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Abstract

We study the structure of functions between distributions and hyperfunctions.
The structure theorem is known for distributions, non-quasi-analytic ultradistribu-
tions and hyperfunctions. In this paper, we try to fill the gap among them. We prove
the structure theorem for quasi-analytic ultradistributions.

§1. Introduction

In this paper, we discuss the structure of generalized functions. It is well-
known that any distribution f is locally represented as f = P (D)g, where P (D)
is a finite order differential operator with constant coefficients and g is a contin-
uous function, which is the structure theorem for distributions. The structure
theorems for non-quasi-analytic ultradistributions ([1, 5]) and hyperfunctions
([3]) are also known. In this paper, we study the structure of functions between
them, namely, the structure of quasi-analytic ultradistributions. We prove the
structure theorem for non-analytic ultradistributions which includes both non-
quasi-analytic and quasi-analytic ones. It is our main theorem to prove that
any non-analytic ultradistribution f of the class ∗ is locally represented as
f = P (D)g, where P (D) is an ultradifferential operator of the class ∗ and g

is an ultradifferentiable function of the class † > ∗. We also claim that this
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426 Takashi Takiguchi

ultradifferentiable function g can be taken from any class † satisfying † > ∗.
Our main theorem gives the structure theorem for quasi-analytic ultradistribu-
tions and the proof of our main theorem gives another proof of the structure
theorem for non-quasi-analytic ultradistributions. In the proof of our main
theorem, it is essentially important to construct ultradifferential operators of
the given non-analytic class. In [5], H. Komatsu applied an infinite product

P (ξ) :=
∏∞

p=1

(
1 + l2pξ2

m2
p

)
, where mp := Mp

Mp−1
, ξ2 := ξ2

1 + · · · + ξ2
n and lp is

some sequence of positive numbers, to construct the symbol of an ultradifferen-
tial operator in the given non-quasi-analytic class, which does not converge in
quasi-analytic classes. On the other hand, it is not easy to modify A. Kaneko’s
method in [3] to construct an ultradifferential operator suitable for our purpose,
since the class of non-analyticity is strictly given in our theory. Therefore we
apply our original method to construct the symbols of ultradifferential opera-
tors. Before proving our main theorem, we prepare some elementary properties
of quasi-analytic ultradistributions.

§2. Ultradistributions

In this section, we review the definition of ultradistributions. Let Ω ⊂ Rn

be an open subset and Mp, p = 0, 1, . . ., be a sequence of positive numbers.
For non-quasi-analytic classes, we impose the following conditions on Mp.
(M.0) (normalization)

M0 = M1 = 1.

(M.1) (logarithmic convexity)

M2
p ≤Mp−1Mp+1, p = 1, 2, . . . .

(M.2) (stability under ultradifferential operators)

∃G, ∃H such that Mp ≤ GHp min
0≤q≤p

MqMp−q, p = 0, 1, . . . .

(M.3) (strong non-quasi-analyticity)

∃G such that
∞∑

q=p+1

Mq−1

Mq
≤ Gp

Mp

Mp+1
, p = 1, 2, . . . .

(M.2) and (M.3) are often replaced by the following weaker conditions
respectively;
(M.2)′ (stability under differential operators)

∃G, ∃H such that Mp+1 ≤ GHpMp, p = 0, 1, . . . .
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(M.3)′ (non-quasi-analyticity)
∞∑

p=1

Mp−1

Mp
<∞.

For two sequences Mp and Np of positive numbers we define their orders.

Definition 2.1. Let Mp and Np be the sequences of positive numbers.

(i) Mp ⊂ Np if and only if there exist such constants L > 0 and C > 0 that
Mp ≤ CLpNp for any p.

(ii) Mp ≺ Np if and only if for any L > 0 there exists such a constant C > 0
that Mp ≤ CLpNp for any p.

In order to define quasi-analytic classes, we impose the following condi-
tions, (QA) and (NA), instead of (M.3) or (M.3)′.
(QA) (quasi-analyticity)

p! ⊂Mp,

∞∑
p=1

Mp−1

Mp
=∞.

