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Abstract

Using the notion of subprincipal symbol, we give a necessary condition for the
existence of twisted D-modules simple along a smooth involutive submanifold of the
cotangent bundle to a complex manifold. As an application, we prove that there are
no generalized massless field equations with non-trivial twist on grassmannians, and
in particular that the Penrose transform does not extend to the twisted case.

Introduction

Let T be a 4-dimensional complex vector space, P the 3-dimensional pro-
jective space of lines in T, and G the 4-dimensional grassmannian of 2-planes
in T. According to Penrose, G is a conformal compactification of the com-
plexified Minkowski space. Denote by M(h) the DG-modules associated with
the massless field equations of helicity h ∈ 1

2Z. The Penrose correspondence
realizes M(1+m/2) as the transform of the DP-module associated with the line
bundle OP(m), for m ∈ Z. For λ ∈ C, OP(λ) makes sense in the theory of
twisted sheaves. It is then a natural question to ask whether the Penrose corre-
spondence extends to the twisted case. In particular, are there “massless field
equations” of complex helicity h /∈ 1

2Z?
The DG-modules M(h) are simple along a smooth involutive submanifold

V of the cotangent bundle to G which is given by the geometry of the integral
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1094 Andrea D’Agnolo and Pierre Schapira

transform. In this paper we give a negative answer to the question raised
above: for topological reasons, there are no simple DG-modules along V with
non-trivial twist. Indeed, this is a corollary of the following more general result.

Let X be a complex manifold, and V a conic involutive submanifold of
its cotangent bundle. Denote by D

Ω
1/2
V/X

the ring of differential operators on V

acting on relative half-forms and by Dbic

Ω
1/2
V/X

(0) its subring of operators homoge-

neous of degree 0 and commuting with the functions which are locally constant
on the bicharacteristic leaves. The ring of microdifferential operators EX is en-
dowed with the so-called V -filtration {FV

k EX}k∈Z and by a result of Kashiwara-
Oshima, there is a natural isomorphism of rings FV

0 EX/FV
−1EX

∼−→ Dbic

Ω
1/2
V/X

(0).

Let S be a stack of twisted sheaves on X, and consider the category
of twisted microdifferential modules Mod(EX ; S). One says that a twisted
microdifferential module is simple along V if it can be endowed with a good
V -filtration whose associated graded module is locally isomorphic to OV (0).

Let Σ be a smooth bicharacteristic leaf of V . Recall that stacks of twisted
sheaves on X are classified by H2(X; C×

X), and denote by [S] the class of
S. Our main result (see Theorem 7.1) consists in associating to [S] a class
in H2(Σ; C×

Σ) whose triviality is a necessary condition for the existence of a
globally simple module along V in Mod(EX ; S).

Let us briefly describe our construction. Let M be a globally simple mod-
ule along V in Mod(EX ; S). By definition, M has a good V -filtration, and we
denote by M its associated graded module.

(i) By Kashiwara-Oshima’s result mentioned above, we consider M as an ob-
ject of Mod(Dbic

V (0); T). Here, T is a stack of twisted sheaves on V whose
class [T] ∈ H2(V ; C×

V ) is the product of the pull back of [S] by the class of
the stack containing the inverse relative half-forms Ω−1/2

V/X .

(ii) The restriction MΣ of M to Σ is a line bundle with flat connection in the
category of twisted differential modules Mod(DΣ; U), where U is a stack of
twisted sheaves on Σ whose class [U] ∈ H2(Σ; C×

Σ) is the restriction of [T].

(iii) By the Riemann-Hilbert correspondence, MΣ is associated with a local
system of rank one in U(Σ). Since there are no local systems of rank one
with non-trivial twist, the triviality of [U] is a necessary condition for the
existence of a globally simple module along V in Mod(EX ; S).

We would like to thank Masaki Kashiwara for extremely useful conversa-
tions and helpful insights.



�

�

�

�

�

�

�

�

On Twisted Microdifferential Modules I 1095

§1. Review of Twisted Sheaves

In this section we briefly review the notion of twisted sheaves. References
are made to [7, 8], see also [2].

Let X be a complex analytic manifold, OX its structure sheaf, and denote
by CX the constant sheaf with stalk C. If A is a sheaf of C-algebras on X, we
denote by Mod(A) the category of sheaves of A-modules on X and by Mod(A)
the corresponding C-stack, U �→ Mod(A|U ). We denote by A× the sheaf of
invertible sections of A.

The short exact sequence of abelian groups

1 −→ C
×
X −→ O×

X −→ O×
X/C

×
X −→ 1

induces the exact sequence

H1(X; C×
X) −→

α
H1(X;O×

X) −→
β

H1(X;O×
X/C

×
X) −→

δ
H2(X; C×

X).(1.1)

Note that the isomorphism d log : O×
X/C

×
X

∼−→ dOX induces an isomorphism

ι : H1(X;O×
X/C

×
X) ∼−→ H1(X; dOX).(1.2)

The C-vector space structure of H1(X; dOX) thus gives a meaning to λ · c for
c ∈ H1(X;O×

X/C
×
X) and λ ∈ C.

We will consider several characteristic classes with values in these coho-
mology groups.

