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Abstract

A discrete analogue of the two-dimensional Toda lattice hierarchy, which includes
the discrete analogue of the two-dimensional Toda lattice equation, is obtained by
extending the theory of the Toda lattice hierarchy. Special solutions and bilinear
equations for the discrete analogue of the two-dimensional Toda lattice hierarchy are
presented. It is shown that the subjects originated from the Sato theory are useful
for the discrete-time integrable systems.

§1. Introduction

In early 80’s, Mikio Sato constructed a remarkable theory of the soli-
ton equations [11], [13], [14], [15]. He discovered that the τ -function of the
Kadomtsev-Petviashvili (KP) equation is closely related to certain algebraic
identities, and found that the totality of solutions for the KP equation and
its higher order equations forms an infinite dimensional Grassmann manifold.
Subsequently, Ueno-Takasaki developed the Sato theory and presented the 2-
dimensional Toda lattice (2DTL) equation and its higher order equations [19].
Here the 2DTL equation can be regarded as a spatial discretization of the KP
equation. In these theories, continuous-time soliton equations such as the KP
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equation, the 2DTL equation, have been discussed in detail, however discrete-
time soliton equations have not yet been fully understood.

In the last decade, discrete integrable system has been getting a lot of
attention from the viewpoints of difference scheme and algorithm. For exam-
ple, the discrete-time Toda lattice [7], [16] is related to the LR factorization
algorithm for calculating eigenvalues of a square matrix [9], [12], [17]. Already
there have been many discussions about discretizations of integrable nonlinear
differential equations preserving their integrability from various points of view.
Miwa revealed the link between the continuous variables x and the discrete
variables m [10]

xj = m1
(c1)j

j
+ m2

(c2)j

j
+ m3

(c3)j

j
+ · · · .

It is well-known that the following discrete bilinear equation

c1(c2 − c3)τ(m1 − c1, m2, m3)τ(m1, m2 − c2, m3 − c3)(1)

+c2(c3 − c1)τ(m1, m2 − c2, m3)τ(m1 − c1, m2, m3 − c3)

+c3(c1 − c2)τ(m1, m2, m3 − c3)τ(m1 − c1, m2 − c2, m3)

= 0,

where c1, c2, c3 are constants related to the difference step size of the discrete
independent variables [8], [10], can be derived from the bilinear form of the KP
equation

(D4
x1

− 4Dx1Dx3 + 3D2
x2

)τ · τ = 0,(2)

and its higher order equations by introducing infinitely many discrete-time
variables m = (m1, m2, m3, . . . )[10]. The operator D is defined as

Dm
x a(x) · b(x) =

∂

∂x′ a(x + x′)b(x − x′)
∣∣∣
x′=0

.(3)

A special solution of Casorati determinant form to Eqs. (1) and (2) is expressed
as

τ = det |fi(s + j − 1, x,m)|1≤i,j≤N ,

where all fi, which are functions of s, x=(x1, x2, x3, . . . ),m=(m1, m2, m3, . . . ),
satisfy the following linear equations

∂

∂xj
fi(s, x,m) = fi(s + j, x,m),(4)

1
cj

(
1 − exp

(
− ∂

∂mj

))
fi(s, x,m) = fi(s + 1, x,m),(5)
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for i = 1, 2, . . . , N and j = 1, 2, . . . . Hereafter the unshifted independent
variables are often omitted and only the shifted variables are written down
explicitly. For example, Eq. (5) is rewritten as (fi(s;mj)− fi(s;mj − 1))/cj =
fi(s + 1; mj). Furthermore, Date, Jimbo and Miwa developed Sato’s idea as a
method for generating discrete soliton equations from the bilinear differential
equations [1], [2], [3], [4], [5], [6]. Their method is based on the “transformation
groups” theory developed by themselves and their collaborators. In this paper,
we will introduce sets of infinite number of discrete variables suitable for the
discrete analogues of the 2DTL hierarchy.

The purpose of this paper is to present a discrete analogue of the 2DTL
hierarchy which includes the discrete-time 2DTL equation [9] by extending the
theory of the 2DTL hierarchy, and to investigate special solutions expressed by
Casorati determinants and a bilinear expression of the discrete analogue of the
2DTL hierarchy. A part of this paper’s result was announced in [18]. The key
is a discrete analogue of the Sato equation introduced in Section 3.

This paper is planned as follows. We will build up a theory of the discrete-
analogue of the 2DTL hierarchy. Our theory is much indebted to the results
of Ueno-Takasaki [19]. In Section 2, we give a brief review of the continuous-
time 2DTL hierarchy. In Section 3, we present suitable Sato type equations
and obtain the Lax type equations and the Zakharov-Shabat type equations of
the discrete analogue of the 2DTL hierarchy. In Section 4, we discuss special
solutions of Casorati determinant form to the discrete Sato equations by con-
sidering a simultaneous equation. In Section 5, we derive a part of infinitely
many bilinear equations explicitly. In Section 6, an infinite matrix expression
of the hierarchy of the discrete-time 2DTL equations is given in a discrete Lax
form. The last section is devoted to concluding remarks.

The author would like to thank Professor R. Hirota and Y. Nakamura for
useful discussions and continuous encouragements.

