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Asymptotic Distribution of Eigenfrequencies
for Damped Wave Equations

By

Johannes SJOSTRAND*

Abstract

The eigenfrequencies associated to a damped wave equation, are known to belong
to a band parallel to the real axis. We establish Weyl asymptotics for the distribution
of the real parts of the eigenfrequencies, we show that up to a set of density 0,
the eigenfrequencies are confined to a band determined by the Birkhoff limits of
the damping coefficient. We also show that certain averages of the imaginary parts
converge to the average of the damping coefficient.

Resume

II est bien connu que les frequences propres associees a un d'Alembertien amorti

sont confinees dans une bande parallele a 1'axe reel. Nous etablissons une asymp-

totique de Weyl pour la distribution des parties reelles des frequences propres, nous

montrons que "presque toutes" les frequences propres appartiennent a une bande

determinee par la limite de Birkhoff du coefficient d'amortissement. Nous montrons

aussi que certaines moyennes des parties imaginaires convergent vers la moyenne du

coefficient d'amortissement.

§0. Introduction

In control theory (see [L]) one is interested in the long time behaviour of

solutions to the wave equation with a damping term

(0.1) (d* - A + 2a(x}dt)v(t, x) = 0, (t, x) e R x M,
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for some compact Riemannian manifold M. Here A denotes the Laplace Bel-
trami operator, and a is some bounded real-valued function on M, that we shall
assume to be C°° for simplicity. Because of the presence of a we will lose the
unitary behaviour of the evolution generated by (0.1), and we may have expo-
nential growth or decay of the solutions, when \t\ —> oo. At least in principle
the growth or decay rates have some relation with the eigen-frequencies of the
corresponding stationary problem: Putting v(t,x] = eltru(x}, r G C, we are
lead to that problem:

(0.2) (-A - r2 + 2ia(x)r)u(x) = 0.

We say that r G C is an eigenfrequency or an eigen-value for (0.2), if
there exist a corresponding non-vanishing distribution u (and actually smooth
function, by elliptic regularity), which solves the equation. It is easy to see that
the eigenvalues are confined to a band parallel to the real axis. More precisely,
if r is an eigenvalue, then we have

(0.3) inf a < Imr < sup a, when Rer 7^ 0,

(0.4) 2min(infa,0) < Imr < 2max(supa,0), when Rer = 0.

Using Fredholm theory, we see that the set of eigenvalues is discrete.
G.Lebeau [L] has obtained several results which relate the stationary prob-

lem (0.2) and the evolution problem (0.1). P. Freitas [F] has obtained various
estimates for the eigenfrequencies of (0.2).

There are three equivalent ways of defining the multiplicity of the eigen-
values. The first one consists in transforming (0.2) into an ordinary eigenvalue
problem

(0.5) (p-r)(U°}=0,
\u,J

where

(0.6) P = ( °A * J : ff1 x H° -> Hl x ff°,v ' y-A 2ia(x)J

is elliptic in the Agmon-Douglis-Nirenberg sense, with domain H2 x Hl. The
relation between (0.2) and (0.5) is given by UQ = u, ui = ru. Then the
eigenvalues of (0.2) are precisely the eigenvalues of P and the multiplicity of
an eigenvalue TO is then defined to be the rank of the spectral projection IITo =
2~ f (r — P)~1dr, where 7 is a sufficiently small circle centered at TQ.
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The second way is to consider a perturbation

(0.7) P(T) = P(r) + K(r),

where P(r) = (—A — r2 4- 2xa(x)r) and K(r) is of finite rank and depends
holomorphically on r G neigh (TO, C) (i.e. some neighborhood of TO in C), with
the property that P(TQ) : H2(M) —»• H°(M] is bijective. The existence of such
a K follows from Fredholm theory. Then the multiplicity of TO is denned as
the multiplicity of TO as a zero of the Fredholm determinant det(P(r)~1P(r)).
This determinant is well defined since P(r)~lP(r] — 1 : L2 -> I/2 is of trace
class.

The third way is to define the multiplicity of TO as the trace

with 7 as above. In the appendix at the end of this introduction, we show that
the three notions coincide.

In the following, we shall always count the eigenvalues with their multiplic-
ity. We are interested in the asymptotic distribution of large eigenvalues. Since
(0.2) is invariant under the map (r,u) »—»> (—r, u), the eigenvalues are situated
symmetrically around the imaginary axis, so without loss of generality, we may
restrict the attention to the region Rer > 0.

For T > 0, we put

(0.8) (a)T = ^ / ^ a o e*p(tHp)dt, on p~l(l),

where p = £2 denotes the principal symbol of —A defined on T*M and Hp is
the corresponding Hamilton field. Recall that exptHp : p~l(l) —> p~l(l) can
be identified with the geodesic flow on the sphere bundle of M. It is easy to
show (see [L] or [S], appendix A) that

A+ : = inf sup (O)T — 1™ sup (O)T
T>0p-i (1) r->oop-i(1)

A- : =sup inf (aW = lim inf (aW-
r>op- 1( i ) r->oop-i(i)

G. Lebeau [L] established the following theorem (cf. Rauch-Taylor [RT]).

Theorem 0.0. For every e > 0, there are at most finitely many eigen-
values outside R 4- i]A- — 6, A^. + e[.
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Actually in [L], the result is stated only for the eigenvalues in R + i] —
oo,^4_ — e], and with the assumption that a > 0 (which corresponds to actual
damping). On the other hand Lebeau allows M to have a boundary, and he
then takes Dirichlet boundary conditions. It would be interesting to see if the
results below extend to the case when M has a boundary.

We are interested in the distribution of eigenvalues inside the band in the
above theorem. The next result says that we have Weyl asymptotics with (in
general) optimal remainder estimate for the distribution of the real parts. See
note added in proof.

Theorem 0.1. The number of eigenvalues r with 0 < Rer < A is equal
to

( A
when A —)• oo.

It follows that the number of eigenvalues with A < R e r < A + lis O(\n~1},
when A —»• +00. In view of the Birkhoff ergodic theorem, the limit

(0.10) {a)oo := lim (a)T
T-+OO

exists on p~1(l) almost everywhere with respect to the flow invariant Liouville
measure. The essential supremum and infimum of (a)^ satisfy

(0.11) A- < essinf (a)oo < esssup{a)oo < A+.

When the geodesic flow is ergodic, we have equality in the middle, and we may
have strict inequality to the left and to the right. In the non-ergodic case, we
can find a for which we have strict inequality in the middle. The next result
implies that for every e > 0, most of the eigenvalues belong to the band

ess inf (a)^ — e < Im r < ess sup (a)^ -f e.

Theorem 0.2. For every e > 0, the number of eigenvalues in [A, A-h 1] +
z(R\]essinf {a}oo — e, ess sup (a)oo + e[) is o(An-1), when A —> oo.

Our last result concerns the average distribution of the imaginary parts of
the eigenvalues.

Theorem 0.3. Fix some CQ > 1, and let A2 > AI > 1 with A2 /Ai < C0,
A2 — AI > log AI. Let N(\i, A2) denote the number of eigenvalues in [Ai, A2] +
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in. Then

(0.12)

' A2)

Here dx denotes the Riemann volume element, vol(M) = JM dx, and o~(P}

denotes the set of eigenvalues.

