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Abstract

under the condition that a certain hermitian operator has a self-adjoint
extension a necessary and sufficient condition that a bilinear Fermion Hamil-
tonian can be diagonalized by a Bogoliubov transformation is obtained. Under
the same assumption, any bilinear Fermion Hamiltonian can be diagonalized
in a slightly extended sense by an extended Bogoliubov transformation. The
meaning of this diagonalization from the view point of the Clifford C* algebra
is discussed. It is shown that a parallel treatment is possible for a bilinear
Boson Hamiltonian (with complications concerning unbounded operators and
an indefinite metric) if a spectral theory of pseudo hermitian operator on a
Hilbert space of an indefinite metric hold in parallel with that of definite
metric Hilbert space.

§ 1» Introduction

Several authors have investigated the diagonalization of a
general bilinear Hamiltonian by a Bogoliubov transformation [1],
[2], [3], [7]. We shall present a complete solution of this problem
for the case of canonical anticommutation relations (the Fermion
case). We shall indicate a similar procedure for the Bose case,
which is however quite incomplete due to the lack of a spectral
theory of a pseudo hermitian operator on a Hilbert space of an
indefinite metric.

In section 2, we shall discuss various view point on the Clifford
algebra, which was the motivation for our treatment, though this
section is logically unnecessary for the later sections. In section 3,
we formulate the notion of Bogoliubov transformation in an abstract
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fashion. In section 4, we introduce a bilinear Hamiltonian as a
derivation of a Clifford algebra, which is an infinitesimal generator
of a one parameter group of automorphisms of the Clifford algebra
if a certain operator has a selfadjoint extension. Then the problem
of diagonalization is reduced to the problem of finding a projection
operator satisfying a few properties and this problem is easily
solved by a spectral theory of a selfadjoint operator. In section 5,
the abstract language in preceding two sections are written out in
the conventional notation and the main theorems are stated as
Theorem 5. 4 and Theorem 5. 6.

In passing, it is shown that any automorphism defined by the
bilinear Hamiltonian has an invariant state in which the canonically
defined Hamiltonian is positive semidefinite. It is also pointed out
that an infinite dimensional Clifford algebra is * isomorphic to C*
algebra obtained by adjoining evenoddness operator to the Clifford
algebrae

In section 6, we indicate how a parallel treatment can be done
for the Bose case to the extent that a Hilbert space of an indefinite
metric can be treated in parallel with a Hilbert space of a definite
metric.

§ 2. Alternative Definitions of the Clifford Algebra

We shall here collect various view points for Clifford algebra,
of which we shall use one in later discussions.

A standard definition of the canonical anticommutation relations
[4] is

Definition 2.1. Let K be a complex Hilbert space. A CAR
algebra over K, denoted by SICAR(^) is the quotient of free * algebra
with complex coefficients, generated by symbols (a*, /), (/, a) ( f ^ K )
and the identity 1, by (the two sided * algebra generated by) the
following relations

(2.1) (/,«)* = («*,/),
(2. 2) [(«*, /), (a*, g)~] , = [(/, a), (g, a)-} , = 0
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(2.3) [(a*,/), te,

(2. 4) (a*, c^ + c2/2) =

where

(2.5) [A,B]+ - AB + AB

A standard definition of the Clifford algebra [5] is

Definition 2. 2. Let H be a real Hilbert space. A Clifford

algebra over Hy denoted by 3ICLi(#) is the quotient of the free *

algebra with the complex coefficients, generated by the symbol

(f&H) and the identity 1, by the following relations

(2.6) *(/)* = *(/)

(2.7) $(/)' = (/,/)!

(2. 8) ^(cj, + c2/2) =

where cx and c2 in (2. 8) are now reals.
The two definitions are related by

Lemma 2. 3. Given K and 2ICAR(^)- Equip K with a real inner
product

(2. 9) (/, g)u = Re (/, £)A ,

making J^ a real Hilbert space, which we denote by H. Then the

mapping 7t2l defined by

(2. 10) 7r21(fl*, /) = \ ox/) - W/))
£l

(2. 11) *„(/, «) =

(2. 12) 7T211 = 1

generates # * isomorphism of §ICAR(^) onto StcLi(^)- Conversely,
let //" and SICLi(^) be given. Further, given an operator (3 in H such
that

(2.13) /82= -1, 0* = -/3.

Introduce a complex inner product into /f by
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(2. 14) (f,g}K = (/, g)a- i(f

This makes H a complex Hilbert space, which we denote by K.
Then the mapping 7r12 denned by

(2-15) 7T12<K/) = («*,/) + (/,«)

(2. 16) nwl = 1

generates # * isomorphism of 2ICLi(^) onto ^CAR(^)- n12 and ;r21 are
the inverse of each other if 13 on H happens to coincide with the
multiplication of / on K.

