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Abstract

If λ is a positive vector measure on l2, the notion of λ-orthonormal system of
functions leads to a natural generalization of the relation between orthogonality and
best approximation in Hilbert spaces for spaces L2(λ) of square integrable functions
with respect to λ. We provide a vector orthogonality criterion that induces the
definition of a particular projection on a subspace of L2(λ) that we call the self-
weighted approximation. As an application, we show a new extrapolation technique.

§1. Introduction and Basic Results

The properties of the spaces of integrable functions with respect to a vec-
tor measure have been studied in both abstract and applied contexts (see for
example [1, 4, 11, 3, 10, 13]). Following the investigation about applications of
vector measure integration and the spaces of integrable functions with respect
to vector measures (see [3, 10, 11, 13]), we propose in this paper a general
framework for function approximation. Our aim is to extend the notion of
orthogonal projection of a function on a subspace of a Hilbert space to the
context of the spaces L2(λ) of square integrable functions with respect to a
vector measure λ in order to obtain new fitting procedures. Thus, Section 1
is devoted to introduce several definitions involving generalized orthonormal
sequences and to obtain the main results on approximation with respect to
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what we call the C-orthogonal distance. We start providing the fundamen-
tal definitions and results on integration with respect to a vector measure,
to center our attention in the case of positive countably additive vector mea-
sures with values in l2, that will be our framework. Theorems 1.1 and 1.2
give the tools to construct what we call the self-weighted approximation in
L2(λ).

In Section 2 we introduce the notion of conic vector measure with values
in l2, and we apply the results of Section 1 to give a geometrical meaning to the
self-weighted approximation. Finally, we develop two examples and we show
that our results would be applied as an extrapolation technique.

Let us introduce some basic definitions and results on vector measure in-
tegration theory. Let X be a Banach space. We will denote by X ′ its dual
space and by BX its unit ball. Let (Ω, Σ) be a measurable space. Consider a
countably additive vector measure λ : Σ → X. We say that a measurable real
function f : Ω → R is integrable with respect to λ (λ-integrable for short) if
it is scalarly integrable (i.e. is integrable with respect to each scalar measure
given by λx′(A) := 〈λ(A), x′〉, A ∈ Σ, x′ ∈ X ′) and there is an element denoted
by

∫
A

fdλ ∈ X for every A ∈ Σ such that 〈
∫

A
fdλ, x′〉 =

∫
A

fdλx′ (see [6] or
[7]). If 1 < p < ∞, we say that a measurable real function f is p λ-integrable
if |f |p is λ-integrable. In the case p = 2, we say that f is square λ-integrable.

The Köthe function space of (classes of) p λ-integrable functions is denoted
by Lp(λ). An exhaustive study of the properties of this space when p = 1 can
be found in [1]. The main properties of the integration operator I : L1(λ) → X

defined by I(f) :=
∫
Ω

fdλ have been studied in [9]. For the case 1 < p < ∞ the
reader can find the proof of several basic Banach lattice properties in [11]. In
particular it can be found in this paper the proof of the fact that the pointwise
product fg of a function f ∈ Lp(λ) and a function g ∈ Lp′(λ) is λ-integrable.
In the particular case of a space L2(λ) it is possible to define the notion of λ-
orthogonality (see [3] and [13]). Two functions f, g ∈ L2(λ) are λ-orthogonal if∫
Ω

fgdλ = 0. It is interesting to remark that L2(λ) is not in general isomorphic
to a Hilbert space (see [13, 10]).

In this paper we mainly deal with positive vector measures, i.e. countably
additive vector measures taking values in positive cones of Banach lattices.
In fact, we center our attention in the case X = l2, the Hilbert space of se-
quences of (real) numbers endowed with the usual order: if (xi)∞i=1, (yi)∞i=1 ∈ l2,
(xi)∞i=1 ≤ (yi)∞i=1 if and only if xi ≤ yi for every natural number i. Thus, the
positive cone of this space is the set l+2 = {(xi)∞i=1 ∈ l2|xi ≥ 0, i ∈ N}, where N

is the set of natural numbers. If n ∈ N , we will use also the notation ln2 for the
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n-dimensional Rn space with the Euclidean norm. We will simply write ‖ · ‖
for the norm of l2.