The author's interest in the problems of this paper comes from earlier
works on resonances, and more precisely certain situations where some part of
the resonances are captured in some band like domain, isolated from the other
resonances. This happens in the case of the exterior problem for strictly convex
obstacles as was established by Zworski and the author in [SZj. Theorem 0.1
can be viewed as an analogue of the main result of that paper in a technically
easier situation, and we have used some ideas of the proof in [SZ] (and the

strategy of [S2]). Similarly, Theorem 0.2, can be viewed as an analogue of a
result of [S] for resonances in the case of strictly convex obstacles with analytic

boundary. In that work we approached the resonances only from one side, and
the problem of getting upper bounds for the density of resonances in a marginal
region of the first band of resonances opposite to the real axis, is still open,
but perhaps attainable. As far as the author knows, there is no analogue to
Theorem 0.3 in the case of strictly convex obstacles.

The plan of the paper is the following. In Section 1, we make a simple
reduction to a semi-classical framework, in which we work in the remainder
of the paper, and which permits us to establish the results in a more general
form. In Section 2, we show how one can average the lower order part of the
operator along the trajectories of the principal symbol, by means of simple

conjugation with pseudodifferential operators (pseudors from now on), and we
explain how to obtain Theorem 0.0 in this way. In Section 3 we discuss certain
perturbations of the operator (very similar to those used by J.F.Bony [B])
which are used in Section 4 to prove Theorem 0.2. In Section 5, we make
different perturbations of the operator and create gaps in the spectrum. We also

estimate the corresponding difference of certain trace integrals along contours
in the complex spectral plane. In Section 6, we study the trace integrals for
the perturbed operator, and combining this with the results of the preceding
section, we obtain semi-classical analogues of Theorem 0.1 and 0.3, from which

we also get the versions stated above. At this stage, we also use ideas from

[S2], [SZ].
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Appendix

Let r = TO be an eigenvalue of (0.2), and write

(A.I) P(r) = (-A - r2 + 2ia(x)r).

We recall the three different definitions of multiplicity and show that they are
equivalent.

I) Let K(r) be a finite rank operator depending holomorphically on r £

neigh(r0,C), and assume that P(TQ) = H2(M) -> H°(M) is bijective,

where P(r) = P(r) 4- K(r). Then we define m/(ro) G N to be the order

of vanishing of D(r) := det(P(r)~1P(r)) at r = TO.

II) Define m//(ro) := tr ̂  / P(r}~ldrP(r}dT, where 7 is a sufficiently small
circle centered at TQ. We shall see that the integral is a trace class operator.

III) Define m///(r0) to be the rank of the spectral projection II7 =
(2m) ~l f (r — P)~ldr, with 7 as above, and P defined in (0.6).

Proposition A.I. We have ra/(ro) = TO// (TO) = 7n///(ro).

Proof. We first show the equality of m/ and m//. We have

m/(T0) = ~ I D(r)-ldTD(T)dT

(j P(r)-19TP(r)dr - j P(r)-l(dTP(r})P(TrlP(r)dT).

It suffices to show that the last integral is of trace class and has trace 0. Since
P(r) = P(r) ~ K(r), it is equal to

(A.2) f P(rrl(dTP(r}}(l-P(r}-lK(r}}dr.



DAMPED WAVE EQUATIONS 579

The contribution from P(r}~lK(r] is of trace class already before integration,
so (A.2) is of trace class precisely when

(A.3)

is, and when so, the two integrals have the same trace. But (A.3) is equal to

(A.4) I P(r}-lP(T)P(r)-ldrP(r)dT = / P(r}-ldTP(T}dr = 0,

where the last equality follows from the fact that P(r}~1 is holomorphic inside

7-
It only remains to prove that m//(ro) = ?TI///(TO). A straight forward

computation shows that

(A'5) V ~ >') ~ \ D^-l/o,,- _2

P(r)-1(2m-r)
P(r)-1(2ior - r2) -

We know that J (r — P} ldr is of trace class, by spectral Fredholm theory.
From (A.5), we get

D

§1. Semi-Classical Reduction

Let M be a compact smooth Riemannian manifold of dimension n. Let
a G C°°(M;R) and consider

(1.1) (-A - r2 4- 2m(x)r)v = 0, u ̂  0.

We recall that the eigenvalues to the problem (1.1) form a discrete set which
is invariant under reflexion in the imaginary axis and contained in some band
parallel to the real axis. We will only be interested in the eigenvalues T with
large modulus, and by reflexion symmetry, we may restrict the attention to
such values with Rer ^> 1.
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Write r = X/h with |A| ~ 1, 0 < h <C 1, | arg A| < Tr/4, so that

(1.2) (-/i2 A - A2 + 2ia(x)Xh)v = 0.

put z — A2, A — y/z, so that \z\ ~ 1, | argz| < Tr/2 and

(1.3) (P-z)v = Q,

(1.4) P = P + ihQ(z), P = -^2A, Q(z) = 2a(x)Jz.

We notice that Q(z) is self adjoint for z > 0.
In the following it will be convenient to consider the problem in a more

general frame work of pseudors. For m G R, let S({£)m) = ^(R^) be the
space of a G C°°(R2n^), such that

(1.5) ^afa = 0((0m"l/31), Va , / ?GN, <0 = (1 + ^2)1/2,

see [H]. This definition extends naturally to symbols defined on T*M. If a de-
pends on a semi-classical parameter h G]0, /i0] and possibly on other parameters
as well, we require (1.5) to hold uniformly with respect to these parameters. For
h dependent symbols, we say that a G 5ci((£)m) if there exists a0 G S((£)m) in-
dependent of h such that a—aQ £ hS((£>)m~1), and we call a0 the leading symbol
or principal symbol of a (and of the corresponding h pseudor, to be defined). If
a = a(x,& h) G S((£)m) on R2n, we let Op (a) = Op^(a) = a(x, hDx; h) be the
classical h quantization of a (see (A. 3) in the appendix of section 6, for the stan-
dard formula). If a3 £ 5((0mj)5 3 = 1.2, we have OpJai)OpJa2) = Op/l(a),
where

5«0mi+m2) 3 a = aia2 mod/i5((0mi+m2~1).

In particular, if a3 E 5ci((^)m^), then a G Sci((£)mi+m2) and we have a0 =
^i, 0^2,0 f°r the principal symbols. This very standard calculus extends to the
case of compact manifolds in the usual way.

In the following, we consider P = P + ihQ(z), where P G Op^(5ci((0
2))

is formally self-adjoint with (real) principal symbol p(x,£), satisfying dp / 0
on p~1([a,/5]), for some 0 < a < l < / 3 < +00 and with p ~ (£)2 for large
£. (Then P becomes essentially self- adjoint.) Further, we assume that Q —

Q(z] G Oph(Sci ({£))) depends holomorphically on z G O := e^°^]a,/3[, for
some $o £]0, ?r/4[. We assume that Q is formally self-adjoint for real z and let
g(^) = q(x,£, z) denote the principal symbol of Q(z).
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§2. Averaging

Lemma 2.1. We assume that v is a non-trivial solution of (1.3) for
some z £ Q. Then

(2.1) h inf q(Rez)-O(h2} <lmz< h sup q(Rez) + O(h2}.
p~l(Rez) p-i(Re;z)

Proo/. Because of the ellipticity of the operator in (1.3) for large £, we
see that

(2.2) \\Av\\ < 0(I}\\v\\,

if A E Op (S({£)2)). In particular,

(2.3) Pv, Q(z)v = (9(1) in L2,

and considering 0 = Im ((P — z)v\v ), we see that

(2.4) Imz = C?(/i).