• A local system is a CX -module locally free of finite rank. To a local system
L of rank one corresponds a class [L] ∈ H1(X; C×

X) which characterizes L

up to isomorphisms of CX -modules.

• A line bundle is an OX -module locally free of rank one. To a line bundle
L on X corresponds a class [L] ∈ H1(X;O×

X) which characterizes L up to
isomorphisms of OX -modules.

• A stack of twisted sheaves is a C-stack locally C-equivalent to Mod(CX).
To a stack of twisted sheaves S corresponds a class [S] ∈ H2(X; C×

X) which
characterizes S up to C-equivalences. Objects of S(X) are called twisted
sheaves.

Recall that [S] has the following description using Cech cohomology. Let
X =

⋃
i Ui be an open covering such that there are C-equivalences ϕi : S|Ui

−→
Mod(CUi

). By Morita theory, the auto-equivalence ϕi ◦ ϕ−1
j of Mod(CUij

) are
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given by G �→ G⊗Lij for a local system Lij of rank one. By refining the covering
we may assume that Lij � CUij

. The isomorphisms Lij ⊗Ljk � Lik on Uijk

are then multiplication by locally constant functions cijk ∈ Γ(Uijk; C×
X). The

class [S] is described by the Cech cocycle {cijk}. A twisted sheaf F ∈ S(X)
is then described by a family of sheaves Fi ∈ Mod(CUi

) and isomorphisms
θij : Fj |Uij

−→ Fi|Uij
satisfying θij ◦ θjk = cijkθik.

Let S be a stack of twisted sheaves on X and let A be a sheaf of C-algebras
on X. We denote by Mod(A; S) the stack of left A-modules in S.

• A twisted line bundle is a pair (S,F) of a stack of twisted sheaves S and an
object F ∈ Mod(OX ; S) locally free of rank one over OX . To a twisted line
bundle corresponds a class [S,F ] ∈ H1(X;O×

X/C
×
X) which characterizes it

up to the following equivalence relation: two twisted line bundles (S,F)
and (T,G) are equivalent if there exist a C-equivalence ϕ : S −→ T and an
isomorphism ϕ(F) � G in Mod(OX ; T).

Let (S,F) be a twisted line bundle and let X =
⋃

i Ui be an open covering
such that there are C-equivalences ϕi : S|Ui

−→ Mod(CUi
), and denote by {cijk}

the Cech cocycle of [S]. These induce equivalences ϕi: Mod(OUi
; S|Ui

) −→
Mod(OUi

) and F is described by a family of line bundles Fi ∈ Mod(OUi
) and

isomorphisms θij: Fj |Uij
−→ Fi|Uij

. By refining the covering, we may assume
that there are nowhere vanishing sections si ∈ Γ(Ui;Fi), so that Fi � OUj

.
Hence θij are multiplications by the sections fij = si/θij(sj) ∈ Γ(Uij ;O×

X), so
that fijfjk = cijkfik. The class [S,F ] in H1(X; C×

X −→ O×
X) is thus described

by the Cech hyper-cocycle {fij , cijk}.
The characteristic classes constructed above are related (up to sign) as

follows, using the exact sequence (1.1):

1. if L is a local system of rank one, then α([L]) = [L ⊗OX ],

2. if L is a line bundle, then β([L]) = [Mod(CX),L],

3. if (S,F) is a twisted line bundle, then δ([S,F ]) = [S].

The next result will play an essential role in the proof of Theorem 7.1. It
immediately follows from the Morita theory for stacks.

Proposition 1.1. A stack of twisted sheaves S is globally C-equivalent
to Mod(CX) if and only if there exists an object F ∈ S(X) locally free of rank
one over C.

Example 1. For L an untwisted line bundle, and λ ∈ C, there is a
twisted line bundle (SLλ ,Lλ) whose class [SLλ ,Lλ] is described as follows. Let
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X =
⋃

i Ui be an open covering such that there are nowhere vanishing sections
si ∈ Γ(Ui;L), and set gij = si/sj . Choose a determination fij for the ramified
function gλ

ij on Uij . Then fijfjk and fik are different determinations of gλ
ik, so

that fijfjk = cijkfik for some cijk ∈ Γ(Uijk; C×
X). Then [SLλ ,Lλ] is described

by the Cech hyper-cocycle {fij , cijk}. Since d log fij = λd log gij , we have

[SLλ ,Lλ] = λ · β([L]) in H1(X;O×
X/C

×
X),

where the action of λ on β([L]) is induced by the isomorphism (1.2). Note that
Lλ is unique up to tensoring by a local system of rank one.

Consider two stacks S and S′ of twisted sheaves on X (here, X is simply
a topological space, or even a site). There are stacks of twisted sheaves S� S′

and S�−1 on X such that if F ∈ S(X) and F ′ ∈ S′(X) are twisted sheaves,
then F ⊗ F ′ ∈ (S � S′)(X) and if F is a local system of rank one, then
F−1 = Hom (F, CX) ∈ S�−1. Moreover,

[S � S
′] = [S] · [S′]

[S�−1] = ([S])−1.