We will use standard concepts and notation of the Banach space theory.
The reader can find all the results that are needed about function spaces in [5]
and [8], and the answer to general questions on vector measure theory in [2]. If
ν is a scalar measure, we will write |ν| for its variation. If λ is a vector measure
on a Banach space X, we will say that a positive scalar measure µ controls λ

if µ(A) = 0 implies λ(A) = 0 for every A ∈ Σ. Consider and element x′ ∈ BX′ .
We will say that the measure |λx′ | is a Rybakov measure for λ if it controls
λ. It is well known that we can always find a Rybakov measure for any vector
measure λ (see for example [2]). If x ∈ l2, we will write 〈x〉 for the linear span
of x. However, if B = {hi|i ∈ I} is a family of functions we will use the symbol
spanB to denote the linear span of B. We will denote by R the set of all real
numbers, and by ei, i ∈ N , the elements of the canonical basis of l2.

The following proposition establishes several basic facts on the structure
of the spaces of square λ-integrable functions that will be useful through the
paper.

Proposition 1.1. Let X be a Banach space. Let λ : Σ → X be a vector
measure. Then:

1) If µ is a Rybakov measure for λ, the set of all the (equivalence classes
of µ-a.e. equal) square λ-integrable functions defines the Köthe function
space L2(λ) (over µ) with the norm ‖f‖L2(λ) := supx′∈BX′ (

∫
Ω

f2d|λx′ |) 1
2 ,

f ∈ L2(λ). The set of simple functions is dense in L2(λ).

2) If f, g are square λ-integrable, then the pointwise product function fg is
λ-integrable. Moreover,∥∥∥∥

∫
Ω

fgdλ

∥∥∥∥ ≤ ‖f‖L2(λ)‖g‖L2(λ), and sup
h∈BL2(λ)

∥∥∥∥
∫

Ω

hfdλ

∥∥∥∥ = ‖f‖L2(λ).

3) Suppose that X = l2 and λ is positive. Then for every g ∈ L2(λ) the
expression ‖f‖g := (〈

∫
Ω

f2dλ,
∫
Ω

g2dλ〉) 1
2 , f ∈ L2(λ), defines a seminorm

on L2(λ).

The statements 1) and 2) are straightforward consequences of the in-
equalities that can be found at the beginning of Section 3 of [11], and the
proof of Proposition 8 and Lemma 9 in [11]. If λ is positive, the formula
µg(A) := 〈λ(A),

∫
Ω

g2dλ〉, A ∈ Σ, defines a positive (scalar) finite measure,
which gives 3).
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From now on, we center our attention in the case of countably additive
vector measures with values in l2; if λ : Σ → l2, a direct calculation shows that
the formula ‖f‖λ := ‖

∫
Ω

f2dλ‖ 1
2 , f ∈ L2(λ), provides another expression for

the norm of L2(λ). This formula will be widely used in the rest of the paper.
Let us introduce the space l2(l2) of 2-summable sequences of elements

of l2. If z =
∑∞

j=1(
∑∞

i=1 νjiei)ej ∈ l2(l2), its norm is given by ‖z‖2,2 =
(
∑∞

j=1 ‖
∑∞

i=1 νjiei‖2)
1
2 = (

∑∞
j=1

∑∞
i=1 ν2

ji)
1
2 .

In the rest of this section we fix λ and we assume that it is a positive
countably additive vector measure on l2. This will simplify the notation, since
no explicit reference will be given to λ in the following definitions. However,
note that all these definitions depend on λ.

Definition 1.1. A countable set of functions C = {hi ∈ L2(λ)|i ∈ N}
is a λ-orthonormal system if

1)
∫
Ω

hihjdλ = 0 for different i, j ∈ N ,
2) ‖hi‖λ=1 for every i ∈ N , and
3) the expression TC(f) :=

∑∞
i=1

(∫
Ω

fhidλ
)
ei defines a continuous opera-

tor TC : L2(λ) → l2(l2).

We will also consider the case of finite λ-orthonormal systems assuming the
obvious restrictions in the definition above. Straightforward calculations show
that a λ-orthonormal system defines a linearly independent set of functions.
We denote by S(C) the (closed) subspace generated by C, i.e. the closure of the
linear span of C.

Example 1. Let (Ω, Σ, µ0) be a positive finite measure space. We define
the vector measure λ0 : Σ → l2 by λ0(A) := µ(A)e1, A ∈ Σ. It is easy to
see that L2(µ0) = L2(λ0). Suppose that C0 = {fi|i ∈ N} is an orthonormal
sequence of functions of L2(µ0). Then clearly it satisfies the requirements 1) and
2) of Definition 1.1. Moreover ‖TC0(g)‖2,2 = (

∑∞
i=1 |

∫
Ω

gfidµ0|2)
1
2 ≤ ‖g‖L2(µ0).