It follows that (P - Rez)v = O(h) in L2.
Choose q — qnez ^ S(l)^ such that f(x,^) = q(x,£>,~Rez) on p~1(Re2;),

and

(2.5) inf q(Rez) < inf g < supf < sup
P~l(Rez) p-i(Re

We have

with fe € 5({^)~1). If we let Q and K be h pseudors with q and fc as leading
symbols, then

0 = Im ((P + ihQ(z) - z)v\v) = h(Q(Re z)v v) + (O(h2) -

= h(Qv\v)

The semi-classical version of the sharp Carding inequality shows that

(inf q - 0(/i))!Hi2 < (Qv v) < (supq + O(h))\\v\\2,

and combining this with the preceding identity and (2.5), we get the desired
conclusion. D
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We now try to improve (2.1) by conjugating V = P + ihQ(z) by an elliptic
selfadjoint pseudor A G Op(Sci(l)) with leading symbol a = e9 . We have

(2.6) A-lPA = P + A~l[P,A] = P-ihB,

where B is an /i-pseudor in Op(Sci ({£))) with leading symbol

(2.7) b = crl{p, a] = a-lHp(a] = Hp(g).

We get

(2.8) A~l(P + ihQ(z))A = P + ihOp(q(Re z) - Hp(g}} + h2R(z),

with R(z) G Op(S( {£))). The idea is now to choose g = gn&z so that
s\ipp-i(Rez^(q(Rez} - Hp(g)) becomes smaller or so that mfp-i^Rez^(q(Rez)
— Hp(g}) becomes larger. Let us first notice that we cannot hope to change
very much the long time averages of q — q(Rez) along the Hp trajectories,
since

(Hpg)T : = ̂ - I Hp(g) o exp(tHp)dt = -^ / ^-(g o exptHp)dt
£1 J -T ^J- J — T tit

= 7^(9 ° exp(r^p) - g o exp(-Ttfp)) = (D ̂  ,

whenever g is fixed. On the other hand, we can replace q(Rez) on p~l(Rez)
by its average

1 r
(q)T = yf V. °

f-T

To see that, we first work on the real axis and try to solve

*v~v =

and we first solve

/0 T n\ dfT 1(2-10) _ = _i

by means of fT(t) = f ( t / T ) , and /(t) = l[_i,0](t)(t + l)/2 +
l)/2. Along an integral curve p(t) = exp(tHp)(p(0)) in p~1(Rez), we choose
9T(p(t)) = -fa * (^ ° P), so that

— l



DAMPED WAVE EQUATIONS 583

In other terms, with q = q(Rez), we get on p~l(Rez):

(2.11) -9T = j fT(s}q o exp((t - s}Hp}ds,

and

(2.12) Hp(gT) = q - (q)T.

Choose QT £ S(l) (depending also on Rez) satisfying (2.11) on p~1(Rez).
With A = AT chosen correspondingly, (2.8) gives

(2.13) A-l(P + ihQ(z))AT = P + ihOp(qT) + h2RT(z),

with RT e Op(S({£))), and with qT e S({f)) equal to (q)T on p~^(Rez). If v
is a nontrivial solution of (1.3), we get

(2.14) (A^l(P + ihQ)AT - z)A~lv = 0,

and from the lemma (as well as its proof which takes care of the contribution
from h2RT(z)) we get

(2.15)
h inf (q(Rez))T-OT(h2) < Imz < h sup (q(Rez))T + OT(h2),

P MRez) p- i (Rez)

for non-trivial solutions of (1.3) when z = O(h).
In Appendix A of [S], it was established that

(2.16) sup inf (Q)T = lim inf (a)r1
r>op-1(Re^w / r^oop-i(Re 2)w /

(2.17) inf sup (q)T = lim sup (g)T.

The argument there also shows that the limits are locally uniform in Rez.
Moreover, if we introduce the a.e. limit given by Birkhoff 's ergodic theorem:

(2.18) (q)^ = lim (q)T,
T-+OO

then

(2.19)
lim inf (q}x < inf ess (q)oo £ sup ess (q)oo < lim sup \q)r-

T^oop-^Re-z) p-1(Rez) p~l(Rez) T^°°p-1(Rez}

It is easy to find examples where the first and the last of these inequalities are
strict, we may for instance consider a two-dimensional torus and assume that
the support of a is contained in a strip parallel to one of the axes.
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From (2.15-17), we get for eigenvalues in (1.3):

(2.20)
h( lim inf (q(Rez)}T - o ( l ) ) <lmz < h( lim sup (q(Rez))T + o(l)),

T^oo p-i (Re 2) T->oo p-i (Re z)

locally uniformly in Re z. This result implies Theorem 0.0.
We are interested in bounds on the density of eigenvalues in the marginal

regions

Imz < h( inf ess (g)oo — ̂ 0)1 Imz > ft( sup ess (g)oo + ^0),
p-MRez) p- i (Rez)

where CQ > 0 is any fixed number.

§3. Perturbations with Controlled Trace Norm

In the following two sections, we let z vary in a disc of radius O(h) around
some real value, that we take = 1 for simplicity. Thus we will work with
z — 1 + £, C — O(h). We consider the operator (2.13), that we write

(3.1) PT = P + ihQT + h2RT(z], QT = QT(1).

Here RT is slightly modified compared to the RT in (2.13) but has the same
properties. For simplicity we sometimes drop the subscript T, also for the
principal symbol of Q = QT, that we denote by q = QT- We recall that

(3.2) Hpg = 0(i),onp-1(l).

It follows that

(3.3) ||[P, QH| < (C?(|) + 0T(h2))\\u \ + 0T(h)\\(P - 1)«||.

In the new notations, (2.15) becomes

(3.4) h inf q - OT(h2) < ImC < h sup g + OT(/i2),-

for non-trivial solutions of

(3.5) (P-z)u = 0, z = I + C,

with C = O(h).
We now want to make a small perturbation P o f P , so that the upper bound

in (3.4) is improved for solutions of (P — z]u = 0, and we want a corresponding
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control over the resolvent of P. We also want a good control over the norm and
the trace class norm of P — P. For that, assume that we have constructed a
pseudor Q G Op(5({£))) with leading symbol q such that q < q on p~1(l) and

(3.6)
V-1 /

For instance, we can take q = a(q), on p~l(l), where a is real and smooth,
a(E) < E, a'\ < I.

Let 0 < / G S(R), with / G Cg°, where f ( t ) = J* e~ltEf(E)dE is the
Fourier transform. We will assume either that

(3.7) supp/ C] - -Tmin(l), -Tmin(l)[,

where Tmin(l) is the smallest possible period > 0 of a closed Hp trajectory in
p~1(l), or that

(3.8) the union of all closed Hp trajectories in p~l(l) is of measure 0.

