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A Generalization of the Radon-Nikodym
Property in Dual Banach Spaces,

Fragmentedness, and Differentiability of
Convex Functions

By

Minoru MATSUDA*

Abstract

For non-empty bounded subsets A of Banach spaces, we introduce the notion of the A-
Radon-Nikodym property in dual Banach spaces, a slight generalization of the Radon-Nikodym
property in such spaces. Making the effective use of this notion and a weak*-measurable function
constructed here, we give a direct study of some related properties (especially, /4-fragmentedness) of
weak*-compact subsets of dual Banach spaces.

§ 1. Introduction

Throughout this paper, X denotes an arbitrary real Banach space, X*
its topological dual space and B(X) the closed unit ball of X. In the
following, (S,27,//) always denotes a complete finite measure space and (/,./!, A)
is the Lebesgue measure space on / (= [0,1]). We always understand that /
is endowed with A and L For each g e L^ (5,27, //) and E e Z+ (= {E e Z :
ju(E) > 0}), ess-Q(g\E) denotes the essential oscillation of g (as a function) on £",
and for each E e 27+, denote A(E) = {xF/^(F) : F d E,F e Z+}. For each
(S,Z,jLi), a function / : S —» X* is said to be weak*-measurable if the real-
valued function ( x , f ( s ) ) is /^-measurable for each x e X. If / : S —> X* is a
bounded weak*-measurable function, we obtain a bounded linear operator Uf :
X-^L^(S,Z,fi) (resp. 7/ : X -* Li(5,27,//)) given by Uf(x)=xof (resp.
Tf(x] = x o /) for every x 6 X, where (x o /)(^) = (x,/(^)) for every 5 e S.
The dual operator of I/ is denoted by 7y*(: L00(S,Z,jLi) —* X*). Furthermore,
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if we define a vector measure a/ (associated with such a function /) : 27
by a/ (Is) = Tf(xE) for every EeZ, we then have that

for every .x e X and every Eel. When a vector measure a : Z — > X* satisfies
that a(j£) = Tf(xE) for every EeZ, we say that it has the weak* -density /.

Now, for weak*-compact sets in dual Banach spaces, we have the notion of
Radon-Nikodym sets (RN sets in brief), which is a generalization of weak*-
compact convex sets with the Radon-Nikodym property (RNP in brief). The
notion of RN sets has been defined and studied in Reynov [12]. Succeedingly,
Fitzpatrick [3] has defined the notion of separably related sets in X* as a
generalization of RN sets, and he has made a study of them. In this paper,
in order to analyze such various notions and related properties in a unified
manner, we wish to introduce the notion of the A -RNP which is more general
than that of the RNP in dual Banach spaces and to give attention especially to
a continuity property of certain maps (that is, bare continuity of the identity
map, cf. [10]). For that, let us define following notions. They are slight
generalizations of fragmentedness (cf. [4]), strong measurability for weak*-
measurable functions and the RNP in dual Banach spaces, respectively.

Definition 1. Let A be a bounded subset of X and K a weak* -compact
(not necessarily convex) subset of X*. Then K is said to be ^-fragmented
if every weak*-compact subset D of K has the following property: For every
e > 0, there exists a weak* -open subset U such that U H D =£ 0 and
diamA(Ur\D) (= sup{qA(u* - v*) : w * , y * e UHD}) < 8.

Here qA is the seminorm given by qA(x*} = sup |(x,x*)| for every x* e X*.
xeA

Note that if A = B(X) in Definition 1, we have the usual notion of
fragmentedness for weak*-compact subsets of X*.

Definition 2, Let A be a bounded subset of X.
(1) Let / : 5 — > X* be a function. Then / is said to be X-strongly

measurable if / has the following two conditions.
(a) / is weak*-measurable.
(b) For every e > 0 and E e Z+, there exists F e Z+ with F c E such that

diann (/(F)) (=supO(*|/(F)))<e.
XEA

(2) Let / : S — > X* be a weak* -measurable function. Then / is said to
have the ^-strongly measurable decomposability if there exists an ^4-strongly
measurable function g : S —> X * such that / - g is weak*-scalarly null (that is,
( x , f ( s ) — g(s)) = 0 //-a.e. on S for every x e X).