Let Mp be a sequence of positive numbers satisfying (QA). If

lim inf
p→∞

p

√
p!
Mp

> 0

then E{Mp} is the class of analytic functions. We impose the condition that
{Mp} would not define the analytic class, namely,
(NA) (non-analyticity)

lim
p→∞

p

√
p!
Mp

= 0.

Definition 2.2. Let Mp be a sequence of positive numbers and Ω ⊂ Rn

be an open subset. A function f ∈ E(Ω) = C∞(Ω) is called an ultradifferentiable
function of the class (Mp) (resp. {Mp}) if and only if for any compact subset
K ⊂ Ω and for any h > 0 there exists such a constant C (resp. for any compact
subset K ⊂ Ω there exist such constants h and C) that

(1) sup
x∈K
|Dαϕ(x)| ≤ Ch|α|M|α| for all α

holds. Denote the set of the ultradifferentiable functions of the class (Mp) (resp.
{Mp}) on Ω by E(Mp)(Ω) (resp. E{Mp}(Ω)) and denote by D∗(Ω) the set of all
functions in E∗(Ω) with their supports compact in Ω, where ∗ = (Mp) or {Mp}.
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Let K ⊂ Rn be a compact set, Mp satisfy (M.1) and (NA). Denote by
E∗[K] the set of the ultradifferentiable functions of the class ∗ = (Mp) or {Mp}
defined on some neighborhood of K. We define ϕ ∈ E{Mp},h[K] if and only if
ϕ ∈ E{Mp}[K] and (1) holds for given h > 0.

For Mp satisfying (M.3)′ and a compact subset K ⊂ Ω let

(2) D∗
K = {ϕ ∈ D∗(Rn) ; suppf ⊂ K},

where ∗ = (Mp) or {Mp} and we define

(3) D{Mp},h
K = {ϕ ∈ D{Mp}

K ; ∃C such that sup
x∈K
|Dαϕ(x)| ≤ Ch|α|M|α|}.

Let Mp satisfy (M.1) and (M.3)′. We define D∗′(Ω) as the strong dual of D∗(Ω)
for any open set Ω and call it the set of ultradistributions of the class ∗ defined
on Ω. These spaces are endowed with natural structure of locally convex spaces.

For non-quasi-analytic ultradifferentiable functions and non-quasi-analytic
ultradistributions confer [5] and [6].

Definition 2.3. Let K ⊂ Rn be a compact set, Mp satisfy (M.1) and
(NA). For f ∈ E{Mp},h[K] we define its norm by

(4) ‖f‖E{Mp},h[K] := sup
x∈K,α

|Dαf(x)|
h|α|M|α|

.

Let Ω be an open set and K be a compact set. Topologies of ultradifferentiable
classes are defined as follows.

E{Mp}[K] = lim−→
h→∞

E{Mp},h[K],

E{Mp}(Ω) = lim←−
K�Ω

E{Mp}[K],

E(Mp)[K] = lim←−
h→0

E{Mp},h[K],

E(Mp)(Ω) = lim←−
K�Ω

E(Mp)[K].

(5)

We define E∗K ′ as the strong dual of E∗[K] and call it the set of ultradistributions
of the class ∗ supported by K. We also define E∗′(Ω) := ∪K⊂ΩE∗K ′.

Let us define the sheaf of ultradistributions.
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Definition 2.4. Let a sequence Mp of positive numbers satisfy (M.0),
(M.1), (M.2)′, and

(6) lim sup
p→∞

p

√
p!
Mp

<∞.

We define a presheaf F ∗ on Rn by

(7) F ∗(Ω) := E∗′(Rn)/E∗′(Rn \ Ω),

where Ω is any open set in Rn and ∗ = (Mp) or {Mp}. We denote the corre-
sponding sheaf by F∗. If Mp satisfies (M.3)′, F∗ = D∗′. If Mp satisfies (QA)
and (NA), then we call F∗ the sheaf of quasi-analytic ultradistributions of the
class ∗.

Definition 2.5. For two classes ∗ and † we define their inclusion rela-
tions.