Proof* To show that 7t2l is a homomorphism, it is enough to
prove that the images of the relations (2. 1) — (2. 4) are contained in
the two sided * ideal generated by the relations (2. 6) — (2. 8). To
show that 7T12 is a homomorphism, it is enough to prove that (2, 1)
— (2. 4) imply (2. 6) — (2. 8). To show that n2l is an onto isomorphism,
construct H as indicated, define the operator ft on H by £(/) = (*/),
consider /r12 for this H and /9 and prove that nl2n2l and n2lnl2 are
the identity mapping. This also shows that nl2 is an onto isomor-
phism. The verification of these statements are straight-forward,
among which we only mention

(2. 17) C^cX/)]2 = (a*, f)2+ (f, aY+ [(«*, /), (/, a)] , = (/, /)!

(2. 18) [<£(/)

(2.19) (/,/3£) + 0?,/3/) = 0 (/3f, /3g) = (f, g)

(2. 20) [>»(<**, /), 7r21(£, a)]

Q.E.D.

The CAR algebra and Clifford algebra can be defined even if
we make K and H a Hilbert space with an indefinite metric.

Definition 2. 4. Let K be a complex Hilbert space and 7 be a
linear operator on K such that
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(2. 21) 72 = 1 , 7* = 7 •

An indefinite CAR algebra SIICA(-^> T) is the quotient of the free
* algebra, generated by the symbols (£*,/), (/, b) ( f ^ K ) and the
identity 1, by the following relations

(2.22)

(2.23) [(&*

(2. 24) (6*, c,/, + c2/2) = Cl(ft*, /,) + c2(b*, /2) .

Definition 2. 5. Let H be a real Hilbert space, 7 be a linear
operator on H such that

(2. 35) 7
2 - 1 , 7* - 7 •

An indefinite Clifford albebra 3tJCL(H, 7) is the quotient of the
free * algebra, generated by the symbol -\H/) an(i the identity, by
the following relations

(2.26)
(2.27)

(2. 28) ^fo/

where ^ and c2 are reals.

Lemma 2. 6. Let I? be any projection operator in H and
7=(2jB— 1). Then the mapping 7r42 defined by

(2. 29)

(2. 30) 7r42l - 1

generates a * isomorphism of §JCLiC^) onto S!ICL(^ 7)- Conversely,
given H, 7,

(2. 31) 7r24^(/) = 0([1 + 7]//2) - i0([l - 7]//2)

(2. 32) 7r24l = 1

generate a * isomorphism of SIICL(^ 7) onto StcLiW- The two
mappings are inverse of each other.

Proof. The same as Lemma 2. 3, except for the calculational
part, which is straightforward.
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Lemma 2. 7. Let E be any projection on K and fy = 2E—l. Then

(2. 33) *„(**, /) = (a*, Ef)-i(a*, (1 -£)/)

(2. 34) *„(/, a) = (Ef, a} + i((l -

(2. 35) 7T811 - 1

generate a * isomorphism of 5tCAR(^) onto StICA(^ 7)- (Converse
mapping 7r13 can be defined similarly.)

Proof. The same as Lemma 2. 6.

Lemma 2. 8. If there exists /S which satisfies (2. 13) and com-
mutes with 7, then

(2.36)

(2. 37) 7T341 - 1

generates a * isomorphism of §IICL(^> T) onto SIICA(-K"> T) where .fiT is
related to (//, /S) as in Lemma 2. 3. If (K, 7) is given first, then

define (H, j3) from (K, i) as in Lemma 2. 3, and there always exists

a * isomorphism 7r43 of §XICA(^> T) onto S!ICL(^ T) generated by

(2. 38) *43(&*, /) =

(2. 39) *„(/, 6) =
^

(2.40) ^431 = 1

Given 7, the required /8 exists if and only if dimensions of the

projections (l + y)/2 and (1 — y)/2 are even.

Proof. The same as Lemma 2. 6.

§ 3. Bogoliubov Transformations

We now introduce a new view on CAR algebra which is a

natural frame for the study of Bogoliubov transformations.

Definition 3. 1. Let K be a complex Hilbert space and T be
an antiunitary operator satisfying
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(3.1) T2- 1, Ff = -fT

A self dual CAR algebra 3ISDC(K, r) is the quotient of the free

* algebra, generated by (B*,/), (/, B) (/e/f)and 1, by the follow-

ing relations

(3.2) (e*,/)* = (/,B)

(3.3) [(B*,/), (£, B)]+ = (£,/)!

(3. 4) (0*, c,/, + c2/2) = Cl(B*. /,) + c2(B*, /2)

(3. 5) (B*, A) = (Th, B) .

Remark 3. 2. The last relation for S!SDC replaces (2. 2) for
A useful relation is

(3.6) (B*,/)2 = ^(

Lemma 3. 3. If dim K= even or infinite, there exists a pro-
jection operator E such that TET = l— E, and the following 7r15

generates a * isomorphism of 3ISDC(j?£, r) onto §ICAR(J3/Q

(3. 7) Wl5(B*. /) = (a*, Ef} + (T(l-E)f, a)

(3. 8) »«(/, B) = (E/, a) -4- (a*, T(l-E)f)

(3. 9) *„! = 1 .