§2. Toda Lattice Hierarchy

In this section, we give a brief review of the 2DTL hierarchy proposed by
Ueno-Takasaki [19]. First of all, we start from the following difference operators

W (∞) = 1 + w
(∞)
1 e−∂s + w

(∞)
2 e−2∂s + w

(∞)
3 e−3∂s + · · · ,(6a)

W (0) = w
(0)
0 + w

(0)
1 e∂s + w

(0)
2 e2∂s + w

(0)
3 e3∂s + · · · ,(6b)

where ∂s denotes ∂/∂s, e∂s is a shift operator, and the coefficients of ej∂s

of L and M are functions of s, x = (x1, x2, . . . ), y = (y1, y2, . . . ), namely
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w
(∞)
1 = w

(∞)
1 (s, x, y), and so on. Here x and y indicate continuous independent

variables, and s denotes a discrete independent variable where s is sometimes
called a discrete spatial variable. These operators W (∞) and W (0) play an im-
portant role not only in the 2DTL hierarchy, but also in the discrete analogue
of the 2DTL hierarchy.

Let L and M be difference operators defined by

L = W (∞)e∂sW (∞)−1(7a)

= e∂s + u1 + u2e
−∂s + u3e

−2∂s + · · · ,

M = W (0)e−∂sW (0)−1(7b)

= v0e
−∂s + v1 + v2e

∂s + v3e
2∂s + · · · .

From parts of the operators L and M , the operators Bn, Cn are defined by

Bn = (Ln)+,

Cn = (Mn)−,

where the suffices + and − mean parts which do not include e−∂s , e−2∂s , . . . ,
and e0∂s , e∂s , e2∂s , . . . , respectively. We introduce time evolution equations of
W (∞) and W (0), the Sato type equations of the 2DTL hierarchy, by

∂W (∞)

∂xn
= BnW (∞) − W (∞)en∂s ,(8a)

∂W (∞)

∂yn
= CnW (∞) − W (∞)e−n∂s ,(8b)

∂W (0)

∂xn
= BnW (0) − W (0)en∂s ,(8c)

∂W (0)

∂yn
= CnW (0) − W (0)e−n∂s ,(8d)

for n = 1, 2, 3, . . . .
From Eqs. (7) and (8), the 2DTL hierarchy is formulated as a system of

infinite number of the Lax type equations

∂L

∂xn
= [Bn, L],(9a)

∂L

∂yn
= [Cn, L],(9b)

∂M

∂xn
= [Bn, M ],(9c)

∂M

∂yn
= [Cn, M ],(9d)
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or equivalently, the Zakharov-Shabat type equations

∂Bm

∂xn
− ∂Bn

∂xm
+ [Bm, Bn] = 0,(10a)

∂Cm

∂yn
− ∂Cn

∂ym
+ [Cm, Cn] = 0,(10b)

∂Bm

∂yn
− ∂Cn

∂xm
+ [Bm, Cn] = 0,(10c)

which gives an infinite number of nonlinear differential-difference equations.
The bracket [X, Y ] means XY − Y X . From (9) or (10) by setting m = n = 1,
we obtain the 2DTL equation

∂

∂x1
v0(s) = v0(s) (u1(s) − u1(s − 1)) ,

∂

∂y1
u1(s) =−v0(s + 1) + v0(s),

as a simple example.

§3. Discrete Analogue of Toda Lattice Hierarchy

A natural extension of the 2DTL theory will be made in this section. It
is shown that discrete analogues of the Sato equations, the Lax type equations
and the Zakharov-Shabat type equations for the 2DTL hierarchy can be derived
from suitable difference operators in which we introduce infinite number of
discrete variables. We give some explicit examples including the discrete 2DTL
equation [9] as the simplest nontrivial one.

Using the difference operators W (∞), W (0) which are introduced in the
preceding section, we define the following difference operators Ln and Mn by

Ln = e∂kn W (∞)e−∂kn en∂sW (∞)−1(11a)

= en∂s + u
(n)
1 e(n−1)∂s + u

(n)
2 e(n−2)∂s + u

(n)
3 e(n−3)∂s + · · · ,

Mn = e∂ln W (0)e−∂ln e−n∂sW (0)−1(11b)

= v
(n)
0 e−n∂s + v

(n)
1 e(1−n)∂s + v

(n)
2 e(2−n)∂s + v

(n)
3 e(3−n)∂s + · · · ,

where the coefficients of ej∂s in Ln and Mn are functions of s, x = (x1, x2, . . . ),
y = (y1, y2, . . . ), and also k = (k1, k2, . . . ), l = (l1, l2, . . . ), namely u

(n)
j =

u
(n)
j (s, x, y, k, l), v

(n)
j = v

(n)
j (s, x, y, k, l). Here s, k, l denote discrete indepen-

dent variables.
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Let us suppose that W (∞) and W (0) satisfy discrete analogues of the Sato
equations

∆kn

(
W (∞)

)
= BnW (∞) − e∂kn W (∞)e−∂kn en∂s ,(12a)

∆ln

(
W (∞)

)
= CnW (∞) − e∂ln W (∞)e−∂ln e−n∂s ,(12b)

∆kn

(
W (0)

)
= BnW (0) − e∂kn W (0)e−∂kn en∂s ,(12c)

∆ln

(
W (0)

)
= CnW (0) − e∂ln W (0)e−∂ln e−n∂s ,(12d)

where the difference operators Bn, Cn are defined by

Bn = (Ln)+,

Cn = (Mn)−.

