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Gevrey Asymptotic Theory for Singular First
Order Linear Partial Differential Equations

of Nilpotent Type
— Part II —

By

Masaki Hibino∗

§1. Introduction and Main Results

In this paper, as a continuation of the previous paper [6] which is referred as
“Part I” throughout this paper, we are concerned with the Borel summability of
formal solutions for the following first order linear partial differential equation
of nilpotent type:

Lu(x, y) = f(x, y),
L = 1 + (ay + bxy + cy2)Dx + dy2Dy,

(1.1)

where x, y ∈ C, Dx = ∂/∂x, Dy = ∂/∂y, and a, b, c and d are complex
constants, and f(x, y) is holomorphic at the origin. Throughout this paper, we
always assume that

a �= 0.(1.2)

The reason why we consider this type of equation will be explained in the
end of this section.

As mentioned in Part I, we know that the equation (1.1) has a unique
formal power series solution in O[R][[y]]2 for some R > 0. Here we say that
a formal power series u(x, y) belongs to O[R][[y]]2 if u(x, y) can be written as
u(x, y) =

∑∞
n=0 un(x)yn, where all un(x) are holomorphic on {x ∈ C; |x| ≤ R}

with the estimates max|x|≤R |un(x)| ≤ CKnn!. Therefore the formal solution
of (1.1) is divergent in general.
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580 Masaki Hibino

The purpose of this paper (and Part I as well) is to prove the existence of
a holomorphic solution which has this divergent solution u(x, y) ∈ O[R][[y]]2 as
asymptotic expansion. We have two types of asymptotic expansions: “asymp-
totic expansion in a small sector” and “Borel summability”. Since the asymp-
totic expansion in a small sector was studied in Part I (see the subsection 1.3
also), we will study the Borel summability in this paper as stated above.

Now let us define the concept of our asymptotic expansion which is called
the Borel summability.

Definition 1.1. (1) For θ ∈ R and Y > 0, we define the region O(θ, Y )
by

O(θ, Y ) = {y ∈ C; |y − Y eiθ| < Y }.(1.3)

(2) Let u(x, y) =
∑∞

n=0 un(x)yn ∈ O[R][[y]]2. We say that u(x, y) is
Borel summable in θ–direction if there exists a holomorphic function w(x, y)
on {x ∈ C; |x| ≤ r} × O(θ, Y ) for some r > 0 and Y > 0 which satisfies the
following asymptotic estimates: There exist some positive constants C and K

such that

max
|x|≤r

∣∣∣∣∣w(x, y) −
N−1∑
n=0

un(x)yn

∣∣∣∣∣ ≤ CKNN !|y|N ,(1.4)

for y ∈ O(θ, Y ) and N = 1, 2, . . ..
When u(x, y) is Borel summable in θ–direction, the above function w(x, y)

is unique (see Lutz–Miyake–Schäfke [7]). Therefore we call this w(x, y) the
Borel sum of u(x, y) in θ–direction.

In this paper we study the condition under which the formal solution of
(1.1) is Borel summable. The case c = 0 has been already studied in Part I.
Before stating our main result, let us recall some results obtained in Part I.

§1.1. Results in Part I

In this subsection, we assume c = 0. First, we divide the problem into the
following four cases:

Case (1): b = d = 0,
Case (2): b = 0, d �= 0,
Case (3): b �= 0, d = 0,
Case (4): b, d �= 0.
Now in order to state results in Part I in a specific manner, let us introduce
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some notations. We define the function Φ(x, η) by

Φ(x, η) =



x − aη (Case (1))

x − a
d

log(1 + dη) (Case (2))

(a
b

+ x
)

e−bη − a
b

(Case (3))

(a
b

+ x
)

(1 + dη)−b/d − a
b

(Case (4)),

(1.5)

and define the region Ωr,θ,ρ ⊂ C by

Ωr,θ,ρ = Φ({(x, η) ∈ C; |x| ≤ r, η ∈ E+(θ, ρ)}).(1.6)

Here E+(θ, ρ) is a region defined by

E+(θ, ρ) = {η ∈ C; dist(η,R+eiθ) ≤ ρ},(1.7)

where R+ = [0, +∞).
In Case (2) and Case (4), we assume θ �= arg(−1/d) so that Ωr,θ,ρ is well–

defined. In Case (3) and Case (4), we remark that Ωr,θ,ρ is a region in the

Riemann surface of log
(
x +

a
b

)
.

We remark that Φ(x, η) in Cases (1), (2) and (3) are obtained by taking a
limit from Φ(x, η) in Case (4) as shown in the following diagram:(a

b
+ x
)

(1 + dη)−b/d − a
b

d→0−−−−−→
(a

b
+ x
)

e−bη − a
b�b→0

�b→0

x − a
d

log(1 + dη) −−−−−→
d→0

x − aη.

In Part I, we obtained the following theorem:

Theorem 1.1 (Hibino [6]). Let θ ∈ R and suppose that θ �= arg(−1/d)
in Case (2) and Case (4). Assume that f(x, y) can be continued analytically
to {(x, y) ∈ C2; x ∈ Ωr,θ,ρ, |y| ≤ r′} for some r, ρ and r′ in each case. We
further assume that f(x, y) has the following growth estimate with some positive
constants C and δ : For x ∈ Ωr,θ,ρ,

Case (1):
max
|y|≤r′

|f(x, y)| ≤ Ceδ|x|;(1.8)

Case (2):
max
|y|≤r′

|f(x, y)| ≤ C exp(δep|x|),(1.9)
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where p = |d/a|;
Case (3):

max
|y|≤r′

|f(x, y)| ≤ C exp
{
δ
∣∣∣log

(
x +

a
b

)∣∣∣} ;(1.10)

Case (4):

max
|y|≤r′

|f(x, y)| ≤ C exp
[
δ exp

{∣∣∣∣db
∣∣∣∣ ∣∣∣log

(
x +

a
b

)∣∣∣}] .(1.11)

Then the formal solution u(x, y) of the equation (1.1) with c = 0 is Borel
summable in θ–direction and its Borel sum is a holomorphic solution of (1.1).

§1.2. Main result

In this paper, we want to remove the condition c = 0. To achieve this,
we need some additional conditions for Cases (3) and (4). Let us use the same
notations as in the previous subsection. Then our main result is stated as
follows:

Theorem 1.2. Assume that f(x, y) satisfies the same condition as in
Theorem 1.1. Furthermore in Cases (3) and (4), we assume the following
condition:

Case (3):

c = 0 or �(−beiθ) ≥ 0;(1.12)

Case (4):

c = 0 or �
(
−b

d

)
> −1.(1.13)

Then we have the same conclusion as in Theorem 1.1 for each case.

We will prove this theorem in the Sections 3 through 6. In the proof, we
consider an integro–differential equation (the equation (2.5) below) which is
obtained by applying the formal Borel transformation to (1.1), and prove an
analytic continuation property and an exponential growth estimate for solu-
tions of (2.5) by using the iteration method. For each case, we have to prove
the different type of iteration estimates (cf. the estimates (3.9), (4.9), (5.9) and
(6.10)). We remark that the function Φ(x, η) exactly describes the characteris-
tic curve of the first order linear partial differential operator which appears in
the left hand side of (2.5).
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§1.3. Some remarks

Here we give some remarks for the precedent results.
(1) When c = 0 and f(x, y) is a polynomial with respect to y, we can

obtain the necessary and sufficient condition for the Borel summability (see
Part I). In this case, it is not necessary to require the analytic continuation
property for f(x, y) itself (cf. Theorem 3.2 in [6]).

(2) In the proof of Theorem 1.1 and 1.2, we use Theorem 2.1 (see Lutz–
Miyake–Schäfke [7]) as a fundamental tool. The paper [7] is the first one which
considered the Borel summability for solutions of partial differential equations.
For ordinary differential equations there are many results which can be seen in
Balser [1], [2] and [7] gave the necessary and sufficient condition for the Borel
summability of the formal solution of the heat equation.

(3) In Part I, we also studied the existence of asymptotic solutions in a
small sector. Even if the coefficients a, b, c and d are holomorphic functions, we
can prove the existence of an asymptotic solution by using the Gevrey version
of Borel–Ritt’s Theorem (see Balser [2]). We remark that neither the original
version nor the Gevrey version of Borel–Ritt’s Theorem is useful in discussing
the Borel summability.

Finally we briefly explain the reason why we consider this nilpotent type
of equation. The word “nilpotent” means that the Jacobi matrix at the origin
of the coefficients of the principal part of (1.1) is a nilpotent matrix. Singu-
lar first order equations have been studied, for example, in Gérard–Tahara [4]
and Oshima [12], but they discuss the case where formal solutions converge,
assuming that the Jordan canonical form of the Jacobi matrix has no nilpotent
Jordan block (though in their studies, the Jacobi matrix has non-zero eigenval-
ues instead). The divergence of formal solutions for our equations is caused by
the nilpotent part and therefore, as one of the generalizations of these works,
it is natural to investigate the asymptotic theory for these divergent solutions.

§2. Formal Borel Transform of Equations

Before proving Theorem 1.2, we give some preliminaries. First, we remark
that if the formal solution u(x, y) of (1.1) is Borel summable, then its Borel
sum w(x, y) is a holomorphic solution of (1.1). It is easily proved by using the
uniqueness of the Borel sum (for the detail, see Part I).