THE RADON-NIKODYM PROPERTY 923

Definition 3, Let A be a bounded subset of X and K a weak*-compact
convex subset of X*. Then the set K is said to have the ^4-RNP with respect to
(S,Z,jLi) if for any vector measure a : Z —»• X* for which a(£) e ju(E) • K for
every E E Z, there exists an ^4-strongly measurable function / : S —* K such that
a(£) = T^(xE} for every £ e Z (that is, any such vector measure a has an A-
strongly measurable weak*-density / valued in K). The set K is said to have
the ^4-RNP if K has this property with respect to all complete finite measure
spaces.

Note that if A = B(X] in Definition 3, we have the usual notion of the
RNP for weak*-compact convex subsets of X*.

Well, in a series of our papers [6], [7], [8] and [9], we have made a study
of J^-weakly precompact sets A in Banach spaces by the effective use of a kind
of dentability and J^-valued weak*-measurable functions constructed in the
case where A is non-AT-weakly precompact. Our approach to such notions is
different from others in the meaning that its process is independent of
results already obtained when A = B(X) or K = B(X*), and the focus is on the
construction of j^-valued weak*-measurable functions with various desired
properties.

In this paper as well, by following the ideas of the best use of another
kind of dentability and a basic .K-valued weak*-measurable function constructed
in the case where K is non-,4 -fragmented, we wish to clarify certain kinds of
structure of weak*-compact A -fragmented sets in a slightly direct process (that
is, from a standpoint to deal with a weak*-compact ^-fragmented set itself).
Then we have the following theorem, which is the main result of this paper.
For notations and terminology used (and not explained) in Theorem, see §2.

Theorem. Let A be a bounded subset of X and K a weak*-compact subset
of X*. Then the followng statements about A and K are equivalent.

(1) The set co*(K) (the weak*-closed convex hull of K) has the A-RNP.
(2) The set co*(K) has the A-RNP with respect to (I,A,X).
(3) For every weak*-measurable function f : / —» K, Uf(A) is equimea-

surable in L<n(I,A,)L).
(4) The set K is A-fragmented.
(5) The set co*(^T) is A-fragmented.
(6) Every weak*-compact convex subset of co*(K) is A-weak*-dentable.
(7) For every continuous convex function g : X —> R such that dg(x) c

co*(^) for all x e X, there exists a dense G^-subset G of X such that g is aco(^4)
(the absolutely convex hull of A)-differentiable at each x e G.

(8) If {zn}n>\ is a sequence in A and H is a non-empty subset of K, then
there is a point x e X such that CH is W-uniformly Gateaux differentiate at x,
where W = {zn : n ^ 1}.
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Needless to say, some parts of Theorem may be well-known essentially.
But, some parts are exactly new, and the points to be emphasized in Theorem
are that implications (2) (or (3)) => (4), (6) => (1) and (8) => (4) and their
proofs can be given directly. Further, we wish to note two things. One is the
importance of the notion of ^4-fragmentedness acting as intermediary in our
consideration. The other is that we can appreciate the notion of the ^4-RNP in
dual Banach spaces by combining with a basic weak*-measurable function
constructed here concretely.

The paper is organized as follows. In §2, we give some more definitions
and preliminary results. In §3, we present a basic ^-valued weak*-measurable
function associated with a weak*-compact non-v4-fragmented set K and give a
complete proof of Theorem, making use of results in §2 and this section.
Finally, in §4, we give some remarks on Theorem.

§2. Preliminary Results

If g : X —> R is a continuous convex function, for x, y e X, we define
Dg(x,y) by

]im{g(x+ty)-g(x)}/t
?—>o

provided that this limit exists. We say that g is Gateaux differentiate at x e X
if Dg(x, y) exists for every y e X. We define the subdifferential of g at x (e X)
to be the set dg(x) of all elements x* of X* satisfying that (u,x*) ^ g(x + u) —
g(x) for any u e X. Then dg(x) is a non-empty weak*-compact convex subset
of X* for every x e X. Further, we give:

Definition 49 Let g : X —» R be a continuous convex function and A a
bounded subset of X. Then

(1) ([!]). g is said to be ^4-differentiable at x e X if there exists x* e X*
such that

lim {sup \(g(x + ty) - g(x))/t - (y,x*)|} = 0.
/-»o+ yeA

If A = B(X), g is said to be Frechet differentiate at x e X.
(2) g is said to be ^4-uniformly Gateaux differentiate at x e X if Dg(x, y}

exists uniformly in y E A.