Conversely given K0, define K=Ka®K0 EK=K0. Choose a complex
conjugation operator T on K0 (namely any (antiunitary) operator

satisfying T2 = l, Ti=~iT, ( T f , T g } = ( g , f ) ) , and define T(f®g)

^(TgdBTf). Then the mapping TTSI defined by

(3.10) *,!(**, /) = (B*,/©O) (=(oer/,B))
(3. 11) WBI(/, a) = (S*, 0® Tf) ( = (/® 0, 6))

(3. 12) W51i = 1

generates a * isomorphism of §!CAR(^O) °Qto StSDC(^, r) which is the
inverse of 7r15. The space K has either even or infinite dimension.

Proof. The same as Lemma 2. 6. We only mention the follow-
ing calculations :
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(3. 13) |>15(B*,/), 7r15(g, fi)] = {(Eg,

(3. 14) 7r15(B*, r/) = («*, Eiy ) + (r(i -E)r/,
, a)

The existence of the desired projection Is for given r can be seen
as follows. Since F is a complex conjugation, there exists a r

invariant basis {/„, » = 1,2,-} of K. (f+Tf and i ( f - T ( f ) ) are
both F invariant and one of them is nonzero if /=|=0. Thus one

can choose successively an orthonormal r invariant basis vector ffc

from the r invariant subspace (f19f2"
mfk-i)± °f ^0 Since K is even

dimensional, we can pair /2W_1 and /2fl, w = l, 2,— . Now define E as
a projection on the subspace spanned by 2"1/2(/2w_1 + «y2J. It satis-
fies the required property FEr = (l — E).

Remark 3, 4, We may write B* = (a*,a), B=(a*\ where («, ̂ )

is understood as (Tg, a) and (g, a*) is understood as (a*, Tg).

When (/f, r) is given, the operator T can be chosen to be any

complex conjugation on EK. T on (L—E)K is defined as TTT(I—E).

Then 7T = y is a linear operator satisfying y2=l, 7* = 7 and (1 — Z£)y
= ryE9 and the identification of (L — E)K with EJT is done by the
unitary mapping 7. It is also possible to start from an arbitrary
unitary mapping 7 (identification) of EK onto (1~E)K, satisfying
vr = ry*. Then T^^r is a complex conjugation.

Definition 3.5. A projection E satisfying rJEr = l— E is called
a basis projection of K. A unitary operator U is called a Bogoliubov
transformation between two basis projections E and F if U com-

mutes with r and UEU~1 = F.

Lemma 3e 6. For any two basis projections E and F, there

exists a Bogoliubov transformation between them. If a unitary

operator U commutes with F and if E is a basis projection, then

UEU~l is also a basis projection.

Proof . Let f^f^" and gi&j'" be a complete orthonormal basis
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for EK and FK respectively. Since dim EK= dim FK = — dim K,
Zj

we can use the same index set for / and g. Since r is antiunitary,
Tfi and Ygi are complete orthonormal bases for (1—E)K and (I —

respectively. We define

= I]

Then U is unitary, commutes with r and UEU'l =
The last half of the lemma follows from

(3.15) TUEU^T = UTETU-1 = U(l-E)U~l = l- UEU'1 .

Lemma 3e 7» If dim K is finite and odd, there exist mutually
commuting projections E» E2 and E0 such that TE1T = E29 FEQT=E0,
E1 + EZ+E^ = 19 dimEQK=l. SISDC(/T, r) is * isomorphic to a direct
product of SIsDcC^ + Eg)^, r) and a two dimensional abelian algebra
{Cil + CsX} %2=l, x* = x. ^s-Dc((Ei-rE^K9T) is * isomorphic to

Proof. There exists a F invariant orthonormal basis fi~*f2n+i
of K where dim/f=2» + l. Now we define EJK, E2K and E0K to be
subspaces spanned by

Then the required properties hold. If we set

(3. 16) * = x/2~ (20'(5*, /t)(B*, /2) - (^*, /2M+1)

then it commutes with all elements in 3tSDc(^» T) and ^2 = 1, ^^^^r.
Obviously, {c.l + c^} and SISDC((£'1+£2)^, T) generate 3!SDcCK, r).
The last statement of the lemma follows from Lemma 3. 3.

§ 4. Bilinear Hamiltonian

We now define a bilinear Hamiltonian as a generator of a one
parameter automorphism group of CAR algebra. We need a C*
algebra view point for this purpose.

Lemma 4. 1. If K has a finite even dimension, then all non-
zero representation of SICAR(^) is * isomorphic and defines a unique
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C* norm on §ICAR(^)- K K is infinite dimensional, the C* norm
of §tcAR(^/)c2IcARC^)> dim K' = finite and even, defines a unique C*
norm on S!CAR(^)- The completion SCAR(^) of S!CAR(^) with respect
to this norm is a C* algebra.

Proof. Known.

Lemma 4. 2. If S is a selfad joint operator on K, the mapping
defined by

(4.1) r(tS)(a*, /) = (<**,**/)

(4.2) T(fS)(/, a) = (e*stf,d)

generates a * automorphism of SCAR(^)> continuous in t. The
infinitesimal generator i'1dr(tS)/dt = dr(S) is a densely defined deriva-
tion on SCAR(/f ). In particular if / is in the domain of S.

(4.3)

(4.4)

Proof. Known.

Remark 4. 3. The derivation dr(S) is often denoted by

(4. 5) dr(S)A = [(fl*, Sfl), A] .

