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Abstract

For a subset S ⊂ N = {1, 2, . . . } and a commutative ring R with unit, let R[q]S

denote the completion lim←− f(q)R[q]/(f(q)), where f(q) runs over all the products of the
powers of cyclotomic polynomials Φn(q) with n ∈ S. We will show that under certain
conditions the completion R[q]S can be regarded as a “ring of analytic functions”
defined on the set of roots of unity of order in S. This means that an element of
R[q]S vanishes if it vanishes on a certain type of infinite set of roots of unity, or if its
power series expansion at one root of unity vanishes. In particular, the completion
Z[q]N � lim←− nZ[q]/((1 − q)(1 − q2) · · · (1 − qn)) enjoys this property.

§1. Introduction

For n ∈ N = {1, 2, . . . }, let Φn(q) ∈ Z[q] denote the nth cyclotomic poly-
nomial. Let S be a subset of N. Set ΦS = {Φn(q) | n ∈ S} ⊂ Z[q], and let Φ∗

S

denote the multiplicative set in Z[q] generated by ΦS . Let R be a commutative
ring with unit. The principal ideals (f(q)) ⊂ R[q] for f(q) ∈ Φ∗

S define a linear
topology of the ring R[q]. Define a completion R[q]S of R[q] by

R[q]S = lim←−
f(q)∈Φ∗

S

R[q]/(f(q)),(1.1)

which we will call the S-cyclotomic completion of R[q]. If S is finite, then R[q]S

is just the (
∏

n∈S Φn(q))-adic completion of R[q].
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1128 Kazuo Habiro

The main results of this paper can be rephrased as follows: Under certain
conditions, the ring R[q]S behaves like a “ring of analytic functions” defined
on the set of the roots of unity of order contained in S. In the following two
paragraphs, we will explain two properties that justify the above claim, by
restricting to the special case R = Z and S = N.

The first property states that an element f(q) ∈ Z[q]N is a function on
the set of all the roots of unity. Let ZN ⊂ C denote the subset of all roots of
unity, and let Z[ZN] denote the subring of C generated by the elements of ZN.
If f(q) ∈ Z[q]N and ζ ∈ ZN, then the evaluation f(ζ) of f(q) at ζ is well defined,
since q − ζ divides Φn(q) with n = ord ζ. Hence there is a well defined map

ε : Z[q]N → Map(ZN, Z[ZN])

such that ε(f(q)) = (f(ζ))ζ∈ZN
. By Theorem 6.2, the map ε is injective, and we

can regard Z[q]N as a subring of Map(ZN, Z[ZN]). Hence the elements of Z[q]N

can be regarded as functions defined on the roots of unity. Moreover, Theorem
6.2 implies for example that f(q) ∈ Z[q]N vanishes if f(q) vanishes at infinitely
many roots of unity of prime power order.

The second property is a kind of analytic continuation. For ζ each root of
unity, there is an expansion homomorphism

σζ : Z[q]N → Z[ζ][[q − ζ]],

induced by Z[q] → Z[ζ][q], since (q − ζ)i divides Φord ζ(q)i for i ≥ 0. For
f(q) ∈ Z[q]N, σζ(f(q)) can be regarded as the power series expansion of f(q)
at ζ. By Theorem 5.2, the homomorphism σζ is injective. In other words,
the function ε(f(q)) is completely determined by its expansion at each root of
unity. We remark here that the injectivity of σ1 is also proved independently
by P. Vogel. The non-surjectivity of σζ is proved in Section 7.4.

The above-mentioned properties do not hold for a general ring R. For
example, the analogues of the homomorphisms ε and σζ over the rational num-
bers, are not injective; nevertheless, the natural homomorphism Z[q]N → Q[q]N

is injective. For more details, see Section 7.5.
Here we would like to explain the original motivation of studying the

cyclotomic completions. We should note first that some specific elements of
Z[q]N have already appeared in the literature. Zagier [16] studied the se-
ries

∑
n≥0(1 − q)(1 − q2) · · · (1 − qn), which was introduced by Kontsevich,

and which can be regarded as an element of Z[q]N since we have an isomor-
phism

Z[q]N � lim←−
n

Z[q]/((1 − q)(1 − q2) · · · (1 − qn))
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induced by idZ[q]. Lawrence and Zagier [6] and Le [7] gave formulas for the
sl2 Witten-Reshetikhin-Turaev invariants [12, 15] for some particular integral
homology spheres. These formulas were expressed as infinite series which can
define elements of Z[q]N.

The ring Z[q]N is used in the definition of the new invariant I(M) of an
integral homology 3-sphere M that we announced in [1] (where Z[q]N is denoted
by Ẑ[q]), see also [11]. The invariant I(M) takes values in Z[q]N and unifies
all the Witten-Reshetikhin-Turaev invariants τζ(M) defined at all the roots of
unity ζ, i.e., we have

εζ(I(M)) = τζ(M) ∈ Z[ζ], for all ζ ∈ ZN.

We may regard this result as saying that the Witten-Reshetikhin-Turaev in-
variants of an integral homology sphere, viewed as functions on roots of unity,
is “analytic”. (We note here that Lawrence [4, 5] have studied another kind of
analyticity of the Witten-Reshetikhin-Turaev invariants.)

As we explained in [1], the existence of the invariant I(M) generalizes
the previous integrality results [9, 10, 4, 13] on the Witten-Reshetikhin-Turaev
invariants of integral homology spheres. Using the injectivity of σ1 : Z[q]N →
Z[[q−1]], we can show that the Ohtsuki series τ (M) ∈ Z[[q−1]] [10], which was
defined using only the τζ(M) with ζ the prime order roots of unity, determine
the τζ(M) for ζ all the roots of unity. Recall that τ (M) can be regarded as
a kind of “number theoretic expansion” at q = 1 of the Witten-Reshetikhin-
Turaev invariants. For ζ a root of unity, the power series expansion εζ(I(M)) ∈
Z[ζ][[q − ζ]] in q − ζ can be regarded as the “number theoretic expansion” at
q = ζ of the Witten-Reshetikhin-Turaev invariants.