Thus in order to prove Theorem 1.2, it is sufficient to prove that the formal
solution u(x, y) is Borel summable under the conditions in the theorem.

When we want to check the Borel summability of a formal power series
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u(x, y) =
∑∞

n=0 un(x)yn ∈ O[R][[y]]2, the following theorem plays a fundamen-
tal role in general.

Theorem 2.1 (Lutz, Miyake and Schäfke [7]). In order that a for-
mal power series u(x, y) =

∑∞
n=0 un(x)yn ∈ O[R][[y]]2 is Borel summable in

θ–direction, the following condition (BS) is necessary and sufficient: Let v(x, η)
be the formal Borel transform of u(x, y) defined by

v(x, η) =
∞∑

n=0

un(x)
ηn

n!
,(2.1)

which is holomorphic in a neighborhood of the origin. Then the condition (BS)
is stated as follows:

(BS) v(x, η) can be continued analytically to {x ∈ C; |x| ≤ r} × E+(θ, ρ)
for some r > 0 and ρ > 0, and has the following exponential growth estimate
for some positive constants C and δ :

max
|x|≤r

|v(x, η)| ≤ Ceδ|η|, η ∈ E+(θ, ρ).(2.2)

When (BS) is satisfied, the Borel sum w(x, y) of u(x, y) in θ–direction is
given by

w(x, y) =
1
y

∫
R+eiθ

e−η/yv(x, η)dη.(2.3)

It is thus sufficient to prove that the formal Borel transform v(x, η) of the
formal solution u(x, y) satisfies the above condition (BS) under the conditions
in the theorem. In order to do that, firstly let us write down the equation which
v(x, η) should satisfy. By the formal Borel transform, the operators y and Dy

are transformed to the operators D−1
η =

∫ η

0

dη and DηηDη, respectively (cf.

the commutative diagrams in the Section 3.1 of Part I. Similar type of diagrams
can be seen also in [7]).

Therefore we see that v(x, η) is a solution of the following equation:

{1 + (a + bx)D−1
η Dx + cD−2

η Dx + dD−1
η ηDη}v(x, η) = g(x, η),(2.4)

where g(x, η) is the formal Borel transform of f(x, y) =
∑∞

n=0 fn(x)yn, that is,

g(x, η) =
∞∑

n=0

fn(x)
ηn

n!
.
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Furthermore by operating Dη to the equation (2.4) from the left, we see that
v(x, η) is a solution of the initial value problem of the following integro–differen-
tial equation:

{(1 + dη)Dη + (a + bx)Dx}v(x, η) = −cD−1
η Dxv(x, η) + h(x, η),

v(x, 0) = f(x, 0),
(2.5)

where h(x, η) = Dηg(x, η).
Theorem 1.2 will be proved by showing that the solution v(x, η) of the

equation (2.5) satisfies the condition (BS).

§3. The Proof of Theorem 1.2 (Case (1))

In Case (1) (b = d = 0), the equation (2.5) is written as follows:

{Dη + aDx}v(x, η) = −cD−1
η Dxv(x, η) + h(x, η),

v(x, 0) = f(x, 0).
(3.1)

We will prove that the solution v(x, η) of (3.1) satisfies the condition (BS)
in Theorem 2.1. First, we remark that in general the solution w(x, η) of the
initial value problem of the following first order linear partial differential equa-
tion

{Dη + aDx}w(x, η) = k(x, η),

w(x, 0) = l(x)
(3.2)

is given by

w(x, η) = l(x− aη) +
∫ η

0

k(x − a(η − t), t)dt.(3.3)

Proof of the theorem. Since the theorem has been already proved in the
case c = 0, we assume that c �= 0. In this case, the equation (3.1) is rewritten
as follows:

{Dη + aDx}v(x, η) = −c
∫ η

0

vx(x, s)ds + h(x, η),

v(x, 0) = f(x, 0).
(3.4)

First, let us transform (3.4) into the integral equation. It follows from
(3.3) that the equation (3.4) is equivalent to the following equation:

v(x, η) = f(x−aη, 0)+
∫ η

0

h(x−a(η− t), t)dt− c
∫ η

0

∫ t

0

vx(x−a(η− t), s)dsdt.
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Here we remark that∫ η

0

∫ t

0

vx(x − a(η − t), s)dsdt

=
∫ η

0

∫ η

s

vx(x − a(η − t), s)dtds

=
∫ η

0

∫ η

s

d

dt

{
1
a
v(x − a(η − t), s)

}
dtds

=
1
a

∫ η

0

v(x, t)dt − 1
a

∫ η

0

v(x − a(η − t), t)dt.

Therefore we know that (3.4) is equivalent to the following integral equation:

v(x, η) = f(x − aη, 0) +
∫ η

0

h(x − a(η − t), t)dt(3.5)

+
c
a

∫ η

0

v(x − a(η − t), t)dt − c
a

∫ η

0

v(x, t)dt.

In order to prove that the solution v(x, η) of (3.5) satisfies the condition
(BS), we employ the iteration method. Let us define {vn(x, η)}∞n=0 as follows:

v0(x, η) = f(x − aη, 0) +
∫ η

0

h(x − a(η − t), t)dt.

For n ≥ 0,

vn+1(x, η) = v0(x, η) +
c
a

∫ η

0

vn(x − a(η − t), t)dt − c
a

∫ η

0

vn(x, t)dt.(3.6)

Next we put w0(x, η) := v0(x, η) and wn(x, η) := vn(x, η)−vn−1(x, η) for n ≥ 1,
and we define w̃n(x, η, t) by

w̃n(x, η, t) := wn(x − a(η − t), t).(3.7)

Definition 3.1. (i) For α ≥ 0 and ε > 0, Uε[0, α] denotes the ε–
neighborhood of [0, α] in C.

(ii) For η ∈ C, we define a function Gη(τ) by

Gη(τ) = τei arg(η), τ ∈ C

and we put
Gη := {Gη(R) ∈ C; 0 ≤ R ≤ |η|},

Gε
η := Gη(Uε[0, |η|]).

We remark that Gη is the segment from 0 to η and that Gε
η is the ε–neighbor-
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hood of Gη.

Now let us take a monotonically decreasing positive sequence {εn}∞n=0

satisfying

ρ̃ := ρ −
∞∑

n=0

εn > 0.(3.8)

Then we have the following lemma:

Lemma 3.1. w̃n(x, η, t) is continued analytically to {(x, η, t) ∈ C3; |x|
≤ r, η ∈ E+(θ, ρ −∑n

j=0 εj), t ∈ Gεn
η }. Furthermore on {(x, η, t) ∈ C3; |x| ≤

r, η ∈ E+(θ, ρ −∑n
j=0 εj), t ∈ Gη} we have the following estimate: For some

positive contants C1 and δ1,

w̃n(x, η,Gη(R))| ≤ C1e
δ1|η|Ln

n∑
k=0

(
n

k

)
1

δn−k
1

Rk

k!
,(3.9)

where L = |c|/|a|.

If we admit Lemma 3.1, the theorem is proved as follows: It follows from
Lemma 3.1 that wn(x, η) (= w̃n(x, η, η)) is continued analytically to {(x, η) ∈
C2; |x| ≤ r, η ∈ E+(θ, ρ −∑n

j=0 εj)} with the estimate

|wn(x, η)| = |w̃n(x, η,Gη(|η|))|

≤C1e
δ1|η|Ln

n∑
k=0

(
n

k

)
1

δn−k
1

|η|k
k!

,

for |x| ≤ r and η ∈ E+(θ, ρ −∑n
j=0 εj). Therefore vn(x, η) (=

∑n
k=0 wk(x, η))

converges to a solution V (x, η) of (3.5) uniformly on {(x, η) ∈ C2; |x| ≤ r, η ∈
E+(θ, ρ̃)} as will be shown below. On the other hand, since v(x, η) is a local
holomorphic solution of (3.5), it follows from the uniqueness of local holomor-
phic solutions that V (x, η) is the analytic continuation of v(x, η). Furthermore
on {(x, η) ∈ C2; |x| ≤ r, η ∈ E+(θ, ρ̃)} it holds that

|V (x, η)| ≤
∞∑

n=0

|wn(x, η)|

≤C1e
δ1|η|

∞∑
n=0

Ln
n∑

k=0

(
n

k

)
1

δn−k
1

|η|k
k!

= C1e
δ1|η|

∞∑
k=0

∞∑
n=k

Ln

(
n

k

)
1
δn
1

(δ1|η|)k

k!
.
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Here we may take δ1 > 0 so large that

δ1 > 2L.

Hence we have
∞∑

n=k

Ln

(
n

k

)
1
δn
1

≤
∞∑

n=k

(
2L

δ1

)n

=
(

2L

δ1

)k 1
1 − 2L/δ1

=
(

2L

δ1

)k
δ1

δ1 − 2L
.

Therefore it holds that

|V (x, η)| ≤ C1δ1

δ1 − 2L
eδ1|η|

∞∑
k=0

(
2L

δ1

)k (δ1|η|)k

k!

=
C1δ1

δ1 − 2L
eδ1|η|

∞∑
k=0

(2L|η|)k

k!