Here we also define the difference operators ∆kn and ∆ln by

∆kn =
1
an

(e∂kn − 1),

∆ln =
1
bn

(e∂ln − 1),

where a1, a2, . . . , b1, b2, . . . are difference step sizes for the discrete independent
variables k1, k2, . . . , l1, l2, . . . , respectively.

Now let us derive a discrete analogue of the Lax equations (9) from
Eqs. (11) and (12). If we notice that

∆kn(W (∞)W (∞)−1) = ∆kn(W (∞))W (∞)−1 + e∂kn W (∞)e−∂kn ∆kn(W (∞)−1)

= 0,

we get

∆kn(W (∞)−1) =−e∂kn W (∞)−1e−∂kn ∆kn

(
W (∞)

)
W (∞)−1

=−e∂kn W (∞)−1e−∂knBn + en∂sW (∞)−1.

By employing the equation above, a discrete Lax equation corresponding to the
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Lax equation (9a) is given as follows

∆kn(Lm) = e∂km ∆kn(W (∞))e−∂km em∂sW (∞)−1

+e∂km+∂kn W (∞)e−∂km−∂kn em∂s∆kn(W (∞)−1)

= e∂km (BnW (∞) − e∂kn W (∞)e−∂kn en∂s)e−∂km em∂sW (∞)−1

+e∂km+∂kn W (∞)e−∂km−∂kn +em∂s(en∂sW (∞)−1 − e∂kn W (∞)−1e−∂knBn)

= e∂kmBnW (∞)e−∂km em∂sW (∞)−1

−e∂km+∂kn W (∞)e−∂km em∂sW (∞)−1e−∂knBn

= e∂kmBne−∂kmLm − e∂knLme−∂knBn.

As a consequence of the same procedure, we obtain discrete analogues of the
Lax equations (9)

∆kn(Lm) = [Bn,Lm]km,kn , m �= n,(13a)

∆ln(Lm) = [Cn,Lm]km,ln ,(13b)

∆kn(Mm) = [Bn,Mm]lm,kn ,(13c)

∆ln(Mm) = [Cn,Mm]lm,ln , m �= n,(13d)

0 = [Lm,Ln]kn,km ,(13e)

0 = [Mm,Mn]ln,lm ,(13f)

where [X, Y ]x,y indicates e∂xXe−∂xY − e∂yY e−∂yX . Eqs. (13e) and (13f) are
readily verified from the definition of Lm,Mm.

The equations (13) can be expressed equivalently as

∆km(Bn) − ∆kn(Bm) + [Bn,Bm]km,kn = 0,(14a)

∆lm(Cn) − ∆ln(Cm) + [Cn, Cm]lm,ln = 0,(14b)

∆lm(Bn) − ∆kn(Cm) + [Bn, Cm]lm,kn = 0,(14c)

which are discrete analogues of the Zakharov-Shabat equations (10).
Let us give a proof of (14). We can derive Eq. (14a) from Eqs. (13a) and

(13e) as the following way

∆km(Ln) − ∆kn(Lm) = [Bm,Ln]kn,km − [Bn,Lm]km,kn

= [Lm − Lm,Ln]kn,km − [Bn,Lm]km,kn

= [Ln,Lm]km,kn − [Bn,Lm]km,kn

= [Bn + Ln,Lm]km,kn − [Bn,Bm + Lm]km,kn

= [Ln,Lm]km,kn − [Bn,Bm]km,kn ,
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where Lm denotes (Lm)−. Then we take the plus part of the equation above,
and obtain (14a).

Next we can obtain Eq. (14c) from Eqs. (13d) and (13f) as follows. Note
that

∆lm(Mn) − ∆ln(Mm) = [Cm,Mn]ln,lm − [Cn,Mm]lm,ln

= [Mm −Mm,Mn]ln,lm − [Cn,Mm]lm,ln

= [Mn,Mm]lm,ln − [Cn,Mm]lm,ln

= [Cn + Mn,Mm]lm,ln − [Cn, Cm + Mm]lm,ln

= [Mn,Mm]lm,ln − [Cn, Cm]lm,ln .

Then we take the plus part of the equation above, and obtain (14c).
Finally we show that (14b) is given from (13). Eqs. (13b) and (13c)

∆lnLm = [Cn,Lm]km,ln ,

∆knMm = [Bn,Mm]lm,kn ,

are rewritten as

∆ln(Bm) − [Cn,B(k)
m ]km,ln = −∆ln(Lm) + [Cn,Lm]km,ln ,(15a)

∆kn(Mm) − [Bn,Mm]lm,kn = −∆kn(Cm) + [Bn, Cm]lm,kn ,(15b)

where Mm denotes (Mm)+, respectively. By summing Eqs. (15), we have

∆lm(Bn) + ∆kn(Mm)− [Bn,Mm]lm,kn

= −∆kn(Cm) − ∆lm(Ln) + [Cm,Ln]kn,lm .