If f: Y −→ X is a morphism of topological spaces (or of sites), there exists a stack
of twisted sheaves f�S on Y such that if F ∈ S(X), then f−1F ∈ (f�S)(Y ).
Moreover,

[f�
S] = f �([S]).

Here, for t, t′ ∈ H2(X; C×
X), we denote by t · t′ and t−1 the product and the

inverse in H2(X; C×
X), respectively, and by f �t ∈ H2(Y ; C×

Y ) the pull-back.
Let (SF ,F) and (SG ,G) be twisted line bundles on X, and consider the

associated twisted line bundles (SF−1 ,F−1) and (SF⊗
O
G ,F ⊗O G) on X, and

(Sf∗F , f∗F) on Y . Then there are C-equivalences

SF−1 � S
�−1
F ,

SF⊗
O
G � SF � SG ,

Sf∗F � f�
SF .

§2. Review of Twisted Differential Operators

In this section we briefly review the notions of twisted differential operators.
References are made to [7, 1] (see also [2] for an exposition).
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Let X be a complex analytic manifold, and DX the sheaf of finite order
differential operators on X. Recall that automorphisms of DX as an OX -ring
are described by closed one-forms.

• A ring of twisted differential operators (a t.d.o. ring for short) is a sheaf of
OX -rings locally isomorphic to DX . To a t.d.o. ring A corresponds a class
[A] ∈ H1(X; dOX) which characterizes A up to isomorphism of OX -rings.

Let (S,F) be a twisted line bundle. An example of t.d.o. ring is given by

DF = F ⊗O DX ⊗O F−1,

where F−1 = HomO(F ,OX). Notice that F−1 ∈ Mod(OX ; S�−1), so that DF
is untwisted as a sheaf.

As we recalled, a twisted line bundle (S,F) can be described by an open
covering X =

⋃
i Ui, C-equivalences ϕi : S|Ui

−→ Mod(CUi
), line bundles Fi ∈

Mod(OUi
), and isomorphisms θij : Fj |Uij

−→ Fi|Uij
. For nowhere vanishing

sections si ∈ Γ(Ui;Fi), and fij = si/θij(sj) ∈ Γ(Uij ;O×
X), sections of DF are

described by families si ⊗ Pi ⊗ s−1
i , where Pi ∈ Γ(Ui;DX) and

Pi = fji · Pj · fij in Γ(Uij ;DX).(2.1)

The isomorphism ι in (1.2) is then described by ι([S,F ]) = [DF ]. In particular,
to any t.d.o. ring A is associated a twisted line bundle F , unique up to tensoring
by a local system of rank one, such that A � DF as an OX -ring.

Let (S,F) be a twisted line bundle and T a stack of twisted sheaves on
X. There is a C-equivalence

Mod(DF ; T) −→ Mod(DX ; S�−1 � T)(2.2)

M �→ F−1 ⊗O M.

Denote by ΘX the sheaf of vector fields and by ΩX the sheaf of forms of
maximal degree. We end this section by giving an explicit description, which
will be of use later on, of the t.d.o. ring DΩλ

X
for λ ∈ C. Let v ∈ ΘX . Recall that

the Lie derivative L(v) acts on differential forms of any degree, in particular
on OX , where L(v)(a) = v(a), and on ΩX . Let ω be a nowhere vanishing local
section of ΩX . One checks that the morphism

L(λ) : ΘX −→ DΩλ
X

= Ωλ
X ⊗O DX ⊗O Ω−λ

X(2.3)

v �→ ωλ ⊗
(

v + λ
L(v)(ω)

ω

)
⊗ω−λ
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is well defined and independent from the choice of ω. (Here L(v)(ω)/ω = a,
where a ∈ OX is such that L(v)(ω) = aω.) Then DΩλ

X
is generated by OX and

L(λ)(ΘX) with the relations

L(λ)(av) = a · L(λ)(v) + λv(a),(2.4)

[L(λ)(v), a] = v(a),(2.5)

[ L(λ)(v), L(λ)(w)] = L(λ)([v, w]),(2.6)

for a ∈ OX , and v, w ∈ ΘX . Of course, L(0)(v) = v and L(1)(v) = L(v).

§3. Microdifferential Operators on Involutive Submanifolds

In this section we recall the notion of V -filtration on microdifferential op-
erators. References are made to [11, 12] (see also [6, 9, 13] for expositions).

Let W be a complex manifold. In this paper, by a submanifold of W , we
mean a smooth locally closed complex submanifold.

Let X be a complex manifold, and denote by π : T ∗X −→ X its cotangent
bundle. Identifying X with the zero-section of T ∗X, one sets Ṫ ∗X = T ∗X \X.

The canonical 1-form αX induces a homogeneous symplectic structure on
T ∗X. Denote by {f, g} ∈ OT∗X the Poisson bracket of two functions f, g ∈
OT∗X and by

H : T ∗T ∗X
∼−→ TT ∗X

the Hamiltonian isomorphism. For k ∈ Z, denote by OT∗X(k) ⊂ OT∗X the
subsheaf of functions ϕ homogeneous of order k, that is, satisfying eu(ϕ) = k·ϕ.
Here, eu = −H(αX) denotes the Euler vector field on T ∗X, the infinitesimal
generator of the action of C×.