Put

(3.9)

with

(3.10) Q = Q

Notice that

\\(Q ~ Q)«|l < ( sup (q - q) + 0T(h))\\u\\ + 0T(l)\\(P - 1M|,

and that \(P - l)f(^L)\\ = O(h). It follows that

(3-11) / (^

< l l f i l L sup (q-— \\J 1100

For the trace class norm, we notice that by the sharp Carding inequality,
(E^)(Q - Q 4- Ch)f(^} > 0, if C = CLT > 0 is sufficiently large. Hence,
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'p-r
(3.12) (Q - Q)f

^ / \ '" / tr

h J

(Q-Q + Ch)f ( ^-^ ) ) + Of Ah2-"1)

Here

which under one of the assumptions (3.7), (3.8) is equal to

f r \
(3.13) Cnh

l'n I (q- g)L0(^)/2(0) + c/,r(l) , h -+ 0,
f rl'n I
\JP-i(

where Cn > 0 only depends on the dimension n of M and LQ is the Liouville
measure on p~~l(l). (See for instance [DS] for this classical fact.) Further,
/2(0) = 11/11^2 » so combining this with (3.12), we get

(3.14) f -7-}(Q-Q}f

< Cnh
l-n f (q- q)L0(dp}\\f\\ii

JV-HD

(3.11) and (3.14) provide estimates for the operator and trace norms of

'p- r

We now study the invertibility of z — P. If A, B are bounded self-adjoint
operators, we have

\\(A + iB)u\\2 = \\Au\\2 + \\Bu\\2 +i([A,B]

and applying this to (3.9), we get
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(3.15)

2\\(P - z)u\\2 > \\(P + ihQ - z)u |2 - 0T(h*)(\\(P - 1H2 + H|2)
/Tm 7

> ||(P - Rez)u\\2 + h2\\ [-— - QV ft
-0r(ft4)(||(P-iH2 + HI2)

|2
rp V^ ' \\J I I / ,""/ ' ^ J I* \'" JJ\\^\\ ^ J- V" / I I V - ^ * , ~ ~ y i ^ I .

Here we also used that z — l = O(h). This implies (for h small enough depending
on T) that

(3.16) ||(P - Re2)^|! < V3\\(P -z)u\+ (Of(l)-^= + (9/,T(l)/i3/2 ) ||u||.
\ vT ' /

On the other hand, we have

(3.17) Im (l-(z-P)uu

||(Rez -

u u

Here we would like to eliminate /(^^) and for that purpose we factorize

(3-18)

With g(X) — QRez-i (A) = ffRec (A), we get

(Q-Q)f(-^)v\f(-^)v)-f(-^) (W-Q)«

(Q-

(Q-0)/

<(2
P-Rex

-16
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Use this in (3.17)

(3.20)

/I \
Im l-(z-p)u\u\ >

-2( sup (q -

Let a(£^) > 0, be a continuous function defined on a bounded interval J
containing 0 and restrict z by assuming that

(3.21)

(Notice that from (3.21), we get the same lower bound on p~1(l), provided
that a is replaced by a — O(h}.} Then for the same z and for (x, £) E T*M:

(3.22)

where S(l) 3 /3Re_c(x,£) > 0, 7Rec G 5((^}"1), and we deduce from the sharp
Carding inequality that

Using this in (3.20), we get

(3.24) Im (±(z - P}u u} > (a (^} - Of,T(h]\ \\u\\

-(2 sup (g-§)||/'||
p-i(i)

and using (3.16), we get
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(3.25) Im (-(z-P)u

-\/3(2 sup (q - .

v

Using also that lm(^?-u u) < \\^(z - 7:>)u||||u||, we get

(3.26) a
\ \ ll /

< (1 4- 2\/3 sup (q —

Since q and q remain bounded on p~l(l), when T —t oo, we see that for every
e E]0,1[, we can first choose T large enough, then h small enough depending
on e, T, a, and get

(3.27) (

< (14 2^3 sup (g-g)||//||00||/|i00 + 0 /,T(l)/i)l|^(^-PN|.
p-i(i) ^

Summing up the discussion so far, we have

Proposition 3.1. Let P E OpSci({£)2) be formally selfadjoint with real
principal symbol p, and assume thatp(x^) ~ (£)2 for large £ and that dp does

not vanish on p~1(l). Let Q = Q(z) E Op (Sd((0)) w^ Pr^nc^Pa^ symbol q(z]
depend holomorphically on z E Q := e^~e°'9°[}a,(3[, where 0 < $o < 7T/4, 0 <
a. < 1 < /?, and 6e formally self-adjoint when z is real. Let

PT = p + ^<2T + h2RT(z], QT = QT(1), ^ = 1 + C, C = O(h),

be the operator (3.1), so that QT E Op (fid({£))) aas leading symbol qT with

QT = (q)r onp~l(l}, and RT(z) E Op (S(ft,2(£))). Let QT E Op (Sci({£))) ^ave

leading symbol C[T with qT = aoqT onp~1(l), where C°° 3 a(t) < t, |a'(t)| < 1,
and put

(3.28)

PT = P + iftQT + h2flT(2;), Qr = QT(1) + / f ̂  (QT ~ QT),

^/iere 0 < / E 5(R), /E C0°°.



590 JOHANNES SJOSTRAND

Then

(3.29) \\PT - PT\\ < M l l / I l L sup (qT - qT)
p-i(i)

If we assume either (3.7) or (3.8), £/ien

(3.30) \\PT - Prlltr < Cn^-n / (qT - q T ) L Q ( d p ) \ \ f \ \ l ,
Jp-i(i)

If we drop (3.7), (3.8), but restrict z further by assuming that for some contin-
uous function a(E) > 0, defined on some bounded interval J containing 0, we
have for T large enough:

x(3.31)

/or every e > 0, T > T(e) > 0 and h < ft(e, T) > 0, (^ -
we

(3.32)
-i

<
(l-e)a(^)

Similar perturbations based on /(^-^) are used by J.F.Bony [B].

§4. Upper Bounds on the Density of Eigenvalues

We consider the same situation as in Proposition 3.1 and we choose T > 0
sufficiently large, h > 0 sufficiently small depending on T and possibly other
parameters as well. Let u — u(E), w = w(E) be continuous functions on R,
independent of T1, such that

(4.1) w(E) > u(E) > ^ -t- supp_1(1)(gT - f(E)2(qT - gT)), E G R,

(4.2) u(E) > supp_1(1)(gT) + i, when \E\ > C,

for some fixed constant C > 1. With D(ZQ,T) = {z G C; z — ZQ\ < r}, put

(4-3) n

(4.4) W
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Notice that O = /ifii, W — hW\, where W\, Oi are independent of h.
For 0 < e < 2eo, let O+ < e , ^+,6 denote the intersections of Q and W

respectively with {(" £ C; Im("//i > supp-i^^) + e}. For £ = z - I G O+i£o

and T sufficiently large, we have

(4.5) \\h(z-PT)-ll\\h(z-PTrl\\<-.
eo

For VT this follows from Proposition 3.1 and for Pr a simplified version of the

proof gives the same fact (or else we can put / = 0 in that proposition).

Let a(E] > Const. > 0 be a continuous function, independent of T, such

that (cf. (4.1))

(4.6) u(E) > a(E) + sup (qT - f(E)2(qT - gT)), E G R.
p-MD

Then by Proposition 3.1, we have for £ = z — 1 G O:

(4.7) ||M, - ft.)-, < '(' + ̂ "^-.. lto-&)ll/'IUI/IU) =!

when /i is small enough (depending on T).
Also recall from Proposition 3.1 that

(4.8)

(4.9)

sup (qT - qT) + Of,T(h} =:

(qT -

For 2 — 1 G fi, we write

(4.10) (z - PT) = (z- PT)(l - K(z)), K(z) = (z - PT)-\PT - PT).