Taking the plus part of the equation above, we find that

∆lm(Bn) + ∆kn(Mm) − [Bn,Mm]lm,kn = 0.(16)

Substituting (15a) into (16), we obtain (14b).
From Eqs. (13) or (14), we obtain an infinite number of nonlinear difference

equations that we name the discrete analogue of the Toda lattice hierarchy. For
example, from (14c) by setting m = n = 1, we obtain

∆l1u
(1)
1 (s; k1, l1) + v

(1)
0 (s + 1; k1, l1)

−v
(1)
0 (s; k1 + 1, l1) = 0

−∆k1v
(1)
0 (s; k1, l1) + u

(1)
1 (s; k1, l1 + 1)v(1)

0 (s; k1, l1)

−v
(1)
0 (s; k1 + 1, l1)u

(1)
1 (s − 1; k1, l1) = 0

,(17)
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which is just the discrete 2DTL equation [9]. Moreover, we derive from (14c)
by setting m = 1, n = 2

∆l1u
(2)
1 (s; k2, l1) + v

(1)
0 (s + 2; k2, l1) − v

(1)
0 (s; k2 + 1, l1) = 0

∆l1v
(2)
2 (s; k2, l1) + u

(2)
1 (s; k2, l1 + 1)v(1)

0 (s + 1; k2, l1)

−v
(1)
0 (s; k2 + 1, l1)u

(2)
1 (s − 1; k2, l1) = 0

−∆k2v
(1)
0 (s; k2, l1) + u

(2)
2 (s; k2, l1 + 1)v(1)

0 (s; k2, l1)

−v
(1)
0 (s; k2 + 1, l1)u

(2)
2 (s − 1; k2, l1) = 0

.

An infinite number of differential-difference equations with respect to the
variables x, y, k, l is also obtained from Eqs. (8) and (12) as

∂Bn

∂xm
− (∆knBm) =

(
e∂kn Bm

)Bn − BnBm,

∂Bn

∂ym
− (∆knCm) =

(
e∂kn Cm

)Bn − BnCm,

∂Cn

∂xm
− (∆lnBm) =

(
e∂ln Bm

) Cn − CnBm,

∂Cn

∂ym
− (∆lnCm) =

(
e∂ln Cm

) Cn − CnCm.

Some examples of integrable differential-difference equations are then
u

(1)
1 (s; k1)+u1(s+1; k1) = u

(1)
1 (s+1; k1)+u1(s; k1+1)

∂

∂x1
u

(1)
1 (s; k1) − u1(s; k1+1)− u1(s; k1)

a1

= u
(1)
1 (s; k1) (u1(s; k1+1)− u1(s; k1))

,



∂

∂y1
u

(1)
1 (s; k1) = v0(s; k1+1) − v0(s+1; k1)

v0(s; k1+1) − v0(s; k1)
a1

= v0(s; k1)u
(1)
1 (s; k1) − v0(s; k1+1)u(1)

1 (s−1; k1)

,


∂

∂x1
log v

(1)
0 (s; l1) = u1(s; l1+1)− u1(s−1; l1)

u1(s; l1+1) − u1(s; l1)
b1

= v
(1)
0 (s; l1) − v

(1)
0 (s−1; l1)

,


∂

∂y1
v
(1)
0 (s; l1) =

v0(s; l1+1)− v0(s; l1)
b1

v0(s; l1+1)− v
(1)
0 (s−1; l1) = v

(1)
0 (s; l1) − v0(s−1; l1)

.
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§4. Solutions of Casorati Determinant Form

In this section, we give special solutions of Casorati determinant form
to the discrete analogue of the 2DTL hierarchy, originally proposed by Ueno-
Takasaki [19].

We first consider a formal difference operator WN , which depends on s, x =
(x1, x2, . . . ), y = (y1, y2, . . . ), k = (k1, k2, . . . ), and l = (l1, l2, . . . ), defined by

WN (s, x, y, k, l) = eN∂s + w1e
(N−1)∂s + w2e

(N−2)∂s + · · · + wN .(18)

The operator WN is determined by the simultaneous difference equation

WN (s, x, y, k, l)fj(s, x, y, k, l) = 0(19)

for j = 1, . . . , N , where fj are the linearly independent functions in s. Namely,
if we give a set of functions {fj}j=1,2,... ,N , the dependent variables wj is ex-
pressed as

wj = −|f(s), . . . , f(s + N−j−1), f(s+N), f(s + N−j+1), . . . , f(s+N−1)|
|f(s), . . . , f(s + N − 1)|

(20)

for j = 1, . . . , N , where we have introduced a new notation of determinant for
simplicity,

|f(s), f(s + 1), · · · , f(s + N − 1)|

≡ det

∣∣∣∣∣∣∣∣∣∣
f1(s) f1(s + 1) · · · f1(s + N − 1)
f2(s) f2(s + 1) · · · f2(s + N − 1)

...
...

. . .
...

fN (s) fN (s + 1) · · · fN (s + N − 1)

∣∣∣∣∣∣∣∣∣∣
.

The determinant |f(s), · · · , f(s+N−1)| is called a Casorati determinant which
is a discrete analogue of Wronskian.