=
C1δ1

δ1 − 2L
eδ1|η|e2L|η|,

which implies
max
|x|≤r

|V (x, η)| ≤ C̃eδ̃|η|

for η ∈ E+(θ, ρ̃), where C̃ = C1δ1/(δ1 − 2L) and δ̃ = δ1 + 2L.
This shows that v(x, η) satisfies the condition (BS). The theorem is proved.

Therefore it is sufficient to prove Lemma 3.1.

Proof of Lemma 3.1. It is proved by induction. In the case n = 0, we can
obtain the explicit form of w̃0(x, η, t):

w̃0(x, η, t) = f(x− aη, 0) +
∫ t

0

h(x − a(η − s), s)ds.

Therefore from the condition, it is easy to prove that w̃0(x, η, t) is well–defined
and holomorphic on {(x, η, t) ∈ C3; |x| ≤ r, η ∈ E+(θ, ρ − ε0), t ∈ Gε0

η } and
has the estimate

|w̃0(x, η,Gη(R))| ≤ C1e
δ1|η|

on {(x, η, t) ∈ C3; |x| ≤ r, η ∈ E+(θ, ρ − ε0), t ∈ Gη} for some positive
constants C1 and δ1. This implies the lemma for n = 0. Next, let us assume
that the lemma is proved up to n. Since {wn(x, η)}∞n=0 is determined by

wn+1(x, η) =
c
a

∫ η

0

wn(x − a(η − t), t)dt − c
a

∫ η

0

wn(x, t)dt,(3.10)

we have
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w̃n+1(x, η, t)

= wn+1(x − a(η − t), t)

=
c
a

∫ t

0

wn(x − a(η − t) − a(t − s), s)ds − c
a

∫ t

0

wn(x − a(η − t), s)ds

=
c
a

∫ t

0

wn(x − a(η − s), s)ds − c
a

∫ t

0

wn(x − a{(η − t + s) − s}, s)ds

=
c
a

∫ t

0

w̃n(x, η, s)ds − c
a

∫ t

0

w̃n(x, η − t + s, s)ds

=: I1(x, η, t) + I2(x, η, t).

Let us prove that each Ii(x, η, t) is well–defined on {(x, η, t) ∈ C3; |x| ≤
r, η ∈ E+(θ, ρ −∑n+1

j=0 εj), t ∈ G
εn+1
η }. We put t = Gη(τ) (τ ∈ Uεn+1 [0, |η|]).

On I1(x, η,Gη(τ)): It is clear that η ∈ E+(θ, ρ −∑n+1
j=0 εj) ⊂ E+(θ, ρ −∑n

j=0 εj). By taking an integral path as

s(σ) = Gη(σ) (σ ∈ [0, τ ]),

where [0, τ ] is a segment from 0 to τ , it holds that s(σ) ∈ G
εn+1
η ⊂ Gεn

η . Hence
w̃n(x, η, s(σ)) is well–defined and I1(x, η,Gη(τ)) is well–defined.

On I2(x, η,Gη(τ)): By taking an integral path as s(σ) = Gη(σ) (σ ∈ [0, τ ]),
it holds that η−Gη(τ)+s(σ) ∈ E+(θ, ρ−∑n

j=0 εj) and s(σ) ∈ G
εn+1

η−Gη(τ)+s(σ) ⊂
Gεn

η−Gη(τ)+s(σ). Hence w̃n(x, η−Gη(τ)+ s(σ), s(σ)) is well–defined and I2(x, η,

Gη(τ)) is well–defined.
Therefore w̃n+1(x, η, t) is well–defined and holomorphic on {(x, η, t) ∈

C3; |x| ≤ r, η ∈ E+(θ, ρ −∑n+1
j=0 εj), t ∈ G

εn+1
η }. Moreover on {(x, η, t) ∈

C3; |x| ≤ r, η ∈ E+(θ, ρ −∑n+1
j=0 εj), t ∈ Gη} we have the following represen-

tations:

I1(x, η,Gη(R)) =
c
a

∫ R

0

w̃n(x, η,Gη(R1))ei arg(η)dR1,

I2(x, η,Gη(R)) = − c
a

∫ R

0

w̃n(x, (|η| − R + R1)ei arg(η),

G(|η|−R+R1)ei arg(η)(R1))ei arg(η)dR1.

Let us estimate each Ii(x, η,Gη(R)).
On I1(x, η,Gη(R)): It follows from the assumption of the induction that

|w̃n(x, η,Gη(R1))| ≤ C1e
δ1|η|Ln

n∑
k=0

(
n

k

)
1

δn−k
1

Rk
1

k!
,
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which implies that

|I1(x, η,Gη(R))| ≤C1e
δ1|η|Ln+1

n∑
k=0

(
n

k

)
1

δn−k
1

∫ R

0

Rk
1

k!
dR1

= C1e
δ1|η|Ln+1

n∑
k=0

(
n

k

)
1

δn−k
1

Rk+1

(k + 1)!
.

On I2(x, η,Gη(R)): By the assumption of the induction, we have

|w̃n(x, (|η| − R + R1)ei arg(η), G(|η|−R+R1)ei arg(η)(R1))|

≤ C1e
δ1|η|e−δ1Reδ1R1Ln

n∑
k=0

(
n

k

)
1

δn−k
1

Rk
1

k!
,

which implies that

|I2(x, η,Gη(R))| ≤ C1e
δ1|η|e−δ1RLn+1

n∑
k=0

(
n

k

)
1

δn−k
1

∫ R

0

eδ1R1
Rk

1

k!
dR1.

Here it holds that∫ R

0

eδ1R1
Rk

1

k!
dR1 =

∫ R

0

{
d

dR1

{
1
δ1

eδ1R1

}}
Rk

1

k!
dR1(3.11)

≤
[

1
δ1

eδ1R1
Rk

1

k!

]R

R1=0

≤ 1
δ1

eδ1R Rk

k!
.

Hence we obtain

|I2(x, η,Gη(R))| ≤ C1e
δ1|η|Ln+1

n∑
k=0

(
n

k

)
1

δn+1−k
1

Rk

k!
.

Therefore it holds that

|w̃n+1(x, η,Gη(R))|

≤ C1e
δ1|η|Ln+1

{
n∑

k=0

(
n

k

)
1

δn−k
1

Rk+1

(k + 1)!
+

n∑
k=0

(
n

k

)
1

δn+1−k
1

Rk

k!

}

= C1e
δ1|η|Ln+1

{
n+1∑
k=1

(
n

k − 1

)
1

δn+1−k
1

Rk

k!
+

n∑
k=0

(
n

k

)
1

δn+1−k
1

Rk

k!

}

= C1e
δ1|η|Ln+1

[
1

δn+1
1

+
n∑

k=1

{(
n

k − 1

)
+
(

n

k

)}
1

δn+1−k
1

Rk

k!
+

Rn+1

(n + 1)!

]
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= C1e
δ1|η|Ln+1

{
1

δn+1
1

+
n∑

k=1

(
n + 1

k

)
1

δn+1−k
1

Rk

k!
+

Rn+1

(n + 1)!

}

= C1e
δ1|η|Ln+1

n+1∑
k=0

(
n + 1

k

)
1

δn+1−k
1

Rk

k!
,

which implies the lemma for n + 1. The proof is completed.

§4. The Proof of Theorem 1.2 (Case (2))

In Case (2) (b = 0 and d �= 0), the equation (2.5) is written as follows:

{(1 + dη)Dη + aDx}v(x, η) = −cD−1
η Dxv(x, η) + h(x, η),

v(x, 0) = f(x, 0)
(4.1)

We will prove that the solution v(x, η) of (4.1) satisfies the condition (BS)
in Theorem 2.1. First, we remark that in general the solution w(x, η) of the
initial value problem of the following first order linear partial differential equa-
tion

{(1 + dη)Dη + aDx}w(x, η) = k(x, η),

w(x, 0) = l(x)
(4.2)

is given by

w(x, η) = l
(
x − a

d
log(1 + dη)

)
(4.3)

+
∫ η

0

k

(
x − a

d
log

1 + dη

1 + dt
, t

)
1

1 + dt
dt.

Proof of the theorem. We assume that c �= 0. The equation (4.1) is
rewritten as follows:

{(1 + dη)Dη + aDx}v(x, η) = −c
∫ η

0

vx(x, s)ds + h(x, η),

v(x, 0) = f(x, 0).
(4.4)

Let us transform (4.4) into the integral equation. It follows from (4.3) that
the equation (4.4) is equivalent to the following equation:

v(x, η) = f
(
x − a

d
log(1 + dη), 0

)
+
∫ η

0

h

(
x − a

d
log

1 + dη

1 + dt
, t

)
1

1 + dt
dt

− c
∫ η

0

∫ t

0

vx

(
x − a

d
log

1 + dη

1 + dt
, s

)
1

1 + dt
dsdt.
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Here we remark that∫ η

0

∫ t

0

vx

(
x − a

d
log

1 + dη

1 + dt
, s

)
1

1 + dt
dsdt

=
∫ η

0

∫ η

s

vx

(
x − a

d
log

1 + dη

1 + dt
, s

)
1

1 + dt
dtds

=
∫ η

0

∫ η

s

d

dt

{
1
a
v

(
x − a

d
log

1 + dη

1 + dt
, s

)}
dtds

=
1
a

∫ η

0

v(x, t)dt − 1
a

∫ η

0

v

(
x − a

d
log

1 + dη

1 + dt
, t

)
dt.

