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The ∂-theory for Inverse Problems
Associated with Schrödinger Operators

on Hyperbolic Spaces

By

Hiroshi Isozaki∗

Abstract

An analogue of the Faddeev scattering amplitude is introduced for Schrödinger
operators on hyperbolic spaces. It satisfies a ∂-equation and enables us to derive an
integral representation of the potential.

§1. Introduction

In the present paper, we are concerned with the inverse problem associated
with Schrödinger operators on hyperbolic spaces. The most fundamental object
in scattering theory is the S-matrix. For the Schrödinger operator in Rn, it is
a unitary operator on L2(Sn−1) having the following expression

(1.1) S(E)f(θ) = f(θ) + CE

∫
Sn−1

Ã(E; θ, ω)f(ω)dω, f ∈ L2(Sn−1),

where CE is a constant depending only on the energy E > 0 and the scattering
amplitude Ã(E; θ, ω) is observed from the asymptotic behavior of the solution
to the Schrödinger equation

(1.2) (−∆ + V (x))ϕ = Eϕ

in the following manner :

(1.3) ϕ(x;E,ω) ∼ ei
√

Eω·x + C̃E
ei

√
Er

r(n−1)/2
Ã(E; θ, ω)
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202 Hiroshi Isozaki

as r = |x| → ∞, θ = x/r. This ϕ is obtained by solving the Lippman-Schwinger
equation :

(1.4) ϕ(x) = ei
√

Eω·x −
∫
Rn

G0(x− y,E)V (y)ϕ(y)dy,

where G0(x,E) is the Green function for −∆ − E defined by

(1.5) G0(x,E) = (2π)−n

∫
Rn

eix·ξ

ξ2 − E − i0
dξ.

Here and in the sequel for ζ = (ζ1, · · · , ζn) ∈ Cn, we denote ζ2 =
∑n

i=1 ζ
2
i .

The inverse problem for the Schrödinger operator aims at constructing
V (x) from the S-matrix. When n = 1, the well-known theory of Gel’fand-
Levitan-Marchenko provides us with the necessary and sufficient condition for
a function S(E) to be the S-matrix of a Schrödinger operator and an algorithm
for the reconstruction of V (x).

The multi-dimensional inverse problem has not been solved yet completely
as in the 1-dimensional case. The main difficulty arises from the overdetermi-
nacy ; the scattering amplitude Ã(E; θ, ω) is a function of 2n − 1 parameters
while the potential V (x) depends on n variables. Therefore for a function
f(E, θ, ω) on (0,∞) × Sn−1 × Sn−1 to be the scattering amplitude associated
with a Schrödinger operator, f must satisfy a sort of compatibility condition,
which is still unknown. However, there is a series of deep results related to
inverse problems in multi-dimensions, the main idea of which consists in using
exponentially growing solutions for the Schrödinger equation (1.2). In inverse
boundary value problems in a bounded domain, it is called the complex geo-
metrical optics solution (see [SyUh]). In the inverse scattering problem, it is
commonly called the ∂-theory ([Na1], [Na2], [KhNo]), although the pioneering
work of Faddeev [Fa] does not use this term.

In the ∂-approach of inverse scattering, instead of Ã(E; θ, ω), one uses
Faddeev’s scattering amplitude :

(1.6) A(ξ, ζ) =
∫
Rn

e−ix·(ξ+ζ)V (x)ψ(x, ζ)dx, ξ ∈ Rn, ζ ∈ Cn

where ζ2 = E, and ψ(x, ζ) is a solution to the equation

(1.7) ψ(x, ζ) = eix·ζ −
∫
Rn

G(x− y, ζ)V (y)ψ(y, ζ)dy,

G(x, ζ) being Faddeev’s Green function defined by

(1.8) G(x, ζ) = (2π)−n

∫
Rn

eix·(ξ+ζ)

ξ2 + 2ζ · ξ dξ.
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This function A(ξ, ζ) has the following features :

(i) It is natural to regard A(ξ, ζ) as a function on the fiber bundle M =
∪ξ{ξ} × Vξ, where ξ varies over the base space Rn and the fiber Vξ is defined
by

(1.9) Vξ = {ζ ∈ Cn; ζ2 = E, ξ2 + 2ζ · ξ = 0, Im ζ �= 0}.

As a 1-form on M, it satisfies a ∂-equation
(1.10)

∂ζA(ξ, ζ) = −(2π)1−n
n∑

j=1

(∫
Rn

A(ξ − η, ζ + η)A(η, ζ)ηjδ(η2 + 2ζ · η)dη
)
dζj .

(ii) When n ≥ 3, the Fourier transform of the potential V is recovered
from A(ξ, ζ) in the following way :

(1.11) V̂ (ξ) = (2π)−n/2 lim
|ζ|→∞, ζ∈Vξ

A(ξ, ζ).

Consequently, by virtue of a generalization of Bochner-Martinelli’s formula
on Vξ, we have an integral representation of V (x) in terms of A(ξ, ζ).

(iii) The ∂-equation characterizes the Faddeev scattering amplitude.
Namely, the equation (1.10) is a necessary and sufficient condition for a func-
tion A(ξ, ζ) on the fiber bundle M to be the scattering amplitude associated
with a Schrödinger operator on Rn.

These ideas have been found and confirmed in various levels. For the
details see [NaAb], [BeCo], [Na1], [No], [Gr] and especially the introduction of
[KhNo]. See also [Ha], [We].

The purpose of the present paper is to generalize (a part of) these results
for the Schrödinger operator on the hyperbolic space Hn. In our previous
works [Is1], [Is2], we have seen a close connection between the inverse problem
on the Euclidean space and that on the hyperbolic space. Namely, the inverse
boundary value problem in Rn is equivalent to the one in Hn, or the hyperbolic
quotient manifolds under the action of discrete group of translations, which
then turns out to be equivalent to the inverse scattering problem. When n ≥ 3,
this latter can be solved by passing to the Faddeev scattering amplitude for the
Floquet operators. However, the inversion procedures are not quite constructive
and essentially the uniqueness has been proven.

In this paper we show that the Green function for the gauge-transformed
Laplacian on Hn satisfies a ∂-equation (Theorem 2.7). We then introduce
an analogue of Faddeev scattering amplitude and derive a ∂-formula for it
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(Theorem 3.4). When n = 3, this leads to an integral representation of the
potential in terms of the Faddeev scattering amplitude (Theorems 3.5 and 3.7).
The counter part of A(ξ, ζ) introduced in this paper is a triple {BII , BIJ , BJI}
((3.26)–(3.28)) living on a simple line bundle and one can make use of the
standard generalized Cauchy formula on C to derive the integral representation
of the potential. We allow the potential V to be complex-valued.

Two interesting problems remain open. One is the relation between the
physical scattering amplitude and the Faddeev scattering amplitude. When the
potential is compactly supported, these two scattering amplitudes determine
each other through the Dirichlet-Neumann map for the boundary value problem
on a bounded domain which contains the support of the potential. However, a
direct link between them in the case of potentials of long-tail is still unknown.
The other problem is the characterization of Faddeev scattering amplitude in
terms of the ∂-equation. We shall return to these problems elsewhere.

We mainly work in H3, although many preliminary results are proven in
general dimensions. The reason of the restriction to n = 3 is that the decay
estimate for the Green operator (Theorems 2.8) is proved only when n ≤ 3.

In §2, we prepare basic estimates for the Green operator of the gauge-
transformed Laplacian on Hn and derive the ∂-equation. In §3 we introduce
the Faddeev scattering amplitude and derive its ∂-equation and integral repre-
sentation formulas of the potential. In §4, we show that the Faddeev scattering
amplitude and the Dirichlet-Neumann map of the boundary value problem on
a bounded domain determine each other.

§2. Green Operators

§2.1. Modified Bessel functions

Let Jν(y) be the Bessel function of order ν. For y > 0 modified Bessel
functions are defined by

Iν(y) = e−νπi/2Jν(iy), ν ∈ C,(2.1)

Kν(y) =
π

2
I−ν(y) − Iν(y)

sin(νπ)
, ν �∈ Z,(2.2)

Kn(z) = K−n(z) = lim
ν→n

Kν(z), n ∈ Z.(2.3)

They are linearly independent solutions of the equation

(2.4) y2u′′ + yu′ − (y2 + ν2)u = 0.
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They are analytic in the complex plane with cut along the negative real axis
and

(2.5) Iν(z) =
(z

2

)ν ∞∑
k=0

(z2/4)k

k! Γ(ν + k + 1)
.

If −π < arg z < π, we have

Iν(emπiz) = eνmπiIν(z),

Kν(emπiz) = e−νmπiKν(z) − πi
sin(νmπ)
sin(νπ)

Iν(z).

(See [Wa], p. 80). In particular, for r > 0,

Iν(ir) = eνπiIν(−ir) = eνπi/2Jν(r),(2.6)

Kν(ir) = e−νπiKν(−ir) − πiIν(−ir).(2.7)

The following asymptotic expansions are well-known (see [Wa], p. 202) :

Iν(z) ∼ ez

√
2πz

+
e−z+(ν+1/2)πi

√
2πz

, |z| → ∞, −π
2
< arg z <

3π
2
,(2.8)

Iν(z) ∼ ez

√
2πz

+
e−z−(ν+1/2)πi

√
2πz

, |z| → ∞, −3π
2
< arg z <

π

2
,(2.9)

Kν(z) ∼
√

π

2z
e−z, |z| → ∞, −π < arg z < π.(2.10)

The formula (2.5) implies

(2.11) Iν(z) ∼ 1
Γ(ν + 1)

(z
2

)ν

, z → 0,

and for ν �∈ Z,

(2.12) Kν(z) ∼ π

2 sin(νπ)

(
1

Γ(1 − ν)

(z
2

)−ν

− 1
Γ(1 + ν)

(z
2

)ν
)
, z → 0.

When n = 0, 1, 2, · · · , Kn(z) has the following expression (see [Le], p. 110) :

Kn(z) = (−1)n−1In(z) log
z

2

+
1
2

n−1∑
k=0

(−1)k(n− k − 1)!
k!

(z
2

)2k−n

− (−1)n−1

2

∞∑
k=0

ψ(k + 1) + ψ(k + n+ 1)
k!(k + n)!

(z
2

)2k+n

,

(2.13)
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ψ(1) = −γ, ψ(k + 1) = −γ + 1 +
1
2

+ · · · + 1
k
, k = 1, 2, · · · ,(2.14)

γ being Euler’s constant. This implies that when z → 0

(2.15) Kn(z) ∼
{
− log z, n = 0,
2n−1(n− 1)!z−n, n = 1, 2, · · · .