Let us define (x, y, k, l)-dependence of fj(s, x, y, k, l) as

∂fj(s)
∂xn

= fj(s + n),(21a)

∂fj(s)
∂yn

= fj(s − n),(21b)

∆knfj(s) = fj(s + n),(21c)

∆lnfj(s) = fj(s − n),(21d)
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for j = 1, 2, . . . , N and n = 1, 2, . . . .
Under the above conditions, one can show that the difference operator WN

satisfies the following equations,

∂WN

∂xn
= BnWN − WNen∂s ,(22a)

∂WN

∂yn
= CnWN − WNe−n∂s ,(22b)

∆kn (WN ) = BnWN − e∂kn WNe−∂kn en∂s ,(22c)

∆ln (WN ) = CnWN − e∂ln WNe−∂ln e−n∂s ,(22d)

where the operators Bn, Cn,Bn, Cn satisfy

Bn = (Bn)+, Cn = (Cn)−,

Bn = (Bn)+, Cn = (Cn)−.

To prove Eqs. (22), we use the following lemma. (A proof of Eqs. (22a)
and (22b) can be found in [19].)

Lemma 4.1 ([19]). For any difference operator U = u0 + u1e
∂s +

u2e
2∂s + · · · , there exist two operators Q and R uniquely such that

U = QWN + R,

Q =
∑
j≥0

qj(s)ej∂s , R =
N−1∑
j=0

rj(s)ej∂s .

Similarly, for any difference operator U ′ = u′
0 + u′

1e
−∂s + u′

2e
−2∂s + · · · , there

exist two operators Q′ and R′ uniquely such that
U ′ = Q′WNe−N∂s + R′,

Q′ =
∑
j≤0

q′j(s)e
j∂s , R′ =

0∑
j=1−N

r′j(s)e
j∂s .

We first prove Eq. (22c). By using a difference analogue of the Leibniz
rule

∆n (f(n)g(n)) = ∆n(f(n))g(n) + f(n + 1)∆n(g(n)),

we can find

(∆kn(WN ) + e∂kn WNe∂−kn en∂s)fn = 0 (n = 1, . . . , N)
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from Eq. (19). Lemma 4.1 implies that there exist certain difference operators
Bn, and Rn of the form

Bn =
∑
j≥0

βj(s, x, y, k, l)ej∂s ,

Rn =
N−1∑
j=0

γj(s, x, y, k, l)ej∂s

such that

∆kn(WN ) + e∂kn WNe−∂kn en∂s = BnWN + Rn.

Then we get

(∆kn(WN ) + e∂kn WNe−∂kn en∂s)fj = (BnWN + Rn)fj = 0

and

Rnfj = 0

for j = 1, . . . , N . We conclude that Rn = 0, since fj are the linearly indepen-
dent functions in s. Hence Eq. (22c) holds. The proof of Eqs. (22a), (22b) and
(22d) are given in the same procedure.

From Eqs. (22), we find that the difference operators Bn, Cn,Bn, Cn are
written in term of WN as

Bn = (WNe−N∂sen∂s(WNe−N∂s)−1)+,

Cn = (WNe−n∂s(WN )−1)−,

Bn = (e∂kn WNe∂−kn e−N∂sen∂s(WNe−N∂s)−1)+,

Cn = (e∂ln WNe−∂ln en∂s(WN )−1)−,

and the coefficients of these operators are represented by using the Casorati-
type determinants (20). If we set

W (∞) = WNe−N∂s ,

W (0) = WN ,

we can show that these operators W (∞) and W (0) solve the Sato equations (8)
and (12), as a consequence of Eqs. (22).
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§5. τ Function and Hirota’s Bilinear Equations

Here we introduce a τ function which is a dependent variable in Hirota’s
bilinear equations. In this section, we reveal the τ function of the discrete
analogue of the 2DTL hierarchy which is proposed in Section 3, and derive a
part of infinitely many bilinear equations explicitly.

In the theory of the 2DTL hierarchy [19], it is known that the τ functions
for the 2DTL hierarchy are defined through the functions w

(∞)
j and w

(0)
j . As

we have shown in the preceding Section 3, the discrete analogue of the 2DTL
hierarchy shares the difference operators W (∞), W (0) with the continuous-time
2DTL hierarchy. The τ function for the discrete analogue of the 2DTL hi-
erarchy depends on s, x = (x1, x2, . . . ), y = (y1, y2, . . . ), k = (k1, k2, . . . ), and
l = (l1, l2, . . . ), and is also defined through the function

w
(∞)
j =

pj(−∂̃x)τ(s, x, y, k, l)
τ(s, x, y, k, l)

,(24a)

w
(0)
j =

pj(−∂̃y)τ(s + 1, x, y, k, l)
τ(s, x, y, k, l)

,(24b)

where pj , j = 1, 2, . . . , are polynomials defined by

exp

( ∞∑
n=1

tnλn

)
=

∞∑
j=0

pj(t1, t2, . . . )λj ,(25)

and ∂̃x, ∂̃y are differential operators given by

∂̃x =
(

∂

∂x1
,
1
2

∂

∂x2
,
1
3

∂

∂x3
, . . .

)
,(26a)

∂̃y =
(

∂

∂y1
,
1
2

∂

∂y2
,
1
3

∂

∂y3
, . . .