The present paper was at first intended to provide the results on the ring
Z[q]N announced in [1] and those necessary for [2] in which we study completions
of an integral form of the quantized enveloping algebra Uq(sl2), and for future
papers [3] in which we will prove the existence of the invariant I(M). However,
we have generalized the subject of the paper mainly from purely algebraic point
of view. Another practical reason for generalization is that it may be possible
to define a generalization of I(M) to rational homology spheres with values in
R[q]S for some R and S which depend on the first homology group of M .

§2. Preliminaries

Throughout the paper, rings are unital and commutative, and homomor-
phisms of rings are unital. By “homomorphism” we will usually mean a ring
homomorphism. Two rings that are considered to be canonically isomorphic to



�

�

�

�

�

�

�

�

1130 Kazuo Habiro

each other will often be identified. Moreover, if a ring R embeds into another
ring R′ in a natural way, we will often regard R as a subring of R′.

If R is a ring and I ⊂ R is an ideal, then the I-adic completion of R will
be denoted by

RI = lim←−
j

R/Ij ,

and if J ⊂ I is another ideal, then let

ρR
J,I : RJ → RI

denote the homomorphism induced by idR. The notation RI should not cause
confusions with R[q]S . We will further generalize these notations in the later
sections. The ring R is said to be I-adically separated (resp. I-adically com-
plete) if the natural homomorphism R → RI is injective (resp. an isomor-
phism). Recall that R is I-adically separated if and only if

⋂
j≥0 Ij = (0).

Let N = {1, 2, . . . } denote the set of positive integers. We regard N as a
directed set with respect to the divisibility relation |. We will not use the letter
N for the same set {1, 2, . . . } when it is considered as an ordered set with the
usual order ≤.

The letter q will always denote an indeterminate.

§3. Monic Completions of Polynomial Rings

§3.1. Definitions and basic properties

For a ring R, let MR denote the set of the monic polynomials in R[q],
which is a directed set with respect to the divisibility relation |. For a subset
M ⊂ MR, let M∗ denote the multiplicative set in R[q] generated by M , which
is a directed subset of MR. The principal ideals (f), f ∈ M∗, define a linear
topology of the ring R[q], and let

R[q]M = lim←−
f∈M∗

R[q]/(f)(3.1)

denote the completion. (If M = {1}, then (3.1) implies R[q]{1} = R[q]/(1) = 0,
which notationally contradicts the previous definition R[q]{1} = R[[q − 1]]. In
the rest of the paper, however, “R[q]{1}” will always mean R[[q − 1]].)

If M ′ ⊂ M ⊂ MR, then (M ′)∗ is a directed subset of M∗, and hence idR[q]

induces a homomorphism

ρR
M,M ′ : R[q]M → R[q]M

′
.
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We also extend the notation in the obvious way to ρR
M,I : R[q]M → R[q]I for

M ⊂ MR a subset and I ⊂ R an ideal, etc., if it is well defined. (The general
rule is that ρR

X,Y : R[q]X → R[q]Y is a homomorphism induced by idR[q].)
If M ⊂ MR is finite, then the sequence (

∏
M)j , j ≥ 0, is cofinal in

the directed set M∗. Hence R[q]M is naturally isomorphic to the (
∏

M)-adic
completion R[q](

∏
M) of R[q]. In particular, if f ∈ MR, then we have

R[q]{f} � R[q](f) = lim←−
j

R[q]/(f)j .

If M ⊂ MR is infinite, then R[q]M is not an ideal-adic completion in general,
see for example Proposition 6.1.

If M ⊂ MR, then the rings R[q]M
′

for finite subsets M ′ of M and the
natural homomorphisms ρR

M ′,M ′′ for finite M ′, M ′′ with M ′′ ⊂ M ′ ⊂ M form
an inverse system of rings, of which the inverse limit is naturally isomorphic to
R[q]M ; i.e., we have

R[q]M � lim←−
M ′⊂M, |M ′|<∞

R[q]M
′
.(3.2)

Let h : R → R′ be a ring homomorphism. Note that if h is injective (resp.
surjective), then so is the induced homomorphism hq : R[q] → R′[q].

Lemma 3.1. Let h : R → R′ be a ring homomorphism and let M ⊂
MR be a subset. If h is injective, then so is the homomorphism

hM : R[q]M → R′[q]h(M)

induced by hq. If h is surjective and M is at most countable, then hM is
surjective.

Proof. For each f ∈ M∗, the R-module R[q]/(f) is free of rank deg f ,
since f is a monic polynomial. If h is injective, then the natural homomorphism

hf : R[q]/(f) → R[q]/(f) ⊗R R′ = R′[q]/(h(f))

is injective. Taking the inverse limit, we see that the induced map hM is
injective.

Suppose h is surjective and M is at most countable. There is a sequence
g0|g1| · · · in M∗ which is cofinal in M∗. Since the topology of R′[q] defined by
the (h(gn)) is induced along the surjective homomorphism hq : R[q] → R′[q] by
the topology of R[q] defined by the (gn), it follows that hM is surjective. (See,
e.g., [8, Theorem 8.1. (ii)].)
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§3.2. Injectivity of the homomorphism ρR
M,M ′

Let R be a ring, I ⊂ R an ideal, and f, g ∈ MR. Let
√

I denote the
radical of I. We write f

I⇒R g, or simply f
I⇒ g, if f ∈

√
(g) + I[q], i.e., if

fm ∈ (g) + I[q] for some m ≥ 0. For f, g ∈ MR, we write f ⇒R g, or simply
f ⇒ g, if we have f

I⇒R g for some ideal I ⊂ R with
⋂

j≥0 Ij = (0). Then ⇒R

defines a relation on the set MR. Obviously, g|f implies f ⇒ g. Note also that
if f ⇒ g, f |f ′, and g′|g, then f ′ ⇒ g′.

Proposition 3.1. Let R be a ring, and f, g ∈ MR with f ⇒R g. Then
the homomorphism ρR

(fg),(f) : R[q](fg) → R[q](f) is injective.