As was discussed in [Is1] and [Is2], one can solve the inverse boundary
value problem in Rn by imbedding it into Hn, where we encounter the case
ν = 1/2, and the above functions are written in terms of elementary functions :

I1/2(z) =

√
2
πz

sinh z,(2.16)

K1/2(z) =
√

π

2z
e−z,(2.17)

J1/2(z) =

√
2
πz

sin z.(2.18)

§2.2. 1-dimensional operator

Let

(2.19) E =
(n− 1)2

4
− ν2,

and for a complex parameter ζ �= 0 satisfying Re ζ ≥ 0, consider the differential
operator

(2.20) L0(ζ) = y2(−∂2
y + ζ2) + (n− 2)y∂y − E

on (0,∞), where n ≥ 2 is an integer and ∂y = ∂/∂y. By (2.4)

y(n−1)/2Iν(ζy), y(n−1)/2Kν(ζy)

are linearly independent solutions of L0(ζ)u = 0.
The above constant E corresponds to the energy parameter for the Laplace-

Beltrami operator H0 on Hn, whose spectrum is the interval [(n − 1)2/4,∞).
Accordingly, we consider two cases :

(2.21) ν ∈ iR \ {0}, or ν ∈ (0,∞) \ Z.

In the former case E belongs to the spectrum of H0, and in the latter case to
the resolvent set. In this paper we do not deal with the case ν ∈ Z in order to
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avoid the logarithmic singularity of Kn(z). We define the Green kernel of the
1-dimensional operator (2.20) by

(2.22) G0(y, y′; ζ) =

{
(yy′)(n−1)/2Kν(ζy)Iν(ζy′), y > y′ > 0,

(yy′)(n−1)/2Iν(ζy)Kν(ζy′), y′ > y > 0,

and introduce the Green operator

(2.23) G0(ζ)f(y) =
∫ ∞

0

G0(y, y′; ζ)f(y′)
dy′

(y′)n .

Since (
y(n−1)/2Iν(ζy)

)(
y(n−1)/2Kν(ζy)

)′

−
(
y(n−1)/2Iν(ζy)

)′ (
y(n−1)/2Kν(ζy)

)
= −yn−2,

we have for f ∈ C∞
0 ((0,∞))

(2.24) L0(ζ)G0(ζ)f = f.

Throughout the paper we assume that ν satisfies (2.21), although we do
not mention it specifically.

Lemma 2.1. The Green function G0(y, y′; ζ) is analytic in ζ when
Re ζ > 0. There exists a constant C = Cν > 0 such that the inequalities

|G0(y, y′; ζ)| ≤ C(yy′)(n−1)/2,(2.25)

|G0(y, y′; ζ)| ≤ C

|ζ| (yy
′)(n−2)/2,(2.26) ∣∣∣ ∂

∂ζ
G0(y, y′; ζ)

∣∣∣ ≤ C

|ζ| (yy
′)(n−2)/2(y + y′)(2.27)

hold for y, y′ > 0 and ζ such that Re ζ ≥ 0.

Proof. The analyticity is obvious. By virtue of (2.8)–(2.15), we have

|Iν(z)| ≤ C

( |z|
1 + |z|

)Re ν

(1 + |z|)−1/2eRe z,(2.28)

|Kν(z)| ≤ C

( |z|
1 + |z|

)−Re ν

(1 + |z|)−1/2e−Re z.(2.29)
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Since t/(1 + t) is monotone increasing for t ≥ 0, by (2.28), (2.29) and Re ν ≥ 0
we have if y > y′ > 0,

|Kν(ζy)Iν(ζy′)| ≤ C
e−Re ζ(y−y′)

(1 + |ζy|)1/2(1 + |ζy′|)1/2
.

It then follows that

(2.30) |G0(y, y′; ζ)| ≤ C(yy′)(n−1)/2 e−Re ζ|y−y′|

(1 + |ζy|)1/2(1 + |ζy′|)1/2
,

which proves (2.25) and (2.26). Using

2I ′ν(z) = Iν−1(z) + Iν+1(z),(2.31)

−2K ′
ν(z) = Kν−1(z) +Kν+1(z),(2.32)

(see [Le], p. 110) and (2.28), (2.29) as well as (2.15), we have

|zI ′ν(z)| ≤ C

( |z|
1 + |z|

)Re ν

(1 + |z|)1/2eRe z,(2.33)

|zK ′
ν(z)| ≤ C

( |z|
1 + |z|

)−Re ν

(1 + |z|)1/2e−Re z,(2.34)

which imply

∣∣∣ ∂
∂ζ
Iν(ζy)

∣∣∣ ≤ C

|ζ|
( |ζy|

1 + |ζy|
)Re ν

(1 + |ζy|)1/2eRe ζy,(2.35)

∣∣∣ ∂
∂ζ
Kν(ζy)

∣∣∣ ≤ C

|ζ|
( |ζy|

1 + |ζy|
)−Re ν

(1 + |ζy|)1/2e−Re ζy.(2.36)

This together with (2.28), (2.29) and an elementary inequality(
1 + |ζy′|
1 + |ζy|

)1/2

≤
(

1 +
y′

y

)1/2

≤ y + y′

(yy′)1/2

proves (2.27).

§2.3. Green operator on Hn

Let us construct a Green operator of

(2.37) H0(θ) = y2(−∂2
y + (−i∂x + θ)2) + (n− 2)y∂y.
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For θ, θ′ ∈ Cn−1, we put

θ · θ′ =
n−1∑
i=1

θiθi
′, θ2 = θ · θ,

and define for ξ ∈ Rn−1

(2.38) ζ(ξ, θ) =
√

(ξ + θ)2,

where we take the branch of
√· such that Re

√· ≥ 0, i.e.
√
z =

√
reiϕ/2 for

z = reiϕ,−π < ϕ < π. We define

G0(θ)f(x, y) = (2π)−(n−1)/2

∫
Rn−1

eix·ξ
(
G0(ζ(ξ, θ))f̂(ξ, ·)

)
(y)dξ,(2.39)

f̂(ξ, y) = (2π)−(n−1)/2

∫
Rn−1

e−ix·ξf(x, y)dx.(2.40)

By (2.24) and (2.25), we have

(2.41) (H0(θ) − E)G0(θ)f = f, ∀f ∈ C∞
0 (Rn

+).

Let us remark that when θ ∈ Rn−1 and ν = iσ with σ > 0 (or σ < 0),
G0(θ) is the incoming (or outgoing) Green operator of H0(θ) − E :

G0(θ) = (H0(θ) − (E ∓ i0))−1,

where the right-hand side exists on a certain Banach space (see [Is1]), which
we now explain.

For s ∈ R, we introduce the following function space :

(2.42) f ∈ L2,s ⇐⇒
∫
Rn

+

(1 + | log y|)2s|f(x, y)|2 dxdy
yn

<∞

equipped with the obvious norm. In the following, for two Banach spaces X
and Y , B(X;Y ) denotes the totality of bounded operators from X to Y .

Lemma 2.2. Let s > 1/2. Then there exists a constant C = Cs,ν > 0
such that

‖G0(θ)‖B(L2,s,L2,−s) ≤ C, ∀θ ∈ Cn−1.

Proof. Let u = G0(θ)f . Since

û(ξ, y) =
∫ ∞

0

G0(y, y′; ζ(ξ, θ)) f̂(ξ, y′)
dy′

(y′)n
,
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we have by using (2.25),

|û(ξ, y)|2 ≤ Cyn−1

∫ ∞

0

(1 + | log y′|)2s|f̂(ξ, y′)|2 dy′

(y′)n
.

Integration with respect to ξ and y proves the lemma.

This Green operator G0(θ) has an integral kernel

(2.43) G0(x, y, x′, y′; θ) = (2π)−(n−1)

∫
Rn−1

ei(x−x′)·ξG0(y, y′; ζ(ξ, θ))dξ.

It has the following estimates.

Lemma 2.3. (1) For any θ ∈ Cn−1, there exists a constant C = Cθ > 0
independent of x, x′, y, y′ such that

|G0(x, y, x′, y′; θ)| ≤ C
(yy′)(n−1)/2

|y − y′|n−1
eC|y−y′|.

(2) Fix y, y′ > 0 and θ ∈ Cn−1 arbitrarily. Then there exist h1(x), h2(x) such
that

G0(x, x′, y, y′; θ) = h1(x− x′) + h2(x− x′),

where h1(x) ∈ Hm(Rn−1), ∀m > 0, h2(x) ∈ C∞(Rn−1 \ {0}) and satisfies

|∂α
xh2(x)| ≤ Cα|x|−N , ∀α, N > n− 2.

Proof. There exists a constant C > 0 such that Re ζ(ξ, θ) ≥ |ξ|/2 − C.
This together with the estimate |G0(y, y′; ζ)| ≤ C(yy′)(n−1)/2e−Re ζ|y−y′| (see
(2.30)) proves the assertion (1).

Take χ0, χ∞ ∈ C∞(Rn−1) such that χ0(ξ) + χ∞(ξ) = 1 on Rn−1 and
χ0(ξ) = 1 for |ξ| < C, χ0(ξ) = 0 for |ξ| > 2C, where C is chosen large enough
so that ζ(ξ, θ) is smooth on |ξ| > C. Split G0(y, y′; ζ(ξ, θ)) into two parts :

g0(ξ) = χ0(ξ)G0(y, y′; ζ(ξ, θ)), g∞(ξ) = χ∞(ξ)G0(y, y′; ζ(ξ, θ)).

We then have

G0(x, x′, y, y′; θ) = ĝ0(x′ − x) + ĝ∞(x′ − x),

and ĝ0 ∈ Hm(Rn−1), ∀m > 0, by (2.25). Let ξ̂ = ξ/|ξ|. Using

ζ(ξ, θ) = |ξ| + ξ̂ · θ +O(1/|ξ|), as |ξ| → ∞,
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we have the asymptotic expansions

Iν(ζ(ξ, θ)y) =
e(|ξ|+ξ̂·θ)y√

2π|ξ|y
(
1 +

a1(ξ̂)
|ξ| +

a2(ξ̂)
|ξ|2 + · · ·

)
,

Kν(ζ(ξ, θ)y) =
√

π

2|ξ|y e
−(|ξ|+ξ̂·θ)y

(
1 +

b1(ξ̂)
|ξ| +

b2(ξ̂)
|ξ|2 + · · ·

)
,

am(ξ̂), bm(ξ̂) being smooth functions. Hence we have the asymptotic expansion

g∞(ξ) ∼ χ∞(ξ)e−|ξ||y−y′|
∞∑

m=1

cm(ξ̂)
|ξ|m ,

where cm(ξ̂) is a smooth function. By induction one can show

|∂α
ξ e

−|ξ||y−y′|| ≤ Cα|ξ|−|α|.

Hence we have∣∣∣∂α
ξ

(
χ∞(ξ)e−|ξ||y−y′| cm(ξ̂)

|ξ|m
)∣∣∣ ≤ Cα(1 + |ξ|)−m−|α|.

We now use eix·ξ = −|x|−2∆ξe
ix·ξ and integrate by parts to see that

∣∣∣ ∫ eix·ξχ∞(ξ)e−|ξ||y−y′| cm(ξ̂)
|ξ|m dξ

∣∣∣ ≤ CN |x|−N ,

which proves the assertion (2).