Therefore, TC0 is a continuous operator and C0 is a λ0-orthonormal system.

Proposition 1.2. Let C = {hi ∈ L2(λ)|i ∈ N} be a λ-orthonormal
system. Then S(C) is isomorphic to l2. Thus, each function g ∈ S(C) can be
written as a series g =

∑∞
i=1 αihi, where (αi)∞i=1 ∈ l2.

Proof. If n ∈ N and g =
∑n

i=1 αihi, ‖g‖λ = ‖
∫
Ω

∑n
i=1 α2

i h
2
i dλ‖ 1

2 ≤
(
∑n

i=1 α2
i )

1
2 , and ‖TC(g)‖2,2 = (

∑∞
i=1 ‖

∫
Ω

ghidλ‖2)
1
2 = (

∑n
i=1 α2

i )
1
2 ≤ ‖TC‖

‖g‖λ. Therefore, S(C) is isomorphic to l2, and each element f ∈ S(C) can be
written as a series

∑∞
i=1 αihi = limn

∑n
i=1 αihi, where (αi)∞i=1 ∈ l2.



�

�

�

�

�

�

�

�

Vector Measure Orthonormal Systems 555

Lemma 1.1. Let C be a λ-orthonormal system. If g =
∑∞

i=1 αihi ∈
S(C) and j ∈ N , then

∫
Ω

ghjdλ =
∫
Ω

αjh
2
jdλ.

The straightforward proof is a consequence of Proposition 1.1,2) and
Proposition 1.2.

Definition 1.2. Let C be a λ-orthonormal system. We call the λ-
orthogonal complement of S(C) to Sλ(C) := {f ∈ L2(λ)|

∫
Ω

fgdλ = 0, g ∈
S(C)}.

Lemma 1.2. Let C be a λ-orthonormal system. A function f ∈ L2(λ)
belongs to Sλ(C) if and only if f is λ-orthogonal to each function hi of C.
Moreover, Sλ(C) is a closed subspace of L2(λ).

Proof. Let f ∈ L2(λ) such that
∫
Ω

fhidλ = 0 for every i ∈ N , and
consider a function g ∈ S(C). Then there is a sequence of functions (gi)∞i=1 ⊂
span{hi|i ∈ N} that converges to g in L2(λ). Then, using the statement 2) of
Proposition 1.1 we obtain ‖

∫
Ω

fgdλ‖ = ‖
∫
Ω

fgdλ−
∫
Ω

fgidλ‖ ≤ ‖f‖λ‖g−gi‖λ

for every i ∈ N . This implies
∫
Ω

fgdλ = 0. On the other hand, the linearity of
the integral

∫
Ω

f(·)dλ for every f ∈ L2(λ) implies that Sλ(C) is a subspace. A
direct argument using the inequalities above shows that Sλ(C) is also closed.

Definition 1.3. If C = {hi|i ∈ N} is a λ-orthonormal system in L2(λ)
and f, g ∈ L2(λ), we define the C-orthogonal distance between f and g as

dC(f, g) := ‖TC(f − g)‖2,2.

The C-orthogonal distance between a subspace S ⊂ L2(λ) and a function f ∈
L2(λ) is

dC(f, S) := inf
g∈S

‖TC(f − g)‖2,2.

In the following examples we explicitly obtain the best approximation in
finite dimensional subspaces S of L2(λ) to arbitrary functions f ∈ L2(λ) with
respect to particular C-orthogonal distance criteria. Our aim is to show that
some usual minimal distance criteria can be written in terms of adequate C-
orthogonal distances. This motivates the approximation results given in The-
orem 1.1 and Theorem 1.2.

Example 2. Consider the vector measure λ0 in Example 1 and the or-
thonormal sequence that defines C0. If n ∈ N , let us define the λ0-orthonormal
system Cn := {fi|i = 1, . . . , n}, the n first functions of C0. A direct calculation
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shows that TCn
(f) = 0 if and only if f is orthogonal to the subspace Sn = S(Cn)

of L2(µ0). Therefore, the Cn-orthogonal distance from a function g ∈ L2(λ0)
to Sn is attained for the function PSn

(g), where PS is the canonical projection
PSn

: L2(µ0) → Sn.