Here K(z) is of trace class with

(4.11) ||K||tr < DTBThl~n.

It follows that z is an eigenvalue of PT(Z] precisely when

(4.12) V(z) := det(l - K ( z ) }

vanishes. Let us define the multiplicity of such an eigenvalue as the correspond-
ing multiplicity of the zero of V (following one of the equivalent definitions
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discussed in Section 0). This multiplicity is independent of the choice of PT,
as well as of T. (Recall from the dicussion in Section 2, that z is an eigenvalue
of PT(Z) iff it is an eigenvalue of P(z) = P + ihQ(z).}

From (4.11), and a general estimate on Fredholm determinants (see [GK]),
we get the upper bound

(4.13) \D(z)\ < exp ||A-||tr <

On the other hand, for z — 1 G ̂ +,eoi we have

so

(4.14) }\

Write
(l

and observe that

\\K(l - K)-l\\* < l l^l l tr | | ( l - K)~l\\ <

Consequently, for z — I G ^+,eo :

(4.15) |P(z)|-1

< exp

So we have

(4.16) log \V(z}\ < DTBThl-n, z - 1 <E ft,

I ( 2AT\ l-n

Recall that log |P(2)| is subharmonic and that A2 log |P(^)|
where z3 are the eigenvalues counted with their multiplicity and 5 denotes the
Dirac measure. It follows either by Jensen's inequality, or by working more
directly with the Green and Poisson kernels for O, that if N = N(W) is the
number of zeros of P(z) in 1 + W, then

(4.18) N(W) < C(Sli,Wi)DT (l + — ) BThl~n.
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Here BT is the most interesting constant (cf. (4.9)).
Recall that on p-1(l), we have

(4.19) qT = (g)r, qr = «({<?}r), q = ?(1),

where a(E) < E, \a'(E}\ < 1, a <E C°°. Also recall that (q)^ = limr-*oc(<?)r is
the a.e. limit in Birkhoff 's ergodic theorem, and that

(4.20) esssup(g)oo< lim sup{g)T.
r— >oc

Assume that we have strict inequality in (4.20) and choose constants a, (3 with

(4.21) ess sup (9)00 < a < (3 < lim sup(q)T-
T-+OO

Let a = aa,/3 be increasing with

(4.22) a<*AE) = E for E <a, aa.p(E) < /?,

Choose / in (4.1) with

(4.23) f ( E ] > 1, |S| < C.

Then for E\ < C, we have on p~l(l)

(4.24) qT - f(E)2(qT - qT) < qT - (qT - qT) = qT = a ( ( q ) T ] < /?,

while for \E\ > C, we have

(4.25) qT-f(E)2(qT-qT}<(q)T.

Choose w(E},(jj(E) continuous on R, such that

(4.26) w(E) > uj(E] > Cl -h pl{_c,c\(E) -f (li

for some fixed but arbitrarily small e\ > 0. Then (4.24,25) imply that (4.1,2)
hold if T is large enough, and we can find a corresponding function a(E) in

(4.6).
The constants DT,AT are bounded by some T independent constant. As

for BT, we notice that

((q)T - a((q)T))L0(dp) -+ ( ( q ) 0 0 - a ( ( q ) 0 0 ) ) L 0 ( d p ) = Q ,
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by the dominated convergence theorem, since a((g}00) = (9)00 a.e. We conclude
from (4.18) that

l-n(4.27) N(W) = o(l}h

If /3 G]esssup{g)oo,limT->oo sup(g)r[, then we can choose a,f3 in (4.21)
with /? < (3 and for every 0 < C < C, we can choose w(E) and e\ in (4.26),
such that w(E) < /3lr_g g,(E). We have then showed that the number of

eigenvalues z = I + C of P with |ReC/ft| < C, Imz/ft > /3, (and C = O(ft)) is
ft1"71.

The analogous result holds for the number of eigenvalues with

ReC
h

< C, —1 < (3 < essinf {^oo,
h

and we get the semiclassical version of the main theorem. It suffices to apply
the reduction in Section 1, to get Theorem 0.2.

§5. Comparison with an Operator with Gaps in the Spectrum

As in Section 1, we consider

(5.1) (P-z)v = Q,

(5.2) P = P + ihQ(z), P = -ft2A, Q(z) = 2a(x)^.

We notice that Q(z) is self adjoint for z > 0.
In the following, we shall only use that Q £ Op (5ci ((£))) depends holo-

mophically on z G Q, defined after (1.4), and that P G Op (Sci((£)2)) is for-
mally selfadjoint and has the properties that dp(x,£>) ^ 0, on p~l([a,0}} and
p ( x , £ ) ~ {^}2 for large £. Notice that F is essentially selfadjoint with domain
H2(M).

Fix C0 > 1 and let a -h ̂  < E1 < E2 < 0 - -^ satisfy E2 - El > 4ft. So
£"j may depend on ft. It will be convenient to introduce

EI + E2 £"2 — £"l

Lemma 5.1. For e?;er?/ C > 0, there exists a self -adjoint operator P
with the same domain as P, such that

(5.3) (Ej + [-Ch, Ch}) n a(P) = 0, j = 1, 2,

(5.4) \\P-P\\<Ch,

(5.5) ||P - P||tr <



DAMPED WAVE EQUATIONS 595

Proof. This is a direct consequence of the fact that the number of eigen-
values of PmE3 + [-Ch, Ch] is O(l)hl'n. n

Write

(5.6) P = P 4- h5P, P = P + iftQ(z),

so that

(5.7) \\SP\\ < C, |jW||tr < C(C)hl~n.

If we choose C large enough, we can arrange so that (z — P) 1 exists and
satisfies

(5.8) \\(z-P)-1

"v ' " - f c + I I m z l 1

for z in the region

(5.9) D(EQ'r0 - 2ft, r0 + 2ft) U {z <E D(E0',rQ 4- 2ft); |Imz| > Cft}.

Here we denote by D(zQ\r,R] the open annulus {z £ C; r < z — 20 1 <
jR}. For simplicity we shall assume that D(EQ;TQ + 2ft) is contained in O =
ez]-00,0o[i jQ^j jn ^^g following, everything works without this extra assump-
tion, if we replace certain sets in the complex plane by their images under the
map C 3 E H-> Re E + m!m.E, for some fixed K > 0 which is small enough.