Denote by EX the ring of microdifferential operators on T ∗X. It is en-
dowed with the order filtration {FmEX}m∈Z, where FmEX is the subsheaf of
microdifferential operators of order at most m. There is a canonical morphism

σm : FmEX −→ OT∗X(m)

called the principal symbol of order m. This morphism induces an isomorphism
of graded rings Gr EX �

⊕
k OT∗X(k). If P ∈ FmEX , Q ∈ FlEX , one has

σm+l(PQ) = σm(P )σl(Q),(3.1)

σm+l−1([P, Q]) = {σm(P ), σl(Q)}.(3.2)

Let V ⊂ T ∗X be a submanifold and denote by JV ⊂ OT∗X its annihilating
ideal. Recall that V is called homogeneous, or conic, if eu JV ⊂ JV . In this
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case, euV := eu |V is tangent to V , and one defines OV (k) ⊂ OV similarly to
OT∗X(k) ⊂ OT∗X . A conic submanifold V ⊂ T ∗X is called involutive if for any
pair f, g ∈ JV of holomorphic functions vanishing on V , the Poisson bracket
{f, g} vanishes on V . A conic involutive submanifold V is called regular if
αX |V never vanishes.

Let V ⊂ T ∗X be a conic involutive submanifold, and set

IV = {P ∈ F1EX |V ; σ1(P )|V = 0} ⊂ EX |V .

Note that [IV , IV ] ⊂ IV .

Definition 3.1. Let V ⊂ Ṫ ∗X be a conic involutive submanifold. One
denotes by EV the subring of EX |V generated by IV , and one sets FV

mEX :=
FmEX |V · EV .

One easily checks that FV
mEX = EV ·FmEX |V , and FV

mEX ·FV
l EX ⊂ FV

m+lEX .
In particular, {FV

k EX}k∈Z is an exhaustive filtration of EX |V , called the V -
filtration, and FV

−1EX is a two-sided ideal of EV = FV
0 EX .

Example 2. Let (x) = (x1, . . . , xn) be a local coordinate system on X

and denote by (x; ξ) = (x1, . . . , xn; ξ1, . . . , ξn) the associated homogeneous sym-
plectic local coordinate system on T ∗X. Recall that locally, any conic regular
involutive submanifold V of codimension d may be written after a homogeneous
symplectic transformation as:

V = {(x; ξ); ξ1 = · · · = ξd = 0}.

In such a case,

FV
mEX � (FmEX |V )[∂x1 , . . . , ∂xd

].

§4. Systems with Simple Characteristics

In this section we recall the notion of systems with simple characteristics.
References are made to [11, 12]. See also [9, 13] for an exposition.

Definition 4.1. Let M be a coherent EX -module. A lattice in M is a
coherent F0EX -submodule M0 which generates M over EX .

Recall that if an F0EX-submodule M0 of M defined on an open subset of
Ṫ ∗X is locally of finite type, then it is coherent. A lattice M0 endows M with
the filtration

FkM = FkEX ·M0.
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If M is endowed with a filtration {FkM}k, its associated symbol module is
given by

G̃r(M) := OT∗X ⊗Gr(EX) Gr(M),

where Gr(M) = ⊕k∈Z(FkM/Fk−1M).

Definition 4.2. Let V ⊂ Ṫ ∗X be a conic involutive submanifold.

(a) A coherent EX-module M is simple along V if it is locally generated by
a section u ∈ M, called a simple generator, such that denoting by Iu

the annihilator ideal of u in EX , the symbol ideal G̃r(Iu) is reduced and
coincides with the annihilator ideal JV of V in OT∗X .

(b) A coherent EX -module M is globally simple along V if it admits a lattice
M0 such that EV M0 ⊂ M0 and M0/F−1M is locally isomorphic to OV (0).
Such an M0 is called a V -lattice in M.

Lemma 4.1. If M is globally simple, then it is simple.

Proof. Let M0 be a V -lattice. Choose a local section u ∈ M0 whose
image in M0/F−1M is a generator of OV (0). Then M0 = F0EXu+F−1M and
it follows that for all k ≤ 0

M0 = F0EXu + FkM.

Since the filtration on M is separated (see [12]), u generates M0 over F0EX .

Let (t) ∈ C be a coordinate, and denote by (t; τ ) ∈ T ∗
C the associated

homogeneous symplectic coordinate system. Let V ⊂ T ∗X be a conic involutive
submanifold, non necessarily regular. The trick of the dummy variable consists
in replacing V with the conic involutive submanifold Ṽ = V × Ṫ ∗C, which is
regular. Let p ∈ V and q ∈ Ṫ ∗C. If Σ is the bicharacteristic leaf of V through
p, then Σ × {q} is the bicharacteristic leaf of Ṽ through (p, q).

Proposition 4.1. If M is a globally simple EX-module along V , then
M̃ = EX×C ⊗EX�EC

(M � EC) is globally simple along Ṽ .

Proof. Let M0 be a V -lattice in M, and set

M̃0 = F0EX×C ⊗F0EX�F0EC
(M0 � F0EC).