Example 3. Let n ∈ N and let (Ω, Σ, µ3) be a measure space that
satisfies µ3(Ω) = n and that there is a measurable partition A := {Ai|i =
1, . . . , n} of Ω such that µ3(Ai) = 1, i = 1, . . . , n. Consider the positive vector
measure λ3 : Σ → l2 defined by λ3(A) :=

∑n
i=1 µ3(A ∩ Ai)ei, A ∈ Σ. Consider

the set of characteristic functions C3 = {χAi
|i = 1, . . . , n}. It is easy to see that

C3 defines a λ3-orthonormal system; in particular, the norms ‖χAi
‖λ3 = 1, since

µ3(Ai) = 1, for each i = 1, . . . , n. A direct calculation shows that TC3(f) = 0
if and only if

∫
Ai

fdµ3 = 0 for every i = 1, . . . , n. Moreover, if S = S(C3) the
distance dC3(f, S) from the space S to a function f ∈ L2(λ3) is attained for the
function

∑n
i=1 αiχAi

, where αi :=
∫

Ai
fdµ, i = 1, . . . , n.

Theorem 1.1. Let C be a λ-orthonormal system. Let g ∈ L2(λ). Then
the C-orthogonal distance between g and S(C) is attained for the function PC(g)
:=

∑∞
i=1 βihi ∈ L2(λ), where

βi =
〈∫

Ω

ghidλ,

∫
Ω

h2
i dλ

〉
, i ∈ N.

Moreover, the operator PC : L2(λ) → S(C) is a continuous projection on S(C).

Proof. First let us show that PC is a continuous projection. To prove that
it is well defined, let g be a function of L2(λ). By Proposition 1.2 it is enough
to show that (βi)∞i=1 ∈ l2, where βi = 〈

∫
Ω

ghidλ,
∫
Ω

h2
i dλ〉, i ∈ N.

But
∑∞

i=1(〈
∫
Ω

ghidλ,
∫
Ω

h2
i dλ〉)2 ≤

∑∞
i=1 ‖

∫
Ω

ghidλ‖2 ≤ ‖TC‖2‖g‖2
λ. More-

over, ‖PC(g)‖λ = ‖
∫
Ω

∑∞
i=1 β2

i h2
i dλ‖ 1

2 ≤ (
∑∞

i=1 β2
i )

1
2 ≤ ‖TC‖‖g‖λ. Thus, PC is

a continuous operator.
Now, let n ∈ N and consider an arbitrary function

∑n
i=1 αihi ∈ S(C). A

direct calculation gives

∥∥∥∥∥TC

(
g −

n∑
i=1

αihi

)∥∥∥∥∥
2

2,2

=
n∑

i=1

(〈∫
Ω

ghidλ,

∫
Ω

ghidλ

〉

−2αi

〈∫
Ω

ghidλ,

∫
Ω

h2
i dλ

〉
+ α2

i

)
+

∞∑
i=n+1

∥∥∥∥
∫

Ω

ghidλ

∥∥∥∥
2

.
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Note that the second term of the expression above is finite, since TC is contin-
uous. The equations

∂

∥∥∥∥∥TC

(
g −

n∑
i=1

αihi

)∥∥∥∥∥
2

2,2

∂αi
= −2

〈∫
Ω

ghidλ,

∫
Ω

h2
i dλ

〉
+ 2αi = 0,

i = 1, . . . , n, give the result. Note that the same result holds for every n ∈ N ,
and then the sequence (βi)∞i=1 defines the minimum when we consider the whole
space S(C) as a consequence of the sectional convergence that provides the
isomorphy between l2 and this space (Proposition 1.2).

Definition 1.4. Let C be a λ-orthonormal system. Let g ∈ L2(λ) and
let PC be as in the theorem above. We call PC(g) the self-weighted approxima-
tion of the subspace S(C) to the function g with respect to the positive vector
measure λ.

Theorem 1.2. Let C be a λ-orthonormal system and let g ∈ L2(λ).
Then g − PC(g) ∈ Sλ(C) if and only if ‖TC(g − PC(g))‖2,2 = 0. Moreover, in
this case PC(g) is the function of S(C) for which the infimum inff∈S(C) ‖g−f‖λ

is attained.