In order to analyze weak*-compact ^4-fragmented sets from our view-point,
we turn our attention especially to continuous convex functions defined as
follows.

Definition 5. Let H be a non-empty bounded subset of X*. Then
the continuous convex function associated with H, which is denoted by CH, is
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defined by

CH(X) = sup (x, x*)

for each x e X. This function CH is called the support function of H ([11]).

Then the fact that dcH(x) a co*(H) for every x e X is well-known. And
in order to check the A -uniform Gateaux differentiability of continuous convex
functions, the following well-known result is useful later.

Proposition 1. Let g : X —> R be a continuous convex function and A a
bounded subset of X. Then

(1) g is A-uniformly Gateaux differentiable at x e X if and only if g satisfies
the following:

lim {sup(#(.x + ty) + g(x - ty) - 2g(x))/t}
?—>0+ yEj4

(= inf {sup(gr(x + ty) + g(x - ty) - 2g(x))/t}) = 0.
r>0 yeA

(2) g is B(X)-uniformly Gateaux differentiate at x e X if and only if g is
Frechet differentiable at x e X.

In order to see geometric properties of weak*-compact convex subsets
with the ^4-RNP, we introduce the notion of ^4-weak*-dentability for bounded
subsets of dual Banach spaces ([3]).

Definition 6. (1) Let H be a non-empty bounded subset of X*. A weak*-
open slice of H is a set of the form:

S(x, c, H) = {x* e H : (x, x*) > sup (jc, z*) - c}
z*eH

where x e X and c > 0.
(2) Let A be a bounded subset of X and H a bounded subset of X*.

Then the set H is said to be ^4-weak*-dentable if H has weak*-open slices of
arbitrarily small ^-diameter (that is, for every e > 0, there exists a weak*-open
slice S(x,c,H) of H such that diam^(5'(^:, c , H ) ) < e).

In order to characterize weak*-compact ^-fragmented sets in terms
of operator theoretic property (especially, Uf : X —> Lao(S,£,/*)), we use the
following notion concerning subsets of L00(5,Z',//). This acts as intermediary
in our argument.

Definition 7 ([13]). A bounded subset M of L^(S,Z,ij) is said to be
equimeasurable if for each e > 0, there is a set E e Z with ju,(E) > u(S) — e such
that {f%E : f E M} is relatively norm compact in LCG(S,Z,ju).
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Now, concerning notions stated in Definitions 2, 3 and 6, we have the
following result suggested by Theorems in [6] and [7].

Proposition 2, Let f : S —» X* be a bounded weak*-measurable function
and A a bounded subset of X. Suppose that the set co*(T^(A(E))) is A-
weak*-dentable for every E e Z+. Then f has the A-strongly measurable
decomposability.

Proof. Since the proof can be given by the same argument as that of the
implication (c) => (d) of Theorem in [6] (or, that of Theorem in [7]), it is
omitted.

In connection with Definition 7, we note the following result concerning
bounded linear operators Uf : X —> L^ (S, Z, u) associated with an yi-strongly
measurable function /.

Proposition 3, Let A be a bounded subset of X and f : S —-> X* a bounded
weak*-measurable function having the A-strongly measurable decomposability.
Then Uf(A) is equimeasurable in L00(S,Z,ju).