§2.4. ∂-equation

For θ = θR + iθI ∈ Cn−1, let ∂θ be defined as follows :

(2.44) ∂θ =
(

∂

∂θ1

, · · · , ∂

∂θn−1

)
,

∂

∂θj

=
1
2

(
∂

∂θRj
+ i

∂

∂θIj

)
.

We are going to compute ∂θG0(θ). Note that if f(z) is analytic, f (ζ(ξ, θ)) has
singularities on the set {θ ∈ Cn−1 ; (ξ + θ)2 ≤ 0}.

Lemma 2.4. Let f(z) be an analytic function on {z ∈ C ; Re z > 0}
satisfying

sup
|z|<r

|f(z)| <∞, ∀r > 0.
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For θ = θR + iθI ∈ Cn−1 such that θI �= 0 we put

rθ(ξ) =
√

|θI |2 − |ξ + θR|2,(2.45)

Mθ =
{
ξ ∈ Rn−1 ; θI · (ξ + θR) = 0, |ξ + θR| < |θI |

}
,(2.46)

and define a compactly supported distribution Tθ(ξ) by

(2.47) 〈Tθ(ξ), ϕ(ξ)〉 =
∫

Mθ

ϕ(ξ)
i(ξ + θ)
2|θI | dMθ(ξ), ∀ϕ ∈ C∞

0 (Rn−1),

dMθ(ξ) being the measure on Mθ induced from the Lebesgue measure dξ on
Rn−1. Then regarding f (ζ(ξ, θ)) as a distribution with respect to ξ ∈ Rn−1

depending on a parameter θ ∈ Cn−1, we have for θI �= 0

(2.48) ∂θ f (ζ(ξ, θ)) = [f (irθ(ξ)) − f (−irθ(ξ))]Tθ(ξ).

Proof. Take χ(t) ∈ C∞(R) such that χ(t) = 1 (|t| > 2), χ(t) = 0 (|t| < 1)
and let χε(t) = χ(t/ε). Since ζ(ξ, θ) is analytic with respect to θ if θI ·(ξ+θR) �=
0, we have

∂θ χε(θI · (ξ + θR))f(ζ(ξ, θ)) =
i

2ε
χ′

(θI · (ξ + θR)
ε

)
(ξ + θ)f(ζ(ξ, θ)).

We put

τ = |θI |, α = θI/|θI |, p⊥ = p− (p · α)α, p ∈ Rn−1.

Let k1 = α · (ξ + θR), k2 = (ξ + θR)⊥. Again letting k1 = εη1 with ε > 0, we
have

ζ(ξ, θ)2 = ε2η2
1 + k2

2 − τ2 + 2iετη1.

Therefore when ε→ 0

ζ(ξ, θ) →


√
k2
2 − τ2 if |k2| ≥ τ,

sgn(η1) i
√
τ2 − k2

2 if |k2| < τ,

where sgn(η1) = 1 if η1 > 0, sgn(η1) = −1 if η1 < 0. Let

g(k) = f(ζ(ξ, θ)), ψ(k) = ϕ(ξ).

Then we have

∂θ

∫
χε(θI · (ξ + θR))f(ζ(ξ, θ))ϕ(ξ)dξ

=
i

2

∫
χ′(τη1)

(
εη1α+ k2 − iθI

)
g(εη1, k2)ψ(εη1, k2)dη1dk2.
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Let us recall here that the boundary value on the imaginary axis f(is) =
limε→0 f(is + ε) exists almost every where (see e.g. [Hof], p. 38). Since∫ ∞
−∞ χ′(τη1)dη1 = 0, we have∫

|k2|>τ

χ′(τη1)
(
εη1α+ k2 − iθI

)
g(εη1, k2)ψ(εη1, k2)dη1dk2

→
∫
|k2|>τ

χ′(τη1)
(
k2 − iθI

)
f
(√

k2
2 − τ2

)
ψ(0, k2)dη1dk2 = 0.

On the other hand, since
∫ ∞
0
χ′(τη1)dη1 = 1/τ ,

∫ 0

−∞ χ′(τη1)dη1 = −1/τ , the
integral over the region {|k2| < τ} converges to∫

η1>0,|k2|<τ

χ′(τη1)
i(k2 − iθI)

2
f
(
i
√
τ2 − k2

2

)
ψ(0, k2)dη1dk2

+
∫

η1<0,|k2|<τ

χ′(τη1)
i(k2 − iθI)

2
f
(
− i

√
τ2 − k2

2

)
ψ(0, k2)dη1dk2

=
1
τ

∫
|k2|<τ

[
f
(
i
√
τ2 − k2

2

)
− f

(
− i

√
τ2 − k2

2

)] i(k2 − iθI)
2

ψ(0, k2)dk2.

From this the lemma follows immediately.

We put

(2.49) Dθ(ξ) = [G0(irθ(ξ)) −G0(−irθ(ξ)] i(ξ + θ)
2|θI | .

By virtue of (2.22), (2.39) and (2.48), we have formally

(2.50) ∂θ G0(θ)f(x, y) = (2π)−(n−1)/2

∫
Mθ

eix·ξ
(
Dθ(ξ)f̂(ξ, ·)

)
(y)dMθ(ξ).

Let us give a precise meaning to this operator. For t, s ∈ R, we introduce
the function spaces :

H(±)
t,s � f ⇐⇒

∫
Rn

+

[
(1 + |x|)t(1 + | log y|)s (1 + y)

y1/2

]±2

|f(x, y)|2 dxdy
yn

<∞,

(2.51)

H(±)
s = H(±)

s,s(2.52)

equipped with the obvious norm. We define the operator χε(θI · (D + θR)) by

(2.53) (χε(θI · (D + θR))ϕ) (x)

= (2π)−(n−1)/2

∫
Rn−1

eix·ξχε(θI · (ξ + θR))ϕ̂(ξ)dξ,
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where χε is the function given in the proof of Lemma 2.4, and put

(2.54) G0,ε(θ) = χε(θI · (D + θR))G0(θ).

The following theorem gives the procedure for defining ∂θ G0(θ).

Theorem 2.5. Let s>1/2 and suppose f ∈H(+)
s . We put uε =G0,ε(θ)f ,

u = G0(θ)f and

v(x, y; θ) = (2π)−(n−1)/2

∫
Mθ

eix·ξ
(
Dθ(ξ)f̂(ξ, ·)

)
(y)dMθ(ξ).

Then
(1) uε → u in L2,−s.
(2) uε is strongly differentiable in H(−)

0,s with respect to θ if θI �= 0.

(3) ∂θ uε → v in H(−)
s .

Proof. The assertion (1) is obvious. Let us prove (2). If ε > 0 is fixed
and θ varies over a bounded set, we have on supp χε(θI · (ξ + θR))

1/|ζ(ξ, θ)| ≤ Cε(1 + |ξ|)−1.

Let dθ = ∂/∂θ or ∂/∂θ. Then by virtue of (2.26), (2.27) and the above estimate,
we have

|dθ ûε(ξ, y; θ)| ≤ Cε

∫ ∞

0

(yy′)(n−2)/2(1 + y)(1 + y′)|f̂(ξ, y′)| dy
′

(y′)n
,

which implies for s > 1/2

y

(1 + y)2
|dθ ûε(ξ, y; θ)|2

yn
≤ Cε

y

∫ ∞

0

(1 + | log y′|)2s (1 + y′)2

y′
|f̂(ξ, y′)|2 dy′

(y′)n
.

Therefore by Lebesgue’s theorem, uε(x, y; θ) is a H(−)
0,s -valued C1-function of θ

if θI �= 0, and we have

(2.55) ∂θ uε(x, y; θ) = (2π)−(n−1)/2

∫
Rn

+

eix·ξ i
2ε
χ′

(θI · (ξ + θR)
ε

)
(ξ + θ)

×G0(y, y′; ζ(ξ, θ))f̂(ξ, y′)
dξdy′

(y′)n
.

Let us show the assertion (3). Let θ vary over the ball {|θ| < C0} and pick
ψ0, ψ∞ ∈ C∞(Rn) such that ψ0(ξ) = 1 if |ξ| < 5C0, ψ0(ξ) = 0 if |ξ| > 6C0,
and ψ∞(ξ) = 1 − ψ0(ξ). We put

v̂(0)
ε (ξ, y; θ) = ψ0(ξ)∂θ ûε(ξ, y; θ),(2.56)
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v̂(∞)
ε (ξ, y; θ) = ψ∞(ξ)∂θ ûε(ξ, y; θ).(2.57)

We first show that v(∞)
ε → 0 in H(−)

s as ε → 0. Assume for the notational
simplicity that θI/|θI | = α = (1, 0, · · · , 0), and let k1 = α · (ξ + θR), k2 =
(ξ + θR)⊥. We put

(2.58) w(∞)
ε (x1, k2, y; θ) = (2π)−1/2

∫ ∞

−∞
eix1k1 v̂(∞)

ε (k1, k2, y; θ)dk1.

By the change of variable k1 = εη1, we then have letting τ = |θI |

w(∞)
ε (x1, k2, y; θ) = (2π)−1/2 i

2

∫
R2

+

eiεη1x1χ′(τη1)(εη1α+ k2 − iθI)

× ψ∞(εη1, k2)G0(y, y′; ζ(εη1, k2, θ))f̂(εη1, k2, y
′)
dη1dy

′

(y′)n
.

(2.59)

On suppψ∞(εη1, k2), we have

1/|ζ(εη1, k2, θ))| ≤ C(1 + |k2|)−1,

where C is independent of ε > 0. We also note that letting

f̃(x1, k2, y) = (2π)−(n−2)/2

∫
Rn−2

e−ix2·k2f(x1, x2, y)dx2,

we have for s > 1/2

(2.60) sup
k1

|f̂(k1, k2, y)| ≤ C

(∫ ∞

−∞
〈x1〉2s|f̃(x1, k2, y)|2dx1

)1/2

.

Here and in the following we write 〈x〉 = (1 + |x|2)1/2. Therefore by (2.26) the
integrand of the right-hand side of (2.59) is dominated from above by

C|χ′(τη1)|(yy′)(n−2)/2 |f̂(εη1, k2, y
′)|

(y′)n
≤ Cy(n−2)/2|χ′(τη1)| (1 + | log y′|)−s

√
y′

×
(∫ ∞

−∞
〈x′1〉2s(1 + | log y′|)2s |f̃(x′1, k2, y

′)|2
(y′)n+1

dx′1

)1/2

.

We then see by Schwarz’ inequality that the right-hand side is integrable with
respect to η1 and y′ for a.e. k2. Therefore by Lebesgue’s convergence theorem
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and the argument in the proof of Lemma 2.4, w(∞)
ε → 0 pointwise as ε → 0.