† ≤ ∗ ⇔ E† ⊂ E∗,
† < ∗ ⇔ E† � E∗.(8)

Definition 2.6. A differential operator P (D) :=
∑

α aαDα of infinite
order is defined to belong to the class (Mp) (resp. {Mp}), if and only if there
exist such constants L and C (resp. for any L > 0 there exists such a con-
stant C) that |aα| ≤ (CL|α|)/M|α| holds for any α. We call this operator an
ultradifferential operator of the class (Mp) (resp. {Mp}).

Definition 2.7. For a positive sequence Mp satisfying (NA), define its
associated function by

(9) M̃(t) := sup
p

tp

Mp
,

for t > 0.

§3. Known Results

In this section, we review the known results on the structure theorems.
The structure theorem for distributions was proved by L.Schwartz.

Theorem 3.1 (cf. [7]). Any distribution f is locally represented as

(10) f = P (D)g,

where P (D) is a differential operator of finite order with constant coefficients
and g is a continuous function.
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Extensions of this theorem for non-quasi-analytic ultradistributions and
for hyperfunctions are known. H. Komatsu [5] proved the structure theorem
for strongly non-quasi-analytic ultradistributions.

Theorem 3.2 (cf. [5]). Let the sequence Mp satisfy the conditions, (M.1),
(M.2) and (M.3). f ∈ D∗′, where ∗ is (Mp) or {Mp}, is locally represented in
the form (10), where P (D) is an ultradifferential operator of the class ∗ with
constant coefficients and g is a continuous function.

This theorem was extended by R. W. Braun [1] for non-quasi-analytic
ultradistributions.

Theorem 3.3 (cf. [1]). Let the sequence Mp satisfy the conditions, (M.1),
(M.2) and (M.3)′. For f ∈ D∗′, where ∗ is (Mp) or {Mp}, and for any class
† satisfying ∗ < †, there exist an ultradifferential operator P (D) of the class ∗
with constant coefficients and an ultradifferential function g of the class † such
that the representation (10) locally holds.

In [3], A. Kaneko proved the structure theorem for hyperfunctions.

Theorem 3.4 (cf. [3]). Any hyperfunction f is locally represented as

(11) f = J(D)g,

where J(D) is a local operator with constant coefficients, that is, J(D) is an
infinite order differential operator J(D) =

∑
α aαDα with the coefficients sat-

isfying lim|α|→∞ |α|
√|aα|α! = 0, and g is an infinitely differentiable function.

The structure theorem for quasi-analytic ultradistributions is left open, to
prove which is our main purpose in this paper.

§4. Fourier Transform of Non-analytic Functions and
Non-analytic Ultradistributions

In this section, we study the Fourier transform of non-analytic functions
and non-analytic ultradistributions. The properties proved in this section take
important roles to prove our main theorem. For a function f defined on Rn,
we define its Fourier-Laplace transform f̂(ζ), ζ ∈ Cn by

(12) f̂(ζ) :=
∫

Rn

e−ix·ζf(x)dx

when it is well-defined.
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Definition 4.1. Let Mp be a sequence of positive numbers. A function
f ∈ E(Mp)(Rn) (resp. f ∈ E{Mp}(Rn)) belongs to S(Mp) (resp. S{Mp}) if
and only if for any k > 0 and h > 0 there exists a constant C = Ch,k > 0
(resp. there exists a constant h > 0 and for any k > 0 there exists a constant
C = Ck > 0) such that

(13) |Dαf(x)| ≤ C|h||α|M|α|(1 + |x|)−k,

for any multi-index α. Let us define

(14) S{Mp},h = {ϕ ∈ S{Mp} ; ∀ k, ∃C, |Dαϕ(x)| ≤ Ch|α|M|α|(1 + |x|)−k}.

For f ∈ S{Mp},h, we define its norm by

(15) ‖f‖S{Mp},h := sup
x∈Rn,α,k

|Dαf(x)|
h|α|M|α|(1 + |x|)k

.

For topologies of ultradifferentiable classes, the following relations hold.

S{Mp} = lim−→
h→∞

S{Mp},h,

S(Mp) = lim←−
h→0

S{Mp},h.
(16)

The set S∗′ is defined as the strong dual of S∗, where ∗ = (Mp) or {Mp}.