Proof. Let h be an A -strongly measurable function such that / — h
is weak*=scalarly null. Then Uf(A) = Uh(A), and, because of the yl-strong
measurability of /z, the well-known exhaustion argument assures that for each
n ^ 1 there exists a disjoint sequence (possibly finite) {E(n, *')}/> i of Z+ such
that fi(S\(j.^lE(n,i))=0 and supQ(x\h(E(n,i))) < l/n for all i^l. To

~ xeA
prove that Uh(A) is equimeasurable in L00(5,Z',//), let e > 0. Then, for
every n^.1 there exists a natural number m(ri) such that ju(S\(J{E(n,i) :
I ^ i ^ m(n}}} < e/2", and let En = \J{E(n, i) : 1 ̂  i^ m(n)} for every n^l.
Then, for E= ^n^En, we have that u(S\E) ^ £]«>i u(S\En) < s. Further-
more, {xoh%E : XE A} is relatively norm compact in Z00(S,27,//). Indeed, let
S > 0, and choose a natural number k with l/k < 6. Then we have that for
every x e A

sup{ess-0(;c o h\E(k, i) n E) : 1 ̂  i ^ m(k)}

^ sup{0(x o h\E(k, /)) : 1 ̂  / ^ m(k)} < l/k < 6.

This means the relative norm compactness of {x°h%E : x e A} in Lao(S,Z,jLi).
Thus the proof is completed.

Let A be a bounded subset of X and C = {xn : n ^ 1} a countable subset of
A. Then, suggested by [3], we wish to consider the bounded linear operator
Tc : /i —> X given by
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for every {an}n>l e£\. Then Tc(en] = xn for all n, where en denotes the n-th
unit vector of f\. Making use of these operators, we can clarify slight directly a
relation between v4-fragmentedness and separability conditions in the following
form. We think naturally that this fact has been already known essentially.
But we think that it should be expressed once in this form, and it is convenient
for us to obtain Proposition 5 which follows Proposition 4.

Proposition 4. Let A be a bounded subset of X and K a weak*''-compact
subset of X*. Then the set K is A-fragmented if and only if for every countable
subset C of A, T*(K) is a separable subset of ^.

Proof Suppose that K is non-A-fragmented. Then there exist a weak*-
compact subset D of K and an e > 0 such that diam^ (U fl D) > e whenever U
is a weak*-open subset with Ur\D ^ 0. Hence, replacing the unit ball by a
bounded set A in the proof of Proposition 5.6 in [11], we can construct a system
{x(n,i) :n = 0, ! , . . . ; / = 0 , . . . , 2" - 1} in A and a system {£/(»,/) : « = 0 , 1 , . . . ;
/ = 0 , . . . , 2n — 1} of weak*-open subsets such that

(a) C/ ( / i ,On0^0,
(b) (U(n + 1,20 n D} U (U(n + 1, 2i + 1) fl D) c U(n, i) fl D,
(c) x* E U(n+ 1,20 and j* e U(n+ l ,2z-h 1) imply (x(n,i),x* - y*) ^ e

for /i = 0 ,1 , . . . and i = Q,...,2n- 1.
Let V(n,i) = w*-c/(C/(/i ,Oni>) (the weak*-closure of U(n,i)r\D). Then we
have that

(d) V(n + 1,20 U K(/i 4- l,2/> 1) c K(/i, 0
(e) j c * e K ( w + l , 2 0 and ;;* e K ( » + l , 2 i + 1) imply (^:(«,0^* - J*) ^ £

for « = 0 ,1 , . . . and / = 0 , . . . , 2 / l - 1.
Let C={x(/i,0 :« = 0,1, . . . ; / = 0 , . . . ,2" - 1} = {;cw :n^ 1} (Here, for « =
2m -h / with m = 0 ,1 , . . . and i = 0 , . . . , 2m - 1, define *„ = jc(/w, 0) and

Then, by the same argument as in the proof of the implication (c) => (a) of
Theorem 4.2.13 in [2], we easily get that T*(F) is not separable, whence T*(K)
is not separable, a contradiction.