This is due to the following situation. Let S be a trace class
operator and

(4-6) (x,Sy) = E**(

Then dr(S) is an inner derivation and

(4. 7) (a*, Sa) = E X,(fl*/,)(/i

satisfies (4. 5). By extending this notation, r(/S)^4 is often written
as

(4. 8) r(tS)A = g««*.s«D ^ e-^''^

though ^z'cfl*'Sfl) is not an element of algebra for a general selfad-
joint S.

It is also possible to write
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(4. 9) dr(S}A = - [(«, S*fl*), A]

(4. 10) r(tS)A = e-^
a's"a^ A e*

a's*a^

If S is in the trace class, and (x, Sy)= 2 ?w(*> ft)(gi> J0i

(4. 11) (a, S%*)

(4.12)

Even if S is not in the trace class, it is conventional to say
that (a, S*<z*) =—(«*, Sa) + constant and that the constant cancels
out in (4. 9) and (4. 10). This language is made rigorous in the
present discussion by using the notion of automorphisms and deriva-
tions of a C* algebra.

We now consider a similar derivation on 3ISDcC^> F).

Lemma 4. 4. Let S be a trace class operator on K such that

(4. 13) (x, Sy) = S *,(*, /.-)(&, 30, S I X, 1

Then

(4. 14) (5*, SB) = S

and

(4. 15) ^[(5*, SB), (S*,/)] = (B*, a(S)/)
A

(4.16) «(S) = ~(S-rS*r).
/^

We have

(4.17) T«(S)r = -a(S)*.

If rSr=-S*, then a(S) = S.

Proof. For A=(B*, /), we have A*A+AA* = ||/||21 and hence
1. Therefore

and (4.14) converges in norm. (4.15) follows from
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(4.18) ±-[J,B*,SB), (B*/)]

, B), (B*,

*,/,-), (B*,f )-]+(&, B)}

= (£*,/')

where (B*, /) in the second term is to be replaced by (r/, B) and

(4.19) /'= 2\,{(

Lemma 4. 5. There exists a maximal norm of all * representa-

tion of SlsDcC^, F) by operators on a Hilbert space. The completion

SSDC(^, T) of 2tSDC(^> T) by this norm is a C* algebra.

Proof. If K has an infinite dimension, this follows from Lemma

3.6 and Lemma 4. 1. If K has a finite dimension, the §ISDCCfiT, r)

has a finite dimension by Lemma 3. 6 and by the known fact on

SICAR(K), the lemma holds for this case, too.

Lemma 4. 6. Let S be a self adjoint operator satisfying

= —S. Then the mapping

(4.20) T(/S)(B*f/) = (5*,^«/)

(4. 21) T(fS)l - 1

generates a * automorphism of 21SDCCK', r), continuous in t.

Proof. Let

S = P \dE(\}

be the spectral decomposition of S. Then TSr= — S implies TE(A)T

= E( — A). Sicne r is conjugate linear, we have

(4. 22) T eist T - f e~ixt rd£(X)r
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Namely eist commutes with F.
Since the quantity entering in the definition of 31SDC is an inner

product (/, g) in K and the mapping /-»F/, and since eist induces
an isomorphism of (Ky F) onto (eist K, F) = (K, F) with respect to this
structure, we see that (4. 20) and (4. 21) induce a * isomorphism of

3ISDcC&> F) onto 3ISDc<ys* K, r)-§ISDC(K, F). Thus it is an automor-
phism of SlsDcC^, F) and hence an automorphism of its unique C*
extention 9ISDC(K, F).

Definition 4, 7. Let S be any linear operator on K, Then we

use the notation on the left hand side of the following equation to
denote the right hand side if / is in the domain of a(S),

(4. 23) [1 (B*, SB), (B*. /)] = (B*, a(S)f) .

The notation is extended as a derivation on * algebra generated by
(B*,/), / in the domain of a(S).

If S is selfadjoint, the automorphism r(ta(S)) is denoted by
the following expression :

(4. 24) r(ta(S))A = ^B*,SBV* A e-w .SBW ,

The symbol (5*, SB) is called a bilinear Hamiltonian. It is

said hermitian or selfadjoint if S is hermitian or self-adjoint,
respectively.

Lemma 4. 4 motivates this definition.

Lemma 4. 8. Let S be a selfadjoint operator on K such that

FSF--S with a spectral projections £(•) and let E+ = E((Q, °°)),

If dim jE0K is even or infinite, then there exist a projection E
on K, a selfadjoint operator S0 on EK and a * isomorphism n from

r, F) onto %CAR(EK) such that K=EK®YEK and 7

Proof. From TST= -S, we obtain r£(A)r = £(-A) and hence

~T = E-, TEQT = E0. Since dimBQK is even or infinite, and since

E0K is F invariant, we can find a subspace E01K of £"0/T such that
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= EQ—EQ1 as in the last part of the proof of Lemma 3.3. Set
E=E+ + EQ1. SQ = SE. By construction, TEr=l-E and [S, E] = 0.
We have

(4. 25) eitsf = eits Ef+Yeits T(l-E)f

and eitso is a one parameter unitary group on EK. We now use

the mapping 7r15 from $LSJ>C(K, T) onto $iCAR(EK) defined in Lemma
3. 3. It can be extended to a * isomorphism of SSDC(^, r) onto
%CAR(EK). (4. 25) now shows that

Q.E.D.