Lemma 4.1 (cf. Proposition 3.2 in [5]). A sequence Mp satisfies the con-
dition (M.1) if and only if

(17) Mp = M0 sup
t>0

tp

M̃(t)
,

for t > 0.

Proposition 4.1. Assume that a sequence Mp, p = 0, 1, 2, . . . , of pos-
itive numbers satisfies the conditions (M.0), (M.1), (M.2)′ and (NA). Then
the following conditions are equivalent.

(i) The function f̂ is the Fourier-Laplace transform of f ∈ S(Mp) (resp. f ∈
S{Mp}).

(ii) For any multi-index α and h > 0 there exists a constant C = Cα,h (resp.
there exists a constant h > 0 and for any multi-index α there exists a
constant C = Cα > 0) such that
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(18) |Dαf̂(ξ)| ≤ C

M̃(h|ξ|)
, for ξ ∈ Rn.

Proof. Let us treat both (Mp) and {Mp} classes simultaneously.
(ii) ⇒ (i); By virtue of Lemma 4.1, the following estimate holds.

∣∣xβDα
x f(x)

∣∣ = ∣∣∣∣ 1
(2π)n

∫
Rn

Dβ
ξ (f̂(ξ)ξα)eix·ξdξ

∣∣∣∣
≤ 1

(2π)n

∫
|ξ|≤1

∣∣∣Dβ(f̂(ξ)ξα)
∣∣∣ dξ +

1
πn

∫
|ξ|>1

|ξ|n+1

(1 + |ξ|)n+1

∣∣∣Dβ(f̂(ξ)ξα)
∣∣∣ dξ

≤ Cβ,1

M(h|ξ|) + Cβ,2

∫
|ξ|>1

1
(1 + |ξ|)n+1

dξ

min(|α|+n+1,|β|)∑
j=0

|ξ||α|+n+1−j

M(h|ξ|)

≤ Cβ,1

M(h|ξ|) + Cβ,3
|ξ||α|+n+1

M(h|ξ|) ≤ Cβ

M|α|+n+1

h|α|+n+1
,

(19)

where Cβ,i, i = 1, 2, 3, and Cβ are suitable constants. The condition (M.2)′

yields that

(20)
M|α|+n+1

h|α|+n+1
≤ GHn+1

hn+1

(
H

h

)|α|
M|α|,

for some constants G and H. Therefore, (i) is obtained if the conditions on the
constants are properly interpreted according to the class (Mp) or {Mp}.

(i) ⇒ (ii);

(21) ξβDαf̂(ξ) =
∫

e−ix·ξ (Dβ(xαf(x))
)
dx.

Note that xαf(x) ∈ S∗, ∗ = (Mp) or {Mp}. Then we have

(22)
∣∣∣ξβDαf̂(ξ)

∣∣∣ ≤ Cαh|β|M|β|

∫
1

(1 + |x|)(n+1)
dx.

Therefore

(23)
∣∣∣Dαf̂(ξ)

∣∣∣ ≤ Cα inf
|β|

M|β|
(|ξ|/h)|β|

≤ Cα

M̃(|ξ|/h)
,

which proves (ii) with an appropriate interpretation on the constants in accor-
dance with the class.
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Proposition 4.2. Assume that a sequence Mp, p = 0, 1, 2, . . ., of pos-
itive numbers satisfies the conditions (M.0), (M.1), (M.2)′ and (NA). If for
any h > 0 there exists such a constant C = Ch (resp. there exist such constants
h > 0 and C > 0) that

(24) |f(x)| ≤ C

M̃(h|x|)
,

then f̂ ∈ E(Mp) (resp. f̂ ∈ E{Mp}).

Proof.

