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Abstract

For analyzing impartial games played in the misère rule, Yamasaki defined flat-
ness of games, while Conway defined tameness. In this paper, we prove that these
two concepts are equivalent.

§1. Introduction

In this paper we discuss impartial games, namely two-player games satis-
fying the following conditions.

· The two players move in alternate turn.

· The moves that a player can select in his turn depend not on the player
but only on the position of the game. Namely, both players have the same
options of moves in each position.

· Every play terminates in finitely many turns, no matter how the players
move.

In what follows, we use term “game” only to mean an impartial game.
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In playing games, it is natural to define the last player able to move to
be the winner and we call this the normal play rule. For disjunctive sums of
impartial games in the normal rule, there is a well-known mathematical theory
independently developed by Sprague and Grundy [3, 4].

It is possible to define the last player able to move to be the loser and we
call this the misère play rule. However, the situation changes drastically. The
analysis of the disjunctive sums of games in the misère rule seems much more
complicated. We know very little about the strategy for playing games in the
misère rule.

However, there are some types of games, for which the tactics in the misère
play are obtained from those in the normal play. Conway found a type of such
games and called them tame [2]. Yamasaki found another type of such games
and called them flat [5].

Berlekamp, Conway, and Guy mentioned Yamasaki’s work and claimed
that ‘his term “flat” and “projective” both imply our “tame” ’ without any
further comment [1]. In this paper, we prove that terms “tame” and “flat” are
actually equivalent in spite of their apparent difference.

In Sections 2 and 3, we briefly survey general theory of impartial games.
In Section 4, we prove the main result.

§2. Impartial Game

If a position Q of a game is reachable from another position P by a single
move, Q is called a successor of P . According to Conway [2], let us identify a
position P of a game with the set of all the successors of P . Therefore, if P

and Q are positions of a game, Q ∈ P means that Q is a successor of P . All the
“end-positions”, which have no successors, are identified with the empty set
and denoted by ∅. Conversely, any set inductively constructed from the empty
set can be a position of a suitably defined game. Thus, we regard a position of
any game as such a set, and vice versa.

From the above point of view, Nim-heap ∗n for each natural number n is
defined inductively as follows.

Definition 2.1 (Nim heap).

∗0 = ∅, ∗1 = {∗0}, ∗2 = {∗0, ∗1}, . . . , ∗n = {∗0, ∗1, . . . , ∗(n − 1)}, . . .

Definition 2.2 (sum of positions). Let G and H be positions of games.
We define the sum G + H inductively as follows:

G + H = {G′ + H | G′ ∈ G} ∪ {G + H ′ | H ′ ∈ H}.
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§3. Grundy Value and Winning Strategy

It is well-known that any position of an impartial game in the normal play
can be characterized completely by its Grundy value and the Grundy value
of the sum of positions is equal to the Nim-sum of the Grundy values of the
summands.

Definition 3.1 (Grundy value). We define the normal Grundy value
G+(G) and the misére Grundy values G−(G) of a position G inductively as
follows. First, for the end-position ∅, we define

G+(∅) = 0, G−(∅) = 1.

Next, for non end-position G, we define

G+(G) = mex{G+(H) | H ∈ G}, G−(G) = mex{G−(H) | H ∈ G},

where, for any set S of ordinal numbers, we denote by mexS the least ordinal
number not contained in S. In particular, if S � N, mexS is the least natural
number not in S.

The following is immediate from the definitions of the Grundy values.

Lemma 3.2. Let G be a position of games. Then the second player has
a winning strategy at G in the normal play (resp. in the misère play) if and
only if G+(G) = 0 (resp. G−(G) = 0).

For any natural numbers a and b, we denote their Nim-sum by a⊕ b. The
Nim-sum operation is also known as the “XOR” (exclusive “OR”) operation
in computer science. Namely, a ⊕ b is the result of adding a and b as binary
numbers without carry. It is easy to see that the Nim-sum operation can
be extended naturally on the class On of all ordinal numbers and (On,⊕, 0)
forms a group in which every element has order 2. (To be more precise, On is
a proper class in the sense of axiomatic set theory, but satisfies all the axioms
for a group.)

The following is fundamental in the theory of impartial games in the normal
play.

Theorem 3.3 (Grundy [3]). For any positions G and H of games,

G+(G + H) = G+(G) ⊕ G+(H).
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However, no similar result has been obtained for general impartial games
in the misère rule.

§4. Analysis of Impartial Games in the Misère Rule

Definition 4.1 (Yamasaki [5]). We define a class F of positions of
games inductively as follows.