Proof. Note that the first equivalence is obvious, since TC(g−PC(g)) = 0
if and only if g − PC(g) ∈ Sλ(C), as a consequence of Lemma 1.2. Now let
us calculate the inff∈S(C) ‖g − f‖λ in the case that g0 := g − PC(g) ∈ Sλ(C).
Consider the representation of g = PC(g) + g0. For every function

∑∞
i=1 αihi ∈

S(C), using of the λ-orthogonality of the functions of C, we obtain

∥∥∥∥∥g −
∞∑

i=1

αihi

∥∥∥∥∥
2

λ

=
∥∥∥∥
∫

Ω

g2
0dλ

∥∥∥∥
2

+ 2
∞∑

i=1

(αi − βi)2
〈∫

Ω

h2
i dλ,

∫
Ω

g2
0dλ

〉

+
∞∑

i=1

∞∑
k=1

(αi − βi)2(αk − βk)2
〈∫

Ω

h2
i dλ,

∫
Ω

h2
kdλ

〉
.

Clearly, this expression attains its minimum value ‖
∫
Ω

g2
0dλ‖2 if βi = αi

for every i ∈ N .

The theorem above establishes the relation between λ-orthogonality and
best approximation in our vector integration setting. Note that this result is
similar to the one that holds for positive finite (scalar) measures µ, but in this
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case the space can always we written as a direct sum of S(C) and its orthogonal
space Sµ(C). However, this is not true in our context. This motivates the
definition of self-weighted approximation taking into account the verification of
certain vector orthogonality conditions. In the following section we provide a
geometrical motivation of its properties.

§2. The Geometric Properties of the Self-weighted Function
Approximation

In this section we introduce the notion of conic vector measure and we show
that it is possible to explain the properties of the self-weighted approximation
in terms of a direct geometrical argument. Our aim is to study from this point
of view the structure of the coefficients βi that appear in the projection PC(g)
of a function g ∈ L2(λ).

Definition 2.1. Let λ : Σ → l2 be a countably additive vector measure,
and let θ = (σi)∞i=1 be a sequence of elements σi ∈ {1,−1}. Consider the cone
Cθ generated by {σiei|i ∈ N}, i.e. the closure of the set of positive linear
combinations of the elements of this set. We say that λ is a θ-conic measure if
rg(λ) ⊂ Cθ, and there is a family of measurable subsets {Ai|i ∈ N} such that
λ(Ai) �= 0 and λ(Ai) ∈ 〈ei〉 for every i ∈ N , and ∪∞

i=1Ai = Ω.
We will simply say that λ is a conic measure if it is a θ-conic measure for

a certain sequence θ. If θ is the sequence defined by σi = 1 for every i ∈ N , we
will say that λ is a positive conic measure.

Proposition 2.1. Let λ be a conic measure and let µ be a Rybakov
measure for λ. Then the associated family of measurable subsets {Ai|i ∈ N}
defines (µ-a.e.) a partition of Ω, and λ(A) :=

∑∞
i=1〈λ(A ∩ Ai), ei〉ei, A ∈ Σ.

Consequently, there is a Bochner integrable function φ ∈ L1(µ, l2) such that
λ(A) :=

∫
A

φdµ, A ∈ Σ.

Proof. First we show that for each i ∈ N and every measurable subset
B ⊂ Ai, λ(B) ∈ 〈ei〉. Consider the sequence θ = (σi)∞i=1 in the definition of
the measure λ. Fix i ∈ N . If there is a measurable set B ⊂ Ai which does not
satisfy the property, we can find an index j �= i such that 〈λ(B), ej〉 �= 0. We can
assume without loss of generality that σj = 1. Thus, the measure λej

defined by
λej

(A) := 〈λ, ej〉(A), A ∈ Σ, is positive, and then 〈λ, ej〉(Ai) ≥ 〈λ, ej〉(B) > 0,
a contradiction. Thus, if for i �= j, B ⊂ Ai ∩ Aj , and µ is a Rybakov measure
for λ we have that µ(B) = 0.
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Now, if i ∈ N , it is clear that µ controls λei
, and then the Radon-Nikodym

Theorem gives a positive function fi if σi = 1 (negative if σi = −1) with
support in Ai such that λei

(A) =
∫

A
fidµ. Let φ the pointwise defined function

φ :=
∑∞

i=1 fiei. Then the countably additivity of λ gives the convergence of
the sequence (

∑n
i=1 fiei)∞n=1 in L1(µ, l2) to φ, and λ(A) =

∫
A

φdµ, A ∈ Σ.