∣∣∣Dαf̂(ξ)
∣∣∣ = ∣∣∣ ∫

Rn

f(x)xαe−ix·ξdx
∣∣∣

≤
∫
|x|≤1

|f(x)||x||α|dx + 2n

∫
|x|>1

|f(x)||x||α|+n+1

(1 + |x|)n+1
dx

≤
(∫

|x|≤1

dx

)
sup

x∈Rn

C|x||α|

M̃(h|x|)
+

(∫
|x|>1

1
(1 + |x|)n+1

dx

)
sup

x∈Rn

C|x||α|+n+1

M̃(h|x|)

≤ C1

M|α|
|h||α| + C2

M|α|+n+1

|h||α|+n+1
,

(25)

where we have applied the fact that for a positive sequence Mp, (M.1) is equiv-
alent to

(26) Mp = sup
t>0

tp

M̃(t)
.

By virtue of (M.2)′, there exist such constants C3 and H that

(27) M|α|+n+1 ≤ C3H
|α|M|α|.

By (25) and (27), we have

(28)
∣∣∣Dαf̂(ξ)

∣∣∣ ≤ CH |α| max
{

1
h|α| ,

1
h|α|+n+1

}
M|α|,

which implies f̂ ∈ E(Mp) (resp. f̂ ∈ E{Mp}).

Theorem 4.1. (The Paley-Wiener theorem for non-analytic ultradis-
tributions) Let Mp satisfy (M.0), (M.1), (M.2)′ and (NA). For a compact
convex set K ⊂ Rn, the following conditions are equivalent.
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(i) f̂ is the Fourier-Laplace transform of f ∈ E(Mp)
K

′
(resp. f ∈ E{Mp}

K

′
).

(ii) There exist such constants L > 0 and C > 0 (resp. for any L > 0, there
exists such a constant C > 0) that

|f̂(ξ)| ≤ CM̃(L|ξ|),

and f̂(ζ) is an entire function in ζ ∈ Cn which satisfies that for any ε > 0
there exists such a constant Cε that

(29) |f̂(ζ)| ≤ Cε exp(HK(Imζ) + ε|ζ|), ζ ∈ Cn,

where HK(y) := supx∈K x · y, y ∈ Rn, is the supporting function of K.

(iii) f̂(ζ) is an entire function in ζ ∈ Cn which satisfies that there exist such
constants L > 0 and C > 0 (resp. for any L > 0, there exists such a
constant C > 0) that

(30) |f̂(ζ)| ≤ CM̃(L|ζ|)eHK(Imζ), ζ ∈ Cn.

This theorem seems to be known, however, it seems difficult to find the
proof of this theorem in our form. Hence we shall give its proof.

Proof. (i) ⇒ (iii); Since f ∈ E∗K ′(Rn) ⊂ E∗′(Rn), there exist constants h

and C (resp. for any h > 0, there is a constant C) such that

(31) | 〈ϕ, f〉 | ≤ C sup
x∈K,α

Dαϕ(x)
h|α|M|α|

, ϕ ∈ E∗(Rn).

Let

(32) ϕ(x) = exp(−ix · ζ), ζ = ξ + iη ∈ Cn.

Then there holds

(33) |f̂(ζ)| ≤ C sup
x∈K,α

|ζ||α|

h|α|M|α|
|e−ix·ξ+x·η | ≤ CeHK(Imζ)M̃

( |ζ|
h

)
.

(iii)⇒ (ii); Let any L > 0 be fixed. For any ε > 0 there exists m ∈ N such that

(34) k! ≤Mk

( ε

L

)k

for k > m by virtue of (NA). Therefore

(35) M̃(L|ζ|) = sup
k

Lk|ζ|k
Mk

≤ C sup
k

(ε|ζ|)k

k!
≤ Ceε|ζ|.
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(35) and the Paley-Wiener theorem for hyperfunctions (cf. [4]) give (ii).

(ii) ⇒ (i); Let ∗ = (Mp) or {Mp}. We first prove that f ∈ S∗′. By virtue of
Proposition 4.1 and the assumption ii), there holds for ϕ ∈ S∗,

|〈ϕ, f〉| :=
∣∣∣∣∫ ϕ(x)f(x)dx

∣∣∣∣ = 1
(2π)n

∣∣∣〈ϕ̂, f̂
〉∣∣∣

≤ 1
(2π)n

∫ ∣∣∣ϕ̂(ξ)f̂(ξ)
∣∣∣ dξ

≤ 1
(2π)n

∫
C1

M̃(h|ξ|)
C2M̃(L|ξ|)dξ.

