s = Op(qs) for some
qs ∈ SA,sm

ρ,δ . Moreover P s admits ps as principal symbol.

Proof. We follow the proof of Proposition 29.1.9 from [Ho3], using Corol-
lary 5.13.

Remark 5.16. Using Theorem 5.15 and Proposition 5.7 we see that the
operators OpA(〈ξ〉), OpA(〈ξ〉) = Op(µA) and

√
(D − A)2 + 1, are elliptic Weyl

pseudodifferential operators of first order associated to the metric gA and hav-
ing the same principal symbol µA. Thus, all three define self-adjoint, lower
semibounded operators in L2(X ), having the same domain H1

A(X ) and dif-
fering only by bounded L2 operators. Each one may be a candidate for a
magnetic relativistic Schrödinger Hamiltonian. Nevertheless, the last one can-
not be obtained by a complete ‘quantization’ procedure applying to a larger
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class of classical observables, while the second one (although used in [Ic1], [Ic2],
[IT1], [IT2], [ITs1], [ITs2], [NU1], [NU2], etc.) is not covariant for the gauge
transformations. Thus, we consider that the only adequate one should be the
first one.

§6. The Limiting Absorption Principle

This section is devoted to the spectral analysis of operators of the form
Op(p), Op(p◦νA) and OpA(p), for an elliptic symbol p ∈ Sm(Ξ), and a limiting
absorption principle for this type of operators is obtained. The main tool we
shall use is an abstract result belonging to the ‘conjugate operator method’,
(proved in [ABG]). We shall also make use of some known properties of the
Weyl calculus ([Ho1], [Ho2]) and of the magnetic pseudodifferential calculus
developed above. The following hypothesis will be assumed all over this section:

Hypothesis 6.1. There exists ε > 0 (that we can always suppose small-
er then n − 1), such that for any α ∈ Nn there exists Cα > 0 for which
|(∂αBjk)(x)| ≤ Cα〈x〉−1−ε, for any x ∈ X and j, k ∈ {1, . . . , n}.

Concerning the vector potential A defining B, we shall suppose that it has
been chosen to satisfy the conditions in Lemma 6.2 below.

Lemma 6.2. Suppose that Hypothesis 6.1 is satisfied. Then:

a) there exists a vector potential A such that B = dA and for any multiindex
α ∈ Nn, |(∂αAj)(x)| ≤ Cα〈x〉−ε for any x ∈ X and any j in {1, . . . , n},

b) if |α| ≥ 1, then the above vector potential A also satisfies |(∂αAj)(x)| ≤
Cα〈x〉−1−ε ln(1 + 〈x〉).

Proof. We choose the Coulomb gauge

Aj(x) :=
n∑

k=1

∫
X

dy (∂kE)(y)Bkj(x − y),

where E is the standard elementary solution of the Laplace operator on X and
then we use the results in Section 8 of Chapter II in [Mi].

Before formulating the main result of this section let us make some re-
marks. Any vector potential verifying the conditions in the above Lemma 6.2
has the property ∂αAj ∈ L∞(X ) for any α ∈ Nn and any 1 ≤ j ≤ n. Thus we
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can apply the results of our previous Section 5. Moreover it is easy to verify
that in the present situation, all the magnetic Sobolev spaces Hs

A(X (defined
in Section 3) coincide with the usual Sobolev spaces Hs(X ) ≡ Hs

0(X ).
If p ∈ Sm(Ξ) is a real elliptic symbol and m > 0, the operator P := Op(p)

is self-adjoint in L2(X ), having the domain Hm(X ). We shall denote its form
domain by G := D(|P |1/2) = Hm/2(X ). Let us still denote by Gs,p and G∗

s,p

(s ∈ R and 1 ≤ p ≤ ∞) the spaces of the Besov scale associated to G and
G∗ ≡ H−m/2(X ) (see [ABG]). Let us finally remark that for any z ∈ C± we
have (P − z)−1 ∈ B(G∗;G) ⊂ B(G∗

1/2,1;G−1/2,∞).
We shall denote by g the metric g

X
:= |dx|2 + 〈ξ〉−2|dξ|2 and by Mm,δ (for

m and δ in R) the weight function Mm,δ(X) := 〈x〉−δ〈ξ〉m, for X = (x, ξ) ∈ Ξ.