Write

(5.10) z-P = (z- P}(1 4- h(z - P)~15P),

and put
D(z) = det(l + ft(z - P)

for 2; in the domain (5.9). Notice that

for z in (5.9). It follows that

(5.12) \D(z)\ ^

in the same region. If we restrict z to the subset of points of (5.9) with |Im z >
Ch, we may assume that
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and from (5.10), we get

with

\\h(z - P

The determinant of (5.14) is equal to l/D(z), which leads to

(5.15) \D(z)\ >

Let Zj, j = 1, .., N be the eigenvalues of P in

(5.16)

We know from section 4 that N = O(i]hl n, and we have just seen that we also
have |lmzj| < Ch. (Actually, the bound on N could easily be rederived here
following the usual method.) Of course, we count the z3 with their multiplicities
as zeros of D(z). For each z3, let 6Zj (z) be the corresponding Blaschke factor
on D(EQ, r0 + 3h/2), defined by

(5-17) b z ( z )
3 r0+3h/2 \ TO + 3/1/2 /

See the appendix of this section. We then know that

•~ / \ I z Zq
(5.18) \v*3^l\ h ,

(5.19) |L(z)| = 1 + 0(1)
I Z Z n

Let

N

(5.20)

be the corresponding Blaschke product. Then, if we restrict the attention to
the set D(EQ, ro + ft), we get

(5.21) exp - 0 ( 1 ) ^ 1 1 < \Db(z)\, |Imz| >

(5.22) 1^(^)1 < 1, in general.
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Now write

(5.23) D(z) = G(z)Db(z), z E D(EQ, r0 + fe),

so that G(z) ^ 0 in the region analogous to (5.9):

(5.24) D(E0,rQ-h,r0 + h)\j{z G D(EQ, r0 + ft); \Imz\ > Ch}.

Combining (5.21,22,15,12) we get

(5-25) ! log \G(z)\\< 0(1)

in {z e D(E0,r0 + h)', \lrnz > Ch}.
As in [S2], we see that \l-h<a<b<h with b - a > h/O(l), then there

exists c Gja,6[, such that (5.21) holds everywhere on the circle 9D(E0,r0 -f c).
It follows from this and (5.12), that log|G(z)| < O(l}h2~n/(h + |Im^|) on the
same circle. Since log |G(z)| is harmonic, we can use the maximum principle to
conclude that

(5.26) log|G(z)| , ,
h + |lm^|

Combining (5.25,26) with Harnack's inequality (as in [S2]), we get

(5.27)

h+ \Irnz

2 2

Since log \G(z}\ is harmonic, it follows that

(5.28)

|V,log|G(z)|| < 0(1)

Ch

,r0-f |Ai- \z\

7 \ ( / 7 ,
— h U <z 6 £> £o,r0 + —ft12 / I V 12

after an arbitrarily small increase of the constant C in (5.27). Since log \G(z)\ =
Re log G(z), where log G(z) is a multivalued holomorphic function (well defined
modulo 2?riZ), it follows from (5.28) and the Cauchy-Riemann equations that

d h2~n

(5.29) "' ^ ' ̂ / - x

\h-\z\
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in the same domain as in (5.28).
Let f ( z ) be holomorphic in D(EQ,TQ-\-H} and let 7 be the oriented boundary

of the hexagon with corners in EQ ± r(h) ± iCh, E0 ± ir0/2, with r = r(h] G
]r° ~ T^>ro + i^M- We assume that no z3 is on 7 and let int7 be the open
hexagon just defined.

Now pass to integrals and observe first that if we have a relation A(t) =
B(t)C(i) between bounded invertible operators between Hilbert spaces which
are Cl functions of t on some interval, and if ^ is of trace class, then so is
dA A-l dB -D-l j
~dt — ~dt '

/c on\ fj, | /4~^ B~^ 1 = tr C^~^~ =• t rC^~^
\ dt dt J dt dt

This applies to holomorphic functions and using (5.10), we get

(5.31) tr (-^r f f ( z } ( l ~ dzP)(z - P}~ldz

~i [ f(z}(l-dzP}(z-Prldz]

~l - (l-dzP)(z-Prl}dz

-h(z-P)-'

Here logD(z) is a multivalued function, but its derivative is single valued.
Notice also that

(5-32) tr ( JL t f(z)(i _ 9zP)(z _ p)~i
^ ^ T

and similarly for P, which is the motivation for the considerations of this sec-
tion.

From (5.23) we get

(5.33) ^ log D(z) = -^ log G(z) + £ log Db(z),

which leads to a corresponding decomposition of the last integral in (5.31). One
of the terms is

(5-34) ^ f f(z)~logDb(z)dz= £ f ( Z j ) ,
7
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since

, N , _
(5.35) -logDb(z) = ^-logbZj(z)

J = l

and ^logbZj(z) is holomorphic in D(£0,r0 4- h] except for a simple pole at
z — Zj with singularity (z - z3)~

l there.
Let us first assume that

(5.36) f ( z ) = 0(1) on 7.

Then since TV = O(l)hl~n, we get from (5.34):

(5.37)

On the other hand, using (5.29), we get

(5.38)

z)dz = 0(l)hl-n

27TZ ./7

In conclusion, we get under the assumption (5.36):

^(~ f f(z)(l-dzP)(z-P)-ldz
mJi(5.39)

Taking / = 1, we get the following result which implies Theorem 0.1:

Theorem 5.2. Let C > 0 be sufficiently large. The number of eigenval-
ues zofP with EI < Re z < E^ , |Im | < Ch is equal to (27rh)~n(ffEi< , c^<E

Proof. We take / = 1 in (5.39), (5.32) and get

#cr(P) H int 7 = #a(P) H int 7 + O(l)hl~n.

Define Pt = tP + (1 - t)P by (6.1) below so that PI = P and PQ = P. It is
clear from the definition (6.1) that the number of eigenvalues of Pt in int 7 is
independent of t. From this and the fact that the total number of eigenvalues
of P in an h neighborhood of EI or E2 is O(hl~n), it follows that the number
of eigenvalues of P in the region in the statement of the theorem is equal to
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O(hl~n] plus the number of eigenvalues of P in the interval \Ei,E^[. We can
choose P in Lemma 5.1, so that the latter number is equal to O(hl~n] plus the
number of eigenvalues of P in the same interval, and by well-known results on
the counting function for eigenvalues of h pseudors, the latter number is given
by the expression in the theorem. D

We now change our assumptions on /:

(5.40) f ( z ) G R when z is real and f ( z ) = £>(!) in D(EQ, r0 4- h).

We want to estimate the imaginary part of (5.31). We have I m f ( z 3 ) — O(l)
Imzj = O(h) and it follows from (5.34) that

(5.41) Im-^ [ f(z)~logDb(z)dz = 0(h2-n).

For the other contribution to (5.31), we make an integration by parts:

(5-42)

where EQ + r is the point of intersection of 7 with [£0,4-oc[ and where we
choose a branch of logG after placing a cut along [E0, +00 [. Since f(EQ + r)
is real and log(G(£'o + r - iO) - log(G(E0 + r -HO)) is imaginary, we see that
the first term of the RHS of (5.42) is real, so

(5.43) Im ~ I /(z)£ log(G(z))<fe = -lm±-J f ( z ) log(G(z))dz.

Here we recall (5.27):

(5.44) \K *~"
h+ \lmz\'

In order to get an estimate for Im logG(z), we integrate (5.29). For z £ 7 with
Imz > 0, we integrate from EQ 4- iro/2 and get

(5.45) llm logG(z) - Im logG(£0 + ir0/2)| < (9(1) f ^ ^ dt
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For Imz < 0, we integrate from EQ - ir0/2 instead. If C± = Im logG(E0 ±
zro/2) £ R, we get from (5.44), (5.45) and its analogue, that

h2~n

(5.46) logG(z) = iC± + 0(1}---- z G 7, ±Im* > 0.
^/i "T~ |imz| j

Let 7± be the part of 7 in ±Imz > 0. Then

^ j f(z)iC+dz = ̂ (f(E0 - r) - /(Bo + r)) e R,

f(z)iC.dz - (/(£b + r) - /(Bo - r)) e R,

so the term iC± in (5.46) gives no contribution to (5.43). The contribution
from the remainder in (5.46) to (5.43) is

jf (HT7) dt = °W~nV°S(h + s)Jo = 0(l)tf~n log i.