Proof. We first show that if f
I⇒ g and R is I-adically complete, then

ρR
(fg),(f) is an isomorphism. Since R � RI and f is monic, we have

R[q](f) � RI [q](f) = lim←−
i

(lim←−
j

R/Ij)[q]/(f i)

� lim←−
i

(lim←−
j

R[q]/((f i) + Ij [q])) � R[q](f)+I[q].

Similarly, R[q](fg) � R[q](fg)+I[q]. Since f
I⇒ g, we have ((f) + I[q])m ⊂

(fm)+I[q] ⊂ (fg)+I[q] for some m ≥ 1, while we obviously have (fg)+I[q] ⊂
(f) + I[q]. Hence the ((f) + I[q])-adic topology and the ((fg) + I[q])-adic
topology of R[q] are the same. Hence ρR

(fg)+I[q],(f)+I[q], which may be identified
with ρR

(fg),(f), is an isomorphism.

Now consider the general case, where we have f
I⇒R g and R is I-adically

separated. We have a commutative diagram

R[q](fg)
ρR
(fg),(f)−−−−−→ R[q](f)

�
�

RI [q](fg) −−−−−→
ρRI

(fg),(f)

RI [q](f)

where vertical arrows are induced by the inclusion R ⊂ RI , and hence are in-
jective. Let Ī denote the closure of I in RI . Since RI is Ī-adically complete and

clearly f
Ī⇒RI g, the above-proved case implies that ρRI

(fg),(f) is an isomorphism.
Hence ρR

(fg),(f) is injective.

For two subsets M, M ′ ⊂ MR, we write M ′ ≺ M if M ′ ⊂ M and for each
f ∈ M there is a sequence M ′ � f0 ⇒ f1 ⇒ · · · ⇒ fr = f in M .
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Suppose that M0 ≺ M ⊂ MR. Set

F(M, M0) = {M ′ ⊂ M | M0 ⊂ M ′, |M ′ \ M0| < ∞},

and

F≺(M, M0) = {M ′ ∈ F(M, M0) | M0 ≺ M ′} ⊂ F(M, M0).

We will regard F(M, M0) as a directed set with respect to ⊂, and F≺(M, M0)
as a partially-ordered subset of F(M, M0). Note that if M ′, M ′′ ∈ F≺(M, M0)
and M ′′ ⊂ M ′, then we have M ′′ ≺ M ′.

Lemma 3.2. If M0 ≺ M ⊂ MR, then F≺(M, M0) is a cofinal directed
subset of F(M, M0).

Proof. It suffices to show that if M ′ ∈ F(M, M0), then there is M ′′ ∈
F≺(M, M0) with M ′ ⊂ M ′′. For each g ∈ M ′ \ M0, choose a sequence
M0 � g0 ⇒ · · · ⇒ gr = g in M and set Ug = {g1, . . . , gr}. Set M ′′ =
M0 ∪

⋃
g∈M ′\M0

Ug. Then we have M ′′ ∈ F≺(M, M0) and M ′ ⊂ M ′′.

Theorem 3.1. If R is a ring and M0 ≺ M ⊂ MR, then the homomor-
phism ρR

M,M0
: R[q]M → R[q]M0 is injective.

Proof. By (3.2) and Lemma 3.2 we have

R[q]M � lim←−
M ′∈F(M,M0)

R[q]M
′
� lim←−

M ′∈F≺(M,M0)

R[q]M
′
.

Hence it suffices to prove the theorem assuming that M \M0 is finite. We can
further assume that |M \ M0| = 1. Let g ∈ M \ M0 be the unique element.

First we assume that M0 = {f1, . . . , fn} (n ≥ 1) is finite. Set f = f1 · · · fn.
Since fi ⇒ g for some i ∈ {1, . . . , n}, we have f ⇒ g. By Proposition 3.1,
ρR
(fg),(f) is injective. Since R[q]M0 = R[q](f) and R[q]M = R[q](fg), it follows

that ρR
M,M0

is injective.
Now assume that M0 is infinite. Choose an element g0 ∈ M0 with g0 ⇒ g.

We have R[q]M0 � lim←− U∈F(M0,{g0})R[q]U and R[q]M � lim←− U∈F(M0,{g0})R[q]U∪{g}.
For each U ∈ F(M0, {g0}), we have U ≺ U ∪ {g}. Hence it follows from the
above-proved case that the homomorphism ρR

U∪{g},U : R[q]U∪{g} → R[q]U is
injective. Since ρR

M,M0
is the inverse limit of the ρR

U∪{g},U for U ∈ F(M0, {g0}),
it is injective.

A subset M ⊂ MR is said to be ⇒R-connected if M is not empty and for
each f, f ′ ∈ M there is a sequence f = f0 ⇒R f1 ⇒R · · · ⇒R fr = f ′ (r ≥ 0) in
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M . Note that if M is ⇒R-connected, then for any nonempty subset M ′ ⊂ M

we have M ′ ≺ M . The following follows immediately from Theorem 3.1.

Corollary 3.1. If R is a ring, and M ⊂ MR is a ⇒R-connected subset,
then for any nonempty subset M ′ ⊂ M the homomorphism ρR

M,M ′ : R[q]M →
R[q]M

′
is injective.

§4. Injectivity of ρR
S,S′

If R a ring, and S ⊂ N is a subset, then the completion R[q]S defined in
the introduction can be identified with R[q]ΦS . If S′ ⊂ S, then we set

ρR
S,S′ = ρR

ΦS ,ΦS′ : R[q]S → R[q]S
′
.

In this section, we will study injectivity of ρR
S,S′ .

We will use the following well-known properties of cyclotomic polynomials.

Lemma 4.1. (1) Let n ∈ N, p a prime, and e ≥ 1. Then we have

Φpen(q) ≡ Φn(q)d (mod (p)),(4.1)

in Z[q], where d = deg Φpen(q)/ deg Φn(q). (We have d = (p−1)pe−1 if (n, p) =
1 and d = pe if p|n.) Also, we have

p ∈ (Φn(q), Φpen(q))(4.2)

in Z[q].
(2) If m, n ∈ N, and n/m ∈ Q is not an integer power of a prime, then we

have (Φn(q), Φm(q)) = (1) in Z[q].