Theorem 6.3. Assume that the magnetic field B satisfies Hypothesis
6.1. Let p ∈ Sm(Ξ), with m > 0, satisfying the conditions :

i) p is real valued and elliptic;

ii) there exists p0 ∈ Sm(Ξ) a real elliptic symbol depending only on the variable
ξ ∈ X ∗, positive for |ξ| large, and there exists pS ∈ S(Mm,1+ε, g) and
pL ∈ S(Mm−1,ε, g), such that p = p0 + pS + pL.

Let H, H0, respectively, the self-adjoint operators defined by Op(p) and Op(p0)
in L2(X ), both having domain Hm(X ). They have the following properties:

a) σess(H) = σess(H0) = p0(X ∗).

b) The singular continuous spectrum of H (if it exists) is contained in the set
of critical values of p0 defined as Λ(p0) := {p0(ξ) | p′0(ξ) = 0}.

c) The eigenvalues of H outside Λ(p0) have finite multiplicity and can accu-
mulate only in Λ(p0).

d) (Limiting Absorption Principle) The holomorphic function C± � z �→ (H−
z)−1 ∈ B(G∗

1/2,1,G−1/2,∞) has a weak∗-continuous extension to
C± \ [Λ(p0) ∪ σp(H)].

For the proof of this Theorem we shall need some auxiliary results.

Lemma 6.4. Let Hypothesis 6.1 be verified. We consider the symbol
p ∈ Sm(Ξ).

a) There exists q ∈ S(Mm−1,ε, g) such that OpA(p) = Op(p) + Op(q).
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b) If, moreover, the symbol p verifies for all α ∈ N
n with |α| ≥ 1, and for all

β ∈ Nn

(6.1)
∣∣∣(∂α

x ∂β
ξ p)(x, ξ)

∣∣∣ ≤ Cα,β〈x〉−1 ln(1 + 〈x〉)〈ξ〉m−|β|,

then, for α and β as above, we have ∂α
x ∂β

ξ q ∈ S(Mβ, g), with

Mβ(x, ξ) := 〈x〉−1−ε ln(1 + 〈x〉)〈ξ〉m−1−|β|.

Proof. a) The stated equality is obtained by choosing:

q(x, ξ) =
∫∫

X×X∗
dt d̄η ei〈t,η〉r

(
x +

t

2
, x − t

2
, η + ξ

)

with

r(x, y, ξ) := −
〈

ΓA(x, y),
∫ 1

0

dτ (∂ξp)
(

x + y

2
, ξ − τΓA(x, y)

)〉
.

Using the estimation

|∂αA(x + sz)| ≤ Cα〈x〉−ε〈z〉ε, ∀x, z ∈ X , ∀s ∈ [−1/2, 1/2], ∀α ∈ N
n,

one verifies easily that q ∈ S(Mm−1,ε, g).
b) We can follow once again the proof of point (a), and remark that for

|α| ≥ 1 and s ∈ [−1/2, 1/2] we have

|∂αA(x + sz)| ≤ C ′
α〈x〉−1−ε ln(1 + 〈x〉)〈z〉1+ε ln(1 + 〈z〉).

The supplementary condition (6.1) is needed when we estimate the derivatives
∂α

x r̃ (in the differentiation of ∂ηp with respect to the first argument).

Lemma 6.5. Under Hypothesis 6.1, the operator Op(q) : Hm(X ) →
L2(X ) defined in Lemma 6.4(a) is compact.

