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Abstract

Let E = F ′ where F is a complex Banach space and let π1 : E′′ = E⊕F⊥ → E
be the canonical projection. Let P (nE) be the space of the complex valued continuous
n-homogeneous polynomials defined in E. We characterize the elements P ∈ P (nE)
whose Aron-Berner extension coincides with P ◦ π1. The case of weakly continuous
polynomials is considered. Finally we also study the same problem for holomorphic
functions of bounded type.

Introduction

Let E be a complex Banach space and let P (nE) denote the space of all
continuous n-homogeneous polynomials from E into C. The problem of extend-
ing every element of P (nE) to a continuous n-homogeneous polynomial P on
the bidual E′′ of E was first studied by Aron and Berner [2] in 1978, who showed
that such extensions always exist. The Aron-Berner extension has received most
attention since then. Beyond being of interest in its own sight, it is very useful
in many branches of complex analysis. Meanwhile it is sometimes hard to work
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with. For instance, it was not until 1989 that Davie and Gamelin [8] showed
that the norm of the Aron-Berner extension P of P ∈ P (nE) to E′′ coincides
with the norm of P. In 1990 Zalduendo [14] gave a characterization of this
extension in terms of continuity properties of the first order differentials.

If E is a dual Banach space, it is known that E is complemented in E′′

and clearly the projection π1 : E′′ → E provides a norm-preserving extension
of every element of P (nE) to E′′. Our main goal in this paper is to determine
necessary and sufficient conditions for the equality P = P ◦ π1 be true.
As a consequence we solve some related problems. For instance, in a recent
paper Aron, Boyd and Choi [3] investigate the unicity of the norm-preserving
extensions of elements of P (nE) to E′′. We will get here that if E is a non-
reflexive dual Banach space, then for every n > 1 there exists always an element
P ∈ P (nE) such that P �= P ◦π1 and so the norm-preserving extension is not
always unique in such spaces.

Our notation is as follows. Throughout, E and G will be complex Banach
spaces. For n ∈ N, L(nE, G) (resp. Ls(nE, G)) denotes the space of all
continuous (resp. continuous symmetric) n-linear mappings A : En → G. For
each (x1, . . . , xk) ∈ Ek and each α = (α1, . . . , αk) ∈ Nk with α1+· · ·+αk = n

we will write A(x1)α1 . . . (xk)αk for A(x1, α1. . ., x1, . . . , xk, αk. . ., xk). For n ∈ N,
let P (nE, G) be the space of all P : E → G such that P (x) = A(x)n ∀x ∈ E

for some A ∈ L(nE, G). The elements of this space are called the continuous
n-homogeneous polynomials. The space P (nE, G) is a Banach space under the
norm ‖ P ‖= sup {‖ P (x) ‖ : x ∈ E, ‖ x ‖≤ 1}. By definition L(0E, G) =
G = P (0E, G). Given P ∈ P (nE, G), it is straightforward that we may take
the associated n-linear mapping A to be symmetric; in fact P (nE, G) and
Ls(nE, G) are isomorphic as Banach spaces. The unique associated symmetric
n-linear mapping P̆ is given by the Polarization Formula. It is well known that
‖ P ‖ ≤ ‖ P̆ ‖ ≤ nn

n! ‖ P ‖.
Given any P ∈ P (nE, G), let TP : E → Ls(n−1E, G) be the linear bounded

operator given by TP (x)(x1, . . . , xn−1) := P̆ (x, x1, . . . , xn−1) and let dP ∈
P (n−1E, L(E, G)) its derivative. By the symmetry of P̆ it is obvious that
dP (x)(y) = nP̆ (x)n−1(y) = nTP (y)(x)n−1. Its associated operator TdP : E →
Ls(n−2E, L(E, G)) is given by TdP (x)(x1, . . . , xn−2) = nP̆ (x, x1, . . . , xn−2, •).

Throughout, if the range space is not specifically identified, then it will be
assumed that the range is C; thus, for example, L(nE) denotes L(nE, C), P (nE)
denotes P (nE, C), etc.

If E = F ′ for some Banach space F , we have E′′ = E ⊕ F⊥. In this
case the weak topology associated to the dual pair (E, F ) will be denoted
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by w∗. Let π1 : E′′ → E be the canonical projection. As usual we denote
by

⊗̂
n,πE (resp.