Proof. (4.2) follows from p ≡
∑p−1

i=0 qipe−1n mod (Φn(q)), and

p−1∑
i=0

qipe−1n =
qpen − 1

qpe−1n − 1
∈ (Φpen(q)).

The other assertions are more familiar.

For m, n ∈ N, we define cm,n ∈ {0, 1} ∪ {p | prime} by

1. cn,n = 0,

2. cm,n = p if p is a prime and n/m = pj for some j ∈ Z \ {0}, and
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3. cm,n = 1 if n/m is not an integer power of a prime.

Note that cm,n = cn,m for all m, n ∈ N.
For a ring R �= {0}, let ⇔R denote the binary relation on N such that, for

m, n ∈ N, we have m ⇔R n if and only if R is (cm,n)-adically separated. Note
that we have m ⇔R n if and only if n/m is either 1 or an integer-power of a
prime p such that R is p-adically separated. Note also that the binary relation
⇔R is reflexive and symmetric, but not transitive in general.

Lemma 4.2. (1) For each m, n ∈ N we have Φm(q) ∈
√

(Φn(q), cm,n)

in R[q], i.e., Φm(q)
(cm,n)⇒ R Φn(q).

(2) We have m ⇔R n if and only if we have Φm(q) ⇒R Φn(q).

Proof. (1) and the “only if” part of (2) follows easily from Lemma 4.1.
We will show the “if” part of (2). The case cm,n = 0 is obvious, and the case
cm,n = 1 follows easily from Lemma 4.1 (2).

Suppose that cm,n = p is a prime, and Φm(q) ⇒R Φn(q) holds. Thus,
there is an ideal I in R such that R is I-adically separated, and Φm(q)i ∈
(Φn(q))+I[q] in R[q] for some i ≥ 0. Hence, by (4.2), we have pi ∈ (Φn(q))+I[q]
in R[q]. Since Φn(q) is a monic polynomial, it follows that pi ∈ I. Since R is
I-adically separated, R is also p-adically separated and we have the assertion.

A subset S ⊂ N is said to be ⇔R-connected if S is not empty and for
each n, n′ ∈ S there is a sequence n = n0 ⇔R n1 ⇔R · · · ⇔R nr = n′ (r ≥ 0)
in S. Note that S ⊂ N is ⇔R-connected if and only if ΦS is ⇒R-connected. The
following follows immediately from Theorem 3.1, Corollary 3.1, and Lemma 4.2.

Theorem 4.1. Let R be a ring and let S′ ⊂ S ⊂ N. Suppose that for
each element n ∈ S, there is a sequence S′ � n′ ⇔R · · · ⇔R n in S. Then the
homomorphism ρR

S,S′ is injective.
In particular, if S ⊂ N is ⇔R-connected, then for any nonempty subset

S′ ⊂ S the homomorphism ρR
S,S′ : R[q]S → R[q]S

′
is injective. More partic-

ularly, for any nonempty subset S′ ⊂ N the homomorphism ρZ
N,S′ : Z[q]N →

Z[q]S
′
is injective.

We remark that the special case of Theorem 4.1 where R = Z, S = N,
and S′ = {1} is obtained also by P. Vogel. Another proof of a special case of
Theorem 4.1 is sketched in Remark 5.1.
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For each n ∈ N, set 〈n〉 = {m ∈ N | m|n}. Since
∏

Φ〈n〉 =
∏

m|n Φm(q) =
qn − 1, we have

R[q]〈n〉 = R[q](q
n−1) = lim←−

j

R[q]/(qn − 1)j .

Note that the set 〈n〉 is ⇔R-connected if and only if for each prime factor p of
n the ring R is p-adically separated.

A ⇔R-connected subset S ⊂ N is called R-admissible if n ∈ S implies
〈n〉 ⊂ S, and a, b ∈ S implies ∃c ∈ S such that a|c, b|c. Note that a subset
S ⊂ N is finite and R-admissible if and only if there is n ∈ N such that
S = 〈n〉 and R is p-adically separated for each prime factor p of n. Note also
that an R-admissible subset S ⊂ N satisfies S =

⋃
n∈S〈n〉, and hence we have

R[q]S � lim←− n∈SR[q]〈n〉. The following follows easily from Theorem 4.1.

Corollary 4.1. Let R be a ring, and let S ⊂ N be R-admissible. Then
for each m, n ∈ S with m|n the homomorphism ρR

〈n〉,〈m〉 : R[q]〈n〉 → R[q]〈m〉 is
injective. Hence R[q]S can be regarded as the intersection

⋂
n∈S R[q]〈n〉, where

the R[q]〈n〉, n ∈ S, are regarded as R-subalgebras of R[q]〈1〉 = R[[q − 1]].
In particular, if m, n ∈ N and m|n, then ρZ

〈n〉,〈m〉 : Z[q]〈n〉 → Z[q]〈m〉 is
injective. We have Z[q]N =

⋂
n∈N Z[q]〈n〉.

We will see in Proposition 7.4 that if m|n and m �= n, then ρZ
〈n〉,〈m〉 is not

surjective.

§5. Expansions at Roots of Unity

For an integral domain R of characteristic 0, let ZR denote the set of the
roots of unity in R. If S ⊂ N, then set ZR

S = {ζ ∈ ZR | ord ζ ∈ S}. For a
subset Z ⊂ ZR, set

R[q]Z = R[q]MZ ,

where MZ = {q − ζ | ζ ∈ Z} ⊂ MR. If Z ′ ⊂ Z, then set

ρR
Z,Z′ = ρR

MZ ,MZ′ : R[q]Z → R[q]Z
′
.

(Although we have 1 ∈ Z and 1 ∈ N, the notation R[q]{1} is not ambiguous
because 1 is the unique primitive 1st root of unity.)

For a subset Z ⊂ ZR, set NZ = {ord ζ | ζ ∈ Z}, and in particular set
NR = NZR . If S ⊂ NR, then we have

R[q]S � R[q]Z
R
S .