Therefore we know that (4.4) is equivalent to the following integral equation:

v(x, η) = f
(
x − a

d
log(1 + dη), 0

)
(4.5)

+
∫ η

0

h

(
x − a

d
log

1 + dη

1 + dt
, t

)
1

1 + dt
dt

+
c
a

∫ η

0

v

(
x − a

d
log

1 + dη

1 + dt
, t

)
dt − c

a

∫ η

0

v(x, t)dt.

In order to prove that the solution v(x, η) of (4.5) satisfies the condition
(BS), we employ the iteration method. Let us define {vn(x, η)}∞n=0 as follows:

v0(x, η) = f
(
x − a

d
log(1 + dη), 0

)
+
∫ η

0

h

(
x − a

d
log

1 + dη

1 + dt
, t

)
1

1 + dt
dt.

For n ≥ 0,

(4.6)

vn+1(x, η) = v0(x, η) +
c
a

∫ η

0

vn

(
x − a

d
log

1 + dη

1 + dt
, t

)
dt − c

a

∫ η

0

vn(x, t)dt.

Next we put w0(x, η) := v0(x, η) and wn(x, η) := vn(x, η)−vn−1(x, η) for n ≥ 1,
and we define w̃n(x, η, t) by

w̃n(x, η, t) := wn

(
x − a

d
log

1 + dη

1 + dt
, t

)
.(4.7)

Definition 4.1. For η ∈ C, we define a function G̃η(τ) by

G̃η(τ) =
τei arg(η)

1 + d(|η| − τ)ei arg(η)
, τ ∈ C
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and put
G̃η := {G̃η(R) ∈ C; 0 ≤ R ≤ |η|},

G̃ε
η := G̃η(Uε[0, |η|]).

Now let us take a monotonically decreasing positive sequence {εn}∞n=0

satisfying (3.8). Furthermore let us take K > 1 so that

K−1 1
1 + |η| ≤

∣∣∣∣ 1
1 + dη

∣∣∣∣ ≤ K
1

1 + |η| ,(4.8)

for η ∈ E+(θ, ρ). Then we obtain the following lemma:

Lemma 4.1. w̃n(x, η, t) is continued analytically to {(x, η, t) ∈ C3; |x|
≤ r, η ∈ E+(θ, ρ −∑n

j=0 εj), t ∈ G̃εn
η }. Furthermore on {(x, η, t) ∈ C3; |x| ≤

r, η ∈ E+(θ, ρ −∑n
j=0 εj), t ∈ G̃η} we have the following estimate: For some

positive constants C1 and δ1,

(4.9)

|w̃n(x, η, G̃η(R))| ≤ C1e
δ1|η|(LK3)n 1

(1 + |η| − R)n

n∑
k=0

(
n

k

)
1

δn−k
1

(1 + |η|)k

k!
.

If we admit Lemma 4.1, the theorem is proved similarly to Case (1).

Proof of Lemma 4.1. It is proved by the induction. We omit the proof for
n = 0, since it is proved directly by using the explicit expression of w̃0(x, η, t)
as mentioned in the proof of Lemma 3.1. Let us assume that the lemma is
proved up to n. Since {wn(x, η)}∞n=0 is determined by

(4.10)

wn+1(x, η) =
c
a

∫ η

0

wn

(
x − a

d
log

1 + dη

1 + dt
, t

)
dt − c

a

∫ η

0

wn(x, t)dt,

we have

w̃n+1(x, η, t) = wn+1

(
x − a

d
log

1 + dη

1 + dt
, t

)
=

c
a

∫ t

0

wn

(
x − a

d
log

1 + dη

1 + dt
− a

d
log

1 + dt

1 + ds
, s

)
ds

− c
a

∫ t

0

wn

(
x − a

d
log

1 + dη

1 + dt
, s

)
ds
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=
c
a

∫ t

0

wn

(
x − a

d
log

1 + dη

1 + ds
, s

)
ds

− c
a

∫ t

0

wn

(
x − a

d
log
(

1 + dη

1 + dt

1 + ds

1 + ds

)
, s

)
ds

=
c
a

∫ t

0

w̃n(x, η, s)ds − c
a

∫ t

0

w̃n(x, ζ(η, t, s), s)ds

= : I1(x, η, t) + I2(x, η, t),

where ζ(η, t, s) is defined by

(1 + dη)(1 + ds)
1 + dt

= 1 + dζ(η, t, s).

Let us prove that each Ii(x, η, t) is well–defined on {(x, η, t) ∈ C3; |x| ≤
r, η ∈ E+(θ, ρ −∑n+1

j=0 εj), t ∈ G̃
εn+1
η }. We put t = G̃η(τ) (τ ∈ Uεn+1 [0, |η|]).

On I1(x, η, G̃η(τ)): It is clear that η ∈ E+(θ, ρ −∑n+1
j=0 εj) ⊂ E+(θ, ρ −∑n

j=0 εj). By taking an integral path as

s(σ) = G̃η(σ) =
σei arg(η)

1 + d(|η| − σ)ei arg(η)
(σ ∈ [0, τ ]),

it holds that s(σ) ∈ G̃
εn+1
η ⊂ G̃εn

η . Hence w̃n(x, η, s(σ)) is well–defined and
I1(x, η, G̃η(τ)) is well–defined.

On I2(x, η, G̃η(τ)): By taking an integral path as

s(σ) =
σei arg(η)

1 + d(|η| − τ)ei arg(η)
(σ ∈ [0, τ ]),

we have ζ(η, G̃η(τ), s(σ)) ∈ E+(θ, ρ −∑n
j=0 εj) and s(σ) ∈ G̃

εn+1

ζ(η,G̃η(τ),s(σ))
⊂

G̃εn

ζ(η,G̃η(τ),s(σ))
. Hence w̃n(x, η− G̃η(τ)+s(σ), s(σ)) is well–defined and I2(x, η,

G̃η(τ)) is well–defined.
Therefore w̃n+1(x, η, t) is well–defined and holomorphic on {(x, η, t) ∈

C3; |x| ≤ r, η ∈ E+(θ, ρ −∑n+1
j=0 εj), t ∈ G̃

εn+1
η }. Moreover on {(x, η, t) ∈

C3; |x| ≤ r, η ∈ E+(θ, ρ −∑n+1
j=0 εj), t ∈ G̃η} we have the following represen-

tations:

I1(x, η, G̃η(R)) =
c
a

∫ R

0

w̃n(x, η, G̃η(R1))
(1 + dη)ei arg(η)

{1 + d(|η| − R1)ei arg(η)}2
dR1,

I2(x, η, G̃η(R)) =
c
a

1
1 + d(|η| − R)ei arg(η)

×
∫ R

0

w̃n(x, (|η| − R + R1)ei arg(η),

G̃(|η|−R+R1)ei arg(η)(R1))ei arg(η)dR1.
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Let us estimate each Ii(x, η, G̃η(R)).
On I1(x, η, G̃η(R)): It follows from the assumption of the induction that

|w̃n(x, η, G̃η(R1))| ≤ C1e
δ1|η|(LK3)n 1

(1 + |η| − R1)n

n∑
k=0

(
n

k

)
1

δn−k
1

(1 + |η|)k

k!
,

which implies that

|I1(x, η, G̃η(R))|

≤ L

∫ R

0

C1e
δ1|η|(LK3)n 1

(1 + |η| − R1)n

×
n∑

k=0

(
n

k

)
1

δn−k
1

(1 + |η|)k

k!
K3 1 + |η|

(1 + |η| − R1)2
dR1

= C1e
δ1|η|(LK3)n+1

×
n∑

k=0

(
n

k

)
1

δn−k
1

(1 + |η|)k+1

k!

∫ R

0

1
(1 + |η| − R1)n+2

dR1

≤ C1e
δ1|η|(LK3)n+1

n∑
k=0

(
n

k

)
1

δn−k
1

(1 + |η|)k+1

k!
1

n + 1
1

(1 + |η| − R)n+1

≤ C1e
δ1|η|(LK3)n+1 1

(1 + |η| − R)n+1

n∑
k=0

(
n

k

)
1

δn−k
1

(1 + |η|)k+1

(k + 1)!
.

On I2(x, η, G̃η(R)): By the assumption of the induction, we have

|w̃n(x, (|η| − R + R1)ei arg(η), G̃(|η|−R+R1)ei arg(η)(R1))|
≤ C1e

δ1|η|e−δ1Reδ1R1(LK3)n 1
(1 + |η| − R + R1 − R1)n

×
n∑

k=0

(
n

k

)
1

δn−k
1

(1 + |η| − R + R1)k

k!