It follows that

(5.47) Im ̂  | /(z) A log(G(z))dZ = O(l)h^n log i.

Combining this with (5.41), we get the conclusion that under the assumption
(5.40):

(5.48)

Imtrf-^- f f(z)(l-dzP)(z~r)-ldz-^-: f f(z)(l-dzP)(z-T)-ldz}
\27n 77 2m J7 )

(A.I)

Appendix. Blaschke Factors for the Unit Disc

Let w E D(Q, 1) and put

, , ^ z — w
=—,
UJ Z J.

so that bw(z) vanishes precisely at z — w and satisfies (^(z)! = 1, for \z\ = 1.
Let \w\ — 1 — e, where e > 0 is small. We recall the order of magnitude of
bw(z), for z — w\ ^> e, z — w\ ~ c, \z — w\ <^ e. For simplicity, we may assume
that w = 1 — e.
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Case 1. \z-w\> Ce, C > 1. Then

In the region under consideration, \z — j^| ~ z — (1 — e)| < O(l), so we get

2 —

Case 2. e/C < ^ - iy < Ce. Here bw(z) ~ 1.
Case 3. z — w < e/C: Here z — l/w\ ~ |(1 — e) — — — | ~ 2e and

z ~ w2e, so

z — w\ \z — w\

§6. Trace Integrals for T>

Recall that P = P 4- z^Q(2;) by (5.6), and put

(6.1) Pt=P + ihtQ(z), 0 < t < 1.

Under the assumption (5.40), we are interested in

(6.2)

Put

(6.3)

so that 7(1) is the expression (6.2). Notice that

(6-4) /(*)=
int (7)
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and hence that Im/(0) = 0, since cr('Po) — &(P) is real- Let us first assume
that Q(z) is of trace class. Then

8tl(t) = dt~ f f ( z } d z logdet((z - P0)-
l(z - Pt))dz

2m J^

= ir-. I f(z)9zdt logdet((z - P0)-
l(z ~ ^t})dz2m J

= tr^ff'(z)(z-'Ptr
1Q(z)dz.

Notice that the last expression can also be written

where C^ is an TV fold primitive of f'(z)Q(z). Using this trick, we can drop
the assumption that Q(z) is of trace class and choose a sequence Q3 (z) of trace
class operators, such that (z — Pt)~~lQj(z) — > (z — Pt)~lQ(z) in operator norm.
We get

(6.5) dtl(t) = tr A j f(z)(z - pt)~iQ(z)dz.

We shall compare (z — Pt)~l for z ^ 7 with an approximate inverse of
z — Pf For this we concentrate on the only difficult region z ~ E3 , p(x, £) « £"j ,
j = 1,2, say with j = 1. If (x0,?0) ^ P~l(Ei), let AC : neigh((0, 0), R2n) ->
neigh ((XQ, ^o)5 T*M) be a canonical transformation with «:~1(p~1(^i)) C
{(^£); Cn — 0}- Let U be a corresponding Fourier integral operator, non-
characteristic and microlocally unitary at ((xo,£o); ( 0 > 0 ) ) - Then U*(Pt — z)U
can be viewed as an operator with symbol in E1 (see the appendix of this
section) with h — h + z — E\\ which is elliptic in that class, near (0,0) when
z — EI > h, and outside an ^-neighborhood of £n = 0 near (0,0), when
z — EI\ — O(h}. We can then apply Proposition A. 3 and find q E E"1 such

that

(6.6) U*(z - Pt)Uq(x, hDx- h) = 1 4- rx(x, hDx, z- h),
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where n e n^=QhN^-N in a fixed neighborhood of (0,0). Further,

in a neighborhood of (0,0), where x £ OT^) 'ls equal to 1 near 0.
We can find finitely many points ( x j , £ 3 ) e p~l(Ei), j = 1, ..,7V, (7 = U3,

q = q3 &s above and Xj € Co°(T*M) with support in a neighborhood of (xJ5 ^),

as well as an operator

N

(6-7) £; = £o,tXo +

with the following properties:

N

(6.8) 1 =

where suppxo ^P~l(E\) = 0 and in (6.7) we let Xj denote corresponding h-
pseudors. fo,t ̂  Op(5'({0~2)) with leading symbol ( z — p ) " 1 , near the support
ofxo- ^ ^ ^"~1 with h = h+\z— E\\, and q3 = (z— po/^ J)~1(l— x(h~l\z— poK3\))
mod/iE~2 in a neighborhood of supp (x3 ° K3). Further,

(6.9) (z - pt)£l = l-Kr,

where

/ h \N

(6.10) \\Kr\\ = 0(1} _ , for all N > 0,

(6.11) ||Kr||tr = 0(l)hl~n ( h ] , for all AT > 0.
\h + \z- bi\J

Similarly with

N

(6-12) #

we get

(6.13)

where K^ satisfy (6.10,11).
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We also have with £ = £*,££,

(6.14)

£, £Q, Q£, (z - Pt)-\ (z - Pt)~
lQ, Q(z - Pi)~l = , °^ in norm,

h -r 11m 2 j

for z £ 7, and from this and (5.4), (5.5), we get

(6.15) (z - Pt)£l = l-Kr, £e
t(z -pt) = l- Ke,

where K = Kr, Kg satisfy

(6.16) \\K\\ =
'h+\1mz\'

/ £> _. r- \ ii C^- I i ^v-» / _ \ -i 1 ,>-, ' "

ft+,

These constructions and estimates extend to all z £ 7 and not just to the ones

that are close to E\ or E2.

Write

(6.18) (z - Pt)~
l = Er

t +(z- Pt}~lKr = £* + Kg(z - Pt)~
l,

and conclude that

(6.19)

0(l)ft
in norm,

(/i+|Imz|)2

0(l)/i2-n

in trace norm.

We recall that /'(z) = 0(1) by (5.40) and approximate dtl(t) in (6.5) by

(6.20) J ( t ) := t rA J f(z)£*Qdz.

Using (6.19), we get

(6.21) 5t/(t) - J(t) =
'fc "~ I1111 *\)

It remains to study J(t). When d(^) : = dist (z, {£i,£2}) > 1/0(1) then

£% G Op(5ci((0"2)) with leading symbol (z -p^O)"1- When d ( z ) is small,

we can represent £* as a finite sum, where one of the terms is in Op (Sci((£)~2))i
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supported away from p~l(Ei) or p~^(E^)^ and the other terms are conjugates
by means of a Fourier integral operator of second microlocal inverses of the
corresponding (inverse) conjugation of P — z, in such a way that p~l(Ei) or
p~l(E2] is transformed into £n = 0 by the corresponding canonical transfor-
mation. Moreover, in the region |£| ^> 1, the full symbol of £% is holomorphic
with respect to z in a neighborhood of the closure of the interior of 7, modulo a
term in HhN S((£)~2~N). When computing the traces of the various terms, we
have to integrate the corresponding symbols over T*M (for one of the terms)
and over R2n for the others. The integrals over R2n can be transformed into
integrals over T*M by means of the canonical transformation. It follows that

f'(z)a(x,S,z;h)dxdt,
7T 7 7T JJT*M

with

f c M ,
a(x, £, z; h) = - (z-pfoO) -

Here \ € C*o°(R) is equal to 1 near 0, while

Moreover, modulo a term which is O(hN ( £ ) ~ 2 ~ N ) for every N > 0, we know
that r ( x , { ; , z ; h ) extends to a holomorphic function in z G neigh (int (7)), when