)
.(26b)

Moreover, it is known that the difference operator W (∞)−1 and W (0)−1 are
written in terms of the τ functions as

W (∞)−1 = 1 + e−∂sw
(∞)∗
1 (s + 1) + e−2∂sw

(∞)∗
2 (s + 1) + · · · ,(27a)

W (0)−1 = w
(0)∗
0 (s + 1) + e∂sw

(0)∗
1 (s + 1) + e2∂sw

(0)∗
2 (s + 1) + · · · ,(27b)

where

w
(∞)∗
j =

pj(∂̃x)τ(s, x, y, k, l)
τ(s, x, y, k, l)

,(28a)

w
(0)∗
j =

pj(∂̃y)τ(s − 1, x, y, k, l)
τ(s, x, y, k, l)

.(28b)
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From Eqs. (12) we have

Bn =
(
∆kn(W (∞)) + e∂kn W (∞)e−∂kn en∂s

)
W (∞)−1

=
(
∆kn(W (0)) + e∂kn W (0)e−∂kn en∂s

)
W (0)−1,

Cn =
(
∆ln(W (∞)) + e∂ln W (∞)e−∂ln e−n∂s

)
W (∞)−1

=
(
∆ln(W (0)) + e∂ln W (0)e−∂ln e−n∂s

)
W (0)−1.

Hence we obtain the following relations

1
an

e∂kn W (∞)e−∂kn W (∞)−1 + e∂kn W (∞)e−∂kn en∂sW (∞)−1(30a)

=
1
an

e∂kn W (0)e−∂kn W (0)−1 + e∂kn W (0)e−∂kn en∂sW (0)−1,

1
bn

e∂ln W (∞)e−∂ln W (∞)−1 + e∂ln W (∞)e−∂ln e−n∂sW (∞)−1(30b)

=
1
bn

e∂ln W (0)e−∂ln W (0)−1 + e∂ln W (0)e−∂ln e−n∂sW (0)−1,

which are generating relations of infinite number of bilinear equations. From
the definition of the D operator (3), we have the following formula

∑
i+j=k

pi(−∂̃x)u(x) · pj(∂̃x)v(x) = pk(−D̃x)u(x) · v(x),(31)

where D̃x, D̃y are defined by

D̃x =
(

Dx1 ,
1
2
Dx2 ,

1
3
Dx3 , . . .

)
, D̃y =

(
Dy1 ,

1
2
Dy2 ,

1
3
Dy3 , . . .

)
.

Hereafter the unshifted independent variables of the τ function are often
omitted for simplicity and only the shifted variables are written down explicitly.
For example, e∂kn τ(s, x, y, k, l) and e∂ln τ(s, x, y, k, l) are written as τ(s; kn +1)
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and τ(s; ln + 1), respectively. Substituting Eqs. (6) into (30a), we have

l.h.s. of (30a)

=

( ∞∑
i=0

pi(−∂̃x)τ(s; kn + 1)
τ(s; kn + 1)

e−i∂s

) 1
an

∞∑
j=0

e−j∂s
pj(∂̃x)τ(s + 1; kn)

τ(s + 1; kn)


+

( ∞∑
i=0

pi(−∂̃x)τ(s; kn + 1)
τ(s; kn + 1)

e−i∂s

)
en∂s

 ∞∑
j=0

e−j∂s
pj(∂̃x)τ(s + 1; kn)

τ(s + 1; kn)


=

1
an

∞∑
i,j=0

pi(−∂̃x)τ(s; kn + 1) · pj(∂̃x)τ(s − i − j + 1; kn)
τ(s; kn + 1)τ(s − i − j + 1; kn)

e−(i+j)∂s

+
∞∑

i,j=0

pi(−∂̃x)τ(s; kn + 1) · pj(∂̃x)τ(s − i − j + n + 1; kn)
τ(s; kn + 1)τ(s − i − j + n + 1; kn)

e(n−i−j)∂s ,

and

r.h.s. of (30a)

=

( ∞∑
i=0

pi(−∂̃y)τ(s + 1; kn + 1)
τ(s; kn + 1)

ei∂s

) 1
an

∞∑
j=0

ej∂s
pj(∂̃y)τ(s; kn)
τ(s + 1; kn)


+

( ∞∑
i=0

pi(−∂̃y)τ(s + 1; kn + 1)
τ(s; kn + 1)

ei∂s

)
en∂s

 ∞∑
j=0

ej∂s
pj(∂̃y)τ(s; kn)
τ(s + 1; kn)


=

1
an

∞∑
i,j=0

pi(−∂̃y)τ(s + 1; kn + 1) · pj(∂̃y)τ(s + i + j; kn)
τ(s; kn + 1)τ(s + i + j + 1; kn)

e(i+j)∂s

+
∞∑

i,j=0

pi(−∂̃y)τ(s + 1; kn + 1) · pj(∂̃y)τ(s + i + j + n; kn)
τ(s; kn + 1)τ(s + i + j + n + 1; kn)

e(i+j+n)∂s .