= C1e
δ1|η|e−δ1Reδ1R1(LK3)n 1

(1 + |η| − R)n

×
n∑

k=0

(
n

k

)
1

δn−k
1

(1 + |η| − R + R1)k

k!
,

which implies that

|I2(x, η, G̃η(R))|

≤ LK
1

1 + |η| − R

∫ R

0

C1e
δ1|η|e−δ1Reδ1R1(LK3)n 1

(1 + |η| − R)n
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×
n∑

k=0

(
n

k

)
1

δn−k
1

(1 + |η| − R + R1)k

k!
dR1

≤ C1e
δ1|η|(LK3)n+1 1

(1 + |η| − R)n+1

×
n∑

k=0

(
n

k

)
1

δn−k
1

e−δ1R

∫ R

0

eδ1R1
(1 + |η| − R + R1)k

k!
dR1.

Here it holds that∫ R

0

eδ1R1
(1 + |η| − R + R1)k

k!
dR1(4.11)

=
∫ R

0

d

dR1

{
1
δ1

eδ1R1

}
(1 + |η| − R + R1)k

k!
dR1

≤
[

1
δ1

eδ1R1
(1 + |η| − R + R1)k

k!

]R

R1=0

≤ 1
δ1

eδ1R (1 + |η|)k

k!
.

Hence we obtain

|I2(x, η, G̃η(R))|

≤ C1e
δ1|η|(LK3)n+1 1

(1 + |η| − R)n+1

n∑
k=0

(
n

k

)
1

δn+1−k
1

(1 + |η|)k

k!
.

Therefore it holds that

|w̃n+1(x, η, G̃η(R))|
≤ C1e

δ1|η|(LK3)n+1 1
(1 + |η| − R)n+1

×
{

n∑
k=0

(
n

k

)
1

δn−k
1

(1 + |η|)k+1

(k + 1)!
+

n∑
k=0

(
n

k

)
1

δn+1−k
1

(1 + |η|)k

k!

}

= C1e
δ1|η|(LK3)n+1 1

(1 + |η| − R)n+1

×
{

n+1∑
k=1

(
n

k − 1

)
1

δn+1−k
1

(1 + |η|)k

k!
+

n∑
k=0

(
n

k

)
1

δn+1−k
1

(1 + |η|)k

k!

}

= C1e
δ1|η|(LK3)n+1 1

(1 + |η| − R)n+1

×
[

1
δn+1
1

+
n∑

k=1

{(
n

k − 1

)
+
(

n

k

)}
1

δn+1−k
1

(1 + |η|)k

k!
+

(1 + |η|)n+1

(n + 1)!

]
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= C1e
δ1|η|(LK3)n+1 1

(1 + |η| − R)n+1

n+1∑
k=0

(
n + 1

k

)
1

δn+1−k
1

(1 + |η|)k

k!
,

which implies the lemma for n + 1. The proof is completed.

§5. The Proof of Theorem 1.2 (Case (3))

In Case (3) (b �= 0 and d = 0), the equation (2.5) is written as follows:

{Dη + (a + bx)Dx}v(x, η) = −cD−1
η Dxv(x, η) + h(x, η),

v(x, 0) = f(x, 0).
(5.1)

We will prove that the solution v(x, η) of (5.1) satisfies the condition (BS).
First, we remark that the solution w(x, η) of the initial value problem of the
following first order linear partial differential equation

{Dη + (a + bx)Dx}w(x, η) = k(x, η),

w(x, 0) = l(x)
(5.2)

is given by

(5.3)

w(x, η) = l
(( a

b
+ x
)

e−bη − a
b

)
+
∫ η

0

k
((a

b
+ x
)

e−b(η−t) − a
b

, t
)

dt.

Proof of the theorem. We assume that c �= 0. Therefore we remark that
�(−beiθ) ≥ 0 by the assumption (1.12). The equation (5.1) is rewritten as
follows:

{Dη + (a + bx)Dx}v(x, η) = −c
∫ η

0

vx(x, s)ds + h(x, η),

v(x, 0) = f(x, 0).
(5.4)

Let us transform (5.4) into the integral equation. It follows from (5.3) that
the equation (5.4) is equivalent to the following equation:

v(x, η) = f
((a

b
+ x
)

e−bη − a
b

, 0
)

+
∫ η

0

h
(( a

b
+ x
)

e−b(η−t) − a
b

, t
)

dt

− c
∫ η

0

∫ t

0

vx

(( a
b

+ x
)

e−b(η−t) − a
b

, s
)

dsdt.
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Here we remark that∫ η

0

∫ t

0

vx

(( a
b

+ x
)

e−b(η−t) − a
b

, s
)

dsdt

=
∫ η

0

∫ η

s

vx

(( a
b

+ x
)

e−b(η−t) − a
b

, s
)

dtds

=
1

(a + bx)e−bη

∫ η

0

∫ η

s

e−bt d

dt
v
((a

b
+ x
)

e−b(η−t) − a
b

, s
)

dtds

=
1

(a + bx)e−bη

∫ η

0

{[
e−btv

(( a
b

+ x
)

e−b(η−t) − a
b

, s
)]η

t=s

+ b
∫ η

s

e−btv
(( a

b
+ x
)

e−b(η−t) − a
b

, s
)

dt

}
ds

=
1

a + bx

∫ η

0

v(x, t)dt − 1
a + bx

∫ η

0

eb(η−t)v
((a

b
+ x
)

e−b(η−t) − a
b

, t
)

dt

+
b

a + bx

∫ η

0

∫ t

0

eb(η−t)v
(( a

b
+ x
)

e−b(η−t) − a
b

, s
)

dsdt.

Therefore we know that (5.4) is equivalent to the following integral equation:

(5.5)

v(x, η) = f
(( a

b
+ x
)

e−bη − a
b

, 0
)

+
∫ η

0

h
(( a

b
+ x
)

e−b(η−t) − a
b

, t
)

dt

+
c

a + bx

∫ η

0

eb(η−t)v
(( a

b
+ x
)

e−b(η−t) − a
b

, t
)

dt

− c
a + bx

∫ η

0

v(x, t)dt

− bc
a + bx

∫ η

0

∫ t

0

eb(η−t)v
(( a

b
+ x
)

e−b(η−t) − a
b

, s
)

dsdt.

Let us prove that the solution v(x, η) of (5.5) satisfies the condition (BS),
by using the iteration method. We define {vn(x, η)}∞n=0 as follows:

v0(x, η) = f
(( a

b
+ x
)

e−bη − a
b

, 0
)

+
∫ η

0

h
(( a

b
+ x
)

e−b(η−t) − a
b

, t
)

dt.

For n ≥ 0,

(5.6)

vn+1(x, η) = v0(x, η) +
c

a + bx

∫ η

0

eb(η−t)vn

(( a
b

+ x
)

e−b(η−t) − a
b

, t
)

dt

− c
a + bx

∫ η

0

vn(x, t)dt
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− bc
a + bx

∫ η

0

∫ t

0

eb(η−t)vn

(( a
b

+ x
)

e−b(η−t) − a
b

, s
)

dsdt.

Next, we put w0(x, η) := v0(x, η) and wn(x, η) = vn(x, η)−vn−1(x, η) for n ≥ 1,
and we define w̃n(x, η, t) by

w̃n(x, η, t) := wn

(( a
b

+ x
)

e−b(η−t) − a
b

, t
)

.(5.7)

Now let us take a monotonically decreasing positive sequence {εn}∞n=0

satisfying (3.8). Furthermore let us take positive constants K and L so that

sup
η∈E+(θ,ρ)

|ebη| ≤ K, sup
|x|≤r

∣∣∣∣ c
a + bx

∣∣∣∣ ≤ L, sup
|x|≤r

∣∣∣∣ bc
a + bx

∣∣∣∣ ≤ L(5.8)

(by the assumption �(−beiθ) ≥ 0 we can take such K). Then we obtain the
following lemma:

Lemma 5.1. w̃n(x, η, t) is continued analytically to {(x, η, t) ∈ C3; |x|
≤ r, η ∈ E+(θ, ρ −∑n

j=0 εj), t ∈ Gεn
η }. Furthermore on {(x, η, t) ∈ C3; |x| ≤

r, η ∈ E+(θ, ρ −∑n
j=0 εj), t ∈ Gη} we have the following estimate: For some

positive constants C1 and δ1,

|w̃n(x, η,Gη(R))| ≤ C1e
δ1|η|(LK)n

n∑
k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k
Rk

k!
.(5.9)

If we admit Lemma 5.1, the theorem is proved similarly to the previous
cases.

Proof of Lemma 5.1. It is proved by the induction. We omit the proof for
n = 0 by the same reason as before. Let us assume that the lemma is proved
up to n. Since {wn(x, η)}∞n=0 is determined by

(5.10)

wn+1(x, η) =
c

a + bx

∫ η

0

eb(η−t)wn

(( a
b

+ x
)

e−b(η−t) − a
b

, t
)

dt

− c
a + bx

∫ η

0

wn(x, t)dt

− bc
a + bx

∫ η

0

∫ t

0

eb(η−t)wn

(( a
b

+ x
)

e−b(η−t) − a
b

, s
)

dsdt,
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we have

w̃n+1(x, η, t) = wn+1

(( a
b

+ x
)

e−b(η−t) − a
b

, t
)

=
c

a + bx

∫ t

0

eb(η−s1)w̃n(x, η, s1)ds1

− c
a + bx

∫ t

0

eb(η−t)w̃n(x, η − t + s1, s1)ds1

− bc
a + bx

∫ t

0

∫ s1

0

eb(η−s1)w̃n(x, η − s1 + s2, s2)ds2ds1

=: I1(x, η, t) − I2(x, η, t) − I3(x, η, t).