!? ;>i-
The contribution from - '—^ — - to J ( t ) becomes

= ihl~n7^ It f'
V^TTJ JJT-M

The contribution from -- -. — — - to J(i) is
z-p(x^)

0(l)hl~n f (f - - l——dxdt\dz\
J{z^-d(z}<O(h)} JJd(p(x£))<O(h) \z ~ P(x^)\

l~n= O(l)hl~n -log(d(z))\dz

= O(l)hl-n f - log(i)dt = O (h2~n log ^] .
Jo \ hj
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When estimating the contribution from r(x, £z; h), we first integrate w.r.t.
z and get

hl~
T* M

where s(x,£; h) = O(hN(£)-2-N) for |f | > C > 1 and for all N > 0, while for

< C:

So the contribution from r to J(t) is

Summing up our computations and estimates, we get

(6.22)

Combining this with (6.21), the fact that Im/(0) = 0 and (5.48), (5.32), we
get:

Theorem 6.1. For f satisfying (5.40), and for C > 0 sufficiently large,
we have

(6.23)

Im f ( z ) = -
El<p<E2

[Im z\<Ch

Using Cauchy's inequality, we see that the LHS of (6.23) is equal to

(6-24) V

The integral in the RHS of (6.23) is equal to

2 '(E)( f q(x,S,E)LE(d(x,S)))dE,
vJp-1(B) /
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where LE denotes the Liouville measure on p~l(E). If we view f ' ( E ) as test
functions, we may say that the average distribution of the imaginary parts of
the eigenvalues of P is given by the density

hfp-1(B)q(x,
( ' }

We finally derive Theorem 0.3 from Theorem 6.1. The relation between
the eigenvalues z of P and the eigenvalues r of the original operator P in the in-
troduction is given by z — (hr)2, and we recall that q = 2a(x)^/rz. Here Imr =
0(1), h ~ (Her)-1, so Rez = (hRer)2 + O(h2), Imz = 2ft(Rer)/i(Imr), and
(6.23,24) lead to

2/1 ff((hRer)2)(hRer)lmT

(6.26) *

Putting g(p) = f ( p ) ^ / p , we get

^T g(hRer)lmr
T6a(F)

(6.27) ^^[^,^i

= 7^T^ ( ft(27rh)n \JJEl<p<E2

Now choose f(p) — 2y/p, so that g(p] — 1, let A i , A 2 be as in Theorem 0.3,
choose h = 1/Ai, EI = 1, E2 = (A2 /Ai)2 , to get

(6.28)

On the other hand, we know that N(\i, A2) (defined in Theorem 0.3) obeys

(6.29)

and (0.12) follows from (6.28,29).

Appendix

,A 2 ) = (~-\ (ft
\27r/ \JJi<p<
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We review here some second microlocal calculus with respect to £n = 0
(cf. [SZ]). If TTI 6 R, we let Em denote the space of functions a = a(x,£; h, h),
defined for (z,£) G R2n, 0 < h < h < h$, or possibly for (h, h) in some smaller
set, with a(-; ft, h) G C£°(R2n), such that

(A.I) \9£da\<

(A. 2) suppa(-; h, h) C K CC R2n for some K independent of h,h.

In order to avoid some probably purely technical difficulties, we shall work with
the "classical" /i-quantization

(A.3)

Oph(a)u(x) = a(x,hDx-h,h)u=—^-— ff e^x-^ea(x^ h,h)u(y)dyd9.
(27T/l)n JJ

For ai,a2 € C^°(R2n), we recall that

(A.4) Oph(oi)0ph(a2) = Opja^az),

where

(A.5) a1#a2(x^;/i>)-e-'^ ia1(x,/ lZ?x;/i,ft)(e iI^a2(.,4;/i,ft)).

Notice that if suppa2 C Rn x ^2, then supp(ai#a2) C Rn x ^2, and if
suppai C KI x Rn, then supp (a\-#ai) C KI x Rn. In particular,

(A. 6) suppai#a2 C 7rx(suppai) x 7r^(suppa2),

where TTX and TT^ denote the projections (x,£) ^ x and (#,£) >-> ^ respectively.

Proposition A.I. 7/a; G Sm^ ; j = 1,2, tfien ai#a2 G Smi+m2. More-
over,

(A.7) ai#a2~ V ^(a?^)^^;
^ — ' Q

a£N^

m ^/ie sense that for every N G {1,2,...},

(A.8) a!#a2- ^ • • • G /i
\a\<N

Notice that ft^Emi+ma-N C £mi+m2, when TV > 0, so we can view (A.7)
as an asymptotic expansion in powers of h/h.
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Proof. Write x = (x7, xn) and similarly for £, and notice that our symbols
are completely standard in (x7 ,£7) , i.e. they belong to the symbol space 500

in these variables, for each fixed (zn,£n). We can have them become quite
standard also in (xn ,£n) by means of a change of variables in £n: Let a E Sm,
and put

(A. 9) a(x,£;/i,/i) = a(x,£',li£n;h,li).

Then

(A.ll) supp (a) C {(x, £) E R2n; (x, £', ftfn) E #},

where K" is compact and independent of h, h. Conversely, if a satisfies (A. 10,11),
and we define a by (A.9), then a E Em. Now we notice that a is a standard
symbol of type 0,0 in (#7 ,£7) and of type 1,0 in (xn,£n): a E
(See [H].) Moreover, we have trivially

~ / h
( . fTL.J_^j J 6 i (X, iLJ-Jx\l /I, il) — fl I X, iLj-Jij*1, TZ; JLJ x ', /£• , /i

V /i n

and this operator is then a standard /i-pseudor with symbol of type 0,0 in (x7, £7)
and a standard /i//i pseudor with symbol of type (1,0) in (xn,£n). The asymp-
totic expansion (A.7) when expressed in terms of the corresponding symbols
aj is then the obvious combination of the corresponding composition formu-
las for the two groups of variables. Since the symbols have their support in
\£n | < ^(l)^ we notice that a gain of a factor h/(h-\- |£n|) is always weaker than
a gain of a factor h. n

The following result is a consequence of wellknown criteria for a pseudor
to be L2 bounded or to be of trace class (see for instance [DS]).

Proposition A.2. // a E £°, then a(x,hD\h,'h) = 0(1) : L2(Rn) ->
L2(Rn). If a E /imE~m, m > 1, then a(x,hD\h,Ji) : L2(Rn) ->• L2(Rn) zs a
trace class operator of trace class norm < O(\)hl~n(h/h)rn~l.

As for the invertibility of elliptic operators, we have

Proposition A03» Let a E Em, and let QI CC O2 CC R2n be open sets
independent of h. Assume that
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or more generally that there exists &o G S~m
? such that

abQ — 1 + r,

where r is of class nNE^hN^~N in some neighborhood of the closure o/
Then there exists b G £~m, such that

where r\,r<i are of class n^=QhN^'N in
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