Corollary 2.1. In the conditions of Proposition 2.1, the equality

∫
A

fdλ =
∞∑

i=1

(∫
Ai∩A

fd〈λ|Ai
, ei〉

)
ei,

holds for every function f ∈ L1(λ) and every A ∈ Σ.

Corollary 2.2. Let λ be a conic measure. Then there is a positive conic
measure λ′ such that L2(λ) = L2(λ′) isometrically.

For the proof of this corollary is enough to consider the vector measure
λ′ defined by the function |φ|, where φ is the Bochner integrable function of
Proposition 2.1. A direct calculation shows that ‖g‖λ = ‖g‖λ′ for every g ∈
L2(λ). Therefore, from now on we can assume without loss of generality that
λ is a positive conic measure.

Proposition 2.2. Consider a positive conic measure λ and a finite λ-
orthonormal system C := {hi ∈ L2(λ)|i = 1, . . . , n}. Let h :=

∑n
i=1 hi ∈ L2(λ).

Then

(
∑n

i=1 ‖hi‖4
λ)

1
2

‖h‖λ
≤ ‖TC‖ ≤ ‖h‖λ.

Therefore, ‖TC‖ = ‖h‖λ if (
∫
Ω

h2
i dλ)n

i=1 is an orthogonal sequence of l2.

Proof. By Proposition 2.1, there is a partition {Aj |j ∈ N} of Ω such
that λ(A) =

∑∞
j=1 µj(A)ej , where µj(A) := 〈λ(A ∩ Aj), ej〉, A ∈ Σ. The

sequence (hi)n
i=1 is orthogonal in all the Hilbert spaces L2(Aj , µj), j ∈ N . Then

〈
∫

Aj
h2dλ, ej〉 =

∫
Aj

∑n
i=1 h2

i dµj for every j ∈ N . If g ∈ L2(λ), for every hi the
function ghi ∈ L1(λ) (Proposition 1.1), and

∫
Ω

ghidλ =
∑∞

j=1(
∫

Aj
ghidµj)ej

as a consequence of Corollary 2.1. Then ‖TC(g)‖2,2 = (
∑n

i=1(
∑∞

j=1(
∫

Aj
ghi

dµj)2))
1
2 . Applying the Hölder inequality for the measures µj and taking into
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account the properties of the norm of l2, we obtain

‖TC(g)‖2,2 ≤


 n∑

i=1


 ∞∑

j=1

(∫
Aj

g2dµj

)(∫
Aj

h2
i dµj

)





1
2

=


 ∞∑

j=1

(∫
Aj

g2dµj

)(
n∑

i=1

∫
Aj

h2
i dµj

)


1
2

=

∣∣∣∣∣
〈∫

Ω

g2dλ,

∫
Ω

n∑
i=1

h2
i dλ

〉∣∣∣∣∣
1
2

.

Then ‖TC‖ ≤ ‖h‖λ. Moreover, if we consider the function h
‖h‖λ

, we obtain

∥∥∥∥TC

(
h

‖h‖λ

)∥∥∥∥
2,2

=
‖

∑n
i=1

(∫
Ω

hihdλ
)
ei‖2,2

‖h‖λ
=

(∑n
i=1 ‖

∫
Ω

h2
i dλ‖2

) 1
2

‖h‖λ
≤ ‖TC‖

Using the last arguments we can provide a geometrical interpretation of
the self-weighted approximation. Consider a positive conic measure λ and a
λ-orthogonal system C = {hi|i ∈ N}. Let g ∈ L2(λ). Then we have shown
in Section 1 that PC(g) =

∑∞
i=1 βihi is a function of S(C). If i ∈ N , we have

βi =
∑∞

j=1(
∫

Aj
ghid〈λ, ej〉)(

∫
Aj

h2
i d〈λ, ej〉). Thus, if βi �= 0, we can define

Cos(γi) :=
〈 ∫

Ω
ghidλ

‖
∫
Ω

ghidλ‖ ,

∫
Ω

h2
i dλ

〉
.

Therefore, we obtain a representation of βi as a product of an scalar term
‖

∫
Ω

ghidλ‖ and an angular term Cos(γi), since βi = ‖
∫
Ω

ghidλ‖Cos(γi). Note
that Cos(γi) is either 1 or −1 when

∫
Ω

ghidλ ∈ 〈
∫
Ω

h2
i dλ〉. Thus, |βi| is weighted

by the term Cos(γi), that represents the degree of coincidence between the
directions defined by the vectors (

∫
Aj

ghid〈λ, ej〉)∞j=1 and (
∫

Aj
h2

i d〈λ, ej〉)∞j=1.
In particular, if g verifies that g − PC(g) ∈ Sλ(C) we obtain that Cos(γi) is
either 1 or −1. Of course, there is no angular contribution in the classical case
of finite positive (scalar) measures.