Clearly, M̃0 is a lattice in M̃ and moreover, EṼ M̃0 ⊂ M̃0. Note that

F−1M̃ = F0EX×C ⊗F0EX�F0EC
(F−1M � F0EC + M0 � F−1EC).
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Set M−1 = F−1M, M0 = M0/M−1, and consider the commutative exact
diagram of F0EX � F0EC-modules:

It follows that the sequence

0 −→ M−1 � F0EC + M0 � F−1EC −→ M0 � F0EC −→ M0 � F0EC/F−1EC −→ 0

is exact. Since F0EX×C is flat over F0EX � F0EC, we locally have

F0M̃/F−1M̃ � F0EX×C ⊗F0EX�F0EC
(M0 � F0EC/F−1EC)

� F0EX×C ⊗F0EX�F0EC
(OV (0) � OṪ∗C

(0))

� OṼ (0).

Remark. Let S be a C-stack of twisted sheaves on X. Then Definition
4.2, Lemma 4.1 and Proposition 4.1 extend to objects of Mod(EX ; π�S).

§5. Differential Operators on Involutive Submanifolds

We recall here the construction of the ring of homogeneous twisted differ-
ential operators invariant by the bicharacteristic flow.

Let V ⊂ T ∗X be a conic regular involutive submanifold and denote by
TV ⊥ ⊂ TV the symplectic orthogonal to TV . Denote by Θ⊥

V ⊂ ΘV the sheaf
of sections of the bundle TV ⊥ −→ V , and let

Obic
V := {a ∈ OV ; v(a) = 0 for any v ∈ Θ⊥

V },
Obic

V (k) := Obic
V ∩OV (k).

Then Obic
V is the sheaf of holomorphic functions locally constant along the

bicharacteristic leaves of V . Consider the ring

Dbic
V := {P ∈ DV ; [a, P ] = 0 for any a ∈ Obic

V },
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and the subring of operators homogeneous of degree zero

Dbic
V (0) := {P ∈ Dbic

V ; [euV , P ] = 0}.

Example 3. Let (x; ξ) = (x1, . . . , xn; ξ1, . . . , ξn) be a local homoge-
neous symplectic coordinate system on T ∗X and assume that

V = {(x; ξ); ξ1 = · · · = ξd = 0}.

Set x′ = (x1, . . . , xd), x′′ = (xd+1, . . . xn), and similarly set ξ = (ξ′, ξ′′). One
has (x′, x′′, ξ′′) ∈ V , and the bicharacteristic leaves of V are the submanifolds
defined by

Σ = {(x′, x′′; ξ′′); (x′′; ξ′′) = (x′′
0 ; ξ′′0 )}.

The Euler field euV is given by

euV =
n∑

d+1

ξi∂ξi
= ξ′′∂ξ′′ .

Hence a function locally constant along the bicharacteristic leaves depends only
on (x′′, ξ′′). A section of OV (0) is a holomorphic functions in the variable
(x′, x′′, ξ′′), homogeneous of degree 0 with respect to ξ′′. Moreover a section of
Dbic

V (0) is uniquely written as a finite sum∑
α∈Nd

aα∂α
x′ , with aα ∈ OV (0).(5.1)

Let jΣ : Σ −→ V be the embedding of a bicharacteristic leaf. Assume that
V is regular, and that Σ is a locally closed submanifold of V . Denote by J bic

Σ (0)
the annihilator ideal of Σ in Obic

V (0), and note that OΣ � Obic
V (0)/J bic

Σ (0)|Σ.
Since Obic

V (0) is in the center of Dbic
V (0), there is a restriction map

j∗Σ : Mod(Dbic
V (0)) −→ Mod(DΣ)

M �→ CΣ ⊗Obic
V (0)|Σ M|Σ.

We will be interested in the twisted analogue of the above construction. Namely,
set

Dbic

Ω
1/2
V

:= {P ∈ D
Ω

1/2
V

; [a, P ] = 0 for any a ∈ Obic
V },

Dbic

Ω
1/2
V

(0) := {P ∈ Dbic

Ω
1/2
V

; [L(1/2)(euV ), P ] = 0}.

For p ∈ Σ, the quotient TpV/TpΣ � TpV/TpV
⊥ is a symplectic space. Hence

j∗ΣΩV � ΩΣ. Thus, there is a restriction morphism

j∗Σ : Mod(Dbic

Ω
1/2
V

(0)) −→ Mod(D
Ω

1/2
Σ

).(5.2)
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§6. Subprincipal Symbol

In this section we recall the notion of subprincipal symbol, and prove the
regular involutive analogue of an isomorphism obtained in [10, Lemma 1.5.1]
for the Lagrangian case. References are made to [6, 9, 10, 11] (see [4] for the
corresponding constructions in the C∞ case).