Let us prove that each Ii(x, η, t) is well–defined on {(x, η, t) ∈ C3; |x| ≤
r, η ∈ E+(θ, ρ −∑n+1

j=0 εj), t ∈ G
εn+1
η }. We put t = Gη(τ) (τ ∈ Uεn+1 [0, |η|]).

On I1(x, η,Gη(τ)): It is clear that η ∈ E+(θ, ρ −∑n+1
j=0 εj) ⊂ E+(θ, ρ −∑n

j=0 εj). By taking an integral path as s1(σ1) = Gη(σ1) (σ1 ∈ [0, τ ]), it
holds that s1(σ1) ∈ G

εn+1
η ⊂ Gεn

η . Hence w̃n(x, η, s1(σ1)) is well–defined and
I1(x, η,Gη(τ)) is well–defined.

On I2(x, η,Gη(τ)): By taking an integral path as s1(σ1) = Gη(σ1) (σ1 ∈
[0, τ ]), it holds that η − Gη(τ) + s1(σ1) ∈ E+(θ, ρ −∑n

j=0 εj) and s1(σ1) ∈
G

εn+1

η−Gη(τ)+s1(σ1)
⊂ Gεn

η−Gη(τ)+s1(σ1). Hence w̃n(x, η −Gη(τ) + s1(σ1), s1(σ1)) is
well–defined and I2(x, η,Gη(τ)) is well–defined.

On I3(x, η,Gη(τ)): By taking integral paths as s1(σ1) = Gη(σ1) (σ1 ∈
[0, τ ]) and s2(σ2) = Gη(σ2) (σ2 ∈ [0, σ1]), it holds that η − s1(σ1) + s2(σ2) ∈
E+(θ, ρ −∑n

j=0 εj) and s2(σ2) ∈ G
εn+1

η−s1(σ1)+s2(σ2) ⊂ Gεn

η−s1(σ1)+s2(σ2)
. Hence

w̃n(x, η − s1(σ1) + s2(σ2), s2(σ2)) is well–defined and I3(x, η,Gη(τ)) is well–
defined.

Therefore w̃n+1(x, η, t) is well–defined and holomorphic on {(x, η, t) ∈
C3; |x| ≤ r, η ∈ E+(θ, ρ −∑n+1

j=0 εj), t ∈ G
εn+1
η }. Moreover on {(x, η, t) ∈

C3; |x| ≤ r, η ∈ E+(θ, ρ −∑n+1
j=0 εj), t ∈ Gη} we have the following represen-

tations:

I1(x, η,Gη(R))

=
c

a + bx

∫ R

0

exp[b(|η| − R1)ei arg(η)]w̃n(x, η,Gη(R1))ei arg(η)dR1,

I2(x, η,Gη(R))

=
c

a + bx

∫ R

0

exp[b(|η| − R)ei arg(η)]

× w̃n(x, (|η| − R + R1)ei arg(η), G(|η|−R+R1)ei arg(η)(R1))ei arg(η)dR1,
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I3(x, η,Gη(R))

=
bc

a + bx

∫ R

0

∫ R1

0

exp[b(|η| − R1)ei arg(η)]

× w̃n(x, (|η| − R1 + R2)ei arg(η),

G(|η|−R1+R2)ei arg(η)(R2)){ei arg(η)}2dR2dR1.

Let us estimate each Ii(x, η,Gη(R)).
On I1(x, η,Gη(R)): It follows from the assumption of the induction that

|w̃n(x, η,Gη(R1))| ≤ C1e
δ1|η|(LK)n

n∑
k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k
Rk

1

k!
,

which implies that

|I1(x, η,Gη(R))| ≤C1e
δ1|η|(LK)n+1

n∑
k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k ∫ R

0

Rk
1

k!
dR1

= C1e
δ1|η|(LK)n+1

n∑
k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k
Rk+1

(k + 1)!
.

On I2(x, η,Gη(R)): By the assumption of the induction, we have

|w̃n(x, (|η| − R + R1)ei arg(η), G(|η|−R+R1)ei arg(η)(R1))|

≤ C1e
δ1|η|e−δ1Reδ1R1(LK)n

n∑
k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k
Rk

1

k!
,

which implies that

|I2(x, η,Gη(R))|

≤ C1e
δ1|η|(LK)n+1

n∑
k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k

e−δ1R

∫ R

0

eδ1R1
Rk

1

k!
dR1

≤ C1e
δ1|η|(LK)n+1

n∑
k=0

(
n

k

)
1

δn+1−k
1

(
1 +

1
δ1

)k
Rk

k!

(see (3.11)).
On I3(x, η,Gη(R)): The assumption of the induction implies that

|w̃n(x, (|η| − R1 + R2)ei arg(η), G(|η|−R1+R2)ei arg(η)(R2))|

≤ C1e
δ1|η|e−δ1R1eδ1R2(LK)n

n∑
k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k
Rk

2

k!
.
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Hence we obtain that

|I3(x, η,Gη(R))|

≤ C1e
δ1|η|(LK)n+1

n∑
k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k

×
∫ R

0

e−δ1R1

∫ R1

0

eδ1R2
Rk

2

k!
dR2dR1

≤ C1e
δ1|η|(LK)n+1

n∑
k=0

(
n

k

)
1

δn+1−k
1

(
1 +

1
δ1

)k ∫ R

0

Rk
1

k!
dR1 (see (3.11))

= C1e
δ1|η|(LK)n+1

n∑
k=0

(
n

k

)
1

δn+1−k
1

(
1 +

1
δ1

)k
Rk+1

(k + 1)!
.

Therefore we have

|w̃n+1(x, η,Gη(R))|

≤ C1e
δ1|η|(LK)n+1 ×

{
n∑

k=0

(
n

k

)
1

δn−k
1

(
1 +

1
δ1

)k
Rk+1

(k + 1)!

+
n∑

k=0

(
n

k

)
1

δn+1−k
1

(
1 +

1
δ1

)k
Rk

k!
+

n∑
k=0

(
n

k

)
1

δn+1−k
1

(
1 +

1
δ1

)k
Rk+1

(k + 1)!

}

= C1e
δ1|η|(LK)n+1 ×

{
n+1∑
k=1

(
n

k − 1

)
1

δn+1−k
1

(
1 +

1
δ1

)k−1
Rk

k!

+
n∑

k=0

(
n

k

)
1

δn+1−k
1

(
1 +

1
δ1

)k
Rk

k!
+

n+1∑
k=1

(
n

k − 1

)
1

δn+2−k
1

(
1 +

1
δ1

)k−1
Rk

k!

}

= C1e
δ1|η|(LK)n+1 ×

{
1

δn+1
1

+
n∑

k=1

A(n, k, δ1)
Rk

k!
+
(

1 +
1
δ1

)n
Rn+1

(n + 1)!

+
1
δ1

(
1 +

1
δ1

)n
Rn+1

(n + 1)!

}
,

where

A(n, k, δ1) =
(

n

k − 1

)
1

δn+1−k
1

(
1 +

1
δ1

)k−1

+
(

n

k

)
1

δn+1−k
1

(
1 +

1
δ1

)k

+
(

n

k − 1

)
1

δn+2−k
1

(
1 +

1
δ1

)k−1

.
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Here it holds that

A(n, k, δ1) =
1

δn+1−k
1

(
1 +

1
δ1

)k−1 {(
n

k − 1

)
+
(

n

k

)(
1 +

1
δ1

)
+
(

n

k − 1

)
1
δ1

}
=

1
δn+1−k
1

(
1 +

1
δ1

)k {(
n

k

)
+
(

n

k − 1

)}
=
(

n + 1
k

)
1

δn+1−k
1

(
1 +

1
δ1

)k

and(
1 +

1
δ1

)n
Rn+1

(n + 1)!
+

1
δ1

(
1 +

1
δ1

)n
Rn+1

(n + 1)!
=
(

1 +
1
δ1

)n+1
Rn+1

(n + 1)!
.

Therefore we obtain

|w̃n+1(x, η,Gη(R))| ≤ C1e
δ1|η|(LK)n+1

n+1∑
k=0

(
n + 1

k

)
1

δn+1−k
1

(
1 +

1
δ1

)k
Rk

k!
,

which implies the lemma for n + 1. The proof is completed.

§6. The Proof of Theorem 1.2 (Case (4))

Let us prove that the solution v(x, η) of (2.5) satisfies the condition (BS)
in Case (4) (b, d �= 0). First, we remark that in general the solution w(x, η) of
the initial value problem of the following first order linear partial differential
equation

{(1 + dη)Dη + (a + bx)Dx}w(x, η) = k(x, η),

w(x, 0) = l(x)
(6.1)

is given by

w(x, η) = l
(( a

b
+ x
)

(1 + dη)−b/d − a
b

)
(6.2)

+
∫ η

0

k

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)
1

1 + dt
dt.