Lemma 4. 9. Let SI2 be a * algebra consisting of ^1 -I- c2# where

xz=\, x* = x. The following semitensor product SI

SCAR(^") with SI2 defines a C* algebra.

(4. 26) (c A + cA) ® B = c,(A1®B) + c2(A2® B)

(4. 27) ^0(^ + ̂ 2) - cl(A®B^ + c2(A®B2}

(4. 28) M)®fi - A®(cE) = c(A®B}

(4.29) (A®^)A®5) = {Al(r(~l}A2}}®xB

(4. 30) (A®1) (A2®B) = A,A2®B .

There exists a * isomorphism of ncAR(K)®^2 onto

^7, T) where K' is one dimensional, r(/0^ec)-(T^eT/0c*), T

is any complex conjugation on KQ (i.e. (7J, Tg) = ( g , f ) , T2 = l), and

is mapped onto the subalgebra SSDC(/ro0^0®0, r) of

Proof „ The mapping TT given by

(4. 31) 7t(B*yf®g®c) = (B*,

(4. 32) 7tl = l

generaters a * isomorphism of SlsDcC^o®/^®/^ r) onto
§12, as is easily proved in the same way as Lemma 2. 3. (The

inverse map is

7t-\a*,f] = (B*,/0000), TT-^ - (B*, 000® c), etc.)
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Therefore n can be extended to a unique C* closure SSDO Its

image is then the C* closure of 3ICAR(Ko)(g)3I2. Since SI2 is finite

dimensional, it must be SCAR(^C0) ®3I2.

Lemma 4. 10. If dim EQK is finite and odd in Lemma 4. 8, then

there exist projections E and F, a selfadjoint operator S0 on EK

and a * isomorphism n from 3lSDC(jfC, F) onto 2lCAR(£jFC)®3t2 such

that dimF/ir=l, K=EK®TEK®FK and 7

Proof. In the proof of Lemma 4. 8, we now have dim E0K = odd.

Hence we can find three mutually orthogonal subprojections EQ1, E02

and F of E0 such that E01 + E02 + F=E0 and F£oir = E02, FFF-F, as

in Lemma 3.7. We set E=E+ + E01 and SQ = SE. Then

l, [S,JE] = 0, SF=Q, and

(4. 33) eitsf = eits* Ef+T eits*

The mapping is given as in Lemma 4.9 where KQ = EK, T is an

arbitrary complex conjugation on EK, and the identification of

EK=K0 and (l-E)K is done by the mapping TT = y. Then the

required properties are satisfied.

§ 5. Diagonalization of a Hermitian Bilinear Hamiltonian

Definition 5. 1. A projection operator E diagonalizes a bilinear

Hamiltonian — (5*, SS) if TET^l-E and (1-E)SE=ES(1-E) = Q.

E diagonalizes —(B*,SB) in an extended sense if ETE=0 and
£

S = ESE+(TET}S(TET}.

Remark 5. 2. Motivation of this definition is as follows. If

and only if TET = I — E, we have a * isomorphism of SSDC(/£, F)

onto $1CAR(EK), by Lemma 3. By this isomorphism, B* and B are

identified with (a*, a) and (a^\ (Remark 3. 4). Hence (B*, SB) can\d I
be written in a matrix form

,
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where Sij = EiSEJ with E^E, E2 = I-E. (B*SB) is said diagonal in
conventional terminology if it can be written as

(5.2) (a*Sua) + (a,Sji*).

This condition is expressed by S12 = S21 = 0 namely ES(1 — E)
= (1 — E}SE=Q. This motivates the first definition. In the second
case K=EK®TEK®(l-E-TEr}K. 5* and B are identified with

(a \
(<z*, a, $) and a* where <z* and a part satisfies CARs whereas 0

anticommutes with a, a* and defines a certain 31SDC by itself. The
stated condition then says that the (6*, SB) is of the form

0
(5.3) | 0 S22

0

To the extent that we forget about $, it is again of the desired
form (5.2).

If the dimension of (1 — E— TET)K is even or infinite, then we
can divide and absorb $ into a* and a. Thus it is reduced to the
first case. If the dimension is odd then we can make <p one
dimensional. If we are allowed to add one more $' anticommuting
with a, a* and <£, then the entire system is reduced to the first case.

As we have seen in Lemma 4. 4, the derivation depends only
on a(S) = (S—rS*r)/2 and hence we do not lose generality by

( 0 T^Xj, Q J for a complex conjugation

T on EK in the matrix representation of (5.4), we have the
requirement

(54) JTS*T TS*Tl
LTS*T rs*rj

It is customary to write TA*T=*A and TAT=A. Then we have
the requirement

*9 — 9iJni L/o-i
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where

(5. 6) (B*SB) = («*, Sufl) + (a, S220*)

We note that in ref . 2, the following matrix was considered instead
of our S.

(5-7)

The hermiticity for S gives the requirement

c# _ c c# _ c
/r- ON n ~ 1J » 22 ~~ 22

( } s*-s°12 ~~ °21 "

Hence S can be written in terms of two operator Sn = R1 and
S12 = R2 as

(5'9)

where ^?1? ^?2 satisjfies

(5.10) R* = R19 *R2= -R2.