Lemma 5.1. Let R be an integral domain of characteristic 0, and let
ζ, ζ ′ ∈ ZR. Then the following conditions are equivalent.
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1. (q − ζ) ⇒R (q − ζ ′),

2. R is (ζ − ζ ′)-adically separated,

3. ord(ζ−1ζ ′) is a power of some prime p such that R is p-adically separated.

Proof. If (1) holds, then we have (q−ζ)m ∈ (q−ζ ′)+I[q] for some m ≥ 0
and R is I-adically separated. It follows that (ζ ′ − ζ)m ∈ I, and hence R is
(ζ ′ − ζ)-adically separated. Hence we have (2).

It is straightforward to prove that (2) implies (1), and that (2) and (3) are
equivalent.

Let ⇔R denote the relation on ZR such that for ζ, ζ ′ ∈ ZR we have ζ ⇔R ζ ′

if and only if at least one of the conditions in Lemma 5.1 holds. The following
theorem follows immediately from Corollary 3.1.

Theorem 5.1. Let R be an integral domain of characteristic 0 and let
Z ⊂ ZR be a ⇔R-connected subset. Then for any nonempty subset Z ′ ⊂ Z the
homomorphism ρR

Z,Z′ : R[q]Z → R[q]Z
′
is injective.

Lemma 5.2. Let R be an integral domain of characteristic 0, and Z ⊂
ZR. We have the following.

1. If Z is ⇔R-connected, then NZ is ⇔R-connected.

2. Suppose that if ζ ∈ Z, ζ ′ ∈ ZR and ord ζ = ord ζ ′, then ζ ′ ∈ Z. Then if
NZ is ⇔R-connected, then Z is ⇔R-connected.

Proof. The first assertion follows from the fact that if ζ, ζ ′ ∈ ZR, then
ζ ⇔R ζ ′ implies ord ζ ⇔R ord ζ ′.

The second assertion follows from the fact that if ord ζ ⇔R ord ζ ′ holds,
then we have ζa ⇔R (ζ ′)a′

for some a, a′ ∈ Z such that (a, ord ζ) = 1,
(a′, ord ζ ′) = 1.

Remark 5.1. We sketch below another proof using Theorem 5.1 of the
special case of Theorem 4.1 where S is ⇔R-connected and R is an integral
domain of characteristic 0 such that R is p-adically separated for any prime
p. Let k be the quotient field of R and let k̄ be the algebraic closure of k.
Let R̃ ⊂ k̄ be the R-subalgebra generated by the elements of Z k̄

S . In view of
Lemma 3.1, it suffices to see that ρR̃

S,S′ is injective. Since S is ⇔R-connected,
it is also ⇔R̃-connected, and hence ZS is ⇔R̃-connected by Lemma 5.2. By
Theorem 5.1, the homomorphism ρR̃

S,S′ = ρR̃
ZS ,ZS′ is injective.
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Theorem 5.2. Let R be an integral domain of characteristic 0, S ⊂ N

a ⇔R-connected subset, and n ∈ S. Assume that R is p-adically separated for
each odd prime factor p of n, and also that if 4|n, then R is 2-adically separated.
Let ζ be a primitive nth root of unity in the algebraic closure of the quotient
field of R, which may or may not be contained in R. Then the homomorphism

σR
S,ζ : R[q]S → R[ζ][[q − ζ]]

induced by R[q] ⊂ R[ζ][q] is injective. (Note that if ζ ∈ R then we have R[ζ] =
R.)

In particular, for any root ζ of unity the homomorphism σZ
N,ζ : Z[q]N →

Z[ζ][[q − ζ]] is injective.

Proof. By Lemma 3.1, the homomorphism R[q]S → R[ζ][q]S is injective.
Hence we may assume ζ ∈ R without loss of generality.

The homomorphism σR
S,ζ is the composition of the following two homo-

morphisms

R[q]S
ρR

S,{n}−−−−→ R[q]{n} ρR
{n},(q−ζ)−−−−−−→ R[[q − ζ]].

The first arrow ρR
S,{n} is injective by Theorem 4.1. Hence it suffices to prove

that ρR
{n},(q−ζ) is injective.

For each m with m|n, set Zm = ZR
{m} = {ζ ∈ ZR | ord ζ = m}. By

R[q]{n} � R[q]Zn and Theorem 5.1, it suffices to prove that the set Zn is
⇔R-connected. The case n = 1 is trivial, so we assume not. Let n = pe1

1 · · · per
r

be a factorization into prime powers, where p1, . . . , pr are distinct primes and
e1, . . . , er ≥ 1. There is a bijection

Zp
e1
1

× · · · × Zper
r

�−→Zn, (ξ1, . . . , ξr) �→ ξ1 · · · ξr.

It suffices to show that if (ξ1, . . . , ξr), (ξ′1, . . . , ξ′r) ∈ Zp
e1
1

× · · · × Zper
r

satisfies
ξj = ξ′j for all j ∈ {1, . . . , r} \ {i} and ξi �= ξ′i for some i, then we have
ξ1 · · · ξr ⇔R ξ′1 · · · ξ′r, which is equivalent to that ξi ⇔R ξ′i. Since Z2 = {−1}
contains only one element, the case pi = 2 and ei = 1 does not occur. We have
(ξi − ξ′i) ⊂

√
(pi), and hence ξi ⇔R ξ′i.

Corollary 5.1. Let R be an integral domain of characteristic 0, and
S ⊂ N a ⇔R-connected subset. Suppose that there is n ∈ S such that R is
p-adically separated for each odd prime factor p of n, and if 4|n, then R is also
2-adically separated. Then the ring R[q]S is an integral domain.

In particular, Z[q]S is an integral domain for any nonempty subset S ⊂ N.
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Proof. The result follows from Theorem 5.2 and the fact that the formal
power series ring R[ζ][[q − ζ]] is an integral domain.

§6. Values at Roots of Unity

Let R be a subring of the field Q̄ of algebraic numbers and let S ⊂ N. For
T ⊂ S, set

PT (R) =
∏
n∈T

R[q]/(Φn(q)),

and let

εR
S,T : R[q]S → PT (R)

be induced by the homomorphism R[q] → PT (R), f(q) �→ (f(q) mod
(Φn(q)))n∈T .