Let us finish the paper with some examples. In the first one, we show a
function g that satisfies that the self-weighted approximation PC(g) is similar
to the one obtained with the classical Hilbert space approximation.

Example 4. Consider the usual Lebesgue measure space ([0, 3], Σ, ν)
and the vector measure λ4 : Σ → l32 given by λ4(A) :=

∑3
i=1 ν(A ∩ [i − 1, i])ei.
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Let us define the set of functions C := {h1(x), h2(x), h3(x)} on [0, 3] by

h1(x) := 1 ,

h2(x) :=
3
2
− 11

2
x +

9
2
x2 − x3 ,

h3(x) :=
171
175

− 63
5

x +
393
10

x2 − 252
5

x3 +
309
10

x4 − 9x5 + x6.

The set C4 := { hi

‖hi‖λ4
|i = 1, 2, 3} is a λ4-orthonormal system. Consider

the function g(x) := exp(−(x − 2.2)2) + 1.5 exp(−x). The projections of g(x)
using our procedure and the usual Hilbert space formulae are

P (g)(x) := PC4(g)(x) = 0.989188h1(x) + 0.332633h2(x) + 0.003089h3(x) ,

and
H(g)(x) = 0.989188h1(x) + 0.338121h2(x) + 0.007486h3(x),

respectively. Thus, Figure 1 shows two similar approximations to the function
g(x).

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.5 1 1.5 2 2.5 3

g(x)
P(g)(x)
H(g)(x)

Figure 1.- Functions g(x) = exp(−(x − 2.2)2) + 1.5 exp(−x), P (g)(x) and
H(g)(x).

Although neither P (g) nor H(g) provide good approximations to the func-
tion g, the behaviour of both approximations is quite similar. From the geomet-
rical point of view, this can be explained by the fact that the distribution of the
integrals (

∫
[j−1,j]

g hi

‖hi‖λ4
d〈λ4, ej〉)3j=1 is equivalent to the one of the integrals

(
∫
[j−1,j]

( hi

‖hi‖λ4
)2d〈λ4, ej〉)3j=1 for each i = 1, 2, 3.
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However, the situation shown in this example changes when we want to
approximate a signal whose distribution of the integrals of ghi on the sets Aj

is equivalent to the distribution of only one of the functions of C. In this case,
the fit gives more weight to this function, as the following example shows.

Example 5. Let ([0, 2], Σ, ν) be the usual Lebesgue measure space.
Consider the function g(x) := e−xχ[0,1]. Suppose that g(x) is a signal which we
know by theoretical arguments that must be close to an exponential function
on [0, 2], but we only know it in the interval [0, 1].

A right solution to this problem would be given by an extrapolation proce-
dure using the function h1(x) := e−x as an element of the basis. Our theoretical
framework provides an approximation technique taking into account this fact.
Consider the vector measure λ5 : Σ → l22 defined by λ5(A) := ν([0, 1] ∩ A)e1 +
ν([1, 2] ∩ A)e2 and the λ5-orthonormal system C5 := { h1

‖h1‖λ5
, h2
‖h2‖λ5

}, where

h1(x) := e−x , and h2(x) := 0.513440 − 1.836047x + x2 .

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

g(x)
P(g)(x)
H(g)(x)

Figure 2.- Functions g(x) = e−xχ[0,1], P (g)(x) and H(g)(x).

The self-weighted approximation leads to the projection, P (g)(x) := PC5(g)
(x) = 0.982014h1(x), while the Hilbert space approximation in [0, 2] gives
H(g)(x) = 0.880797h1(x). As the reader can see, the coefficient of the pro-
jection of g with respect to the function e−x is close to 1 in P (g), but this
is not the case in H(g). This is caused by the fact that the first function of
C5 is self-weighted in the calculus of the projection, and then the fit of the
incomplete signal g is better than the usual Hilbert space projection from this
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extrapolation point of view. The fact that the support of the function (e−x)2 is
bigger in the interval [0, 1] than in [1, 2] is reflected in the weight that it induces
in the calculation of the coefficient β1 (see Figure 2).
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