As we will recall, the subprincipal symbol is intrinsically defined for mi-
crodifferential operators twisted by half-forms. We will thus consider here the
ring

E
Ω

1/2
X

= π−1Ω1/2
X ⊗π−1O EX ⊗π−1O π−1Ω−1/2

X ,

instead of EX . All the notions recalled in Section 3 extend to this ring. In
particular, its V -filtration is defined by

IΩ
1/2
X

V = {P ∈ F1EΩ
1/2
X

|V ; σ1(P )|V = 0}

� π−1
V Ω1/2

X ⊗π−1
V O IV ⊗π−1

V O π−1
V Ω−1/2

X ,

FV
mE

Ω
1/2
X

= π−1
V Ω1/2

X ⊗π−1
V O FV

mEX ⊗π−1
V O π−1

V Ω−1/2
X ,

E
V,Ω

1/2
X

= FV
0 E

Ω
1/2
X

,

where πV = π|V .
Let (x) be a local coordinate system on X, and denote by (x; ξ) the associ-

ated homogeneous symplectic coordinate system on T ∗X. A microdifferential
operator P ∈ FmE

Ω
1/2
X

is then described by its total symbol {pk(x; ξ)}k≤m,
where pk ∈ OT∗X(k). The functions pk depend on the local coordinate system
(x) on X, except the top degree term pm = σm(P ) which does not. Recall that
the subprincipal symbol

σ′
m−1: FmE

Ω
1/2
X

−→ OT∗X(m − 1)

given by

σ′
m−1((dx)1/2 ⊗P ⊗ (dx)−1/2) = pm−1(x, ξ)− 1

2

∑
i

∂xi
∂ξi

pm(x, ξ),

does not depend on the local coordinate system (x) on X. For P ∈ FmE
Ω

1/2
X

,
Q ∈ FlEΩ

1/2
X

, one has

σ′
m+l−1(PQ) = σm(P )σ′

l−1(Q) + σ′
m−1(P )σl(Q)(6.1)

+
1
2
{σm(P ), σl(Q)},

σ′
m+l−2([P, Q]) = {σm(P ), σ′

l−1(Q)} + {σ′
m−1(P ), σl(Q)}.(6.2)



�

�

�

�

�

�

�

�

On Twisted Microdifferential Modules I 1105

Let V ⊂ T ∗X be a conic involutive submanifold. For f ∈ OT∗X , denote
by Hf = H(df) ∈ TT ∗X its Hamiltonian vector field. Recall that H induces
an isomorphism

H: T ∗
V T ∗X

∼−→ TV ⊥.(6.3)

In particular, Hf |V is tangent to V for f ∈ JV . With notations (2.3), consider
the transport operator

L0
V : IΩ

1/2
X

V −→ F1DΩ
1/2
V

,(6.4)

P �→ L(1/2)(Hσ1(P )|V ) + σ′
0(P )|V .

Using the above relations, one checks that the morphism L0
V does not depend

on the choice of coordinates, and satisfies the relations

L0
V (AP ) = σ0(A)L0

V (P ),

L0
V (PA) = L0

V (P )σ0(A),

L0
V ([P, Q]) = [L0

V (P ),L0
V (Q)],

for P, Q ∈ IΩ
1/2
X

V and A ∈ F0EΩ
1/2
X

(see [11, §2] or [9, §8.3]). It follows that L0
V

extends as a ring morphism

LV : E
V,Ω

1/2
X

−→ D
Ω

1/2
V

(6.5)

by setting LV (P1 · · ·Pr) = L0
V (P1) · · · L0

V (Pr), for Pi ∈ IΩ
1/2
X

V .

Theorem 6.1. Let V ⊂ Ṫ ∗X be a conic regular involutive submanifold.
The morphism (6.5) induces a ring isomorphism

LV : E
V,Ω

1/2
X

/FV
−1EΩ

1/2
X

∼−→ Dbic

Ω
1/2
V

(0).(6.6)

It is possible to show that the above statement holds even without the
assumption of regularity for V (for example, the Lagrangian case is obtained
in [10, Lemma 1.5.1]).

Proof. The statement is local. We may thus assume that ΩX � OX and
ΩV � OV , so that we are reduced to prove the isomorphism

LV : EV /FV
−1EX

∼−→ Dbic
V (0).

Moreover, since V is regular we may assume that we are in the situation of
Example 3. By Example 2, sections of EV are uniquely written as finite sums∑

α∈Nd

Aα∂α
x′ , with Aα ∈ F0EX |V .(6.7)
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One concludes using (5.1) since, by definition of LV ,

LV

(∑
α

Aα∂α
x′

)
=

∑
α

σ0(Aα)∂α
x′ .

Let ΩV/X = ΩV ⊗O π∗
V Ω−1

X be the sheaf of relative forms. Recall from
Example 1 that S

Ω
−1/2
V/X

denotes a stack of twisted sheaves such that Ω−1/2
V/X ∈

Mod(OV ; S
Ω

−1/2
V/X

).

Corollary 6.1. Let V ⊂ Ṫ ∗X be a conic regular involutive submanifold,
and T be a stack of twisted sheaves on V . Then there is an equivalence of
categories

Mod(EV /FV
−1EX ; T) � Mod(Dbic

V (0); T � S
Ω

−1/2
V/X

).

§7. Statement of the Result

We can now state our main result. For a submanifold Σ ⊂ Ṫ ∗X, set
πΣ = π|Σ, and denote by π�

Σ: H2(X; C×
X) −→ H2(Σ; C×

Σ) the pull-back.

Theorem 7.1. Let V ⊂ Ṫ ∗X be a conic involutive submanifold, Σ ⊂ V

a bicharacteristic leaf, and T a stack of twisted sheaves on X. Assume that
Σ is a locally closed submanifold of V , and that there exists a globally simple
module along V in Mod(EX ; π�T). Then

π�
Σ([T]) = [S

Ω
1/2
Σ/X

] in H2(Σ; C×
Σ).