(36)

For ∗ = (Mp), there exist some L, C2, and for any h > 0, there exists some C1

such that (36) holds. Hence take h > 0 such that h > L then (36) converges.
For ∗ = {Mp}, there exist some h, C1, and for any L > 0, there exists some C2

such that (36) holds. Hence take L > 0 such that h > L then (36) converges.
The function f is then proved to be a linear map from S∗ to C. Take a sequence
ϕn → ϕ in S∗ and replace ϕ in (36) by ϕn, then the Lebesgue dominated
convergence theorem proves the continuity of f . Therefore, it is proved that
f ∈ S∗′.

The estimate (29) and the Paley-Wiener Theorem for hyperfunctions yield
that f is a hyperfunction with its support contained in K. The fact that the
space of the analytic functions A[K] is dense in E∗[K] implies that f ∈ E∗K ′.
Therefore (i) is obtained.

The following proposition follows almost directly from Theorem 4.1.

Proposition 4.3. For the positive sequences Mp and Np satisfying the
conditions (M.1) and (NA), the following conditions are equivalent.

(i) Mp ≺ Np.

(ii) limp→∞(Mp/Np)1/p = 0.

If Mp and Np satisfies (M.2)′ in addition, then above two condition are equiv-
alent to the following one.

(iii) {Mp} < {Np} and (Mp) < (Np).

By this proposition, we have {Mp} ≤ {Np} for Mp ⊂ Np.

Definition 4.2. A function ε(t) > 0 defined for t > 0 is called sub-
ordinate if and only if it is continuous, monotonously increasing and ε(t)/t is
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monotonously decreasing to zero as t→∞, i.e.,

(37) lim
t→∞

ε(t)
t

= 0.

Proposition 4.4 (cf. Lemma 3.10 in [5]). For positive sequences Mp and
Np satisfying (M.1), the following conditions are equivalent.

(i) Mp ≺ Np.

(ii) For any L > 0, there exists such a constant C > 0 that

Ñ(t) ≤ CM̃(Lt), for 0 < t <∞.

(iii) There exists such a subordinate function ε(t) that

Ñ(t) ≡ M̃(ε(t)).

By virtue of Proposition 4.4, we obtain the following equivalent conditions.

Proposition 4.5. Let Mp satisfy (M.1) and (NA). For a function f

defined on Rn, the following conditions are equivalent.

(i) For any L > 0 there exists such a constant C > 0 that

(38) |f(x)| ≤ CM̃(L|x|), for ∀x ∈ Rn.

(ii) There exists such a subordinate function ε(t) that

(39) |f(x)| ≤ M̃(ε(|x|)), for ∀x ∈ Rn.

Proof. The proof of “(ii) ⇒ (i)” is clear.
Let us prove “(i) ⇒ (ii)”. We define ε(t), t > 0 by

(40) sup
|x|≤t

|f(x)| = M̃(ε(t)).

By the definition, (39) holds. It is also trivial that ε(t) is monotonously in-
creasing. What is left to prove is that

(41) lim
t→∞

ε(t)
t

= 0.

Let us assume the contrary to (41), that is, there exist a constant L > 0
and a sequence tj of positive numbers satisfying t1 < t2 < · · · < tj < · · · → ∞
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such that ε(tj) ≥ 2Ltj . Then for this constant L, there exists a constant C

such that

(42) M̃(2Ltj) ≤ M̃(ε(tj)) = sup
|x|≤tj

|f(x)| ≤ CM̃(Ltj).

Hence we obtain M̃(2Ltj) ≤ CM̃(Ltj), which contradicts to the fact that

(43) lim
t→∞

M̃(t)
tk

=∞,

for any positive integer k.

§5. Main Theorem

In this section, we prove our main theorem. As an preparation, we con-
struct the symbols of ultradifferential operators in the non-analytic classes,
which serves as a key lemma to prove our main theorem.