1. The end-position ∅ is an element of F.

2. If G+(P ) ≤ 1 and a successor of P is an element of F, then P is also an
element of F.

Namely, F is the class of all positions from which the end-position is reachable
with keeping the track in positions of normal Grundy values less than 2. More-
over, we denote by F0 (resp. F1) the subclass of F consisting of all the positions
of normal Grundy value 0 (resp. 1).

Clearly, F is the disjoint union of F0 and F1. The following is also imme-
diate from the definition.

Lemma 4.2. If a position G is not an element of F but at least one of
its successors is in F, then G+(G) is greater than 1.

The following is easily proved by induction from the definition of F and
Theorem 3.3.

Theorem 4.3 (Yamasaki [5]). Let G and H be positions of games.
Then, G + H is in F if and only if both G and H are in F.

A class G of positions of impartial games is said to be transitive, if P ∈ G

implies P ⊂ G for any position P . Namely, a class of positions is transitive if
and only if it is closed for any moves.

Definition 4.4 (flat class). A transitive class G of positions is said to
be flat if it satisfies the following conditions:

· For any P ∈ G ∩ F and any successor Q of P , if G+(Q) ≤ 1 then Q ∈ F.

· For any P ∈ G \ F and any successor Q of P , if Q ∈ F then there exists a
successor R of P such that G+(R) ≤ 1 and satisfying either of the following
conditions:
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a) R ∈ F and G+(R) ⊕ G+(Q) = 1,

b) R 	∈ F and G+(R) ⊕ G+(Q) = 0.

Definition 4.5. Let G and G′ be classes of positions of games. We
define the sum class G + G′ as follows:

G + G′ = {G + G′ | G ∈ G, G′ ∈ G′}.

Clearly, if G and G′ are transitive classes, then G + G′ is also transitive.
The following two theorems are due to Yamasaki [5].

Theorem 4.6. The sum of flat transitive classes is flat.

Theorem 4.7. The class Nim of all Nim-heaps is a flat transitive class.

Yamasaki mentioned several other flat transitive classes, but we omit the
details here.

Definition 4.8 (Conway [2]). Let G be any impartial game and let

g = G+(G), g0 = G−(G), g1 = G−(G + ∗2), g2 = G−(G + ∗2 + ∗2), , . . .

Then, we denote the sequence gg0g1g2... by G∗(G). For any sufficiently large n

we have gn+1 = gn ⊕ 2, and so we write

G∗(G) = gg0g1...gm

if this holds for all n such that n ≥ m.

Definition 4.9 (tame class). Transitive class G of positions is said to
be tame if G∗(P ) is 012, 103, or nn (n = 0, 1, 2, . . . ) for any P ∈ G.

Remark. Conway defined his “tameness” as a property of game positions
[2] and generalized it later [1]. In this paper, we adopted the original and
defined it as a property of classes of positions, since that treatment makes it
more compatible to Yamasaki’s “flatness”. Yamasaki defined his “games” and
“flatness” in a somewhat different framework using “D-scheme” and “additive
class”. The above definition of “flatness” is a paraphrase of a necessary and
sufficient condition of his in our framework.

Theorem 4.10. A transitive class G of positions is flat if and only if
any position P ∈ G satisfies the following conditions:
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(1) G−(P ) ⊕ G+(P ) = 1 for any P ∈ F

(2) G−(P ) ⊕ G+(P ) = 0 for any P 	∈ F.

Proof. First we prove the necessity of conditions (1) and (2). Let G be
flat. We prove the claims by induction on the structure of position P . If P = ∅,
then P ∈ F and G−(P )⊕G+(P ) = 1⊕ 0 = 1. Let P 	= ∅. We have three cases.

Case 1. If P ∈ F1, we have to prove that G−(P ) = 0, for which it is
sufficient to prove that there is no successor Q of P such that G−(Q) = 0. If
such a successor Q exists, then the induction hypothesis assures that

(a) if Q ∈ F then G+(Q) = 1 = G+(P ), and

(b) if Q 	∈ F then G+(Q) = 0.

However, (a) contradicts the definition of the Grundy value, and (b) contradicts
the flatness of G.

Case 2. If P ∈ F0, we have to prove that G−(P ) = 1. By the definition
of F0, P must have a successor Q in F1, and the induction hypothesis said that
G−(Q) = 0. Similar discussion as in Case 1 proves that there is no successor Q

of P such that G−(Q) = 1. Therefore, we have G−(P ) = 1.