Proof. The proof follows the same lines as in [10, §I.5.2]. Let us first
reduce to the regular involutive case by the trick of the dummy variable. Let
p : X̃ = X × C −→ X be the projection. With the notations of Proposition 4.1,
replace X with X̃, T with T̃ = p�T, V with Ṽ = V × Ṫ ∗C, M with M̃, and
Σ with Σ̃ = Σ×{(0; 1)}. Under the isomorphism H2(Σ; C×

Σ) � H2(Σ̃; C×
Σ̃

) one

has π�
Σ([T]) = π�

Σ̃
([T̃]). Hence we may assume that V is regular involutive.

Let M be a globally simple module along V in Mod(EX ; π�T), and let
M0 be a V -lattice in M. Then M0 = M0/F−1M ∈ Mod(EV /FV

−1EX ; π�
V T) is

locally isomorphic to OV (0). By Corollary 6.1 we may further consider M0 as
an object of Mod(Dbic

V (0); π�
V T � S

Ω
−1/2
V/X

).

By the restriction functor (5.2) and the equivalence (2.2), j∗Σ(M0) is an
object of Mod(DΣ; π�

ΣT � S
Ω

−1/2
Σ/X

) locally isomorphic to OΣ. Hence its solu-

tion sheaf HomDΣ
(j∗Σ(M0),OΣ) ∈ (π�

ΣT � S
Ω

−1/2
Σ/X

)�−1(Σ) is a local system of
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rank 1. It follows by Proposition 1.1 that the class [(π�
ΣT � S

Ω
−1/2
Σ/X

)�−1] =

[S
Ω

1/2
Σ/X

] · π�
Σ([T])−1 is trivial in H2(Σ; C×

Σ).

Remark. Let us say that a coherent EX -module M is globally r-simple
along V if it admits a lattice M0 such that EV M0 ⊂ M0 and M0/F−1M is lo-
cally isomorphic to OV (0)r. Theorem 7.1 extends to globally r-simple modules
as follows. If there exists a globally r-simple module along V in Mod(EX ; π�T),
then

π�
Σ([T])r =

(
[S

Ω
1/2
Σ/X

]
)r

in H2(Σ; C×
Σ).

The proof goes along the same lines as the one above, recalling the following
fact. Let S be a stack of twisted sheaves on X, and let F ∈ S(X) be a local
system of rank r. Then detF is a local system of rank 1 in S�r(X), so that
S�r is globally C-equivalent to Mod(CX).

Corollary 7.1. Let V ⊂ Ṫ ∗X be a conic involutive submanifold, Σ ⊂ V

a bicharacteristic leaf, and T a stack of twisted sheaves on X. Assume that
Σ is a locally closed submanifold of V , that π�

Σ : H2(X; C×
X) −→ H2(Σ; C×

Σ)
is injective, that [S

Ω
1/2
Σ/X

] = 1 in H2(Σ; C×
Σ), and that there exists a globally

simple module along V in Mod(EX ; π�T). Then T is globally C-equivalent to
Mod(CX).

Proof. By Theorem 7.1, π�
Σ([T]) = 1 in H2(Σ; C×

Σ). Since π�
Σ is injective,

[T] = 1 in H2(X; C×
X), and this implies that the stack T is globally C-equivalent

to Mod(CX).

§8. Application: Non Existence of Twisted Wave Equations

Let T be an (n + 1)-dimensional complex vector space, P the projective
space of lines in T, and G the Grassmannian of (p + 1)-dimensional subspaces
in T. Assume n ≥ 3 and 1 ≤ p ≤ n − 2. The Penrose correspondence (see [5])
is associated with the double fibration

P ←−
f

F −→
g

G(8.1)

where F = {(y, x) ∈ P × G; y ⊂ x} is the incidence relation, and f , g are the
natural projections. The double fibration (8.1) induces the maps

Ṫ ∗
P ←−

p
Ṫ ∗

F (P × G) −→
q

Ṫ ∗
G,
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where T ∗
F
(P × G) ⊂ T ∗(P × G) denotes the conormal bundle to F, and p and q

are the natural projections. Note that p is smooth surjective, and q is a closed
embedding. Set

V = q(Ṫ ∗
F (P × G)).

Then V is a closed conic regular involutive submanifold of Ṫ ∗G, and q identifies
the fibers of p with the bicharacteristic leaves of V .

For m ∈ Z, let OP(m) be the line bundle on P corresponding to the sheaf of
homogeneous functions of degree m on T, and denote by N(m) :=DP⊗OOP(−m)
the associated DP-module. Denote by Dg∗ and Df∗ the direct and inverse image
in the derived categories of D-modules and consider the family of DG-modules

M(1+m/2) := H0(Dg∗Df∗N(m)).

For n = 3 and p = 1, Penrose identifies G with a conformal compactification of
the complexified Minkowski space, and the DG-module M(1+m/2) corresponds
to the massless field equation of helicity 1 + m/2.