⊗̂
n,π,sE) the completion of the n-fold (resp. sym-

metric n-fold) tensor product of E, with the projective norm. We remark
that the projective norm in ⊗̂n,π,sE is defined by πs(u) = inf{

∑∞
k=1 ‖xk‖m :

u =
∑∞

k=1 εkxk ⊗ · · · ⊗ xk; εk = ±1}, where the infimum is taken over all such
representations u =

∑∞
k=1 εkxk ⊗ · · · ⊗ xk ∈ ⊗̂n,π,sE. This norm is different

of the restriction to ⊗̂n,π,sE of the usual projective norm defined in ⊗̂n,πE.
We refer to [9] or [11] for details. It is known that L(n−1E) = (

⊗̂
n−1,πE)′

and Ls(n−1E) = (
⊗̂

n−1,π,sE)′. The weak topology on L(n−1E) associated

to the dual pair (L(n−1E),
⊗̂

n−1,πE) will be also denoted by w∗. Given any
P ∈ P (nE), P will always denote the Aron-Berner extension of P to E′′

(cf. [2]).

For basic results and unclear notation we refer to [13].

§1. The Extension of Polynomials

Theorem 1.1. Suppose that E = F ′ for some Banach space F . Then
for P ∈ P (nE) the following conditions are equivalent:

(1) TP is w∗ − w∗-continuous.

(2) dP (x) is w∗-continuous ∀x ∈ E.

(3) dP (x) ∈ F ∀x ∈ E.

(4) P = P ◦ π1.

Proof. (1) ⇒ (2). Let (xα) ⊂ E such that (xα) w∗
→ z ∈ E. By (1) we have

that (x ⊗ · · · ⊗ x)(TP (xα)) → (x ⊗ · · · ⊗ x)(TP (z)) ∀x ⊗ · · · ⊗ x ∈
⊗̂

n−1,πE

and consequently dP (x)(xα) = nTP (xα)(x, · · · , x) = (x⊗· · ·⊗x)(nTP (xα)) →
(x ⊗ · · · ⊗ x)(nTP (z)) = dP (x)(z).

(2) ⇒ (3) is clear.

(3) ⇒ (4). By [14], all we have to show is
(i) ∀x ∈ E, d(P ◦ π1)(x) is w∗-continuous.
and
(ii) ∀z ∈ E′′ and ∀ (xα) ⊂ E such that (xα) w∗→ z we have d(P ◦

π1)(z)(xα) → d(P ◦ π1)(z)(z). Take (zα) ⊂ E′′ such that (zα) w∗
→ z ∈ E′′. As

E′′ = E⊕F⊥ we can write z = π1(z)+z2 where z2 ∈ F⊥ and zα = π1(zα)+z′α
where z′α ∈ F⊥ ∀α. For every x ∈ E, d(P ◦ π1)(x)(zα) = dP (x)(π1(zα)) =



�

�

�

�

�

�

�

�

224 Jose G. Llavona and Luiza A. Moraes

π1(zα)(dP (x)) = zα(dP (x)) since z′α ∈ F⊥ and dP (x) ∈ F . But (zα) w∗
→ z

and dP (x) ∈ E′ implies zα(dP (x)) → z(dP (x)) = (π1(z) + z2)(dP (x)) =
dP (x)(π1(z)) = d(P ◦ π1)(z) and this gives (i).

Now fix z ∈ E′′ arbitrary and take (xα) ⊂ E such that (xα) w∗
→ z.

Let z = π1(z) + z2 where z2 ∈ F⊥. Then we have d(P ◦ π1)(z)(xα) =
dP (π1(z))(π1(xα)) = dP (π1(z))(xα) → z(dP (π1(z))) = (π1(z) + z2)
(dP (π1(z))) = dP (π1(z))(π1(z)) = d(P ◦π1)(z)(z) and this completes the proof
of (ii).
(4) ⇒ (3). Take x ∈ E and z2 ∈ F⊥ arbitrary and consider z = x + z2 ∈ E′′.
By [14] we have that d(P ◦π1)(z)(xα) → d(P ◦π1)(z)(z) for every (xα) ⊂ E such

that (xα) w∗
→ z. Since dP (x) ∈ E′ we have d(P ◦ π1)(z)(xα) = dP (x)(xα) →

z(dP (x)) = (π1(z) + z2)(dP (x)) = dP (x) ◦ π1(z) + z2(dP (x)) and the unicity
of the limit gives z2(dP (x)) = 0. As z2 ∈ F⊥ was arbitrary, by using the
Hahn-Banach theorem we get dP (x) ∈ F .