Conversely, suppose that there exists a countable subset C = {xn : n ^ 1}
of A such that T*(K] is not a separable subset of f^. Then the following
argument is usual. Choose a weak*-compact subset B of T*(K] such that
inf {diam( W fl B} : W fl B ^ 0, PF is weak*-open} (= e) > 0. Let M = K H
(r,*)"1^). Then M is a weak*-compact subset of K such that T*(M) = B.
Using Zorn's lemma, find a minimal weak*-compact subset MQ of M such that
rc*(Mo) = $. Since ^ is ^-fragmented, there exists a weak*-open subset U
with £7(1 MO ̂ 0 such that diamu(£/nM0) < e. Let ^0 = 4)\rc*(M0\t/).
Then it follows from the minimality of M0 that WQ is a weak*-open subset with
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, and WQ n#c T^C/fl Af0). Hence we have that

(en\WQ HJB) ^ sup 0(en|

= sup Q(Tc(en)\U n MQ) = sup OfolE/nMo) ^ sup 0(x|E/nM0)

= diam^i (U fl MO) < e,

which is a contradiction. Thus the proof is completed.

Combining this result with the well-known fact that if H is a separable
weak*-compact subset of a dual Banach space, then so is co *(//), we have:

Proposition 5. Let A be a bounded subset of X and K a weak*''-compact
subset of X*. Then the set K is A-fragmented if and only if the set co*(^T) is
A-fragmented.

Proof. This follows immediately from Proposition 4, the remark preceding
Proposition 5, and the fact that T*(co*(K)) = co*(T*(K)) for every countable
subset C of A.

§3. Functions Associated with Non-/4-fragmented Sets and Proof of Theorem

Let A be a bounded subset of X and K a weak*-compact subset of X*.
Assume that K is non-y4-fragmented. Then it follows from the former part
of the proof of Proposition 4 that there exist an s > 0, a system {x(n, i) :
/i = 0, ! , . . . ; / = 0, . . . , 2 M - 1} in A and a system {V(n,i) : n = 0 , 1 , . . . ;
i = 0 , . . . , 2n — 1} of non-empty weak*-closed subsets of K such that

(a) V(n 4- 1, 2i) U V(n 4- 1, 2i + 1) c V(n, i),
(b) x*e K( / i+ l , 2z ) and 7* e K ( » - h l , 2 / + l ) imply (*(«,/), x* - y*) ^£

for 7i = 0 ,1 , . . . and / = 0 , . . . , 2n - 1.
In the following, let e be this positive number, a(n,i) = inf{(x(n,i),x*) : x* e
V(n 4- 1,2z')} and b(n, /) = sup{(x(n, z) ,x*) : x* e V(n 4- l ,2z 'H- 1)} for every
(«,/). Then it holds that #(«,/) — b(n,i) ^e for all («,/).

Now, letting An = (J{V(n,2i + 1) : / = 0 , . . . , 2 n ~ l - 1} and Bn =
\J{V(n,2i) : z = 0 , . . . ,2W-1 — 1} for every n ^ 1, (An,Bn)n^l is an independent
sequence of pairs of weak*-closed subsets of K. Then, F = f } n > l ( A n ( J B n )
(Needless to say, this is the same as one in the proof of Proposition 4.) is a non-
empty weak*-compact subset of K, since (An,Bn)n>l is independent. Now,
define if/ : F —» @>(N) (Cantor space, with its usual compact metric topology) by
\l/(x*) = {j : AJ 9 x*} E 3?(N). Then if/ is a continuous surjection and so we
have a Radon probability measure y on F such that \l/(y) = v (the nor-
malized Haar measure if we identify 0>(N) with {0,1}^) and { u o i / / : u e
L\(3P(N),ZV,v)} = L\(F,Zy,y}i where Zv (resp. Zy) is the family of all v
(resp. y)-measurable subsets of &(N) (resp. F). Further, consider a function
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i : 0>(N) -> / defined by r(J) = £{l/2' : j e J} for every / e »(N). Then r
is a continuous surjection such that T(V) = A and {u o T : t; e L\(I, vl,A)} =
LI (&(N},LV, v). Making use of the lifting theory, we have a weak* -measurable
function h : / — > /"( c D) such that

(c) /?(/ o h)(t] = f(h(t}) for every / e C(r) and every t E /,

(d) J£/(A(OW) = Jrv.(*)}/(**)</y(**)
for every £ E A and every / e C(T) (cf. [6]). Here p is a lifting on L^(I, A, A).
Further we should remark here that t(>(y)) = A, ^(-^(/(H^I))) e F(n,2i)
and ^1(T-1(^52/+l)))c F(/ i ,2 /+l) for H = 1 ,2 , . . . and / = 0, . . . ,2"~l - 1,
where /(«,/) denotes an open interval in / given by /(«,/) = (i/2n,(i + l)/2")
for every « ̂  0 and 0 ̂  / ^ 2" - 1.