We also have

|w(∞)
ε (x1, k2, y; θ)|

≤ Cy(n−2)/2

(∫
R2

+

(1 + | log y′|)2s 〈x′1〉2s

y′
|f̃(x′1, k2, y

′)|2 dx
′
1dy

′

(y′)n

)1/2

.

Again by virtue of Lebesgue’s theorem we have∫
Rn

+

〈x1〉−2s(1 + | log y|)−2s |w(∞)
ε (x1, k2, y; θ)|2

yn−1
dx1dk2dy → 0,

which proves v(∞)
ε → 0 in H(−)

s .
We finally consider v(0)

ε (ξ, y; θ). Let

w(0)
ε (x1, k2, y; θ)

= (2π)−1/2

∫ ∞

−∞
eix1k1 v̂(0)

ε (k1, k2, y; θ)dk1

= (2π)−1/2 i

2

∫
R2

+

eiεη1x1χ′(τη1)(εη1α+ k2 − iθI)ψ0(εη1, k2)

× G0(y, y′; ζ(εη1, k2, θ))f̂(εη1, k2, y
′)
dη1dy

′

(y′)n
.

Then by the same argument as in the proof of Lemma 2.4 we have if |k2| > τ ,

w(0)
ε (x1, k2, y; θ) → 0

pointwise as ε→ 0, and if |k2| < τ ,

w(0)
ε (x1, k2, y; θ)→ (2π)−1/2

τ

∫ ∞

0

[
G0

(
y, y′; i

√
τ2 − k2

2

)
−G0

(
y, y′;−i

√
τ2 − k2

2

)] i(k2 − iθI)
2

f̂(0, k2, y
′)
dy′

(y′)n

pointwise as ε→ 0. Moreover by (2.25) and (2.60), we have

|w(0)
ε (x1, k2, y; θ)|

≤ Cy(n−1)/2 ×
(∫

R2
+

(1 + | log y′|)2s〈x′1〉2s|f̃(x′1, k2, y
′)|2 dx

′
1dy

′

(y′)n

)1/2

.

By Lebesgue’s convergence theorem, v(0)
ε → v in H(−)

s .

Let us rewrite ∂θ G0(θ) more explicitly.
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Lemma 2.6. For r > 0[
G0(ir) −G0(−ir)

]
f(y) = −πi

∫ ∞

0

(yy′)(n−1)/2Jν(ry)Jν(ry′)f(y′)
dy′

(y′)n
.

Proof. In view of (2.6) and (2.7), we have

Kν(iry)Iν(iry′) −Kν(−iry)Iν(−iry′)
= −eνπiπiIν(−iry)Iν(−iry′)
= −πiJν(ry)Jν(ry′).

The lemma then follows from (2.22).

The above lemma and (2.49) together with Theorem 2.5 then imply the
following

Theorem 2.7. Let f ∈ H(+)
s with s > 1/2 and suppose θI �= 0. Then :

(1) For ε > 0, G0,ε(θ)f is an H(−)
0,s -valued C1-function of θ.

(2) G0,ε(θ)f → G0(θ)f in L2,−s as ε→ 0.
(3) When ε → 0, ∂θ G0,ε(θ)f converges in H(−)

s . Denoting this limit by
∂θ G0(θ)f , we have the following formula :

∂θ G0(θ)f =− πi

(2π)(n−1)/2

∫ ∫
Mθ×(0,∞)

eix·k (yy′)(n−1)/2

· Jν(rθ(k)y)Jν(rθ(k)y′)f̂(k, y′)
i
(
k + θ

)
2|θI |

dMθ(k)dy′

(y′)n
.

Let us remark that in Theorem 2.1 of [IsUh], the analyticity with respect
to z ∈ C of the Green operator G0(zα), α ∈ Sn−1 is stated. It is not correct
and the above Theorem 2.7 gives the correct assertion.

§2.5. Perturbed Green operator

From now on we restrict the space dimension to 2 or 3. For n = 3 and
s, t ≥ 0, we introduce the following function spaces :

(2.61) W(±)
t,s � u⇐⇒

∫
R3

+

[
(1 + |x|)2t (1 + | log y|)2s

y

]±1

|u(x, y)|2 dxdy
y3

<∞

equipped with the obvious norm. For n = 2 and s ≥ 0, we define

(2.62) W(±)
s � u⇐⇒

∫
R2

+

[
(1 + | log y|)2s

y

]±1

|u(x, y)|2 dxdy
y2

<∞.
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Theorem 2.8. (1) Let n = 3 and s > 1. Then there exists a constant
Cs > 0 such that for 0 ≤ t ≤ s

(2.63) ‖G0(θ)f‖W(−)
t,s

≤ Cs

(
log |θI |
|θI |

)1/2

‖f‖W(+)
s−t,s

if |θI | > 2.

(2) Let n = 2 and s > 1/2. Then we have

(2.64) ‖G0(θ)f‖W(−)
s

≤ Cs

|θI | ‖f‖W(+)
s

if |θI | > 2.

Proof. First let us note that in order to prove (2.63), we have only to
show

(2.65) ‖G0(θ)f‖W(−)
0,s

≤ Cs

(
log |θI |
|θI |

)1/2

‖f‖W(+)
s,s

if |θI | > 2.

Once this is proved, by taking the adjoint we also have

(2.66) ‖G0(θ)f‖W(−)
s,s

≤ Cs

(
log |θI |
|θI |

)1/2

‖f‖W(+)
0,s

if |θI | > 2.

Interpolating (2.65) and (2.66), we get (2.63).
Let k = θR, τ = |θI |, α = θI/τ and rewrite θ as θ = k + iτα. Then we

have
eix·kG0(θ)e−ix·k = G0(iτα).

This reduces the theorem to the case that θR = 0. The rest of the proof
is essentially the same as that of [IsUh], Theorem 2.3, which we reproduce
here for the reader’s convenience. Without loss of generality, we assume that
α = (0, 1) if n = 3, or α = 1 if n = 2. Let

Ω1 =
{
|ξ|2 < τ2

2

}
∪

{
|ξ|2 > 3τ2

2

}
,

Ω2 =
{
τ2

2
< |ξ|2 < 3τ2

2

}
∩

{
|ξ2| > τ

10

}
,

Ω3 =
{
τ2

2
< |ξ|2 < 3τ2

2

}
∩

{
|ξ2| < τ

10

}
.

Note that if n = 2, ξ2 = ξ and Ω3 is empty. We put

uj(x, y) = (2π)−1

∫
Ωj

eix·ξ(G0(iτα)f̂(ξ, ·))(y)dξ.
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On Ω1 ∪ Ω2, |ζ| ≥ Cτ for C > 0. Hence using (2.26), we have for j = 1, 2,

|ûj(ξ, y)| ≤ C

τ
y(n−2)/2

∫ ∞

0

|f̂(ξ, y′)|
(y′)n/2+1

dy′.

We then have for s > 1/2∫
Rn−1

|uj(x, y)|2dx ≤ C

τ2
yn−2

∫
Rn

+

(1 + | log y′|)2s

y′
|f(x′, y′)|2 dx

′dy′

(y′)n
.

Therefore u1 and u2 satisfy
(2.67)∫

Rn
+

y

(1 + | log y|)2s
|uj(x, y)|2 dxdy

yn
≤ C

τ2

∫
Rn

+

(1 + | log y|)2s

y
|f(x, y)|2 dxdy

yn
.

When n = 2, the proof is finished.
To estimate u3, we let

Ω′
3 =

{
1
2
< |η|2 < 3

2

}
∩

{
|η2| < 1

10

}
.

By the change of variable ξ = τη, ζ(ξ, θ) = τ (η2 − 1 + iη2)1/2. Then arguing
as above, we have∫

R2
|u3(x, y)|2dx ≤ Cy

∫
Ω′

3×(0,∞)

(1 + | log y′|)2s

y′
|f̂(τη, y′)|2

|η2 − 1| + |η2|
dηdy′

(y′)3
.

We further split Ω′
3 into two parts :

Ω′
3 = (Ω′

3 ∩ {η1 > 0}) ∪ (Ω′
3 ∩ {η1 < 0}) =: Ω′

3,+ ∪ Ω′
3,−,

and estimate the integral over Ω′
3,+ × (0,∞).

Let η0 = (1, 0) and put

hτ (x, y) = e−iτη0·xf(x, y).

Then by the change of variables η = η0 + k∫
Ω′

3,+∩{|η−η0|<ε}

|f̂(τη, y)|2
|η2 − 1| + |η2|dη =

∫
Ω′′

3,+∩{|k|<ε}

|ĥτ (τk, y)|2
|k2 + 2k1| + |k2|dk,

where Ω′′
3,+ = {1/2 < |k+ η0|2 < 3/2} ∩ {|k2| < 1/10, k1 > −1}. By choosing ε

small enough,
|k2 + 2k1| + |k2| ≥ (|k1| + |k2|)/2
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for |k| < ε. We have, therefore,

(2.68)
∫

Ω′′
3,+∩{|k|<ε}

|ĥτ (τk, y)|2
|k2 + 2k1| + |k2|dk ≤ C

∫ ε

0

(∫
S1

|ĥτ (τrω, y)|2dω
)
dr.

By virtue of [IsUh] Lemma 2.2 (2), we have for s > 1∫
S1

|ĥτ (τrω, y)|2dω ≤ C(1 + τr)−1‖〈·〉shτ (·, y)‖2
L2(R2).

Therefore the right-hand side of (2.68) is dominated from above by

log τ
τ

∫
R2

〈x〉2s|hτ (x, y)|2dx =
log τ
τ

∫
R2

〈x〉2s|f(x, y)|2dx

for s > 1.
On the other hand there is a constant C > 0 such that |k2+2k1|+ |k2| ≥ C

on Ω′′
3,+ ∩ {|k| > ε}. Therefore we have for some ε0 > 0∫

Ω′′
3,+∩{|k|>ε}

|ĥτ (τk, y)|2
|k2 + 2k1| + |k2|dk≤C

∫ ε0

ε

(∫
S1

|ĥτ (τrω, y)|2dω
)
dr

≤ C

τ

∫
R2

〈x〉2s|f(x, y)|2dx.

The integral over Ω′
3,− × R is estimated in a similar manner. We have thus

shown that u3 satisfies

(2.69)
∫
R3

+

y

(1 + | log y|)2s
|u3(x, y)|2 dxdy

y3

≤ C
log τ
τ

∫
R3

+

(1 + | log y|)2s

y
〈x〉2s|f(x, y)|2 dxdy

y3
.

The inequalities (2.67) and (2.69) prove the theorem.