Proof. For any s ∈ R the operator 〈D〉s ≡ Op(ps) ∈ Ψ(ps, g), and
the operators 〈D〉s and 〈D〉−s are one the inverse of the other. If we de-
note p̃t(x, ξ) := 〈x〉t, it follows that Op(q)〈D〉−m ∈ Ψ(p̃−εp−1, g), we also
have lim

|x|+|ξ|→∞
{〈x〉−ε〈ξ〉−1} = 0 and the Theorem 18.6.6 in [Ho2] implies that

Op(q)〈D〉−m is compact. Thus Op(q) = (Op(q)〈D〉−m) 〈D〉m is compact as an
operator from Hm(X ) to L2(X ).
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Proposition 6.6. Under Hypothesis 6.1, if p ∈ Sm(Ξ) is real and el-
liptic with m > 0, it follows that Op(q) (defined in Lemma 6.4(a)) is a rela-
tively compact perturbation of Op(p). In particular σess[OpA(p)] = σess[Op(p)].
Moreover, if p(x, ξ) = p(ξ), then σess[OpA(p)] = σess[Op(p)] = p(X ∗) and, if
lim

|ξ|→∞
p(ξ) = ∞, then σess[OpA(p)] = σess[Op(p)] = [γ,∞), with γ := inf

ξ∈X∗
p(ξ).

Proof. Due to Theorem 4.1 the operator OpA(p) is self-adjoint on the
domain Hm(X ), and the same is true for Op(p). Lemma 6.5 above implies that
Op(q) is a relatively compact perturbation of Op(p). Then, if p(x, ξ) = p(ξ)
we see that Op(p) is unitarily equivalent to the operator of multiplication with
the function p in L2(X ∗) and thus we have the second equality. For the last
one just remark that |p(ξ) ≥ C|ξ|m for |ξ| ≥ R, so that p will have constant
sign for |ξ| ≥ R.

Lemma 6.7. Let m ∈ R and p ∈ Sm(Ξ) be given such that p(x, ξ) =
p(ξ); let also θr be a function in C∞(X ) depending on the parameter r ≥ 1 and
such that for any α ∈ Nn with |α| ≥ 1 satisfies |(∂α

x θr)(x)| ≤ Cα r−1, ∀x ∈ Rn,
∀r ≥ 1. Then r(p ◦ θr − θr ◦ p) ∈ Sm−1(Rn) uniformly in r ≥ 1.

Proof. For any u ∈ S(X )

{[Op(p), Op(θr)]u} (x) =
∫∫

X×X∗
dyd̄ξ ei〈x−y,ξ〉p(ξ) [θr(y) − θr(x)]u(y)

=
n∑

j=1

∫∫
X×X∗

dyd̄ξ ei〈x−y,ξ〉pj(ξ)λj(x, y, r)u(y),

where pj(ξ) = (Djp)(ξ) ∈ Sm−1(Ξ), λj(x, y, r) =
1∫
0

ds
(
∂xj

θr

)
(sx + (1 − s)y),

and for any α ∈ N
n, β ∈ N

n, we have r∂α
x ∂β

y λj ∈ L∞(Ξ × [1,∞)). Thus we

have the formula [Op(p), Op(θr)] = r−1
n∑

j=1

Op(qj) with

qj(x, ξ, r) :=
∫∫

X×X∗
dyd̄η ei〈y,η〉pj(ξ + η)µj(x, y, r)

and µj(x, y, r) := rλj(x+y/2, x−y/2, r). For N1 and N2 integers large enough∣∣∣(∂α
x ∂β

ξ qj

)
(x, ξ, r)

∣∣∣
≤ Cαβ〈ξ〉m−1−|β|

∫∫
X×X∗

dy d̄η 〈y〉−2N1〈η〉−2N2+|m−1−|β||

≤ C ′
αβ〈ξ〉m−1−|β|.
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Lemma 6.8. Let p ∈ S(Mm,δ, g) and δ > 0. Then there exists q ∈
Sm(Ξ) such that OpA(p) = 〈Q〉−δOp(q).

Proof. The distribution kernel of the operator 〈Q〉δOpA(p) is given by

K(x, y) :=
∫
X∗

d̄η ei〈x−y,η〉〈x〉δp
(

x + y

2
, η − ΓA(x, y)

)
.