Concerning this J^-valued weak* -measurable function h and the system
{x(n, i) : n = 0, 1, . . . ; i = 0, . . . , 2" - 1} in A constructed in the case where K is
non-^4 -fragmented, we have the following two Propositions 6 and 7, which are
fundamental results in our paper. In Proposition 7, the sequence {xn}n>\ is
given by xn — x(m, i) if n = 2m -h / for every m = 0, 1, . . . and i = 0, . . . , 2m — 1,
and the subset H of K is given by H = h(I).

Proposition 6. The set Uh(A) is not equimeasurable in L^(I,A,^).

Proof. Suppose that Uh(A) is equimeasurable in Loo(/,^,A). Then we
have an E e A+ such that {xo hxE : x e A] is relatively norm compact in
LOO(/, A, A). Let {£"1, ...,Em} be a positive measurable partition of E. Then,
by virtue of Lemma 2 in [5], there exist a natural number p and a finite
collection {/i, . . . , zm} of non-negative integers such that 0 ^ 2 • ik < 2P — 1, E^ H
I ( p , 2 - i k ) eA+ and E* n/(/?,2 • 4 + 1) e^+ for fc = l , . . . , m . Let Fk = EkH
I ( p , 2 - ik) and Gk = ^ H /(/?, 2 • 4 + 1) for /: = 1, . . . , m. Then we have that
for every k

= ess-sup (.xQ?- l , / f c ) , / i (0 ) -ess-inf (x(^ - l , i k ) , h ( t ) )

^a(p~ 1,4) -b(p- \,ik) ^e.
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Hence we get that {xohxE:xeA} is not relatively norm compact in
Loo(/,yl,A)3 which is a contradiction. Thus the proof is completed.

Proposition ?„ The function CH is nowhere W-uniformly Gateaux differ-
entiable in X3 where W = {xn : n ^ 1}.

Proof. Take any point x of X. Let M = co * (I)* (zf (/))), and consider a
family of weak*-open slices: {S(x, e/3«, M) : n ^ 1}. Then we have that for
every n ^ 1

S(x, £/3ft, M) = {x* E M : (x, x*} > sup (jc, z*) - s/3n}
r*eM

= {x* e M : (*,**) > ess-sup(x, A(f) ) - e/3ft}
re/

= {x* e M : (x, ;c*) > CH(X) - e/3/i}.

So, letting £"„ = {r e / : (x,h(t)} > CH(X) — £/3ft}, we know that £„ e A+ and
/z(£"w) d S(x,s/3n,M) for every ft. Hence, by Lemma 2 (and its proof) in [5],
there exist a strictly increasing sequence {pn}n>\ of natural numbers and a
sequence {in}n>\ of non-negative integers such that 0 ^ 2 • in < 2P" — 1, £„ D
/(/?„, 2 • /„) e A+ and En n /(/?„, 2 • /„ + 1) e yl+ for every w ̂  1. Let Fn = £"„ n
/(/>„, 2 • /„) and Gw = ^n/(^, 2- /„ + !), and define u* = T^(xFJ^(Fn)) and
i;* = T£(xGn/A(Gn)) for every « ^ 1. Then we have that for every ft

(a) (X <) > c^(x) - e/3ft and (x, uw*) > CH(X) - e/3n,
(P) (yn^n-vn)^£ (Here, yn=x(pn-\,in\ and so, {yn}n^ is a

subsequence of {xn}n>\}->
(y] CH(X + jw/ft) ^ (x + ^/ft, <) and CH(X - yn/n) ^ (x - yjn, v*).
Indeed, we have that

cH(x] -

since h(Fn] c S(x,e/3n,M). Similarly, (x,v*) > CH(X) —s/3n. Thus we have
(a). Also we can prove (/?) as follows. In virtue of the fact preceding
Proposition 6, we have that for every n

- ( y n ,

= (x(Pn - !,/„), T*h(l
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-{L<

^ C.