Lemma 5.1. Let Np satisfy (M.0), (M.1), (M.2)′, (QA) and (NA).
For any subordinate function ε(t) there exist such a monotonously decreasing
positive sequence lp with limp→∞ lp = 0 and such a constant A > 0 that

(44) |P (ξ)| ≥ AM̃(ε(|ξ|)),

where

(45) P (ξ) :=
∞∑

p=0

(l2p|ξ|)2p

M2p
.

Proof. If the subordinate function ε(t) satisfies limt→∞ ε(t) < ∞, then
the lemma is easily obtained, for example, by letting lp = 1/p. Therefore
what is left to prove is the case where limt→∞ ε(t) = ∞. Let us represent the
associate function M̃ by

(46) M̃(t) = sup
p

tp

Mp
= sup

p

p∏
q=1

t

mq
,

where mp := Mp

Mp−1
is an increasing sequence satisfying

(47) lim
p→∞ mp =∞.
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We define the sequence l̃p, p = 1, 2, . . ., by

(48) ε

(
mp

l̃p

)
= mp.

Monotonous increase of ε and mp together with (47) yields that the sequence
mp/l̃p is monotonously increasing and

(49) lim
p→∞

mp

l̃p
=∞.

Therefore the sequence

(50) l̃p =
ε(mp/l̃p)
mp/l̃p

is monotonously decreasing and satisfies limp→∞ l̃p = 0.
If mp ≤ t < mp+1 then

(51)
tk

Mk
=

k∏
q=1

t

mq

attains its supremum at k = p. Therefore for

(52) mp = ε

(
mp

l̃p

)
≤ ε(t) ≤ ε

(
mp+1

l̃p+1

)
= mp+1,

there holds that

(53) M̃(ε(t)) =
p∏

q=1

ε(t)
mq
≤

p∏
q=1

l̃qt

mq
=

l̃1 · · · l̃ptp
Mp

=
(l̂pt)p

Mp
,

where l̂p := p

√
l̃1 · · · l̃p and we have applied the estimate

(54) ε(t) ≤ l̃qt,

for t ≥ mp/l̃p and q ≤ p. Note that by virtue of (52), we obtain mp

l̃p
≤ t ≤ mp+1

l̃p+1
.

By the definition, l̂p > 0 is a decreasing sequence and satisfies limp→∞ l̂p = 0.
For 0 < l̂pt < 1,

(55)
(l̂p−1t)p−1

Mp−1
≥ (l̂pt)p

Mp
.
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For l̂pt ≥ 1, (M.2)′ implies

(56)
1

Mp−1
≤ GHp

Mp
,

for some G and H, which yields

(57)
(l̂p−1t)p−1

Mp−1
≤ (l̂pt)p

Mp
GHp.

We have, by virtue of (55) and (57),

(58)
(l̂pt)p

Mp
≤ G

∞∑
p=0

(H ′ l̂2pt)2p

M2p
,

for any p = 0, 1, 2, · · · , where H ′ := max{1, H}. By (53) and (58), letting
lp := H ′ l̂p yields

(59) AM̃(ε(|ξ|)) ≤ P (ξ) := G′
∞∑

p=0

(l2p|ξ|)2p

M2p
,

where G′ := max{1, G}, which proves the lemma.

Theorem 5.1. Let Np satisfy (M.0), (M.1), (M.2), (QA) and (NA).
Assume that f ∈ F∗′, where ∗ = (Mp) or {Mp}. Then for any class † satisfying
∗ < † there exist g ∈ E† and an ultradifferential operator P (D) of the class ∗
such that the representation

(60) f = P (D)g,

locally holds.

Proof. It is sufficient to prove that the representation (60) holds in some
neighborhood of the origin. By the definition, for any f ∈ F∗′ there exists
f1 ∈ E∗K ′ such that f = f1 in some neighborhood of the origin, where K ⊂ Rn

is some compact set containing the origin in its inside. In the following proof,
it is capable of assuming that f ∈ E∗K ′ without loss of generality.

I. The proof for (Mp) class.
The ultradifferential operator

(61) P̃ (D) :=
∞∑

p=0

(−∆)p

M2p
,
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belongs to (Mp) class and satisfies that there exist such constants C1 > 0 and
C2 > 0 that

(62) |P̃ (ξ)| ≥ C1M̃(C2|ξ|),
for any ξ ∈ Rn. Theorem 4.1 yields that for f ∈ E(Mp)′ there exist such
constants C and L that

(63) |f̂(ξ)| ≤ CM̃(L|ξ|), for ∀ξ ∈ Rn.