Case 3. If P 	∈ F, there are four subcases.
Case 3-1. If P has successors Q ∈ F0 and R ∈ F1, then G−(Q) = 1 and

G−(R) = 0 by the induction hypothesis. Since G+(S) = G−(S) for any successor
S 	∈ F by the induction hypothesis, we can conclude that G+(P ) = G−(P ).

Case 3-2. If P has a successor Q ∈ F1 but has no successor in F0, then
there exists a successor R of P such that R 	∈ F and G+(R) = 1 by the flatness
condition. The induction hypothesis assures that G−(Q) = 0 and G−(R) = 1.
Therefore, we have G−(P ) ≥ 2. Since G+(P ) exceeds 1 by Lemma 4.2, we
can conclude that G+(P ) = G−(P ) by the induction hypothesis on the other
successors of P .

Case 3-3. If P has a successor Q ∈ F0 but has no successor in F1, a similar
discussion as in Case 3-2 proves that G+(P ) = G−(P ).

Case 3-4. If P has no successors in F, then the induction hypothesis easily
proves that G+(P ) = G−(P ).

Next, we prove the sufficiency of the conditions. Let G be a transitive class
satisfying conditions (1) and (2).
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Assume that a position P ∈ G∩F has a successor Q such that G+(Q) ≤ 1.
If Q 	∈ F, we have G+(Q) = G−(Q) ≤ 1 and G+(P ) ⊕ G−(P ) = 1 by condition
(1). However, since G+(P ) ≤ 1, this implies G+(P ) = G+(Q) or G−(P ) =
G−(Q), which contradicts the definition of the Grundy values. This proves the
first condition of the flatness.

Assume that a position P ∈ G \ F has a successor Q ∈ F. By Lemma 4.2,
G+(P ) is greater than 1. Moreover, condition (2) assures that G+(P ) = G−(P ),
and hence there exists a successor R of P such that G−(Q)⊕G−(R) = 1. Since
G−(Q) ⊕ G+(Q) = 1 by condition (1), we have G−(R) ⊕ G+(Q) = 0. Again by
condition (1), G−(R) ⊕ G+(R) = 1 if R ∈ F, but G−(R) ⊕ G+(R) = 0 if R 	∈ F.
Therefore, in either case, we can conclude that position R has the property
required by the second condition of the flatness.

Corollary 4.11. A transitive class G is flat if and only if it is tame.

Proof. Let G be tame. We prove that G satisfies conditions (1) and (2)
of Theorem 4.10. It is sufficient to show that

P ∈ F0 if G∗(P ) = 012, P ∈ F1 if G∗(P ) = 103, and P 	∈ F if G∗(P ) = nn,

since no other G∗-values are possible. We prove this by induction on the struc-
ture of P . If P = ∅, then G∗(P ) = 012 and P ∈ F0 by the definition. Let
P 	= ∅. If G∗(P ) = 012, then P must have a successor Q such that G−(Q) = 0
by the definition of the Grundy value. But, G+(Q) cannot be equal to 0 since
G+(P ) = 0. Therefore, the only possible G∗-value of Q is 103 and Q ∈ F1 by
the induction hypothesis. Thus, P ∈ F0 by the definition. Similarly, P is in
F1 if G∗(P ) = 103. If G∗(P ) = nn such that n ≥ 2, then P 	∈ F clearly. If
G∗(P ) = 11 or G∗(P ) = 00, then P cannot have a successor of G∗-value 012 or
103. Thus, we conclude that P 	∈ F in this case by the induction hypothesis.

Conversely, let G be flat. Since ∗2 	∈ F, Theorem 4.3 guarantees that there
is no position P such that P + ∗2 + · · · + ∗2 ∈ F. Therefore, since the sum
G + Nim + · · · + Nim is a flat transitive class by Theorems 4.6 and 4.7,

G−(P + ∗2 + · · · + ∗2) = G+(P + ∗2 + · · · + ∗2) = G+(P ) ⊕ 2 ⊕ · · · ⊕ 2

holds for any position P ∈ G by condition (2) of Theorem 4.10. Now, the
following are straightforward conclusions of conditions (1) and (2) of Theorem
4.10.

· G∗(P ) = 012 if P ∈ F0,

· G∗(P ) = 103 if P ∈ F1,
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· G∗(P ) = nn if P 	∈ F, where n = G+(P ) = G−(P ).

It is clear from the definition and Lemma 3.2 that, for positions in a tame
(or equivalently flat) class, there is a winning strategy based on the Grundy
values both in the misère and the normal rules. Moreover, Theorem 4.6 assures
that such a strategy can be easily extended to positions of the sum of tame (or
flat) classes.
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