Proof of the theorem. Similarly to the previous cases, we assume that
c �= 0. Therefore we remark that �(−b/d) > −1 by the assumption (1.13).
The equation (2.5) is rewritten as follows:

{(1 + dη)Dη + (a + bx)Dx}v(x, η) = −c
∫ η

0

vx(x, s)ds + h(x, η),

v(x, 0) = f(x, 0).
(6.3)
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Furthermore we can see that (6.3) is equivalent to the following integral
equation in a similar way to the previous cases:

(6.4)

v(x, η) = f
(( a

b
+ x
)

(1 + dη)−b/d − a
b

, 0
)

+
∫ η

0

h

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)
1

1 + dt
dt

+
c
b

(a
b

+ x
)−1

(1 + dη)b/d

×
∫ η

0

(1 + dt)−b/dv

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)
dt

− c
b

(a
b

+ x
)−1

∫ η

0

v(x, t)dt

− c
(a

b
+ x
)−1

(1 + dη)b/d

∫ η

0

∫ t

0

(1 + dt)−b/d

× v

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, s

)
1

1 + dt
dsdt.

We prove that the solution v(x, η) of (6.4) satisfies the condition (BS) by
using the iteration method. Let us define {vn(x, η)}∞n=0 as follows:

v0(x, η) = f
((a

b
+ x
)

(1 + dη)−b/d − a
b

, 0
)

+
∫ η

0

h

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)
1

1 + dt
dt.

For n ≥ 0,

(6.5)

vn+1(x, η) = v0(x, η)

+
c
b

(a
b

+ x
)−1

(1 + dη)b/d

×
∫ η

0

(1 + dt)−b/dvn

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)
dt

− c
b

(a
b

+ x
)−1

∫ η

0

vn(x, t)dt

− c
(a

b
+ x
)−1

(1 + dη)b/d

∫ η

0

∫ t

0

(1 + dt)−b/d
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× vn

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, s

)
1

1 + dt
dsdt.

Next we put w0(x, η) := v0(x, η) and wn(x, η) := vn(x, η)−vn−1(x, η) for n ≥ 1,
and we define w̃n(x, η, t) by

w̃n(x, η, t) := wn

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)
.(6.6)

Now let us define 0 ≤ p < 1 by

p =

{
0 (if �(−b/d) ≥ 0)

�(b/d) (if 0 > �(−b/d) > −1),
(6.7)

and let us take a monotonically decreasing positive sequence {εn}∞n=0 satisfying
(3.8). Furthermore we take K > 1 so that (4.8) holds for η ∈ E+(θ, ρ), and we
take positive constants L and M so that

|(1 + dη)b/d| ≤ L(1 + |η|)p(6.8)

for η ∈ E+(θ, ρ) and

sup
|x|≤r

∣∣∣∣ cb (a
b

+ x
)−1

∣∣∣∣ ≤ M, sup
|x|≤r

∣∣∣∣c(a
b

+ x
)−1

∣∣∣∣ ≤ M.(6.9)

Then we obtain the following lemma:

Lemma 6.1. w̃n(x, η, t) is continued analytically to {(x, η, t) ∈ C3; |x|
≤ r, η ∈ E+(θ, ρ −∑n

j=0 εj), t ∈ G̃εn
η }. Furthermore on {(x, η, t) ∈ C3; |x| ≤

r, η ∈ E+(θ, ρ −∑n
j=0 εj), t ∈ G̃η} we have the following estimate: For some

positive constants C1 and δ1,

|w̃n(x, η, G̃η(R))| ≤ C1e
δ1|η|(MLK3)n 1

(1 + |η| − R)n(1−p)
(6.10)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η|)k

k!(1 − p)k
.

If we admit Lemma 6.1, the theorem is proved similarly to the previous
cases.

Proof of Lemma 6.1. It is proved by the induction. We omit the proof for
n = 0. Let us assume that the lemma is proved up to n. Since {wn(x, η)}∞n=0
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is determined by

(6.11)

wn+1(x, η) =
c
b

(a
b

+ x
)−1

(1 + dη)b/d

×
∫ η

0

(1 + dt)−b/dwn

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)
dt

− c
b

(a
b

+ x
)−1

∫ η

0

wn(x, t)dt

− c
(a

b
+ x
)−1

(1 + dη)b/d

∫ η

0

∫ t

0

(1 + dt)−b/d

×wn

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, s

)
1

1 + dt
dsdt,

we have

w̃n+1(x, η, t)

= wn+1

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)

=
c
b

(a
b

+ x
)−1

(1 + dη)b/d

∫ t

0

(1 + ds1)−b/dw̃n(x, η, s1)ds1

− c
b

(a
b

+ x
)−1

(1 + dη)b/d

∫ t

0

(1 + dt)−b/dw̃n(x, ζ(η, t, s1), s1)ds1

− c
(a

b
+ x
)−1

(1 + dη)b/d

∫ t

0

∫ s1

0

(1 + ds1)−b/dw̃n(x,ϕ(η, s1, s2), s2)

× 1
1 + ds1

ds2ds1

=: I1(x, η, t) − I2(x, η, t) − I3(x, η, t),

where ζ(η, t, s1) and ϕ(η, s1, s2) are defined by

(1 + dη)(1 + ds1)
1 + dt

= 1 + dζ(η, t, s1)

and
(1 + dη)(1 + ds2)

1 + ds1
= 1 + dϕ(η, s1, s1).
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Let us prove that each Ii(x, η, t) is well–defined on {(x, η, t) ∈ C3; |x| ≤
r, η ∈ E+(θ, ρ −∑n+1

j=0 εj), t ∈ G̃
εn+1
η }. We put t = G̃η(τ) (τ ∈ Uεn+1 [0, |η|]).

On I1(x, η, G̃η(τ)): It is clear that η ∈ E+(θ, ρ −∑n+1
j=0 εj) ⊂ E+(θ, ρ −∑n

j=0 εj). By taking an integral path as

s1(σ1) = G̃η(σ1) =
σ1e

i arg(η)

1 + d(|η| − σ1)ei arg(η)
(σ1 ∈ [0, τ ]),

it holds that s1(σ1) ∈ G̃
εn+1
η ⊂ G̃εn

η . Hence w̃n(x, η, s1(σ1)) is well–defined and
we have the well–definedness for I1(x, η, G̃η(τ)).

On I2(x, η, G̃η(τ)): By taking an integral path as

s1(σ1) =
σ1e

i arg(η)

1 + d(|η| − τ)ei arg(η)
(σ1 ∈ [0, τ ]),

we have

ζ(η, G̃η(τ), s1(σ1))∈E+

(
θ, ρ −∑n

j=0 εj

)
and

s1(σ1) ∈ G̃
εn+1

ζ(η,G̃η(τ),s1(σ1))
⊂ G̃εn

ζ(η,G̃η(τ),s1(σ1))
.

Hence w̃n(x, ζ(η, G̃η(τ), s1(σ1)), s1(σ1)) is well–defined and I2(x, η, G̃η(τ)) is
well–defined.

On I3(x, η, G̃η(τ)): By taking integral paths as

s1(σ1) = G̃η(σ1) =
σ1e

i arg(η)

1 + d(|η| − σ1)ei arg(η)
(σ1 ∈ [0, τ ])

and

s2(σ2) =
σ2e

i arg(η)

1 + d(|η| − σ1)ei arg(η)
(σ2 ∈ [0, σ1]),

it holds that

ϕ(η, s1(σ1), s2(σ2))∈E+

(
θ, ρ −∑n

j=0 εj

)
and

s2(σ2) ∈ G̃
εn+1

ϕ(η,s1(σ1),s2(σ2)) ⊂ G̃εn

ϕ(η,s1(σ1),s2(σ2)).

Hence w̃n(x,ϕ(η, s1(σ1), s2(σ2)), s2(σ2)) is well–defined and I3(x, η, G̃η(τ)) is
well–defined.

Therefore w̃n+1(x, η, t) is well–defined and holomorphic on {(x, η, t) ∈
C3; |x| ≤ r, η ∈ E+(θ, ρ −∑n+1

j=0 εj), t ∈ G̃
εn+1
η }. Moreover on {(x, η, t) ∈
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C3; |x| ≤ r, η ∈ E+(θ, ρ −∑n+1
j=0 εj), t ∈ G̃η} we have the following represen-

tations:

I1(x, η, G̃η(R)) =
c
b

(a
b

+ x
)−1

∫ R

0

{1 + d(|η| − R1)ei arg(η)}b/dw̃n(x, η, G̃η(R1))

× (1 + dη)ei arg(η)

{1 + d(|η| − R1)ei arg(η)}2
dR1,

I2(x, η, G̃η(R)) =
c
b

(a
b

+ x
)−1

{1 + d(|η| − R)ei arg(η)}b/d

×
∫ R

0

w̃n(x, (|η| − R + R1)ei arg(η), G̃(|η|−R+R1)ei arg(η)(R1))

× ei arg(η)

1 + d(|η| − R)ei arg(η)
dR1,

I3(x, η, G̃η(R)) = c
(a

b
+ x
)−1

∫ R

0

∫ R1

0

{1 + d(|η| − R1)ei arg(η)}b/d

× w̃n(x, (|η| − R1 + R2)ei arg(η), G̃(|η|−R1+R2)ei arg(η)(R2))

× {ei arg(η)}2

{1 + d(|η| − R1)ei arg(η)}2
dR2dR1

Let us estimate each Ii(x, η, G̃η(R)).
On I1(x, η, G̃η(R)): It follows from the assumption of the induction that

|w̃n(x, η, G̃η(R1))| ≤C1e
δ1|η|(MLK3)n 1

(1 + |η| − R1)n(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η|)k

k!(1 − p)k
,

which implies that

|I1(x, η, G̃η(R))|

≤ C1e
δ1|η|(MLK3)n+1

n∑
k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η|)k+1

k!(1 − p)k

×
∫ R

0

1
(1 + |η| − R1)n(1−p)+2−p

dR1

≤ C1e
δ1|η|(MLK3)n+1

n∑
k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η|)k+1

k!(1 − p)k
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× 1
(n + 1)(1 − p)

1
(1 + |η| − R)(n+1)(1−p)

≤ C1e
δ1|η|(MLK3)n+1 1

(1 + |η| − R)(n+1)(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η|)k+1

(k + 1)!(1 − p)k+1

= C1e
δ1|η|(MLK3)n+1 1

(1 + |η| − R)(n+1)(1−p)

×
n+1∑
k=1

(
n

k − 1

){
1
δ1

(
1 +

1
1 − p

)}n+1−k (1 + |η|)k

k!(1 − p)k
.