(2) ⇒ (1) Let (xα) ⊂ E such that (xα) w∗
→ z ∈ E. By (2) we have (x ⊗

· · · ⊗ x)(TP (xα)) = TP (xα)(x, . . . , x) = P̆ (x, . . . , x, xα) = 1
n dP (x)(xα) −→

1
n dP (x)(z) = TP (z)(x, . . . , x) = (x ⊗ · · · ⊗ x)(TP (z)) ∀x ∈ E. Now, by
using the polarization formula we have that (x1 ⊗ · · · ⊗ xn−1)(TP (xα)) →
(x1 ⊗ · · · ⊗ xn−1)(TP (z)) ∀x1 ⊗ · · · ⊗ xn−1 ∈

⊗̂
n−1,πE and this implies

(1).

Example 1.1. Suppose that E = F ′ for some nonreflexive Banach
space F . Consider P : E → K defined by P (x) := ϕn(x) ∀x ∈ E where
ϕ ∈ E′ . It is clear that P = P ◦ π1 if ϕ ∈ F and P �= P ◦ π1 if
ϕ �∈ F .

Example 1.2. For E = l1 = c′0 every diagonal n-homogeneous poly-
nomial P : l1 → K satisfies P = P ◦ π1. Indeed: We recall that a diag-
onal n-homogeneous polynomial P is defined by P (x) =

∑∞
j=1 ajx

n
j where

(aj) ∈ l∞. Now, TP : l1 → (
⊗̂

n−1,πl1)′ is defined by TP (x)(z1 ⊗ · · · ⊗ zn−1) =∑∞
j=1 ajxjz

1
j . . . zn−1

j where x = (xj)∞j=1 and zi = (zi
j)

∞
j=1∀1 ≤ i ≤ n−1 and it is

clear that TP = B∗ where B :
⊗̂

n−1,πl1 → c0 is defined by B(z1⊗· · ·⊗zn−1) =
(aiz

1
i . . . zn−1

i )∞i=1. Consequently TP is w∗ − w∗ continuous.

Example 1.3. Suppose that k ∈ N and consider the sequence (Aj)∞j=1,
Aj ∈ Ls(k−1l1), satisfying:
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(1.3.1) Aj is symmetric in the sense that Ai1(ei2 , . . . , eik
) is invariant

under permutation of the indices i1, . . . , ik.

(1.3.2) (Aj)∞j=1 is equivalent to the unit vector basis of l1.

(1.3.3) For all indices i1, . . . , ik, Ai1(ei2 , . . . , eik
) ∈ {−1, 1}.

We refer to [12] for the proof of the existence of such a sequence.
If P ∈ P (kl1) is given by

P (α) :=
∞∑

i1,... ,ik=1

αi1 . . . αik
Ai1(ei2 , . . . , eik

); for α = (αj)∞j=1 ∈ l1

it follows that P �= P ◦ π1. Indeed, it is enough to observe that for all

i ∈ N, Aj(
k−1︷ ︸︸ ︷

ei, . . . , ei) ∈ {−1, 1} and therefore TP : l1 → (
⊗̂

k−1,πl1)′ is
given by T (ej) = Aj and clearly is not w∗ − w∗ continuous.

Aron and Prolla [6] showed that the finite type polynomials on a Banach
space are exactly the weakly continuous polynomials. The proof of next lemma
will be omitted as it is very similar to the proof given by Aron and Prolla for
their result. This lemma will be used in the proof of Theorem 1.3.

Lemma 1.2. Suppose that E = F ′ for some Banach space F and let
P ∈ P (nE). Then P is w∗-continuous on E if and only if there exists φ1, . . . ,

φM ∈ F such that P =
∑M

i=0 φn
i .