It is also customary to use the notation

(5.11) ( a * , f ) = \a*(*)f(x)dx

(5.12) (/» =\Tf(x)a(x)dx

(5. 13) (/, Sg) =

where «*(jr), «(jtr), S(jtr, jy)? R(x, y) can be taken in distribution sense

or x can be taken as a discrete index variable, in which case \ dx

is replaced by a summation. With this notation, we may write

(5. 14) («*, Ra) = J fl* Wi?(^ j^

and similar expressions for (0*, J?«*) and (a,

Remark 5. 3. Diagonalization problem. If we start with

and -^(S*S£) in the form of (5. 6), we introduce K=K0®K(}
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(0 T\~ Q ) using the complex conjugation T which is used to

define the matrix element S(xy y) in (5. 13). Then the projection
operator F onto KQ is a basis projection for (K, T), which however
does not diagonalize the given (B*,SB). We then look for another
basis projection E which diagonalizes (5*, SB), If E is found, then
we denote the annihilation and creation operators in 3CAR(£K) by
b and b* instead of a and «*, which are already used for SCAR(/Q.
Then we have

(5. 14) 1 (5*55) = -1 {(**, /») - (b, >Rb*)}

= (&*,

where R=R* and last equality is in the sense described before.
The pair of b* and b are related to a* and a by a Bogoliubov

transformation [7, as was paoved in Lemma 3. 6. The requirement
that U is unitary is equivalent to the information that the mapping
is one to one onto and the canonical anticommutation relations hold
for 6* and b. The requirement that U commutes with F is equi-
valent to the information that the expression for 6* and b are
adjoint of each other. Thus our definition 3. 5 for a Bogoliubov
transformation coincides with the ordinary definition.

From these two remarks and Lemma 4. 8, we obtain

Theorem 50 4. Given the herrnitian bilinear Hamiltonian

(5'15) -s s_O21 022_

and assume that

(5.16) a(S) = —(&

has a selfadjoint extension, where

(5.17)
c __ rc co — I on O12

c c
V21 ^22

r = ro T
T 0

and T is a complex conjugation operator. (The hermiticity of
(5.15) means S*=>S.)
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Then it can be diagonalized to the form

(5.18) (&*, Rb)

by a Bogoliubov tronsformation if and only if the dimension of the

eigenspace belonging to 0 is either infinite or even.

Proof. The sufficiency is already proved. To see the necessity,

we note that a basis projection E which diagonalizes (5.15) must

satisfy TET = l-E and (l-E)a(S)E=Ea(S)(l-E) = Q. The last

requirement implies {E, a(S)] = 0 and hence E must commute with

all spectral projections of a(S). From the property Fa(S)r = — a(S),

andr£T = l-E, it follows that r££(0)r=-(l-E)JE(0), where E(0)

is the projection to the 0 eigensubspace of a(S). Therefore

dim E(0)K must have either even or infinite dimension.

Definition 5. 5. Let E be a basis projection, F be a projection

such that F(TFT) = (TFT)F=Q. An isometric operator U commuting

with T is called an extended Bogoliubov transformation if UEU* = F.

Given a bilinear Hamiltonian — (B*, SB) in the form (5.15) for
Zj

SCAR(^O)- An isometric operator U on KQ@KQ diagonalizes

— (B*,SB) if it is an extended Bogoliubov transformation from the
£

projection onto K0 to a projection F which diagonalizes —(fl*, SB)
£i

in an extended sense (cf. Definition 5.1).

Theorem 5. 6. Given the bilinear Hamiltonian (5.15) for which
a(S) has a self ad joint extension. Then it can always be diagonalized

to a form of (5.18) by an extended Bogoliubov transformation.

Proof. This follows from Lemma 4.10.

We now add a few results concerning the significance of the

diagonalization from C* algebra point of view.

Theorem 5.7. Let cp be the Fock vacuum state for ^1CAR(EK)

and S be a self ad joint operator on K such that FSF = — S. Then <p

is invariant under r(tS) if and only if [_E, S] = 0, namely if and only
if E diagonalizes S.
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Proof, For the Fock vacuum state <p, we have

(5.19) v((f,B)(B*,f)) = \\Ef\\\

If <p is r(tS) invariant, we must have

(5.20) e-'tsEe'ts = E.

Hence [E, S] = 0, namely E diagonalizes S. Converse is known.

Remark 50 8. Thus the diagonalization of — ( B * , S B ) is possi-
£

ble if and only if there exists "a" Fock vacuum state which is

invariant under r(ta(S)).

Definition 5* 9. Let cp be a Fock vacuum state of S!CAR(^O)-
Let N be the number operator on Hv. Then the representation /$>

of 2tCAR(^o)®2I2 generated by

(5.21) &9(A) = *V(A) if 4e=3CAR(/g

(5.22) A9(x) = (-!)»

is called a pseudo Fock representation of SCAR(JT0)(g)SI2, and the
vector state defined by O^ in this representation is called a pseudo
Fock state.