We now define the perturbed Green operator. We assume that V satisfies

(2.70) |V (x, y)| ≤ C(1 + |x|)−2s(1 + | log y|)−2s(1 + y)−2y

for some s > 1. Let us remark here that throughout the paper we allow V to
be complex-valued, although different decay assumptions ((2.70), (3.11), (4.3))
are imposed in each section. Since

H(+)
s ⊂ W(+)

t,s , W(−)
s−t,s ⊂ H(−)

s , 0 ≤ t ≤ s

with continuous inclusions, and V ∈ B(H(−)
s ;H(+)

s ), the following theorem is
easily proved by Theorem 2.8.
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Theorem 2.9. Let s > 1 be the constant in (2.70). Let GV (θ) be de-
fined by

GV (θ) = (1 + G0(θ)V )−1G0(θ)

for sufficiently large |θI |. Then there exists a constant Cs > 0 such that for
n = 3

‖GV (θ)‖
B(W(+)

s−t,s;W(−)
t,s )

≤ Cs

(
log |θI |
|θI |

)1/2

, |θI | > Cs,

for 0 ≤ t ≤ s, and for n = 2

‖GV (θ)‖
B(W(+)

s ;W(−)
s )

≤ Cs

|θI | , |θI | > Cs.

Let us notice that by virtue of Theorem 2.8, we have

(2.71) ‖G0(θ)f‖W
(−)
0,s

≤ Cs

(
log |θI |
|θI |

)1/2

‖f‖H(+)
s
, |θI | > 2

for n = 3, s > 1, and also

(2.72) ‖G0(θ)f‖W
(−)
s

≤ Cs

|θI | ‖f‖H(+)
s
, |θI | > 2

for n = 2 and s > 1/2. Since the weights in W(−)
0,s and W(−)

s do not depend
on x, the inequalities (2.71) and (2.72) also hold for G0,ε(θ) independently of
ε > 0. This in particlular implies that for s > 1

(2.73) ‖G0,ε(θ)‖B(H(+)
s ;H(−)

s )
≤ Cs


(

log |θI |
|θI |

)1/2

, n = 3,

1
|θI | , n = 2,

where the constant Cs is independent of ε > 0. Taking account of this inequal-
ity, we put

(2.74) GV,ε(θ) = (1 + G0,ε(θ)V )−1G0,ε(θ).

Then GV,ε(θ) is well-defined as an operator ∈ B(H(+)
s ;H(−)

s ) with s > 1 for
|θI | > C, C being independent of ε > 0. By Theorem 2.7, for f ∈ H(+)

s and
g ∈ H(−)

s ,

G0,ε(θ)f → G0(θ)f, ∂θ G0,ε(θ)V g → ∂θ G0(θ)V g in H(−)
s ,

since V ∈ B(H(−)
s ;H(+)

s ). Then ∂θ GV(θ) is defined as the limit of ∂θ GV,ε(θ)
when ε→ 0.
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Lemma 2.10. The following equalities hold :

∂θ GV (θ) = (1 + G0(θ)V )−1
(
∂θ G0(θ)

)
(1 − VGV (θ))

= (1 − GV (θ)V )
(
∂θ G0(θ)

)
(1 − VGV (θ)).

Proof. The first equality is derived from the definition of GV,ε(θ). To
prove the second, we have only to note

(1 + G0(θ)V )−1(1 + G0(θ)V − G0(θ)V ) = 1 − GV (θ)V.

§3. ∂-theory for Scattering Amplitudes

§3.1. Scattering matrix in quantum mechanics

The wave function associated with the Schrödinger operator in quantum
mechanics on Rn is a bounded solution to the equation (−∆ + V (x))φ = Eφ.
It is also the case for the hyperbolic space Hn. Suppose ν = iσ, σ ∈ R \ {0}.
Then the wave function for the equation

(3.1) HΦ :=
[−y2(∂2

y + ∆) + (n− 2)y∂y + V (x, y)
]
Φ = EΦ

is defined as follows. Let for η ∈ Rn−1

Φ0(x, y, η) = eix·ηy(n−1)/2Kν(|η|y),
Φ(x, y, η) = Φ0(x, y, η) − v,

v(x, y, η) = GV (0)[V (x, y)Φ0(x, y, η)],

E =
(n− 1)2

4
− ν2.

Then Φ solves (3.1), behaves like eix·η(c1y(n−1)/2+iσ + c2y
(n−1)/2−iσ) as y → 0,

and gives an eigenfunction expansion associated with H (see e.g. [Hi] or [Is1]).
By observing the behavior of the Fourier transform of v with respect to x, we
get

(3.2) v̂(ξ, y, η) ∼ (2π)−(n−1)/2

( |ξ|
2

)iσ
yiσ+(n−1)/2

Γ(iσ + 1)
Ã(ξ, η), y → 0.

This Ã(ξ, η) is (after a suitable unitary transformation) the scattering ampli-
tude in the quantum mechanical scattering problem (see [Is1], Theorem 3.7).
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§3.2. Exponentially growing solutions

In the ∂-approach, contrary to the above quantum mechanical problem,
we seek exponentially growing solutions to the equation (3.1). We assume ν to
satisfy (2.21). We put for η ∈ Rn−1 and θ ∈ Cn−1,

ψ0(x, y; η, θ) = eix·θΨ0(x, y; η, θ),(3.3)

Ψ0(x, y; η, θ) = eix·ηy(n−1)/2Iν(ζ(η, θ)y).(3.4)

It satisfies the Schrödinger equation

(3.5) H0ψ0 :=
[−y2(∂2

y + ∆x) + (n− 2)y∂y

]
ψ0 = Eψ0,

and behaves like eix·(θ+η)y(n−1)/2+ν as y → 0. Hence if θ = 0 and y → 0, ψ0 is
bounded. However it grows up exponentially as y → ∞.

We seek a solution of the perturbed Schrödinger equation

(3.6) (H0 + V (x, y))ψ = Eψ,

which behaves like ψ0 at infinity. It is defined as

ψ(x, y; η, θ) = ψ0(x, y; η, θ) − eix·θu,(3.7)

u = GV (θ) [V (x, y)Ψ0(x, y; η, θ)] .(3.8)

Note that for n ≥ 4, GV (θ) exists for small V . Since GV (θ) = G0(θ) −
G0(θ)VGV (θ), by passing to the Fourier transformation with respect to x, we
have (at least formally)

û(ξ, y; η, θ) ∼ (2π)−(n−1)/2y(n−1)/2Kν(ζ(ξ, θ)y)A(ξ, η; θ), y → ∞,(3.9)

A(ξ, η; θ) =
∫
Rn

+

e−ix·ξy(n−1)/2Iν(ζ(ξ, θ)y)V (x, y)Ψ0(x, y; η, θ)
dxdy

yn
,

−
∫
Rn

+

e−ix·ξy(n−1)/2Iν(ζ(ξ, θ)y)V (x, y)u(x, y; η, θ)
dxdy

yn
.

(3.10)

Our scattering amplitude will be defined to be this A(ξ, η; θ). One can also
introduce similar scattering amplitudes using Kν(z) in place of Iν(z) in (3.4).
The following arguments also work well for this choice. However, Theorem 3.7
does not seem to hold.
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§3.3. Scattering amplitudes and the ∂-equation

In the remaining part of this section, we exclusively deal with the case
n = 3. The potential V (x, y) is assumed to satisfy the following condition.

There exist α > 2 and β > 3/2 such that for any N > 0

(3.11) |V (x, y)| ≤ CN (1 + |x|)−αyβe−Ny

holds on R3
+ for a constant CN > 0.

We put

Ψ(0)
I (x, y; ξ, θ) = ζ(ξ, θ)−νeix·ξyIν(ζ(ξ, θ)y),(3.12)

ΨI(x, y; ξ, θ) = Ψ(0)
I (x, y; ξ; θ)−

(
GV (θ)(VΨ(0)

I (ξ, θ))
)

(x, y),(3.13)

Ψ(0)
J (x, y; ξ, θ) = rθ(ξ)−νeix·ξyJν(rθ(ξ)y),(3.14)

ΨJ (x, y; ξ, θ) = Ψ(0)
J (x, y; ξ; θ) −

(
GV (θ)(VΨ(0)

J (ξ, θ))
)

(x, y),(3.15)

where Ψ(0)
I (ξ, θ) = Ψ(0)

I (x, y; ξ, θ), Ψ(0)
J (ξ, θ) = Ψ(0)

J (x, y; ξ, θ).

Lemma 3.1. (1) Ψ(0)
I (x, y; ξ, θ) is smooth with respect to x, y, ξ, θ. In

particular
∂θ Ψ(0)

I (x, y; ξ, θ) = 0.

(2) Ψ(0)
I (x, y; k, θ) = Ψ(0)

J (x, y; k, θ) for k ∈Mθ.

Proof. By (2.5), we have

ζ(ξ, θ)−νIν(ζ(ξ, θ)y) =
(y

2

)ν ∞∑
k=0

((ξ + θ)2y2/4)k

k!Γ(ν + k + 1)
,

rθ(k)−νJν(rθ(k)y) =
(y

2

)ν ∞∑
k=0

(−rθ(k)2y2/4)k

k!Γ(ν + k + 1)
.

If k ∈ Mθ, we have ζ(k, θ)2 = (k + θ)2 = −rθ(k)2. These properties imply the
lemma.

Note that without the regularizing factor ζ(ξ, θ)−ν we have by Lemma 2.4

(3.16) ∂θ Iν(ζ(ξ, θ)y) = 2i sin
(νπ

2

)
Jν(rθ(ξ)y)Tθ(ξ).
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Definition 3.2. We define the scattering amplitude by

(3.17) A(ξ, η; θ) =
∫
R3

+

Ψ(0)
I (x, y;−ξ,−θ)V (x, y)ΨI(x, y; η, θ)

dxdy

y3
.

By the assumption (3.11), A(ξ, η; θ) is well-defined for large θI . By Lemma
3.1, if ξ ∈ Mθ (η ∈ Mθ), Ψ(0)

I (ΨI) is replaced by Ψ(0)
J (ΨJ ). The following

theorem shows that one can uniquely reconstruct V (x, y) from this scattering
amplitude. In fact, extend Ṽ (x, y) := V (x, y)/y2 to R3 as an even function of
y. Then by the following theorem, one can uniquely reconstruct the Fourier
transform of Ṽ (through analytic continuation) from the knowledge ofA(ξ, η; θ).

Theorem 3.3. Let α = θI/|θI |. Suppose α·(ξ+θR) > 0, α·(η+θR) > 0.
Then

lim
|θI |→∞

|θI |1+2νA(ξ, η; θ) =
1
π

∫
R3

+

e−ix·(ξ−η) cosh(ay)V (x, y)
dxdy

y2
,

where a = α · (ξ − η).

Proof. If α · (ξ + θR) > 0, we have as τ → ∞,

ζ(ξ, θ) = τi+ α · (ξ + θR) +O(1/τ ).

This implies by (2.8)√
2πτyIν(ζ(ξ, θ)y)

= e−πi/4eiτyeα·(ξ+θR)y + eπi/4eiνπe−iτye−α·(ξ+θR)y +O

(
1
τ

)
.