By [3], the microlocalization EG⊗π−1DG
π−1M(1+m/2) of M(1+m/2) is glob-

ally simple along V .

Theorem 8.1. Let S be a stack of twisted sheaves on G and M an ob-
ject of Mod(DG; S) whose microlocalization EG ⊗π−1DG

π−1M is globally simple
along V . Then S is globally C-equivalent to Mod(CG), so that Mod(DG; S) is
C-equivalent to Mod(DG).

In other words, M is untwisted.

Proof. Let us start by recalling the microlocal geometry underlying the
double fibration (8.1). There are identifications

T ∗
P = {(y; η); y ⊂ T, η ∈ Hom(T/y, y)},

T ∗
G = {(x; ξ); x ⊂ T, ξ ∈ Hom(T/x, x)},

T ∗
F (P × G) = {(y, x; τ ); y ⊂ x ⊂ T, τ ∈ Hom(T/x, y)}.

The maps p and q are described as follows:

where i : y � x and j : T/y � T/x are the natural maps. We thus get

V = {(x; ξ); rk(ξ) = 1},
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where rk(ξ) denotes the rank of the linear map ξ. In order to describe the
bicharacteristic leaves of V , denote by P∗ the dual projective space consisting
of hyperplanes z ⊂ T, and consider the incidence relation

A = {(y, z) ∈ P × P
∗; y ⊂ z ⊂ T}.

Then

Ṫ ∗
A(P × P

∗) = {(y, z; θ); y ⊂ z ⊂ T, θ : T/z
∼−→ y}.

There is an isomorphism

Ṫ ∗
A(P × P

∗) ∼−→ Ṫ ∗
P

(y, z; θ) �→ (y; θ ◦ k),

where k : T/y � T/z is the natural map. Set y = im ξ, z = x + ker ξ, and
consider the commutative diagram of linear maps

We thus get the following description of the composite map

It follows that the bicharacteristic leaf Σ(y,z,θ) := p̃−1(y, z, θ) of V is given by

Σ(y,z,θ) = {(x; ξ); y = im ξ, z = x + ker ξ, θ ◦ � = ξ}(8.2)

= {(x; ξ); y ⊂ x ⊂ z, ξ = θ ◦ �},

where � : T/x � T/z is the natural map. Thus, Σ(y,z,θ) is the Grassmannian of
p-dimensional linear subspaces in the (n − 1)-dimensional vector space z/y.

Let us fix a point (y, z, θ) ∈ Ṫ ∗
A
(P × P∗), and set Σ = Σ(y,z,θ). In order to

apply Corollary 7.1, we need to compute the map π�
Σ and the class [S

Ω
1/2
Σ/G

].

The universal bundle UG −→ G is the sub-bundle of the trivial bundle G×T

whose fiber at x ∈ G is the (p + 1)-dimensional linear subspace x ⊂ T itself.
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Consider the line bundle DG = detUG, and denote by OG(−1) the sheaf of its
sections. Recall the isomorphisms

H1(G; C×
G

) � H2(G;O×
G

) � 0,

H1(G;O×
G

) � Z with generator [OG(−1)],

H1(G;O×
G

/C
×
G

) � C with generator [Mod(CG),OG(−1)],

so that the sequence of abelian groups

H1(G; C×
G

) −→
α

H1(G;O×
G

) −→
β

H1(G;O×
G

/C
×
G

) −→
δ

H2(G; C×
G

) −→ H2(G;O×
G

),

is isomorphic to the sequence of additive abelian groups

0 −→ Z −→
β

C −→
δ

C/Z −→ 0.

Similar results hold for Σ, which is also a grassmannian.
By Lemma 8.1 below one has π∗

ΣOG(−1) � OΣ(−1). Hence π�
Σ is the

isomorphism

π�
Σ : H2(G; C×

G
) � C/Z � H2(Σ; C×

Σ).

There are isomorphisms

ΩG � OG(−n − 1), ΩΣ � OΣ(−n + 1).

Again by Lemma 8.1, we thus have

π∗
ΣΩG � π∗

ΣOG(−n − 1) � OΣ(−n − 1).

It follows that ΩΣ/G � OΣ(2), and thus

[ΩΣ/G] = 2 in Z � H1(Σ;O×
Σ ).

Therefore

[S
Ω

1/2
Σ/G

, Ω1/2
Σ/G

] = 1 in C � H1(Σ;O×
Σ/C

×
Σ),

so that

[S
Ω

1/2
Σ/G

] = δ

(
[S

Ω
1/2
Σ/G

, Ω1/2
Σ/G

]
)

= 0 in C/Z � H2(Σ; C×
Σ).

The statement follows by Corollary 7.1.

Lemma 8.1. There is a natural isomorphism π∗
ΣOG(−1) � OΣ(−1).
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Proof. Recall that DG denotes the determinant of the universal bundle
on G. Geometrically, we have to prove that there is an isomorphism δ : DΣ

∼−→
DG|Σ.

Recall the description (8.2), and let (x; ξ) ∈ Σ for p = (y, z, θ) ∈ Ṫ ∗
P. Then

(DΣ)(x;ξ) = det(x/y), (DG)(x;ξ) = det x, and δ is obtained by a trivialization
of det y � C.
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