Theorem 1.3. Suppose that E = F ′ for some Banach space F and P

is a weakly continuous n-homogeneous polynomial from E into C. Then P is
w∗-continuous if and only if dP (x) ∈ F ∀x ∈ E.

Proof. We are going to use the induction.
The statement is clearly true for n = 1. Assume that for every k =

1, 2, . . . , n − 1 it is true. Since P is weakly continuous, there are function-
als φ1, . . . , φN ∈ E′ such that P =

∑N
i=1 φn

i . For all x ∈ E, dP (x) =
∑N

i=1

nφn−1
i (x)φi. Therefore the condition dP (x) ∈ F ∀x ∈ E means that there

exists a linearly independent subset {ψ1, . . . , ψM} of F such that dP (E) ⊂
span{ψ1, . . . , ψM}. Let x1, . . . , xM ∈ E such that ψi(xj) = δij , (1 ≤ i, j ≤
M). For each x ∈ E we have dP (x) =

∑M
j=1 λj(x)ψj where for all j =

1, . . . , M we have λj(x) = dP (x)(xj) = nTP (xj)(x)n−1 for all x ∈ E. It is
clear that each λj ∈ P (n−1E) and λj is w-continuous. Now, as dλj(x) =
d2P (x)(xj) ∈ F ∀x ∈ E, by the hypothesis of induction it follows that λj is w∗-
continuous and this is true for all j = 1, . . . , M . Finally, P (x) = TP (x)(x)n−1 =
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1
ndP (x)(x) = 1

n

∑M
j=0 λj(x)ψj(x) is w∗-continuous since ψj ∈ F and λj is w∗-

continuous ∀j = 1, . . . , M . So the proof is complete. The proof of the converse
follows trivially as a consequence of Lemma 1.2.

Corollary 1.4. Suppose that E = F ′ for some Banach space F. Then
for every weakly continuous n-homogeneous polynomial P from E into C we
have that P = P ◦ π1 if and only if P is w∗-continuous.

Remark 1.1. In connection with Theorem 1.3, it is reasonable to ask if
every sequentially weakly continuous n-homogeneous polynomials P from E

into C such that dP (x) ∈ F ∀x ∈ E is sequentially w∗-continuous. The
answer is negative. Indeed: Recall that every continuous mapping defined
in l1 is sequentially weakly continuous. Now take P : l1 → C defined by
P (x) =

∑∞
n=1 x2

n ∀x = (xn)∞n=1 ∈ l1. By Example 1.2, dP (x) ∈ F ∀x ∈ l1,

but P is not w∗-sequentially continuous as P (en) = 1 ∀n ∈ N.

We denote by Pwu(nE, G) the subspace of those elements of P (nE, G)
whose restrictions to the bounded subsets of E are (uniformly) weakly con-
tinuous. It is well known that every such polynomial is compact and, in case
n = 1, T ∈ Pwu(1E, G) if and only if T : E → G is a compact linear opera-
tor (see [6] Lemma 2.2 and Proposition 2.5). For every n ∈ N it is true that
P ∈ Pwu(nE) if and only if the associated operator TP is compact (see [4] The-
orem 2.9). We will use the fact that P ∈ Pwu(nE) if and only if the associated
operator TP is compact (see [4], Theorem 2.9).

Theorem 1.5. Suppose that E = F ′ for some Banach space F. If P ∈
P (nE) is weakly continuous on bounded sets and dP (x) ∈ F ∀x ∈ E then P is
w∗-continuous on the bounded subsets of E.

Proof. If P ∈ P (nE), its derivative dP ∈ P (n−1E, E′) and dP (x)(y) =
nTP (y)(x)n−1 = nTP (x)(x)n−2(y). The condition dP (x) ∈ F ∀x ∈ E, means
that the continuous linear operator d̃P :

⊗̂
n−1,π,sE → F, d̃P (x ⊗ · · · ⊗ x) =

dP (x) is well defined. We consider now the adjoint operator

d̃P
∗

: F ′ →
(⊗̂

n−1,π,s
E

)′
= Ls(n−1E) = P (n−1E).