Thus from the m-th coefficients of (30a), we have

1
an

∑
i+j=−m≥0

pi(−∂̃x)τ(s; kn + 1) · pj(∂̃x)τ(s + m + 1; kn)
τ(s; kn + 1)τ(s + m + 1; kn)

+
∑

i+j=n−m≥0

pi(−∂̃x)τ(s; kn + 1) · pj(∂̃x)τ(s + m + 1; kn)
τ(s; kn + 1)τ(s + m + 1; kn)

=
1
an

∑
i+j=m≥0

pi(−∂̃y)τ(s + 1; kn + 1) · pj(∂̃y)τ(s + m; kn)
τ(s; kn + 1)τ(s + m + 1; kn)

+
∑

i+j=m−n≥0

pi(−∂̃y)τ(s + 1; kn + 1) · pj(∂̃y)τ(s + m; kn)
τ(s; kn + 1)τ(s + m + 1; kn)
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or equivalently, a system of bilinear equations

(p−m(−D̃x)+anpn−m(−D̃x))τ(s; kn+1)·τ(s+m+1; kn)
= 0, −∞ < m < 0

(anpn(−D̃x)+1)τ(s; kn+1)·τ(s+1; kn)
= τ(s+1; kn+1)τ(s; kn), m = 0

anpn−m(−D̃x)τ(s; kn+1)·τ(s+m+1; kn)
= pm(−D̃y)τ(s+1; kn+1)·τ(s+m; kn), 0 < m < n

anτ(s; kn+1)τ(s+n+1; kn)
= (pn(−D̃y)+an)τ(s+1; kn+1)·τ(s+n; kn), m = n

(pm(−D̃y)+anpm−n(−D̃y))τ(s+1; kn+1)·τ(s+m; kn)
= 0, n < m < ∞

(32)

for n = 1, 2, . . . , m = . . . ,−1, 0, 1, 2, . . . , where we have used Eq. (31). Simi-
larly, we obtain the other infinite number of bilinear difference equations from
(30b) 

(p−m(−D̃x)+bnp−n−m(−D̃x))τ(s; ln+1)·τ(s+m+1; ln)
= 0, −∞ < m < −n

(pn(−D̃x)+bn)τ(s; ln+1)·τ(s−n+1; ln)
= bnτ(s+1; ln+1)τ(s−n; ln), m = −n

p−m(−D̃x)τ(s; ln+1)·τ(s+m+1; ln)
= bnpm+n(−D̃y)τ(s+1; ln+1)·τ(s+m; ln), − n < m < 0

τ(s; ln+1)τ(s+1; ln)
= (bnpn(−D̃y)+1)τ(s+1; ln+1)·τ(s; ln), m = 0

(pm(−D̃y)+bnpm+n(−D̃y))τ(s+1; ln+1)·τ(s+m; ln)
= 0, 0 < m < ∞

(33)

for n = 1, 2, . . . , m = . . . ,−1, 0, 1, 2, . . . . Eqs. (32) and (33) are the bilinear
equations of the discrete analogue of the 2DTL hierarchy. Starting from these
bilinear equations, we can derive the discrete equations. For example, from
Eq. (32) by setting m = 0, n = 1

(−a1Dx1 + 1)τ(s; k1 + 1) · τ(s + 1; k1) = τ(s + 1; k1 + 1)τ(s; k1)

and Eq. (33) by setting m = −1, n = 1

(−Dx1 + b1)τ(s; l1 + 1) · τ(s; l1) = b1τ(s + 1; l1 + 1)τ(s − 1; l1)

we obtain the discrete 2DTL equation (17). Here we set the dependent variables
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u
(1)
1 , v

(1)
0 as

u
(1)
1 = w

(∞)
1 (s; k1 + 1, l1) + w

(∞)∗
1 (s + 1; k1, l1),(34)

v
(1)
0 = w

(0)
0 (s; k1, l1 + 1)w(0)∗

0 (s; k1, l1),(35)

which are determined by the definition (11).

§6. Matrix Form of Discrete 2DTL Hierarchy

We have developed a theory of a discrete analogue of the 2DTL hierarchy
by operator formalism. In Section 3 we have proposed three types of expressions
(12), (13) and (14) for the discrete analogue of the 2DTL hierarchy. Those
expressions are slightly complicated, so we give another expression by using
matrix forms.

First we rewrite the discrete Zakharov-Shabat equations (14) by using
difference operators Bn and Cn as

(1 + anBn(km+1, kn))(1+amBm(km, kn))

= (1 + amBm(km, kn + 1))(1 + anBn(km, kn)),

(1 + bnCn(lm + 1, ln))(1 + bmCm(lm, ln))

= (1 + bmCm(lm, ln + 1))(1 + bnCn(lm, ln)),

(1 + anBn(kn, lm + 1))(1 + bmCm(kn, lm))

= (1 + bmCm(kn + 1, lm))(1 + anBn(kn, lm)).

The discrete analogue of the 2DTL hierarchy can be formulated by infinite
matrices Rn, Ln which are equivalent to the difference operators (1+anBn) and
(1+bmCm), respectively. Let us introduce

Rn =



· · · −1 0 1 · · · n−1 n · · ·
...

. . . . . . . . . . . . . . . 0−1 I
(n,0)
s−1 · · · · · · · · · 1

0 I
(n,0)
s · · · · · · I

(n,n−1)
s 1

1 I
(n,0)
s+1 · · · · · · I

(n,n−1)
s+1

...
. . .

. . .
. . .