Define the ultradifferential operator

(64) P (D) :=
∞∑

p=0

(− L
C2

∆)p

M2p
.

Then we have by (62) that there exists such a constant C ′ > 0 that

(65) |P (ξ)| ≥ C ′M̃(L|ξ|),
for any ξ ∈ Rn. (63) and (65) yield that there exists such a constant C > 0
that

(66)

∣∣∣∣∣ f̂(ξ)
P (ξ)2

∣∣∣∣∣ ≤ C

M̃(L|ξ|)
.

for any ξ ∈ Rn. By Proposition 4.2, there holds

(67) g := F−1

(
f̂(ξ)
P (ξ)2

)
∈ E{Mp},

where F−1 is the inverse Fourier-Laplace transform operator. We have

(68) f(x) ≡ (P (D))2g(x).

By virtue of (M.2), we have (P (D))2 is an ultradifferential operator of the class
(Mp). Therefore the theorem is proved for (Mp) class.

II. The proof for {Mp} class.
Let {Mp} ≺ † = (Np) or {Np}. Lp :=

√
MpNp yields Mp ≺ Lp ≺ Np.

By Proposition 4.4, there exists such a subordinate function ε1 that L̃(t) =
M̃(ε1(t)), hence by Lemma 5.1, there exist such a positive decreasing sequence
l
(1)
p with limp→∞ l

(1)
p = 0 and a constant A1 > 0 that

(69) P1(ξ) :=
∞∑

p=0

(l(1)2p |ξ|)2p

M2p
≥ A1M̃(ε1(|ξ|)),
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for any ξ ∈ Rn. By the definition, P1(D) is an ultradifferential operator of the
class {Mp}. By virtue of Theorem 4.1 and Proposition 4.4, there exists such a
subordinate function ε2 that

(70) |f̂(ξ)| ≤ M̃(ε2(|ξ|)),

for any ξ ∈ Rn. In view of Lemma 5.1, there exist such a positive decreasing
sequence l

(2)
p satisfying limp→∞ l

(2)
p = 0 and a constant A2 > 0 that

(71) P2(ξ) :=
∞∑

p=0

(l(2)2p |ξ|)2p

M2p
≥ A2M̃(ε2(|ξ|)),

for any ξ ∈ Rn. Therefore, we have

(72)

∣∣∣∣∣ f̂(ξ)
P1(ξ)P2(ξ)

∣∣∣∣∣ ≤ 1

A1A2M̃(ε1(|ξ|))
=

1

A1A2L̃(|ξ|) ,

for any ξ ∈ Rn. Let us define

(73) g := F−1

(
f̂(ξ)

P1(ξ)P2(ξ)

)
,

then Proposition 4.2 and (72) imply that g ∈ E{Lp} ⊂ E†. We have

(74) P1(D)P2(D)g(x) = f(x).

By (M.2), the ultradifferential operatorP1(D)P2(D) belongs to the {Mp} class.
Therefore the theorem is also proved for {Mp} class.

As an application of the proof of Theorem 5.1, we obtain a modification
of Theorem 3.4.

Theorem 5.2. For any hyperfunction f and for any non-analytic class
∗, there exist such a local operator J(D) and g ∈ E∗ that the representation
(11) holds locally.

In order to prove this theorem, we modify A. Kaneko’s proof of Theorem
3.4 in [3] applying the fact that any ultradifferential operator of non-analytic
classes is a local operator, that is, we take

(75) g := F−1

(
f̂(ξ)

J(ξ)P (ξ)

)
,
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where J(D) is the local operator constructed in Lemma 1.2 in [3] and P (D) is
the ultradifferential operator constructed in (64) for (Mp) class (resp. in (71)
for {Mp} class).

In the proofs of both Theorems 5.1 and 5.2, it is essentially important
to construct ultradifferential operators of non-analytic classes (Lemma 5.1 and
(64)).
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