It is clear that d̃P
∗
(x)(y ⊗ · · · ⊗ y) = dP (y)(x), x, y ∈ E. Also dP is

compact if and only if d̃P
∗

is compact (see [7]).
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If (xα) ⊂ E is a bounded net such that (xα) → x weakly, and y ∈ E

we have 1
n |dP (xα)(y) − dP (x)(y)| = |TP (xα)(xα)n−2(y) − TP (x)(x)n−2(y)| =

|TP (xα − x)(xα)n−2(y) + TP (xα − x)(xα)n−3(x)(y) + · · · + TP (xα − x)
(xα)(x)n−3(y) + TP (xα − x)(x)n−2(y)|.

The compactness of TP means that TP is weakly-‖·‖ continuous on bounded
sets, and therefore

‖dP (xα) − dP (x)‖ = supy∈E,‖y‖≤1‖dP (xα)(y) − dP (x)(y)‖ α−→ 0

and dP is compact. The compactness of dP means that d̃P is compact since
every Banach space has (BB)∞ (see [10] p. 32) and therefore d̃P

∗
is w∗-

‖ · ‖ continuous on w∗-compact sets in F ′ = E. We remark that for
x ∈ E,

‖d̃P
∗
(x)‖= supy∈E,‖y‖≤1|dP (y)(x)|

= n supy∈E,‖y‖≤1|TP (x)(y)n−1| = n‖TP (x)‖.

If (xα) ⊂ E is a bounded net such that (xα) w∗
→ x, we have that d̃P

∗
(xα) →

d̃P
∗
(x) in norm and therefore

|P (xα) − P (x)| = |TP (xα)(xα)n−1 − TP (x)(x)n−1|
= |TP (xα − x)(xα)n−1 + TP (xα − x)(x)(xα)n−2

+ · · · + TP (xα − x)(x)n−2(xα) + TP (xα − x)(x)n−1| α−→ 0,

because

‖TP (xα − x)‖ = ‖TP (xα) − TP (x)‖ ≤ 1
n
‖ d̃P

∗
(xα) − d̃P

∗
(x) ‖ α−→ 0,

and the proof is complete.

Corollary 1.6. Suppose that E = F ′ for some Banach space F. For
P ∈ Pwb(nE) we have that P is w∗-continuous on the bounded subsets of E

whenever P = P ◦ π1.

Let Pw∗b(nE) be the space of the elements of P (nE) that are w∗-continuous
on the bounded subsets of E.

Definition 1.1. A Banach space E is said to have the Mazur’s property
if w∗-sequentially continuous functionals on E′ are actually w∗-continuous, i.e.
belong to E.
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Every separable Banach space enjoy Mazur’s property while l∞ doesn’t have
it.

Proposition 1.7. Suppose that E = F ′ for some Banach space F . If
F has the Mazur’s property, for every P ∈ Pw∗b(nE) we have that dP (x) is
w∗-continuous ∀x ∈ E and, consequently, P = P ◦ π1.

Proof. Since F has the Mazur’s property, it is enough to show that dP (x)

is w∗-sequentially continuous in E. Let (yk) w∗
→ y in E and let ε > 0. If there

exists k0 ∈ N such that

sup|λ|=1 | P (x + λyk) − P (x + λy) |< ε ∀k ≥ k0,(∗)

the thesis follows by noting that

| dP (x)(yk) − dP (x)(y) |= 1
2π

∣∣∣∣∣
∫
|λ|=1

P (x + λyk) − P (x + λy)
λ2

dλ

∣∣∣∣∣ .

Suppose that (∗) is not true for every k0 ∈ N. In this case, for infinitely many
k ∈ N there exist | λk |= 1 such that | P (x + λkyk) − P (x + λky) |≥ ε. But
(λk) has a subsequence (λki

) converging to some λ satisfying | λ |= 1 and then,

since (x + λki
yki

) w∗
→ x + λy, and P is w∗-continuous on bounded subsets of

E we have | P (x + λki
yki

) − P (x + λki
y) | ≤ | P (x + λki

yki
) − P (x + λy) | +

| P (x + λy) − P (x + λki
y) |→ 0, a contradiction.

Proposition 1.8. Suppose that E = F ′ for some Banach space F .
Then for P ∈ P (nE) the following conditions are equivalent:

(1) P = P ◦ π1.

(2) P factors throughout F⊥.