Hence if both ξ and η satisfy the above condition

2πτyIν(ζ(ξ, θ)y)Iν(ζ(η, θ)y)

= 2eiνπ cosh(ay) + e−πi/2e2iτyeby + eπi/2e2iνπe−2iτye−by +O

(
1
τ

)
,

where a = α · (ξ − η), b = α · (ξ + η + 2θR). Thus by using Theorem 2.9 and
Riemann-Lebesgue Lemma, we have

2πτ1+2νA(ξ, η; θ)∼ e−νπi

∫
R3
e−ix·(ξ−η)2πτyIν(ζ(ξ, θ)y)Iν(ζ(η, θ))V (x, y)

dxdy

y2

∼ 2
∫
R3

+

e−ix·(ξ−η) cosh(ay)V (x, y)
dxdy

y2
.
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Our next aim is to compute ∂θ A(ξ, η; θ). Here to compute ∂θ ΨI(x, y; ξ, θ),
we replace GV (θ) by GV,ε(θ) from (2.74) and take the limit ε→ 0.

Theorem 3.4. For all ξ, η ∈ R2, we have

∂θ ΨI(x, y; ξ, θ) = − 1
8π

∫
Mθ

ΨI(x, y; k, θ)A(k, ξ; θ)
rθ(k)2ν(k + θ)

|θI | dMθ(k).

(3.18)

∂θ A(ξ, η; θ) = − 1
8π

∫
Mθ

A(ξ, k; θ)A(k, η; θ)
rθ(k)2ν(k + θ)

|θI | dMθ(k).(3.19)

Proof. By Lemma 3.1 (2) and Lemma 2.10, we have

∂θ ΨI(ξ, θ) =−(1 − GV (θ)V )(∂θ G0(θ))(1 − VGV (θ))VΨ(0)
I (ξ, θ)

=−(1 − GV (θ)V )(∂θ G0(θ))VΨI(ξ, θ),

where we have used (3.13). By Theorem 2.7, this is equal to

− 1
8π

(1 − GV (θ)V )
∫

Mθ

eix·kyJν(rθ(k)y)
(k + θ)
|θI |

×
(∫

e−ix′·ky′Jν(rθ(k)y′)V (x′, y′)ΨI(x′, y′; ξ, θ)
dx′dy′

(y′)3

)
dMθ(k)

= − 1
8π

∫
Mθ

ΨJ (k; θ)A(k, ξ; θ)
rθ(k)2ν(k + θ)

|θI | dMθ(k),

since (1 − GV (θ)V )
(
eix·kyJν(rθ(k)y)

)
= rθ(k)νΨJ (x, y; k, θ) by (3.14) and

(3.15), where we have used rθ(k) = r−θ(−k). This and Lemma 3.1 (1) prove
(3.18). Using (3.17) and Lemma 3.1 (2), we get (3.19).

§3.4. Integral representation of the potential

The above ∂-equation enables us to derive integral representations of the
potential V (x, y) in terms of A(ξ, η; θ).

Let α, α⊥ ∈ S1 be such that α · α⊥ = 0. For a sufficiently large constant
T0 > 0, let Ω be the set of θ = θR + iθI ∈ C2 satisfying the following condition :

(3.20) |θR − T0α| < 1, α · θI > T0, |α⊥ · θI | < 1.

Let us note that for θ ∈ Ω

(3.21)
θI

|θI | → α as |θI | → ∞, θR · θI > 0 ∀θ ∈ Ω.
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Theorem 3.5. Let ξ, η be such that θI · (ξ + θR) > 0, θI · (η + θR) >
0, ∀θ ∈ Ω. We put θ4+2ν = (θ2)2+ν , K(θ) = θ1dθ2 − θ2dθ1, L(θ) = dθ1 ∧ dθ2,
and a = α · (ξ − η). Then we have for θ0 ∈ Ω,

eνπi

∫
R3

+

e−ix·(ξ−η) cosh(ay)V (x, y)
dxdy

y2

= 2(θ0)4+2νA(ξ, η; θ0)

− 1
4

∫
∂Ω

A(ξ, η; θ)
θ4+2νK(θ − θ0)

|θ − θ0|4 ∧ L(θ)

− 1
32π

∫
Ω

(∫
Mθ

A(ξ, k; θ)A(k, η; θ)
rθ(k)2ν

(
k + θ

)
|θI | dMθ(k)

)
N(θ),

N(θ) = dθ ∧ θ4+2νK(θ − θ0)
|θ − θ0|4 ∧ L(θ),

where the integral is performed in the sense of improper integral.

Proof. Recall the Bochner-Martinelli formula

f(z) =
1
8

∫
∂D

f(ζ)
K(ζ − z)
|ζ − z|4 ∧ L(ζ) − 1

8

∫
D

(
∂f(ζ)

) ∧ K(ζ − z)
|ζ − z|4 ∧ L(ζ),

which holds on a bounded domain D ⊂ C2 and z ∈ D (see [Kr], p. 22). Replace
f by θ4+2νA(ξ, η; θ), D by Ω ∩ {|θI | < T}. Note that (θ)4+2ν is analytic on
Ω. Let T → ∞ and use Theorem 3.3. On ST = Ω ∩ {|θI | = T}, we have
dθ1I ∧ dθ2I = 0. Hence

K(θ) ∧ L(θ) = 2(θ2Idθ1I − θ1Idθ2I) ∧ dθ1R ∧ dθ2R

+ 2i(θ2Rdθ1I − θ1Rdθ2I) ∧ dθ1R ∧ dθ2R.

Since θR varies over a bounded set, we have∫
ST

K(θ) ∧ L(θ) ∼ 2
∫

ST

(θ2Idθ1I − θ1Idθ2I) ∧ dθ1R ∧ dθ2R ∼ 4πT,

which proves the theorem.

§3.5. Restriction to lower dimensional submanifolds

Let us recall that in the Euclidean case, the Faddeev scattering amplitude
A(ξ, ζ) is first defined on a 7-dim. manifold R3 × {ζ ∈ C3 ; ζ2 = E}, and then
restricted to the 5-dim. manifold ∪ξ{ξ} × Vξ. In the hyperbolic space case,
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A(ξ, η; θ) is a function on a 8-dim. manifold R2 × R2 × C2. However, noting
the formula

(3.22) e−ix·kG0(θ)eix·k = G0(θ + k), ∀k ∈ R2,

and the resulting equation

(3.23) A(ξ − k, η − k; θ + k) = A(ξ, η; θ), ∀k ∈ R2,

one can see that A(ξ, η; θ) actually depends on 6 parameters. Let us restrict
A(ξ, η; θ) to a 5-dim. manifold.

In the Euclidean case, the fibre Vξ defined by (1.9) has a natural complex
structure. The condition ξ2 + 2ζ · ξ = 0 stems from the singularities of the
integrand of the Green function (1.8). In the hyperbolic space case, the corre-
sponding singularities appear from

√
(ξ + θ)2, which gives rise to the condition

Im (ξ+θ)2 = 2θI · (ξ+θR) = 0. Since the set of all θ satisfying this condition is
of 3-dimension, we should look for a 2-dim. submanifold for θ. We try a simple
choice of Cξ̂⊥ to be defined below. Note that this set is not included in the
above set of singularities.

For ξ = (ξ1, ξ2) ∈ R2 \ {0}, we put

(3.24) ξ̂⊥ =
(
− ξ2
|ξ| ,

ξ1
|ξ|

)
and for z ∈ C, we define

(3.25) θ(ξ, z) = zξ̂⊥.

For ξ ∈ R2 \ {0}, z ∈ C such that Re z �= 0 and |Im z| is sufficiently large,
and k ∈Mθ(ξ,z), we put

BII(ξ, z) = z2+2νA
(ξ

2
,−ξ

2
; θ(ξ, z)

)
,(3.26)

BIJ (ξ, k, z) = z2+2νA
(ξ

2
, k; θ(ξ, z)

)
,(3.27)

BJI(k, ξ, z) = z2+2νA
(
k,−ξ

2
; θ(ξ, z)

)
.(3.28)

Since Re z �= 0, ±ξ/2 �∈ Mθ(ξ,z). Note that BII(ξ, z) is a function on (an open
set of) the product space R2×C and BIJ (ξ, k, z), BJI(k, ξ, z) are functions on
(an open set of) the line bundle with base space R2 ×C and fibre Mθ(ξ,z). Or
it may be better to regard R2 as base space and Cξ̂⊥ ×Mθ(ξ,z) as fibre.
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Lemma 3.6. The following equation holds :

∂z BII(ξ, z) =
i ε(z)

8πz2+2ν

∫
Mθ

BIJ(ξ, k, z)BJI(k, ξ, z)rθ(k)2νdMθ(k),

where θ = θ(ξ, z) and ε(z) = 1 if Im z > 0, ε(z) = −1 if Im z < 0.

Proof. Note that

∂z A(ξ, η; θ(ξ, z)) = (∂θ A(ξ, η; θ(ξ, z)) · ∂z θ(ξ, z)

and ∂z θ(ξ, z) = θ(ξ, z)/z. Then we have by Theorem 3.4

∂z BII(ξ, z)

=
−1

8πzz2+2ν |θI |
∫

Mθ

BIJ(ξ, k; z)BJI(k, ξ, z)rθ(k)2ν(k + θ) · θdMθ(k),

where θ = θ(ξ, z). By a simple computation, we have (k + θ(ξ, z)) · θ(ξ, z) =
−iz Im z, which proves the lemma.

Take T0 > 0 large enough and put

(3.29) D = {z = t+ iτ ; 1 < t < 2, T0 < τ <∞}.
Theorem 3.7. For w �∈ D, we have in the sense of improper integral

eνπi

∫
R3

+

e−ix·ξV (x, y)
dxdy

y2
= −πi

∫
∂D

BII(ξ, z)
z − w

dz

+
1
8

∫
D

F (ξ, z)
dz ∧ dz

z2+2ν(z − w)
,

F (ξ, z) =
∫

Mθ

BIJ (ξ, k, z)BJI(k, ξ, z)rθ(k)2νdMθ(k),

where θ = θ(ξ, z).

Proof. Let

DT = {t+ iτ ; 1 < t < 2, T0 < τ < T},
C ′

T = {t+ iT ; 1 < t < 2},
CT = ∂DT \ C ′

T .

Then if w �∈ D, by Green’s formula∫
∂DT

BII(ξ, z)
z − w

dz +
∫

DT

∂z BII(ξ, z)
z − w

dz ∧ dz = 0.
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For z ∈ D, we have

ζ (±ξ/2, θ(ξ, z)) =
√
z2 + ξ2/4 = z +O(1/z) as z → ∞.

Therefore by (2.8)

2πzyIν
(
ζ
(ξ

2
, θ(ξ, z)

)
y
)
Iν

(
ζ
(
− ξ

2
, θ(ξ, z)

)
y
)
∼ e2zy + 2ieiνπ − e−2zye2iνπ.

By the Riemann-Lebesgue Lemma, we then have as T → ∞∫
C′

T

BII(ξ, z)
z − w

dz → i

π
eiνπ

∫
R3

+

e−ix·ξV (x, y)
dxdy

y2
,

which completes the proof.