Theorem 6.1. Let R be a subring of Q̄, S ⊂ N a ⇔R-connected subset,
and T ⊂ S a subset. Suppose that for some n ∈ S there are infinitely many
elements m ∈ T with m ⇔R n. Then the homomorphism εR

S,T : R[q]S → PT (R)
is injective.

In particular, if R is a subring of the ring of algebraic integers, then, for any
subset T ⊂ N containing infinitely many prime powers, εR

N,T : R[q]N → PT (R)
is injective.

Proof. Suppose to the contrary that there is a nonzero element a ∈ R[q]S

with εR
S,T (a) = 0. By Theorem 4.1, ρR

S,{n} is injective, and therefore we have
ρR

S,{n}(a) �= 0. Hence we can write ρR
S,{n}(a) =

∑∞
j=l ajΦn(q)j , where l ≥ 0 and

aj ∈ R[q] for j ≥ l with al �∈ (Φn(q)).
Now observe that there are infinitely many elements m1, m2, . . . ∈ T with

mi ⇔R n and n|mi. For each i, mi/n is a power of a prime pi such that R is
pi-adically separated. It follows from εR

S,T (a) = 0 that Φmi
(q)|a in R[q]S for

each i.
We claim that we have Φm1(q) · · ·Φmk

(q)|a in R[q]S for each k ≥ 0. We
will prove this claim by induction on k. Since the case k = 0 is trivial, suppose
k ≥ 1. By assumption, we have Φm1(q) · · ·Φmk−1(q)|a in R[q]S . Since mk ∈ S,
there are b(q) ∈ R[q] and c ∈ R[q]S such that

a = Φm1(q) · · ·Φmk−1(q)(b(q) + Φmk
(q)c).(6.1)
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Since Φmk
|a, we have Φmk

(q)|Φm1(q) · · ·Φmk−1(q)b(q) in R[q]S . Hence we have

Φm1(ζmk
) · · ·Φmk−1(ζmk

)b(ζmk
) = 0

in R. Since Φmj
(ζmk

) �= 0 for j = 1, . . . , k − 1, it follows that b(ζmk
) = 0, and

hence Φmk
(q)|b(q). By (6.1), we obtain the claim.

It follows from the above claim that we have Φm1(q) · · ·Φmk
(q)|ρR

S,{n}(a)
in R[q]{n}. By (4.1) we have Φmi

(q) ∈ (pi, Φn(q)) for each i. Hence we have
Φm1(q) · · ·Φmk

(q) ∈ (p1 · · · pk, Φn(q)). In other words, for each k ≥ 0, āl = al

mod (Φn(q)) ∈ R[q]/(Φn(q)) is divisible by p1 · · · pk. Note that R[q]/(Φn(q)) =
R⊕Rq⊕· · ·⊕Rqd−1 with d = deg Φn(q), and āl is expressed as a polynomial in
q of degree< d, each coefficient of which is divisible by p1 · · · pk in R for k ≥ 0.
Since R is a subring of Q̄ and each pi is a non-unit in R, it follows that the
coefficients of āl are zero. Consequently, we have al ∈ (Φn(q)).

Proposition 6.1. Let R be a subring of Q̄, and S ⊂ N an infinite
subset. Then the completion R[q]S of R[q] is not an ideal-adic completion, i.e.,
there is no ideal I in R[q] such that idR[q] induces an isomorphism R[q]S �
lim←− jR[q]/Ij.

Proof. Suppose to the contrary that there is a nonzero ideal I in R[q]
such that idR[q] induces an isomorphism R[q]S � lim←− jR[q]/Ij . Let f(q) ∈ I be
a nonzero element. Since S is infinite, there is an m ∈ S such that for each
j ≥ 0, we have f(q)j �∈ Φm(q)Q̄[q] and hence f(q)j �∈ Φm(q)R[q]. Hence the
ideals Ij ⊂ R, j ≥ 0, are not cofinal in the ideals (g(q)) ⊂ R[q], g(q) ∈ Φ∗

S .
This contradicts the assumption.

Let R be a subring of Q̄, and let Z ⊂ ZQ̄ be a subset. Set

PZ(R) =
∏
ζ∈Z

R[ζ],

which generalizes the definition of PZ(Z). If S ⊂ N is a subset and Z ⊂ ZQ̄
S ,

then let

εR
S,Z : R[q]S → PZ(R)

denote the homomorphism induced by R[q] → PZ(R), f(q) �→ (f(ζ))ζ∈Z .

Theorem 6.2. Let R be a subring of Q̄, and let S ⊂ N and Z ⊂ ZQ̄
S be

subsets. Suppose that there is an element n ∈ S such that for infinitely many
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ζ ∈ Z we have ord ζ ⇔R n. Then the homomorphism εR
S,Z : R[q]S → PZ(R) is

injective.
In particular, if R is a subring of the ring of algebraic integers, and Z ⊂ ZQ̄

is a subset containing infinitely many elements of prime power order, then
εR
S,Z : R[q]S → PZ(R) is injective.

Proof. Set NZ = {ord ζ | ζ ∈ Z} ⊂ N. Let γ : PNZ
(R) → PZ(R) be the

homomorphism defined by γ((fn(q))n∈NZ
) = (fnζ

(ζ))ζ∈Z . Since γ is the direct
product of the injective homomorphisms R[q]/(Φn(q)) →

∏
ζ∈Z,ord ζ=n R[ζ],

f(q) �→ (f(ζ))ζ , it follows that γ is injective. We have εR
S,Z = γεR

S,NZ
, where

εR
S,NZ

: R[q]S → PNZ
(R) is injective by Theorem 6.1. Hence εR

S,Z is injective.

Conjecture 6.1. For any infinite subset Z ⊂ ZQ̄, the homomorphism
εZ
N,Z : Z[q]N → PZ(Z) is injective.

If Z ′ ⊂ Z ⊂ ZR, then we have a homomorphism

εR
Z,Z′ : R[q]Z → PZ′(R),

induced by R[q] → PZ′(R), f(q) �→ (f(ζ))ζ.