Proof. (1) ⇒ (2). Take any z ∈ E′′. If P = P ◦ π1, ∀w ∈ F⊥ we have
dP (z)(w) = dP (π1(z))(w) = dP (π1(z))(0) = 0. So dP (z) ∈ (F⊥)⊥∀z ∈ E′′

and P factors throughout F⊥ by [5], Theorem 2.2.
(2) ⇒ (1). We first remark that P factors throughout F⊥ means that P

factors throughout j(F⊥) where j : E → E′′ is the canonical immersion.
We are going to show that dP (x)∈F ∀x∈E and then infer (1) by The-

orem 1.1. It is enough to show that ∀x ∈ E we have dP (x)(y) = 0 ∀y ∈ F⊥.

By [5], Theorem 2.2 we have that dP (z) ∈ j(F⊥)⊥ ∀z ∈ E′′. For each x ∈ E

and y ∈ F⊥ ⊂ E we have dP (x)(y) = P̆ (x, . . . , x, y) = P (j(x))(j(y)) = 0 as
j(y) ∈ j(F⊥). So, dP (x) ∈ F ∀x ∈ E.
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§2. The Holomorphic Case

Let Hb(E) be the space of the holomorphic mappings that are bounded
in the bounded subset of E. We denote by Hwu(E) (respectively Hw∗u(E))
the space of the holomorphic functions from E into C that are uniformly w-
continuous (respectively uniformly w∗-continuous) on the bounded subsets of
E. Given f =

∑∞
n=0 Pn ∈ Hb(E), the Aron-Berner extension f from f to E′′

is, by definition, the function f :=
∑∞

n=0 Pn ∈ Hb(E′′).

Theorem 2.1. Suppose that E = F ′ for some Banach space F. Then
for f ∈ Hb(E) the following conditions are equivalent:

(1) f = f ◦ π1

(2) df(x) ∈ F ∀x ∈ E.

(3) df(x) is w∗-continuous ∀x ∈ E.

Proof. (1) ⇒ (2). f =
∑∞

n=0 Pn ∈ Hb(E). Let B ⊂ E′′ be a bounded
set. It is clear that π1(B) ⊂ E is bounded and since f ∈ Hb(E, F ) we have
‖ f −

∑k
n=0 Pn ‖π1(B)→ 0. So, ‖ f ◦ π1 −

∑k
n=0 Pn ◦ π1 ‖B→ 0 ∀B ⊂ B′′

bounded and consequently f ◦ π1 =
∑∞

n=0 Pn ◦ π1 ∈ Hb(E′′).
But f =

∑∞
n=0 Pn and by the unicity of the Taylor representation, f =

f ◦ π1 if and only if Pn = Pn ◦ π1 for every n ∈ N. By Theorem 1.1 we have
dPn(x) ∈ F ∀x ∈ E ∀n ∈ N and consequently df(x) ∈ F ∀x ∈ E.

(2) ⇒ (1). The proof is similar to the proof of (3) ⇒ (4) in Theorem 1.1.
(2) ⇔ (3) is clear.

Proposition 2.2. Suppose that E = F ′ for some Banach space F . If
f =

∑∞
n=0 Pn ∈ Hwu(E) and df(x) ∈ F ∀x ∈ E then f ∈ Hw∗u(E).

Proof. Let f =
∑∞

n=0 Pn ∈ Hwu(E) ⊂ Hb(E). Combining Proposition
1.5 (b) of [1] and Theorem 2.1 we obtain that Pn ∈ Pw∗u(nE) ∀n ∈ N and the
proposition follows immediately.

Proposition 2.3. Suppose that E = F ′ for some Banach space F . If
F has the Mazur’s property, for every f ∈ Hw∗u(E) we have that df(x) is
w∗-continuous ∀x ∈ E and, consequently, f = f ◦ π1.

Proof. The same of Proposition 1.7.
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Proposition 2.4. Suppose that E = F ′ for some Banach space F .
Then for f =

∑∞
n=0 Pn ∈ Hb(E) the following conditions are equivalent:

(1) f = f ◦ π1

(2) f factors throughout F⊥.

Proof. The proof is similar to the proof of Proposition 1.7. Use [5], The-
orem 2.3 instead of [5], Theorem 2.2.
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