Thus we can write 〈Q〉δOpA(p) = Op(q) with q(x, ξ) :=

=
∫∫

X×X∗
dyd̄η ei〈y,η−ξ〉〈x + y/2〉δp(x, η − ΓA(x + y/2, x − y/2))

=
∫∫

X×X∗
dy d̄η ei〈y,η〉〈x + y/2〉δp(x, ξ + η − F (x, y)),

with F ∈ BC∞(X × X ). For N1 and N2 large enough we get∣∣∣(∂α
x ∂β

ξ q
)

(x, ξ)
∣∣∣

≤ Cαβ〈ξ〉m−|β|
∫∫

X×X∗
dy d̄η 〈y〉−2N1+δ〈η〉−2N2+|m−|β||

≤ C ′
αβ〈ξ〉m−|β|.

Proof of Theorem 6.3. We are going to verify the hypothesis of Theorem
7.6.8. in [ABG], that directly implies the conclusion of our theorem; for the
second equality in (a) we take into account Proposition 6.6.
1. The difference (H + i)−1 − (H0 + i)−1 is a compact operator in L2(X ).
We have Op(p) = Op(p0) + Op(pS) + Op(pL). Thus we can write

(H + i)−1 − (H0 + i)−1 = −(H + i)−1{Op(pS) + Op(pL)}(H0 + i)−1.

From the definition we see that (pS + pL)(x, ξ) = 〈x〉−εr with r ∈ Sm(Ξ). We
remark that (H0+i)−1 is in B [

L2(X ), Hm(X )
]
, Op(r) is in B [

Hm(X ), L2(X )
]
,

(H + i)−1 is in B [
H−m(X ), L2(X )

]
and 〈Q〉−ε is a compact operator in B(L2

×(X ), H−m(X )), so that the difference of the resolvents is compact.
2. For any ρ ∈ C∞

0 (X ) with ρ(x) = 0 for x in a neighborhood of 0 ∈ X , setting
ρr(x) := ρ(x/r), we have

∫ ∞
1

dr ‖ρr(Q)Op(pS)‖
B(G,G∗)

< ∞.

By construction we have pS(x, ξ) = 〈x〉−1−εq0(x, ξ) with q0 ∈ Sm(Ξ). Let us
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denote ρ̃r(x) := ρ
(

x
r

) (
r

〈x〉
)1+ε

. Thus ρr(Q)Op(pS) = r−(1+ε)ρ̃r(Q)Op(q0),
and observing that

‖ρ̃r(Q)Op(q0)‖B(G,G∗)
≤

∥∥∥〈D〉−m/2ρ̃r(Q)Op(q0)〈D〉−m/2
∥∥∥

B(L2(X))

it will be enough to prove that

sup
r≥1

∥∥∥〈D〉−m/2ρ̃r(Q)Op(q0)〈D〉−m/2
∥∥∥

B(L2(X))

< ∞.

Remarking that the function ρ̃r satisfies the hypothesis of Lemma 6.7 we con-
clude that r

{
p−m/2 ◦ ρ̃r − ρ̃r ◦ p−m/2

} ∈ S−(1+m/2)(Ξ), uniformly in r ≥ 1.
But

〈D〉−m/2ρ̃r(Q)Op(q0)〈D〉−m/2

= ρ̃r(Q)〈D〉−m/2Op(q0)〈D〉−m/2

+
[
〈D〉−m/2, ρ̃r(Q)

]
Op(q0)〈D〉−m/2

and by the previous remark the second term above is a Weyl operator of order
−1, uniformly for r ≥ 1. The first term of the above sum is a Weyl operator of
order 0, thus defining a bounded operator, uniformly in r ≥ 1.
3. For any function θ ∈ C∞(X ) with θ(x) = 0 on a neighborhood of 0 ∈ X
and θ(x) = 1 in a neighbourhood of infinity, we have for any j = 1, · · · , n,∫ ∞
1

dr
r ‖θr(Q) [Qj , Op(pL)]‖

B(G,G∗)
< ∞, for θr(x) = θ(x/r).