Theorem 5.10, For any selfadjoint S on K, there exists either

Fock or pseudo Fock state which is invariant under r(tS).

Proof. This follows from Theorem 5. 7 and Lemma 4.10.
Q.E.D,

Theorem 5.11. Let S be a selfadjoint operator on K, then

there exists a state <p of 3SDCCff), invariant under r(ta(S)) such
that the operator H defined by

(5. 23) e'H* n^A}^ = 7r^(T(ta(S))^.)nv

is positive semidefinite.

Proof, We can reduce the problem, by the foregoing results,

to the case where SSDC(Jf) is identified with either SDAR(Jf0) or

SCARt^o)®^2 and r(to(S)) is r(tSQ} for a selfadjoint operator on K0.
Let E+ and £_ be two projections such that
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E^SQ^O. (It is essentially the spectral projection of S0 for the

positive and negative real axis, where 0 eigenvalue space is divided

into E+ and E_ in an arbitrary manner.) Then

(5.24)

(5.25) 9>((fl*, £+/)(£+/, a)) = 0

defines the state uniquely which is Fock for E+ and anti Fock for

E_. The associated state $> for SCARED) ®3I2 is constructed as be-

fore. Then it is known that <p and fi satisfies the required property

for r(fS0). Q.E.D.

In passing, we mention the following remarkable fact. In the

Fock representation, the evenoddness operator (— l^is not contained

in 7r(5lCAR(K0)) if KQ is infinite, because any operator A in 7r(

which commute with ( — 1)^ satisfies

(5.26) lim||[^,(fl*f /,)]|| = 0
7

for an orthonorrnal /,-, whereas ( — 1)^ does not have this property.

Thus if we adjoin (— 1)^ to n($iCAR(K0])9 they generate a C* algebra

33 which is larger than 7r(3ICAR(J^0)). Since 7r(SCAR(jK"0)) is a faithful

representation of 2ICAR(/Q (the latter being simple), S3 is a faithful

representation of $IcAR(^o)®SI2J which is isomorphic to 5lCAR(^o) by
Lemma 4. 9 and Lemma 3. 3 if dim KQ is infinite. Thus SCAR(^0)

is isomorphic to SICAR(^O) "plus" evenoddness operator.

§6. The Bose Case

We now briefly describe a similar analysis for canonical com-

mutation relations. We omit the analysis in § 2 for this case a part

of which is found in [6~]. Here we shall be content to describe a

program without caring for a mathematical rigour. Hence we shall

use unbounded form using creation and annihilation operators. We

shall also use unbounded operators without considering the domain

questions.

We start from («*,/) and (g, a) which satisfies
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(6.1)

(6. 2) [(*, fl), (/, <,)]_ = [(a*, £), (a*, /)]_ = 0

where [A, 5] _= ^45— AA and f^KQ for a complex Hilbert space K0,
(«*,/) is linear in / and (/, a) = (a*,f)*. We consider K=K0®KG,
a projection operator £ on /f0®0, a complex conjugation T on

and define

(6. 3) (5*, /) = (a*, £/) + (F(l -£)/, a)

(6. 4) (/, 5) = (F/, a) + (**f r(l -

which satisfies

(6.5)

(6.6)

(6.7)

where 7^(J _5) = 2£-l and we have used r£r-l-£. (fi*,/) is

linear in /.

If F is a linear operator on K such that

(6. 8) TFT = 1-F, F2 = F, <yF = F*7

(6.9) (/, y/)>0 for O^f^FK

then we can obtain a new creation and annihilation operators 6*
and 6 appropriate for F in the following manner. Let KF be FK
equipped with a new inner product

(6. 10) (g, f ) K F = (g, 7Ff)( = (g,

(If F happens to be the original E, this coincides with (g, /)) .
For f ^ K f , we define

(6.11) (6*,/) = (fl*,/), (/,6) = (/,B).

Then (6. 1) and (6. 2) for 6*, 6 can be checked by using (6. 8) and
(6.6). (Note that F*jF=jF, F*7(l-F) = (l-F)*yF=0.) Further,
if we define 5* and B out of this b* and b, we obtain the original
one, because (fi*, /) = (£*, F/) + (B*, (l-F)/) = (fl*, F/) + (r(l-F)
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/, E). Thus we call any F satisfying (6.8) and (6.9) as a basis

(nonorthogonal) projection.
Let the completion of FK with respect to KF norm be KF.

Then the dimension of KF and K0 = EK must be the same and there
exists a unitary mapping C70 of K0 outo KF, which is densely defined
operator from K0 onto KF. By construction, UQ satisfies U0*yUQE=E,

UQU* = <YF*9 FUQE=UQE, EU*F* = U*F*=U* where £70* is defined
by (/, U0g) = (U*f,g) together with U*fs=EK for all gt=EK. We
define U= U0E+rU0ET. Then t7 satisfies

(6.12) [r, E7] = 0, t /*7£/=7, U7U* = 7

UE= FU.

Conversely, if [7 is an operator satisfying (6.12), then F=UEU*ry

has the properties (6. 8) and (6. 9). Thus we shall call the operator

U as the Bogoliubov transformation from a basis E to a basis F.