On I2(x, η, G̃η(R)): The assumption of the induction implies that

|w̃n(x, (|η| − R + R1)ei arg(η), G̃(|η|−R+R1)ei arg(η)(R1))|

≤ C1e
δ1|η|e−δ1Reδ1R1(MLK3)n 1

(1 + |η| − R + R1 − R1)n(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η| − R + R1)k

k!(1 − p)k

= C1e
δ1|η|e−δ1Reδ1R1(MLK3)n 1

(1 + |η| − R)n(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η| − R + R1)k

k!(1 − p)k
.

Hence we obtain that

|I2(x, η, G̃η(R))|

≤ C1e
δ1|η|(MLK3)n(MLK)

1
(1 + |η| − R)(n+1)(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k

e−δ1R

∫ R

0

eδ1R1
(1 + |η| − R + R1)k

k!(1 − p)k
dR1

≤ C1e
δ1|η|(MLK3)n+1 1

(1 + |η| − R)(n+1)(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k 1
δ1

(1 + |η|)k

k!(1 − p)k

(see (4.11)).



� �

�

�

�

�

610 Masaki Hibino

On I3(x, η, G̃η(R)): By the assumption of the induction, we have

|w̃n(x, (|η| − R1 + R2)ei arg(η), G̃(|η|−R1+R2)ei arg(η)(R1))|

≤ C1e
δ1|η|e−δ1R1eδ1R2(MLK3)n 1

(1 + |η| − R1 + R2 − R2)n(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η| − R1 + R2)k

k!(1 − p)k

= C1e
δ1|η|e−δ1R1eδ1R2(MLK3)n 1

(1 + |η| − R1)n(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k (1 + |η| − R1 + R2)k

k!(1 − p)k
,

which implies that

|I3(x, η, G̃η(R))|

≤ C1e
δ1|η|(MLK3)n(MLK2)

n∑
k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k

×
∫ R

0

1
(1 + |η| − R1)n(1−p)+2−p

e−δ1R1

∫ R1

0

eδ1R2

× (1 + |η| − R1 + R2)k

k!(1 − p)k
dR2dR1

≤ C1e
δ1|η|(MLK3)n+1

n∑
k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k 1
δ1

(1 + |η|)k

k!(1 − p)k

×
∫ R

0

1
(1 + |η| − R1)n(1−p)+2−p

dR1 (see (4.11))

≤ C1e
δ1|η|(MLK3)n+1

n∑
k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k 1
δ1

(1 + |η|)k

k!(1 − p)k

× 1
(n + 1)(1 − p)

1
(1 + |η| − R)(n+1)(1−p)

≤ C1e
δ1|η|(MLK3)n+1 1

(1 + |η| − R)(n+1)(1−p)

×
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k 1
δ1

1
1 − p

(1 + |η|)k

k!(1 − p)k
.
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Therefore we have

|w̃n+1(x, η, G̃η(R))|

≤ C1e
δ1|η|(MLK3)n+1 1

(1 + |η| − R)(n+1)(1−p)

×
[

n+1∑
k=1

(
n

k − 1

){
1
δ1

(
1 +

1
1 − p

)}n+1−k (1 + |η|)k

k!(1 − p)k

+
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n−k ( 1
δ1

+
1
δ1

1
1 − p

)
(1 + |η|)k

k!(1 − p)k

]

= C1e
δ1|η|(MLK3)n+1 1

(1 + |η| − R)(n+1)(1−p)

×
[

n+1∑
k=1

(
n

k − 1

){
1
δ1

(
1 +

1
1 − p

)}n+1−k (1 + |η|)k

k!(1 − p)k

+
n∑

k=0

(
n

k

){
1
δ1

(
1 +

1
1 − p

)}n+1−k (1 + |η|)k

k!(1 − p)k

]

= C1e
δ1|η|(MLK3)n+1 1

(1 + |η| − R)(n+1)(1−p)

×
[{

1
δ1

(
1 +

1
1 − p

)}n+1

+
(1 + |η|)n+1

(n + 1)!(1 − p)n+1

+
n∑

k=1

{(
n

k − 1

)
+
(

n

k

)}{
1
δ1

(
1 +

1
1 − p

)}n+1−k (1 + |η|)k

k!(1 − p)k

]

= C1e
δ1|η|(MLK3)n+1 1

(1 + |η| − R)(n+1)(1−p)

×
n+1∑
k=0

(
n + 1

k

){
1
δ1

(
1 +

1
1 − p

)}n+1−k (1 + |η|)k

k!(1 − p)k
,

which implies the lemma for n + 1. The proof is completed.

§7. Some Remarks

In Cases (3) and (4), we assumed the additional conditions (1.12) and
(1.13), respectively. In this section, we consider the case where these conditions
are removed.
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In Case (3). We remove the condition (1.12). Therefore �(−beiθ) < 0
and c �= 0. The formal Borel transform v(x, η) of the formal solution satisfies
the integral equation (5.5). For the sake of simplicity, we assume f(x, y) = f(x)
(therefore h(x, η) ≡ 0), and consider the equation obtained by removing the
fourth and fifth terms in the right hand side of (5.5):

v(x, η) = f
(( a

b
+ x
)

e−bη − a
b

)
(7.1)

+
c

a + bx

∫ η

0

eb(η−t)v
(( a

b
+ x
)

e−b(η−t) − a
b

, t
)

dt.

This integral equation is equivalent to the initial value problem of the following
first order linear partial differential equation:

{Dη + (a + bx)Dx}v(x, η) =
c

a + bx
v(x, η),

v(x, 0) = f(x).
(7.2)

Hence we can solve this equation explicitly as

v(x, η) = f
(( a

b
+ x
)

e−bη − a
b

)
× exp

[
c

b(a + bx)
(ebη − 1)

]
.(7.3)

Therefore if �(−beiθ) < 0 and c �= 0, this v(x, η) does not have the exponential
growth estimate. It has a growth estimate of the form exp[δep|η|] with p =
�(beiθ) > 0.

By the above argument, it seems that the solution v(x, η) of the original
equation (5.5) may not satisfy the condition (BS) and that the formal solution
u(x, y) may not be Borel summable unless (1.12) is satisfied.

In Case (4). We remove the condition (1.13). Therefore �(−b/d) ≤ −1
and c �= 0. The formal Borel transform v(x, η) of the formal solution satisfies the
integral equation (6.4). We assume f(x, y) = f(x) and consider the equation
which is obtained in a similar manner to Case (3):

(7.4)

v(x, η) = f
(( a

b
+ x
)

(1 + dη)−b/d − a
b

)
+

c
b

(a
b

+ x
)−1

(1 + dη)b/d

×
∫ η

0

(1 + dt)−b/dv

((a
b

+ x
)(1 + dη

1 + dt

)−b/d

− a
b

, t

)
dt.

This equation is equivalent to the following initial value problem:
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{(1 + dη)Dη + (a + bx)Dx}v(x, η) =
c(1 + dη)
a + bx

v(x, η),

v(x, 0) = f(x).
(7.5)

First we assume b �= d and solve this equation. We can obtain the explicit form
of the solution as follows:

v(x, η) = f
(( a

b
+ x
)

(1 + dη)−b/d − a
b

)
(7.6)

× exp
[

c
b − d

1
a + bx

{(1 + dη)b/d − (1 + dη)}
]

.

Therefore if �(−b/d) < −1, this v(x, η) has a growth order of the form
exp(δ|η|p) with p = �(b/d) > 1 and does not satisfy the condition (BS).

Next we consider the case �(−b/d) = −1. Let us assume, for example,
b = d. Then we can solve the equation (7.5) explicitly as

(7.7)

v(x, η) = f
(( a

b
+ x
)

(1 + bη)−1 − a
b

)
× exp

[
c
b

1
a + bx

(1 + bη) log(1 + bη)
]

.

Therefore, in this case also, this v(x, η) does not have the exponential growth
estimate.

By the above argument, if we remove the condition (1.13), it seems that
the solution v(x, η) of the original equation (6.4) may not satisfy the condition
(BS) and that the formal solution u(x, y) may not be Borel summable.
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