In order to prove this estimation we notice that [Qj , Op(pL)] = −Op(Dξj
pL)

and using Lemmas 6.4 and 6.8 we also have (Dξj
pL)(x, ξ) = 〈x〉−εq1 with

q1 ∈ Sm−2(Ξ). Thus −θr(x)
(
Dξj

pL

)
(x, ξ) = r−εϕr(x)q1(x, ξ) with ϕr(x) :=

θ(x/r)(r/〈x〉)ε. Thus it will be enough to prove that

sup
r≥1

∥∥∥〈D〉−m/2ϕr(Q)Op(q1)〈D〉−m/2
∥∥∥

B(L2(X))

< ∞,

and this follows by the same argument as in step (2) due to the fact that the
function ϕr also verifies the hypothesis of Lemma 6.7.
4. For any test function θ ∈ C∞(X ) with θ(x) = 0 on a neighborhood of 0 ∈ X
and θ(x) = 1 in a neighbourhood of infinity, we have for any j = 1, · · · , n,∫ ∞
1

dr
r ‖θr(Q)〈Q〉 [Dj , Op(pL)]‖

B(G,G∗)
< ∞, for θr(x) = θ(x/r).

We start from the equality [Dj , Op(pL)] = Op(Dxj
pL) and, using Lemmas

6.4 and 6.8, we see that ∀ε′ ∈ (0, ε), (Dxj
pL)(x, ξ) = 〈x〉−(1+ε′)q2 with q2 ∈

Sm−1(Ξ). Thus θr(x)〈x〉 (
Dxj

pL

)
(x, ξ) = r−ε′ϕr(x)q2(x, ξ), with ϕr(x) :=

θ(x/r)(r/〈x〉)ε′ and everything goes on as before.
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For t and s in R let us denote by Hs
t the usual weighted Sobolev spaces,

i.e. Hs
t = {u ∈ S∗(X ) | 〈D〉s〈Q〉tu ∈ L2(X )}. We notice that L2

t ≡ H0
t

and G = Hm/2
0 . As shown in [BGS], for δ > 0 and γ > δ + 1/2, we have the

continuous embedings L2
γ ⊂ H−m/2

δ+1/2 ⊂ G∗
1/2,1, the first being also compact. By

duality we get the continuous embedings G−1/2,∞ ⊂ Hm/2
−δ−1/2 ⊂ L2

−γ , the last
one being compact. One easily gets from the point (d) of our Theorem 6.3
that the limiting absorption principle is valid in B(L2

γ ; L2
−γ) for the uniform

topology, for any γ > 1/2.

Remark 6.9. The limiting absorption principle is valid in B(H−m/2
γ ;

Hm/2
−γ ) for the uniform topology, for any γ > 1/2 (we may evidently suppose

γ ≤ 1).

To prove this fact we start with the following identity for z ∈ C±, conse-
quence of the resolvent equation:

(H−z)−1 = (H− i)−1 +(z− i)(H− i)−2 +(z− i)2(H− i)−1(H−z)−1(H− i)−1.

As (H − i)−1 ∈ B(H−m/2
0 ;Hm/2

0 ), the desired result will follow if we prove
that (H − i)−1 ∈ B(H−m/2

γ ;Hm/2
γ ) for any γ ∈ [−1, 1]. In order to verify this

relation, one may proceed as in the proof of our Lemma 6.7, and show that
for any function ϕ ∈ C∞(X ) with ∂αϕ ∈ L∞(X ) for |α| ≥ 1, the commutator
[Op(p), ϕ(Q)] is a Weyl operator with symbol of class Sm−1(Ξ). It follows that
for any u ∈ S(X )

ϕ(Q)(H − i)−1u = (H − i)−1(ϕu) + Tu,

with T ∈ B(H−m/2
0 ;Hm/2

0 ). This equality may then be extended to those
elements of H−m/2

0 which verify ϕu ∈ H−m/2
0 . Choosing ϕ(x) := 〈x〉γ with

0 ≤ γ ≤ 1, we deduce that (H − i)−1 ∈ B(H−m/2
γ ;Hm/2

γ ) for any γ ∈ [0, 1]. By
duality we obtain the same statement for γ ∈ [−1, 0].