We now consider a bilinear form

^11 ^12 \(a(6.14) ~.S*>-<*,

which can be understood as describing the following derivation

(6.15) ±-l(B*, SB}, (£*,/)] = (B*, a'(S)7f)

It is then enough to consider those S satisfying S = a'(S)

or

(6.16) rsr = s*.
The hermiticity requirement is

(6.17) S* - S .

In terms of Sfj-9 we have

S ^O E 2 ~ l J?5k J~) f J~) ~D
I 111 J\.r, , 7\i 2V-, , IVo = IVo .

(6.18) - -

A basis projection F diagonalizes S if the transformation (6.15)
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brings 0* and a to 6* and b associated with F, respectively. Namely

(6. 19) Sj = FSjF+ (1 - F)Sy(l - F) .

For this, it is necessary and sufficient that

(6. 20) FSy (1 - F) + (1 - F)SjF = 0

namely

(6.21) [F,Sy] = 0.

If F diagonalizes S, then in terms of b, 6* associated with F, we
have

(6. 22) 1- (B*, Sfl) = (6*S06) , S0 - FS .
^

The operator S07 satisfies the property

(6. 23) (S0<y)*(7F) = (7F)(S0T) .

Namely it is hermitian relative to the inner product of the space
KF. If S0y has a selfadjoint extension, then we have a unitary
operator e*8*** on KF. We define r(tS) by

(6. 24) T(«)(6*, /) = (ft*, ^V'/)

(6. 25) T(fS)(/, 6) = (^V/, 6)

which induces an "automorphism" of "CCR algebra". It is often
written as

(6. 26) r(tS)A = e^*,sBV2 A e-^SB^

of which the derivation — (B*,SB) is an infinitesimal generator

As a result of the above formulation, the problem of the dia-
gonalization of a bilinear Hamiltonian by a Bogoliubov transforma-
tion for the Bose case is reduced to the following :
Given S satisfying

(6 .27) s* - s , rsr = s
where T is a complex conjugation. Find an operator F such that
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(6.28) TFT = 1~F, F2 = F, yF*y = F, yF>0

(6.29) [F,Sy] = 0

where

(6. 30) y2 - 1 , y* = 7 , ry - -yF .

This problem can be solved if we have the following type of
spectral theory of pseudo hermitian operator on a Hilbert space of
indefinite metric. Let y and a complex conjugation T be given

satisfying (6. 30), on a Hilbert space of a definite metric. An

operator H is called pseudohermitian with respect to the indefinite

metric (/,£>, = (/, yg) if

(6.31)

An operator E is called a pseudoprojection if it is pseudohermitian
and

(6.32) E2 = E,

We say that a pseudo spectral theory holds for pseudohermitian H

if there exists a mutually commuting pseudoprojection valued mea-
sure E(A) on real line such that E((—°°, 00)) = ! and

(6.33) H = Jxd£(X).

To apply these notions to the problem under investigation, we

note that Sy is pseudohermitian. If a pseudo spectral theory holds
for Sy, then we consider three spectral projections.

(6. 34) E+ = E((0, oo)) , E_ = E((~ oo, 0)) , E0 = E({0}) .

Since T(Sj)T=—Sj we have

(6.35)

We now want to take into account the condition (6. 9) for a
basis pseudoprojection and construct the desired E. This again

hinges on the spectral theory which we do not have at the moment
We shall treat only the case where the spectrum of Sy is discrete
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and the multiplicity is finite. Let Ex be an eigenprojection belonging
to X^O. If f(=E^H satisfies (g, 7/) = 0 for all g^ExH, then setting
g=Edr, ty^H, we have (ty,Eryf) = Q, namely Q = Ex*vf=yExf=yf.
Hence f = y ( y f ) = 0. Thus 7 restricted tp E^H is nonsingular and
we can find a basis /!-••/„ in EJ5T such that (/,-,

= ±1. Let EJ be defined by £?/,. = — (l±£y)/y. Then it satisfies
£

<yE± = (E±}*j and 7E>0. If EJ is chosen for a 7, then we choose
E*K = TExT. Because TjT=— 7, this Eix have the required pro-
perty. For \ = 0, we have rEQT = E0. Hence f^E0H implies
Tf^E0H. Now it is always possible to find a T invariant basis /y

of E0H : Tfj =/y. From TjT =-j/it follows (/y7/y) = 0, and (f/7fj
is pure imaginary. Since 7 is nonsingular, it is always possible to
find an /2 for given fl such that (/27/i)=t=0. Let o- be the sign of
ImC/VyA). Then gt=fi±i<rf* satisfies (£>£-) = (), (g?7g?)>0, Tg+
= g~ . We then modify the rest of the basis /y to f / = f j — (g*> 7/y)

^i+fe+> ygi^-teiyf^giteiVgrr1- We can aPP!y the same procedure
to /y//-". Proceeding successively in this way, we can exhaust E0H
and we obtain a basis gj which satisfies (gjygk) = 8J-kSff^a-9 Tgj=gj.
We then define £0°- by ESg^S^g1}. F=^E^ satisfies the required

property: [F, jff] = 0, jF=F*y, F2 = F, jF>0.
Because of the existence of r, dim jEo/f is always even in the

present case.
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