Theorem 6.3. Let R be a subring of Q̄, let Z ⊂ ZR a ⇔R-connected
subset, and let Z ′ ⊂ Z. Suppose that for some ζ ∈ Z there are infinitely many
elements ξ ∈ Z ′ with ξ ⇔R ζ. Then the homomorphism εR

Z,Z′ : R[q]Z → PZ′(R)
is injective.

Proof. The proof is similar to that of Theorem 6.1 with the cyclotomic
polynomials replaced with the polynomials q − ζ, where ζ is a root of unity.
The details are left to the reader.

§7. Remarks

§7.1. Units in Z[q]S

If R is a ring and S ⊂ MR is a subset consisting of monic polynomials
whose constant terms are units in R, then the element q is invertible in R[q]S .
In particular, we have an explicit formula for q−1 ∈ R[q]N as follows.

Proposition 7.1. For any ring R, the element q ∈ R[q]N is invertible
with the inverse

q−1 =
∑
n≥0

qn(q)n,

where (q)n = (1 − q)(1 − q2) · · · (1 − qn).
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Proof. q
∑

n≥0 qn(q)n =
∑

n≥0 qn+1(q)n =
∑

n≥0(1 − (1 − qn+1))(q)n =∑
n≥0((q)n − (q)n+1) = (q)0 = 1.

For each subset S ⊂ N, the inclusion Z[q] ⊂ Z[q, q−1] induces an isomor-
phism

Z[q]S � lim←−
f∈Φ∗

S

Z[q, q−1]/(f),

via which we will identify these two rings. If S �= ∅, then, since
⋂

f∈Φ∗
S
(f) =

(0) in Z[q, q−1], the natural homomorphism Z[q, q−1] → Z[q]S is injective and
regarded as inclusion.

For a ring R, let U(R) denote the (multiplicative) group of the units in R.
If S �= ∅, then we have

U(Z[q, q−1]) ⊂ U(Z[q]N).

It is well known that U(Z[q, q−1]) = {±qi | i ∈ Z}. If we regard Z[q]N and the
Z[q]〈n〉 as subrings of Z[q]〈1〉 = Z[[q − 1]] as in Corollary 4.1, then we have

U(Z[q]N) =
⋂
n∈N

U(Z[q]〈n〉).

Conjecture 7.1. We have U(Z[q]N) = {±qi | i ∈ Z}.

Remark 7.1. One might expect that Conjecture 7.1 would generalize to
any infinite, Z-admissible subset S ⊂ N, but this is not the case. For odd m ≥ 3,
consider the element γm =

∑m−1
i=0 (−1)iqi ∈ Z[q], which is known to define a

unit in the ring Z[q]/(qn − 1) with (n, 2m) = 1 and is called an “alternating
unit”, see [14]. For such n, it follows that there are u, v ∈ Z[q] such that
γmu = 1 + vΦn(q). Since 1 + vΦn(q) is a unit in Z[q]〈n〉, it follows that γm is
a unit in Z[q]〈n〉. Set S = {n ∈ N | (n, 2m) = 1}. Then it is straightforward
to check that γm defines a unit in Z[q]S (hence also in Z[q]S

′
for any S′ ⊂ S).

Consequently, we have U(Z[q]S) � {±qi | i ∈ Z}.

§7.2. A localization of Z[q]N

In some applications, it will be natural to consider the following type of
localization of Z[q]N. Recall from Proposition 5.1 that Z[q]N is an integral do-
main. Let Q(Z[q]N) denote the quotient field of Z[q]N. We will consider the
Z[q]N-subalgebra Z[q]N[Φ−1

N ] of Q(Z[q]N) generated by the elements Φn(q)−1 for
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n ∈ N. Alternatively, Z[q]N[Φ−1
N ] may be defined as the subring of Q(Z[q]N)

consisting of the fractions f(q)/g(q) with f(q) ∈ Z[q]N and g(q) ∈ Φ∗
N. Simi-

larly, let Z[q, q−1][Φ−1
N ] denote the Z[q, q−1]-subalgebra of the quotient field

Q(q)(⊂ Q(Z[q]N)) of Z[q, q−1] generated by the elements Φn(q)−1 for n ∈ N,
which may alternatively defined as the subring of Q(q) consisting of the frac-
tions f(q)/g(q) with f(q) ∈ Z[q, q−1] and g(q) ∈ Φ∗

N.

Proposition 7.2. We have Z[q]N[Φ−1
N ] = Z[q]N + Z[q, q−1][Φ−1

N ].

Proof. The inclusion ⊃ is obvious; we will show the other inclusion. Since

Z[q]N[Φ−1
N ] =

⋃
f(q)∈Φ∗

N

1
f(q)

Z[q]N,

it suffices to show that for each f(q) ∈ Φ∗
N we have

1
f(q)

Z[q]N ⊂ Z[q]N +
1

f(q)
Z[q, q−1].

By multiplying f(q), we need to show that

Z[q]N ⊂ f(q)Z[q]N + Z[q, q−1],

which follows from Z[q]N � lim←− g(q)∈Φ∗
N
Z[q, q−1]/(f(q)g(q)).

Proposition 7.3. We have

Z[q]N ∩ Z[q, q−1][Φ−1
N ] = Z[q, q−1].

Proof. The inclusion ⊃ is obvious; we will show the other inclusion. Sup-
pose that f(q) = g(q)/h(q) ∈ Z[q]N ∩Z[q, q−1][Φ−1

N ], where g(q) ∈ Z[q, q−1] and
h(q) ∈ Φ∗

N. We may assume that h(q) is minimal in degree. Thus there is no
n ∈ N such that g(q) and h(q) have a common divisor Φn(q).