Remark 6.10. The conclusion of Theorem 6.3 remains true if we replace
the operator H = Op(p) with H ′ = OpA(p).

In fact, from point (a) of Lemma 6.4 we deduce the existence of a symbol
q ∈ S(Mm−1,ε, g) such that OpA(p) = Op(p) + Op(q) = Op(p′), where p′ =
p0 + pS + p′L and p′L = pL + q ∈ S(Mm−1,ε, g). Since p′ − p ∈ S(Mm−1,ε, g), we
conclude that p′ is elliptic. As Op(p′) = OpA(p) is symmetric, we deduce that
p′ is real.

Remark 6.11. The conclusion of Theorem 6.3 remains true if we replace
the operator H = Op(p) with H ′′ = Op(p ◦ νA).
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In order to prove this statement, we start from the equality

[
Op(p ◦ νA) − Op(p)

]
u(x) =

∫∫
X×X∗

dyd̄ξ ei〈x−y,ξ〉r(x, y, ξ)u(y)

for any u ∈ S(X ), where

r(x, y, ξ) = −
∫ 1

0

dτ 〈A((x + y)/2, (∂ξp)((x + y)/2, ξ − τA(x + y)/2))〉.

Repeating the proof of Lemma 6.4(a) with ΓA(x, y) replaced by A((x + y)/2),
we conclude that there exists q ∈ S(Mm−1,ε, g) such that Op(p◦νA) = Op(p)+
Op(q) and we are once again in the situation of the previous Remark 6.10.

Example 1. The magnetic relativistic Schrödinger Hamiltonian OpA

(〈ξ〉). We consider the situation of Remark 6.10 with p(ξ) = p0(ξ) = 〈ξ〉,
pS = pL = 0. In this case we have p0(X ∗) = [1,∞) and Λ(p0) = {1}. Thus
this operator has no singular continuous spectrum.

Example 2. The operator Op(µA). We recall that µA(x, ξ) = 〈ξ −
A(x)〉. We are now in the situation of Remark 6.11, with p(ξ) = p0(ξ) =
〈ξ〉. T. Umeda ([Um]) has applied the Enss method to this operator obtaining
properties (a), (b) and (c) from our Theorem 6.3, but not a limiting absorption
principle. Besides, the hypothesis in [Um] are less general then ours: he imposes
restrictions on the vector potential A of the form |∂αAj(x)| ≤ Cα〈x〉−1−ε for
any α ∈ N

n (for 1 ≤ j ≤ n and x ∈ X ) and ε > 0. We are making hypothesis
only on the magnetic field B and the only properties of A that we use in the
proof of Theorem 6.3 are those deduced in Lemma 6.2 from our Hypothesis 6.1.

An interesting result has been obtained by T. Ichinose and H. Tamura
[IT2], showing that under very general hypothesis we have Op(µA) ≥ 1. Thus
under our hypothesis one has σ(Op(µA)) = [1,∞).

Example 3. The Remarks 6.10 and 6.11 may also be applied to the
Schrödinger operator H = (D − A)2, taking p(ξ) = p0(ξ) = |ξ|2, pS = pL = 0.
In this case Theorem 6.3 does not bring anything new (the situation may be
understood from the one without magnetic field), this type of results being
known for much more general (singular) magnetic filds of the “short-range”
type (see [BMP]). This situation is a consquence of the fact that there exist
magnetic fields which verify our Hypothesis 6.1 with ε ≤ 0 and such that
(D − A)2 has dense pure spectrum in an interval of R (see [CFKS]), and thus
Theorem 6.3 clearly may not be applied.



�

�

�

�

�

�

�

�

Magnetic Pseudodifferential Operators 621

Acknowledgements

We thank the University of Geneva, where a large part of this work was
done and especially Werner Amrein for his kind hospitality. We also acknowl-
edge partial support from the CERES Programme (contract no. 4-187/2004).

References

[ABG] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, C0-groups, commutator
methods and spectral theory of N-body Hamiltonians, Progr. Math., 135, Birkhäuser,
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