§3.6. Radon transform

Let Π be a 2-dimensional plane orthogonal to {y = 0}, and dΠE be the
measure induced on Π from the Euclidean metric (dx)2 + (dy)2. By Theorem
3.7 one can reconstruct

(3.30)
∫

Π

V (x, y)
dΠE

y2

from BII(ξ; z), BIJ(ξ, k; z), BJI(k, ξ; z). Let S be any hemisphere in R3
+ with

center at {y = 0} and take an isometry φ on H3 mapping S to Π. Then
from the Faddeev scattering amplitude of Hφ = φ ◦H ◦ φ−1, one can recover
(3.30). Therefore one can recover

∫
S
V (x, y)dS, dS being the measure on S

induced from the hyperbolic metric. If one knows the scattering amplitude
A(φ)(ξ, η; θ) of Hφ for all φ, one can then reconstruct V (x, y) by virtue of
the inverse Radon transform on H3 (see e.g. [He] or [BeTa]). For this to
be possible, one must be able to compute A(φ)(ξ, η; θ) for all φ from a given
Faddeev scattering amplitude. This does not seem to be an obvious problem in
general. If V is compactly supported, however, this is possible via the Dirichlet-
Neumann map, which we explain in the next section.

§4. Inverse Boundary Value Problem

In this section, we shall work in Hn with n ≥ 2. Let Ω be a relatively
compact open set in Hn, and consider the boundary value problem

(4.1)

{(−y2(∂2
y + ∆x) + (n− 2)y∂y + q(x, y)

)
u = 0 in Ω,

u = f on ∂Ω.
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We assume that q(x, y) is bounded on Ω and that 0 is not a Dirichlet eigenvalue
of H0 + q on Ω. The Dirichlet-Neumann map is defined by

(4.2) Λ(q)f = y2(ny∂y + nx · ∇x)u
∣∣
∂Ω
,

where u is a solution to (4.1) and n = (nx, ny) is the outer unit normal to
∂Ω with respect to the Euclidean metric (dx)2 + (dy)2. Let a constant E �=
(n− 1)2/4 be fixed, and put

(4.3) V (x, y) =

{
q(x, y) + E on Ω,

0 on ΩC .

We show that from the DN map Λ(q) one can construct the scattering amplitude
A(ξ, η; θ) for H0 +V . The idea is essentially the same as [Na1]. Since there are
many technical differences, however, we reproduce the proof.

For a surface S in Hn, let dS be the measure on S induced from the
hyperbolic metric y−2

(
(dx)2 + (dy)2

)
. This is equal to dSE/y

n, where dSE is
the measure induced on S from the Euclidean metric (dx)2 + (dy)2.

§4.1. Modified radiation condition

Let G0(x, y, x′, y′; θ) be the Green function defined by (2.43).

Lemma 4.1. Put z = (x, y), z′ = (x′, y′), z0 = (x0, y0) ∈ Rn
+, and

u(z) =
∫

∂Ω

G0(x, y, x′, y′; θ)f(x′, y′)dSx′y′ ,(4.4)

v(z0, z) = G0(x0, y0, x, y; θ),(4.5)

where f ∈ L2(∂Ω). Then for any z0 ∈ Rn
+, there exists a constant R0 > 0 such

that ∫
y=R

{
∂u

∂y
(z)v(z0, z) − u(z)

∂v

∂y
(z0, z)

}
dx = 0

if R > R0 or R < 1/R0.

Proof. We consider the case that R is large enough. By taking suitable
local coordinates on ∂Ω, û(ξ, y) is written as

û(ξ, y) = y(n−1)/2Kν(ζ(ξ, θ)y)g(ξ, θ),

where g(ξ, θ) is a sum of the following terms∫
U

e−ix′(ω)·ξy′(ω)(n−1)/2Iν(ζ(ξ, θ)y′(ω))f(x′(ω), y′(ω))J(ω)dω,
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U being an open set in Rn−1 and x′(ω), y′(ω), J(ω) ∈ C∞
0 (U). Since ζ(−ξ,−θ)

= ζ(ξ, θ), we have

(2π)(n−1)/2v̂(z0, ξ, y) = e−ix0·ξG0(y0, y; ζ(ξ,−θ))
= e−ix0·ξ(yy0)(n−1)/2Kν(ζ(ξ,−θ)y)Iν(ζ(ξ,−θ)y0).

Using
∫
f(x)g(x)dx =

∫
f̂(ξ)ĝ(−ξ)dξ, we get the lemma. When R is small, we

have only to exchange Kν and Iν .

Here let us note that

G0(y, y′; ζ) = G0(y′, y ; ζ),

which follows from the definition (2.22). Hence by (2.43)

(4.6) G0(x, y, x′, y′; θ) = G0(x′, y′, x, y ;−θ).

This and (2.37) imply that for any z0 = (x0, y0) ∈ Rn
+

(4.7) (H0(−θ) − E)G0(x0, y0, x, y ; θ) = δ(z − z0),

where δ(z − z0) is the delta-function with respect to the measure dxdy/yn.

We use the following notation :

(u, v)Ω =
∫

Ω

uv
dxdy

yn
,(4.8)

(f, g)∂Ω =
∫

∂Ω

fg
dSE

yn
,(4.9)

B(θ) = y2 (ny∂y + nx · (∂x + iθ)) .(4.10)

Green’s formula implies the following lemma.

Lemma 4.2. For any u, v ∈ H2(Ω), we have

(4.11) (H0(θ)u, v)Ω − (u,H0(θ)v)Ω = −(B(θ)u, v)∂Ω + (u,B(θ)v)∂Ω.

Or, equivalently,

(4.12)
∫

Ω

(H0(θ)u) v
dxdy

yn
−

∫
Ω

u (H0(−θ)v) dxdy
yn

= −
∫

∂Ω

(B(θ)u) v
dSE

yn
+

∫
∂Ω

u (B(−θ)v) dSE

yn
.
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Now we consider the gauge transform of Λ(q) :

(4.13) Λ(θ; q) = e−ix·θΛ(q)eix·θ.

Note that Λ(θ; q) is the Dirichlet-Neumann map for the following interior
boundary value problem :

(4.14) Λ(θ; q)f = B(θ)u,

where u is a solution to the interior Dirichlet problem

(4.15)

{
(H0(θ) + q)u = 0 in Ω,

u = f on ∂Ω.

The following lemma is an easy consequence of Lemma 4.2.

Lemma 4.3. For f, g ∈ H1/2(∂Ω),

(4.16) (Λ(θ; q)f, g)∂Ω = (f,Λ(θ; q)g)∂Ω.

Or, equivalently,

(4.17)
∫

∂Ω

(Λ(θ; q)f) g
dSE

yn
=

∫
∂Ω

f (Λ(−θ; q)g) dSE

yn
.

We match this interior problem with the following exterior problem. Let

ψ0(x, y; η, θ) = ζ(η, θ)−νeix·ηy(n−1)/2Iν(ζ(η, θ)y),(4.18)

Ωex = Rn
+ \ Ω,(4.19)

Ωy
ex = {x ∈ Rn−1 ; (x, y) ∈ Ωex}.(4.20)

The problem we address is the following :

(H0(θ) − E)ψ = 0 in Ωex,(4.21)

B(θ)ψ = Λ(θ; q)h on ∂Ωex, where h = ψ
∣∣
∂Ω
,(4.22)

and u = ψ − ψ0(x, y; η, θ) satisfies

∂m
y u(·, y) ∈ H1−m(Ωy

ex), m = 0, 1, ∀y > 0,(4.23) ∫
y=R

{
∂u

∂y
(z)v(z0, z) − u(z)

∂v

∂y
(z0, z)

}
dx

yn−2
→ 0(4.24)

as R → ∞ and R → 0 for any z0 ∈ Rn
+, where v(z0, z) is defined by (4.5). Let

us remark that n in B(θ) of (4.22) is the inner unit normal to Ωex.
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§4.2. Single and double layer potentials

For z = (x, y) ∈ Ωex, we introduce the single and double layer potentials
by

Sθf(z) =
∫

∂Ω

G0(x, y, x′, y′; θ)f(x′, y′)
dSE

(y′)n
,(4.25)

Dθf(z) =
∫

∂Ω

∂G0

∂n(z′)
(x, y, x′, y′; θ)f(x′, y′)

dSE

(y′)n
,(4.26)

where n(z′) is the unit normal at z′ = (x′, y′) ∈ ∂Ω pointing toward the direc-
tion exterior to Ω. We also put for z ∈ ∂Ω

Bθf(z) = p.v.
∫

∂Ω

∂G0

∂n(z′)
(x, y, x′, y′; θ)f(x′, y′)

dSE

(y′)n
.(4.27)

B†
θf(z) = p.v.

∫
∂Ω

∂G0

∂n(z)
(x, y, x′, y′; θ)f(x′, y′)

dSE

(y′)n
.(4.28)

Let GE
0 be the Green operator of −∆ in Rn. Then we have

(4.29) G0(θ) = GE
0

1
y2

+ GE
0

(
2iθ · ∂x − θ2 − n− 2

y
∂y +

E

y2

)
G0(θ).

The second term of the right-hand side is continuous from L2(∂Ω) toH5/2
loc (Rn

+).
Therefore the jumps of Dθf , ∂Sθ/∂n across ∂Ω come from the first term of the
right-hand side. This implies the following two lemmas (see [Na1], Lemmas 2.4
and 2.5).

Lemma 4.4. Let u = Sθf, f ∈ H1/2(∂Ω). Then u satisfies (H0(θ) −
E)u = 0 on Ωex. Moreover the non-tangential limits (∂u/∂n)+ (and (∂u/∂n)−)
of ∂u/∂n on the boundary from outside (respectively inside) Ω are given by the
formula

(4.30)
(
∂u

∂n

)
±

= ∓ 1
2y2

f(z) + B†
θf(z) on ∂Ω.

In particular

(4.31)
(
∂u

∂n

)
+

−
(
∂u

∂n

)
−

= − 1
y2
f(z) on ∂Ω.

Lemma 4.5. Let w = Dθf, f ∈ H3/2(∂Ω). Then w satisfies (H0(θ) −
E)w = 0 on Ωex. Moreover the non-tangential limits w+ (and w−) of w on the
boundary from outside (respectively inside) Ω are given by the formula

(4.32) w± = ± 1
2y2

f(z) + Bθf(z) on ∂Ω.
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In particular

(4.33) w+ − w− =
1
y2
f(z) on ∂Ω.

Lemma 4.6. (1) Let ψ be a solution to the exterior problem (4.21)–
(4.24). Then its trace on the boundary f = ψ|∂Ω satisfies

(4.34) f = ψ0(x, y; η, θ) −
[
Sθ

(
Λ(θ; q) + iθ · nxy

2
)
− Bθy

2 − 1
2

]
f.