Suppose that h(q) �= 1. Choose n ∈ N such that Φn(q)|h(q) in Z[q]. Let
ζn ∈ Q̄ denote a primitive nth root of unity. By applying the homomorphism

σZ
N,{ζn} : Z[q]N → Z[ζn], a(q) �→ a(ζn)

to the both sides of the identity g(q) = f(q)h(q) in Z[q]N, we obtain g(ζn) =
f(ζn)h(ζn) = 0. Hence g(q) is divisible by Φn(q) in Z[q, q−1], which contradicts
the assumption that g(q) and h(q) do not have a common divisor. Hence we
have h(q) = 1, and it follows that f(q) ∈ Z[q, q−1].
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§7.3. Modules

We can define cyclotomic completions also for any Z-module, as follows.
Let A be a Z-module, and let A[q] denote the Z[q]-module of polynomials in q

with coefficients in A. For each S ⊂ N, let A[q]S denote the completion

A[q]S = lim←−
f∈Φ∗

S

A[q]/fA[q].

If A is a ring, then this definition of A[q]S is compatible with the previous one.
Some results in the present paper can be generalized to A[q]S .

For example, Theorem 4.1 may be generalized as follows. Let ⇔A denote
the relation on N such that m ⇔A n if and only if either we have A = 0, or
m/n is an integer power of a prime p such that A is p-adically separated.

Theorem 7.1. Let A be a Z-module, and let S′ ⊂ S ⊂ N be subsets.
Suppose that for each n ∈ S there is a sequence S′ � n′ ⇔A · · · ⇔A n in S.
Then the homomorphism ρA

S,S′ : A[q]S → A[q]S
′
induced by idA[q] is injective.

Proof. One way to prove Theorem 7.1 is to modify Section 3 and the proof
of Theorem 4.1. We roughly sketch the necessary modifications. Section 3 is
generalized as follows. For two elements f, g ∈ MR and an R-module, we write
f ⇒A g if f

I⇒A g for some ideal I such that A is I-adically separated. Then
Proposition 3.1 with R replaced by an R-module A holds. Generalizations of
Theorem 3.1 and Corollary 3.1 to R-modules is straightforward. Theorem 7.1
follows immediately from the generalized version of Corollary 3.1.

Alternatively, we can use Theorem 4.1 as follows. Since the case A = 0
is trivial, we assume not. Let A′ = Z ⊕ A be the ring with the multiplication
(m, a)(n, b) = (mn, mb + na) and with the unit (1, 0). Then for m, n ∈ N we
have m ⇔A n if and only if m ⇔A′ n. Hence we can apply Theorem 4.1 to
obtain the injectivity of ρA′

S,S′ . We can identify ρA′

S,S′ with the direct product

ρZ
S,S′ ⊕ ρA

S,S′ : Z[q]S ⊕ A[q]S → Z[q]S
′ ⊕ A[q]S

′
.

Hence ρA
S,S′ is injective.

§7.4. Non-surjectivity of ρZ
N,{n}

Proposition 7.4. We have the following.

1. If m, n ∈ N, m ⇔Z n, and m �= n, then the homomorphism ρZ
{m,n},{m} is

not surjective.
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2. If m|n and m �= n, then the homomorphism ρZ
〈n〉,〈m〉 is not surjective.

3. For each nonempty, finite subset S ⊂ N, the homomorphism ρZ
N,S is not

surjective.

Proof. (1) We have m/n = pe for some prime p and an integer e �= 0.
Consider the following commutative diagram of natural homomorphisms.

Z[q]{m,n} ρZ

{m,n},{m}−−−−−−−→ Z[q]{m}
�

�b

Z[q]/(Φn(q)) −−−−→
c

Zp[q]/(Φn(q))

It follows from Zp[q]/(Φn(q)) � lim←− jZ[q]/(Φn(q), pj), Φm(q) ∈
√

(Φn(q), p),
and p ∈ (Φm(q), Φn(q)) (which follows from (4.2)) that b is a well-defined,
surjective homomorphism. Since c is not surjective, ρZ

{m,n},{m} is not surjective.
(2) We may assume that n = pm for a prime p. The case m = 1 is

contained in (1) above. There are isomorphisms Z[q]〈m〉 � Z[qm]〈1〉 ⊗Z[qm]

Z[q] and Z[q]〈pm〉 � Z[qm]〈p〉 ⊗Z[qm] Z[q] induced by the isomorphism Z[q] �
Z[qm]⊗Z[qm]Z[q]. Thus the case m = 1 implies the non-surjectivity of ρZ

〈pm〉,〈m〉.
(3) The homomorphism ρZ

N,S factors as follows.

Z[q]N
ρZ

N,〈n〉−→ Z[q]〈n〉
ρZ

〈n〉,〈m〉−→ Z[q]〈m〉 ρZ

〈m〉,S−→ Z[q]S ,

where m ∈ N is the least common multiple of the elements of S, and n ∈ N is
any element such that m|n and m �= n. By (2) above, ρZ

〈n〉,〈m〉 is not surjective.
Since the set 〈m〉 is ⇔Z-connected, it follows from Theorem 4.1 that ρZ

〈m〉,S is
injective. Hence ρZ

N,S is not surjective.

§7.5. The ring Q[q]S

The structure of Q[q]S for S ⊂ N is quite contrasting to that of Z[q]S . Note
that Z[q]S embeds into Q[q]S by Lemma 3.1. (The following remarks holds if
we replace Q with any ring R such that each element of S is a unit in R.)

Note that if m, n ∈ S, m �= n, then (Φm(q)i, Φn(q)j) = (1) in Q[q] for any
i, j ≥ 0. Consequently, for each f(q) =

∏
n∈S Φn(q)λ(n) ∈ Φ∗

S with λ(n) ≥ 0
we have by the Chinese Remainder Theorem

Q[q]/(f(q)) �
∏
n∈S

Q[q]/(Φn(q)λ(n)).
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Taking the inverse limit, we obtain an isomorphism

Q[q]S �−→
∏
n∈S

Q[q]{n}.

Since each Q[q]{n} is not zero, it follows that Q[q]S is not an integral do-
main if |S| > 1. It also follows that ρQ

S,S′ : Q[q]S → Q[q]S
′

is not injec-
tive (but surjective) for each S′ � S. Since for each n ∈ S the (surjective)
homomorphism Q[q]{n} → Q[q]/(Φn(q)) is not injective, the homomorphism
εQ
S,S : Q[q]S → PS(Q) is not injective.
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