. . .

n−1 I
(n,1)
s+n−1

. . . . . .

n I
(n,0)
s+n

. . .

n+1 0 ...
...

. . .



,
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Ln =



· · · −n 1−n · · · −1 0 1 · · ·
...

. . .

−n
. . . 1 0

1−n
. . . . . . 1

...
. . . . . . . . . . . .

−1
. . . . . . . . . . . . 1

0 V
(n,n)
s · · · · · · V

(n,1)
s 1

1 V
(n,n)
s+1 · · · · · · V

(n,1)
s+1 1

... 0 .. .
. . .

. . .
. . .

. . .


.

Here the dependent variables I
(n,0)
s , I

(n,1)
s , I

(n,2)
s , . . . , V

(n,1)
s , V

(n,2)
s , . . . are

given by

I
(n,0)
s = 1 + anu

(n)
n (s), I

(n,1)
s = anu

(n)
n−1(s),

I
(n,2)
s = anu

(n)
n−2(s), · · · ,

V
(n,1)
s = bnv

(n)
n−1(s), V

(n,2)
s = bnv

(n)
n−2(s),

V
(n,3)
s = bnv

(n)
n−3(s), · · · .

The products infinite matrices LmRn and RmLn for m, n = 1, 2, . . . are well-
defined. See Ueno-Takasaki [19], p. 4.

Then the discrete analogue of the 2DTL hierarchy (13) or (14) can be
written in the following discrete Lax forms

Rm(km, kn + 1)Rn(km, kn) = Rn(km + 1, kn)Rm(km, kn),(36a)

Lm(lm, ln + 1)Ln(lm, ln) = Ln(lm + 1, ln)Lm(lm, ln),(36b)

Rn(km + 1, ln)Lm(km, ln) = Lm(km, ln + 1)Rn(km, ln),(36c)

for m, n = 1, 2, . . . , which is a generalization to infinite matrices of the LR
factorization algorithm.

§7. Concluding Remarks

In this paper, we have presented a discrete analogue of the 2DTL hierarchy
by using the formulation of the continuous-time 2DTL hierarchy [19]. It has
been shown that the subjects originated from the Sato theory are useful for
the discrete-time integrable systems. The difference operators W (∞) and W (0)

introduced by Ueno-Takasaki [19] also play an important role in the discrete-
time analogue of the 2DTL hierarchy, likewise in the continuous-time 2DTL
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hierarchy. This framework might be applicable to other discrete-time soliton
equations.

We have introduced an infinite number of discrete-time variables in the dis-
crete Sato equation (12) which governs the discrete-time evolutions. Miwa [10]
also introduced an infinite number of discrete-time variables of the discrete KP
equation as we have seen in Introduction. There is an interesting contrast in
the linear equations appeared in the special solutions of the Casorati determi-
nant form. Namely, the orders of the linear equations (5) of the discrete KP
equation are all same, while the orders of the linear equations (21c), (21d) of
the discrete analogue of the 2DTL hierarchy are different from each other. We
can introduce a more general case where the linear equations of the discrete
analogue of the 2DTL hierarchy are given as

∆
�kn

fj(s) = fj(s + n) +
n−1∑
i=1

αnifj(s + n − i),(37a)

∆
�ln

fj(s) = fj(s − n) +
n−1∑
i=1

βnifj(s − n + i),(37b)

where k̃n, l̃n, n = 1, 2, . . . are new discrete variables, and αij , βij , i, j = 1, 2, . . .

are constants. In this case, we can derive a generalized discrete Sato equations

∆
�kn

(
W (∞)

)
= B̃nW (∞) − e∂

�kn W (∞)e−∂
�kn

(
en∂s +

n−1∑
i=1

αnie
(n−i)∂s

)
,(38a)

∆
�ln

(
W (∞)

)
= C̃nW (∞) − e∂

�ln W (∞)e−∂
�ln

(
e−n∂s +

n−1∑
i=1

βnie
(i−n)∂s

)
,(38b)

∆
�kn

(
W (0)

)
= B̃nW (0) − e∂

�kn W (0)e−∂
�kn

(
en∂s +

n−1∑
i=1

αnie
(n−i)∂s

)
,(38c)

∆
�ln

(
W (0)

)
= C̃nW (0) − e∂

�ln W (0)e−∂
�ln

(
e−n∂s +

n−1∑
i=1

βnie
(i−n)∂s

)
,(38d)

where the difference operators B̃n and C̃n are defined as

B̃n = e∂
�kn W (∞)e−∂

�kn

(
en∂s +

n−1∑
i=1

αnie
(n−i)∂s

)
W (∞)−1,

C̃n = e∂
�ln W (0)e−∂

�ln

(
e−n∂s +

n−1∑
i=1

βnie
(i−n)∂s

)
W (0)−1.
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If we choose the constants αij , i, j = 1, 2, . . . suitably, one can find the following
relationship between the discrete KP hierarchy and the discrete analogue of the
2DTL hierarchy

e−∂
�kn f(s) = e∂m1+∂m2+···+∂mn f(s).

Thus each discrete variable k̃n of the discrete analogue of the 2DTL hierarchy
correspond to the unit of n discrete variables m1, m2, . . . , mn of the discrete
KP hierarchy.
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