(2) Suppose that E is not a Dirichlet eigenvalue of H0 on Ω, and that f is a
solution to (4.34). Then the function ψ defined on Ωex by

(4.35) ψ = ψ0(x, y; η, θ) −
[
Sθ

(
Λ(θ; q) + iθ · nxy

2
)
−Dθy

2
]
f

solves the exterior problem (4.21)−(4.24), and ψ|∂Ω = f .

Proof. We first prove the assertion (1). Put ΩR,r
ex = Ωex ∩ {|x| < r, 1

R <

y < R}, and take z0 ∈ ΩR,r
ex . Apply Lemma 4.2 with Ω replaced by ΩR,r

ex , u by
ψ − ψ0 and v by v(z0, z) from (4.5). Then taking notice of the direction of n
and (4.7), we have

u(z0) =
∫

∂ΩR,r
ex

u (B(−θ)v) dSE

yn
−

∫
∂ΩR,r

ex

(B(θ)u) v
dSE

yn
.

Let us note that ∂ΩR,r
ex = ∂Ωex∪{|x| < r, y = R or y = 1/R}∪{|x| = r, 1/R <

y < R} and that B(θ) = y2x̂ · (∂x + iθ), x̂ = x/|x|, on {|x| = r, 1/R < y < R}.
By virtue of Lemma 2.3 and (4.23), u, ∂xu, v, ∂xv ∈ L2({|x| > r, 1/R < y < R})
for large r > 0. Therefore the integral over the sphere |x| = rj tends to 0 as
rj → ∞ along a suitable sequence {rj}. The integrals over the plane y = R,
y = 1/R tend to 0 as R → ∞ by the condition (4.24). We have, therefore,

u(z0) =
∫

∂Ωex

u (B(−θ)v) dSE

yn
−

∫
∂Ωex

(B(θ)u) v
dSE

yn

=
∫

∂Ωex

ψ (B(−θ)v) dSE

yn
−

∫
∂Ωex

(B(θ)ψ) v
dSE

yn

−
∫

∂Ωex

ψ0 (B(−θ)v) dSE

yn
+

∫
∂Ωex

(B(θ)ψ0) v
dSE

yn
.

Since v satisfies (H0(−θ) − E)v = 0 on Ω, we have B(−θ)v = Λ(−θ; 0)v. By
the same reasoning, B(θ)ψ0 = Λ(θ; 0)ψ0. Therefore, in view of of (4.17), we
have

−
∫

∂Ωex

ψ0 (B(−θ)v) dSE

yn
+

∫
∂Ωex

(B(θ)ψ0) v
dSE

yn
= 0.
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This implies

(4.36) u(z0) =
∫

∂Ω

ψ (B(−θ)v) dSE

yn
−

∫
∂Ω

(B(θ)ψ) v
dSE

yn

= Dθy
2ψ − Sθ

(
iθ · nxy

2ψ + Λ(θ; q)ψ
)
,

where we have used B(−θ) = y2∂/∂n− iθ · nxy
2, and the boundary condition

(4.22). Letting z0 → z ∈ ∂Ω in (4.36) and using (4.32), we get the assertion
(1).

Let us prove (2). The equation (4.21) is easily checked. Lemmas 2.3 and
4.1 imply (4.23) and (4.24), respectively. By Lemma 4.5 and (4.34), ψ

∣∣∣
∂Ω

= f.

By the same computation as above to derive (4.36), one can show that

(4.37) ψ = ψ0 + Dθy
2ψ − Sθ

(
iθ · nxy

2 +B(θ)
)
ψ.

Since ψ = f on ∂Ω, comparing (4.35) and (4.37), we have

(4.38) Sθ (B(θ)ψ − Λ(θ; q)f) = 0 on Ωex.

Now if we put w = Sθ (B(θ)ψ − Λ(θ; q)f), w satisfies (H0(θ) − E)w = 0 in Ω
and w = 0 on ∂Ω. Since H0(θ) is a gauge transform of H0, this means that
w = 0 in Ω by our assumption that E is not the Dirichlet eigenvalue of H0 on
Ω. Therefore the equation (4.38) holds on Rn

+. In view of (4.31), we obtain
B(θ)ψ − Λ(θ; q)f = 0, which proves (4.22).

The solvability of the exterior problem is closely related to the whole space
problem. Let us consider the equation

(4.39) ψ = ψ0(x, y; η, θ) − G0(θ)V ψ on Rn
+,

and for some s > 1/2

(4.40) ψ − ψ0(x, y; η, θ) ∈ L2,−s(Rn
+).

Lemma 4.7. We assume that E is not a Dirichlet eigenvalue of H0+V
on Ω.
(1) Suppose ψ is a solution to (4.39), (4.40). Then ψ also solves the exterior
problem (4.21)−(4.24).
(2) Conversely, if ψ solves (4.21)−(4.24), there exists a unique solution ψ̃ to
(4.39), (4.40) such that ψ̃ = ψ on Ωex.

Proof. Let us prove (1). The equations (4.21) and (4.22) are easy to
check. Put u = ψ − ψ0. Then since

û(ξ, y) = −
∫ ∞

0

G0(y, y′; ζ(ξ, θ))V̂ ψ(ξ, y′)
dy′

(y′)n
,
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v̂(z0,−ξ, y) = G0(y0, y; ζ(ξ, θ))eix0·ξ,

the properties (4.23) and (4.24) can be proved by a direct computation.
Let us prove (2). If there are two such solutions ψ̃1, ψ̃2, we have that

(H0(θ)+V −E)ψ̃1 = (H0(θ)+V −E)ψ̃2 = 0 on Rn
+ and ψ̃1 = ψ̃2 on ∂Ω. Since

E is not a Dirichlet eigenvalue of H0(θ) + V , ψ̃1 = ψ̃2 in Ω. By the unique
continuation theorem, they coincide on Rn

+. Lets us prove the existence. For
a solution ψ to the exterior problem (4.21)–(4.24), we define ψ̃ = ψ on Ωex

and ψ̃ = ϕ on Ω, where ϕ is the solution of the interior Dirichlet problem
(H0(θ) + V − E)ϕ = 0 in Ω satisfying ϕ = ψ on ∂Ω. Then ψ̃ is continuous
across ∂Ω, and B(θ)ψ̃ computed as the limit from Ωex and that from Ω coincide.
Then ∂ψ̃/∂n is also continuous across ∂Ω. This shows that ψ̃ ∈ H2

loc(R
n
+) and

(H0(θ)+V −E)ψ̃ = 0 on Rn
+. Let u = ψ̃−ψ0 and UR,r = {|x| < r, 1

R < y < R}.
Then by using (4.12), one has with v = v(z0, z) from (4.5)

(4.41) u(z0) = −
∫

UR,r

V ψ̃v
dxdy

yn

+
∫

∂UR,r

(B(θ)u) v
dSE

yn
−

∫
∂UR,r

u (B(−θ)v) dSE

yn

We let R, r → ∞. Then by virtue of the conditions (4.23) and (4.24), the
second and the third terms of the right-hand side vanish. Hence we have
u = −G0(θ)V ψ̃, which proves (4.39). The condition (4.40) follows from Lemma
2.2.

§4.3. D-N map and the scattering amplitude

Lemma 4.8. The operator Sθ

(
Λ(θ; q) + iθ · nxy

2
)−Bθy

2− 1
2 is compact

on H3/2(∂Ω).

Proof. Let u = Tf be the solution to the Dirichlet problem (4.15), and v
be as in (4.5). Then by virtue of (4.12), we have for z0 ∈ Ω,

u(z0) = −G0(θ)V Tf + Sθ

(
Λ(θ; q) + iθ · nxy

2
)
f −Dθy

2f.

Letting z0 approach ∂Ω, we have by Lemma 4.5

Sθ

(
Λ(θ; q) + iθ · nxy

2
)− Bθy

2 − 1
2

= G0(θ)V T.

The right-hand side is compact onH3/2(∂Ω), since T is compact fromH3/2(∂Ω)
to L2(Ω) and G0(θ)V is bounded from L2(Ω) to H3/2(∂Ω).
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Taking into account that G0(θ)V is compact on L2,−s(Rn
+) for s > 1/2,

we introduce the following assumption :

(A) −1 �∈ σp(G0(θ)V ).

Under this assumption GV (θ) = (1+G0(θ)V )−1G0(θ) is well-defined. We
define Ψ(0)

I by (4.18) and put ΨI and A(ξ, η; θ) in the same way as in (3.13)
and (3.17).

Notice that when n ≤ 3, this assumption is satisfied for large |θI | by virtue
of Theorem 2.8.

Lemma 4.9. Under the assumption (A) and the condition that E is
not a Dirichlet eigenvalue of H0 on Ω, Sθ

(
Λ(θ; q) + iθ · nxy

2
)− Bθy

2 + 1
2 has

a trivial null space on H3/2(∂Ω).

Proof. Suppose f is in this null space. Let ψ = −
[
Sθ

(
Λ(θ; q) + iθ · nxy

2
)

−Dθy
2
]
f . Then by the same arguments as in the proof of Lemma 4.6 (2), ψ

solves the exterior problem (4.21)–(4.24), where in this case ψ0 is taken to be
0. Then by the same argument as in the proof of Lemma 4.7 (2), there exists
a solution to the problem

ψ̃ = −G0(θ)V ψ̃ on Rn
+, ψ̃ ∈ L2,−s(Rn

+),

and ψ̃ = ψ on Ωex. The assumption (A) implies ψ̃ = 0. Since ψ = f on ∂Ω, we
then have f = 0.

We are now in a position to construct A(ξ, η; θ) from the DN map Λ.

Theorem 4.10. Let HD
0 be H0 on Ω with Dirichlet boundary condition.

Assume (A) and that E �∈ σp(HD
0 ), 0 �∈ σp(HD

0 + q). Define V by (4.3). Let
ψ0(η, θ) be defined by (4.18). Then there exists a unique f ∈ H3/2(∂Ω) such
that

f = ψ0 −
[
Sθ

(
Λ(θ; q) + iθ · nxy

2
)− Bθy

2 − 1
2

]
f,

and a unique solution ψ(η, θ) of the exterior problem (4.21)−(4.24) satisfying
ψ = f on ∂Ω. Moreover the scattering amplitude A(ξ, η; θ) is represented as

A(ξ, η; θ) =
∫

∂Ω

[
ψ0(−ξ,−θ)Λ(θ; q)ψ(η, θ)− (B(−θ)ψ0(−ξ,−θ))ψ(η, θ)

]dSE

yn
.
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Proof. By Lemmas 4.8 and 4.9, there exists a unique f as above. By
Lemma 4.6 (2), there exists a unique ψ as above. Lemma 4.7 (2) implies the
existence of ψ̃. By (3.13), we have ψ̃ = ΨI(x, y; η, θ). Therefore by (3.17),

A(ξ, η; θ) =
∫

Ω

ψ0(−ξ,−θ)V ψ̃(η, θ)
dxdy

yn
.

Using (4.12), we complete the proof of the theorem.
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