As to (7), we have that for every n

yn/n, h(t})
tel

Similarly, CH(X — yn/n) ^ (x — yn/n, v*). Hence, making use of (a), (J3) and (y),
we get that for every n

+ yjn) + CH(X - yn/n} - 2 • CH(X)

So we have that {c^/(x+ ^/n) + CH(X - yn/n) - 2 • cH(x)}/(l/n) > e/3 for
every «, which implies that c// is not ^-uniformly Gateaux differentiable at x by
virtue of Proposition 1. Thus the proof is completed.

Remark 1. By the same way as above, we easily get the following results.
(1) The tree {2waA(/(«, /)) : n = 0, 1, . . . ; / = 0, . . . , 2n - 1} (associated with

A) satisfies that for every n ̂  1 and i with 0 ̂  / ^ 2n~l - 1, qA(2naih(I(n,2i)} -

(2) The usual dyadic martingale (hn,An)n>l associated with h satisfies that

inf [ qA(hn(t) - Aw+i (0)^(0 ^ 8/2 > 0.
«^! J/

(3) The set CQ*(T£(A (£))) is not y4-weak*-dentable for every E e A+ .
For instance, to show (1), we estimate qA(2n(Xh(I(n,2i)) — 2nah(I(n,2i + 1))) for
every n ^ 1 and / with 0 ^ i ^ 2n~l — 1. That is, we have that
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qA(2nah(I(n,2i}} -2nah(I(n,2i+ 1)))

^ 2" • (x(n - I , / ) , <**(/(«, 2i)) - a*(/(n,2i+ 1)))

= 2"

- f
J^CT-'Wi^i+l)))

^a(n- 1,0 -b(n- 1,0 ̂  e.

Now we are ready to give a proof of Theorem.

Proof 0/ Theorem. (1) => (2). This is clear.
(2) => (3). This follows from Proposition 3.
(3) => (4). This follows from Proposition 6.
(4) => (5). This follows from Proposition 5.
(5) => (6). The proof of this part can be given by the same argument as in

the corresponding one of Theorem 4.2.13 in [2]. That is, we may replace the
norm || • || by the seminorm q^ in that place.

(6) => (1). This follows from Proposition 2, since co*(T£(A(E))) is a
weak*-compact convex subset of co*(^) for every weak* -measurable function
/ : S -> K and every E e Z+ .

(6) => (7). This can be shown by the same argument as in the proof of
Theorem 3.14 and Proposition 3.15 of [3].

(7) => (8). This follows immediately, since dcn(x) c co*(^) for every
subset H of K and every x e X.

(8) => (4). This follows from Proposition 7.

§4o Remarks on Theorem

Let us give some remarks on Theorem.

Remark 2. As stated above, Fitzpatrick has defined separably related sets
in X* as follows: Let K be a weak*-compact subset of X* and A a bounded
subset of X. Then the set K is said to be separably related to A if for every
countable subset C of A, the set K is separable in the seminormed space
(X*,qc). Well, since we can easily get that K is separably related to A if and
only if for every countable subset C of A, T*(K) is separable in 4o, each of the
statements (1) ~ (8) (especially, (1), (2) and (8)) in Theorem is equivalent to that
K is separably related to A.
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Remark 3. Following Stegall [13], we say that a bounded subset A of X is
a GSP set if for every (S, Z, ju) and every bounded linear operator U : X —»
Lao(S,Z,fi), U(A) is equimeasurable in L00(S,Z,jLi). Then, setting K = B(X*)
in Theorem, we know that A is a GSP set if and only if B(X*) has the ^4-RNP.

Remark 4. We have studied the properties of weak*-compact A-
fragmented sets K from our standpoint to deal with a weak*-compact A-
fragmented set itself and to clarify its structure directly (that is, without using
results already known in the case where A = B(X) or K = B(X*)). So, in
comparison with other studies of such topics treated in Theorem, the major
merit of our approach and argument may be that we can immediately get
various well-known characterizations of RN sets, GSP sets and so on, by an
appropriate choice of the sets A and K in Theorem.
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