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Divergence Property of Formal Solutions for
Singular First Order Linear Partial Differential

Equations

By

Masaki HIBINO*

Abstract

This paper is concerned with the study of the convergence and the divergence of formal power
series solutions of the following first order singular linear partial differential equation with holo-
morphic coefficients at the origin:

d

P(x,D)u(x) = ̂ al(x)Dlu(x)+b(x}u(x] = /(*),
1=1

with f ( x ) holomorphic at the origin. Here the equation is said to be singular if a , (0)=0
(y = 1, . . . , < s f ) . In this case, it is known that under the so-called Poincare condition, if {a,(x)}l=l

generates a simple ideal, every formal solution is convergent. However if we remove these
conditions, we shall see that the formal solution, if it exists, may be divergent. More precisely, we
will characterize the rate of divergence of formal solutions via Gevrey order of formal solutions
determined by a Newton Polyhedron, a generalization of Newton Polygon which is familiar in the
study of ordinary differential equations with an irregular singular point.

§ 1. Introduction and Main Result

In this paper we are concerned with a formal power series solution of the
following equation

(1.1) P(x,D)u(x)=f(x),

with / holomorphic at the origin, where P(x, D) is a first order linear partial
differential operator with holomorphic coefficients at the origin:
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d Q

P(x,D) = ^ai(x)Dj + b(x), x= (*i,. . . ,*</ ) e Cd, Df = —.

If 0/(0) 7^ 0 for some z, the solvability is well known by Cauchy-Kowalevsky's
Theorem. Therefore we shall study the case where 0/(0) = 0 (Vz), which is
called a singular or degenerate case.

Concerning this problem, Oshima [8] studied a characterization of the
kernel and cokernel of the mapping

/>(*,/>) :0->0,

where 0 is the set of holomorphic functions at the origin. As main conditions,
he assumed that {aj(x)}f=l generates a proper and simple ideal of (9 and the
so-called Poincare condition for nonzero eigenvalues of the Jacobi matrix of
coefficients at the origin. Various generalizations are made for higher order
equations and nonlinear equations. The cases of higher order equations are
studied by Miyake [4] and Miyake-Hashimoto [5]. In Gerard-Tahara [1] and
Miyake-Shirai [6], the nonlinear equations are studied. Moreover, different
characterizations of convergence of formal solutions of singular equations are
obtained by Kashiwara-Kawai-Sjostrand [3] and Miyake-Yoshino [7] for linear
equations.

However, the cases without a Poincare condition or a simple ideal con-
dition have not been studied. We shall study these cases.

More precisely, let Dxa(Q) := (A^/(0))/y-=1 d be the Jacobi matrix at the
origin of the mapping a— (ai,...,ad) and let its Jordan canonical form be

/A \

Bk

\

where

/ ^-i ^i

A= 2 '

\ km

/O 1 \

o ' - .
' • . 1

f\ I

A/ * 0,

Si = Q or 1,

A = l , . . . , f c ,

nh

and Op is a zero-matrix of order p (m,k,p > 0;«^ > 2;m-\-n\-\ \-nk-\-p = d).
The Poincare condition, in the above, demands
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where Ch(Ai , . . . , Am) denotes the convex hull of the set { A i , . . . , A m } in the
complex plane. We remark that this condition is equivalent to

(1.2) A/a/
/=!

for some positive constant 6, where N = {0,1,2,...}.
In this paper we also assume (1.2) if m > 1. In order to ensure the unique

existence of a formal power series solution of (1.1) we assume

A/a /+ 6(0) /O, V a e N m .
1=1

Note that 6(0) ^ 0. Precisely, throughout this paper we assume the following
condition (Po):

(Po)
A/a/ + 6(0)

6(0) =£ 0 (if m = 0),

where d is a positive constant independent of a e Nm. It should be noted that
under the condition (Po) the formal solution of (1.1) exists uniquely, while it is
divergent in general as we will see in the following examples.

Examples. In the following examples, each independent variable denotes a
one-dimensional complex variable.

(1) (the case (m,k,p) = (0,0,2)). For the equation

(1 - X2DX - y2Dy)u(x, y}=x + y,

we have the formal solution u(x,y) = Em=iO - 1)!*m + E£=i(« ~ l)lyn-
(2) (the case (m,k,p) = (0,1,0)). For

(l-yDx-x
2Dx)u(x,y)=x,

the formal solution u(x,y) = ̂ m^Qumnx
myn satisfies u(x,Q) = ^=l(m-l)\xm

and w(0, y) » E^Li n*(n ~~ ̂ }]-yn> where A » B means that A is a majorant series
of B.

(3) (the case (m,k,p) = (0,1,1)). For

(1 - yDx - x2Dx - z2D;)u(x, y,z)=x + z,

the formal solution u(x, y, z) = Y^i m «>o uimnXlymzn satisfies u(x, 0,0) =
£/=i(/- I)!*', «(0,J,0) » T^=lm\(m-\)\ym and «(0,0,z) = £n°°=i(« - l)!z».

(4) (the case (m,k,p) = (1,0,1)). For

(1 + xD, - jc2/), - J2^)t/(x, y) = j,
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the formal solution u(x, y) = J2m «>o umnXmyn satisfies u(x, 0) » E™=i 2~m •
(m - \}\x2m and ii(0, y) = £w°°=1(rc

 1 l)!j>".
(5) (the case (m,k,p) = (1,1,0)). For

(1 + xDx - zDy - x2Dy - y2Dy}u(x, y, z) = y,

the formal solution u(x,y,z) = ^ m n>Q uimnx
lymzn satisfies u(x, 0,0) » X)£i "

2-l(l-l)\x21, u(Q,y,V) = Y^i(™-Wym and M(0,0,z) » E^K/i-l)!z".
(6) (the case (m,&, p) = (1,1,1)). For

(1 -h .xDA — zDy — x2Dy — y2Dy — w2Dw)u(x, y, z, w) = y + H>,

the formal solution u(x, y,z, w) = ^k lm n>0 UM,nnx
kyIzmwn satisfies M(X, 0,0,0)

»E2Li2-*(fc-i)!^, «(o>y,o,o)= ii;£(/-i)!y, «(o,o>z,o)» E^i^-
(iw-l)!zm and i/(0,0,0, w) = ££i(* - l)!ww.

These results are proved by using the recursion formulas for the Taylor
coefficients of formal solutions and by estimating carefully the coefficients from
below.

We note that the Gevrey order gives the rate of divergence for a formal
power series. We say that the formal power series u(x) = EaeN^a-** (x* ~
-Xjai ... jcj') belongs to G(s) (s = (s\,... ,j</) e R^)3 if the power series

converges in a neighborhood of the origin, where (a!)s l = a\lsi l ...oL^Sd l>

The main theorem in this paper is the following.

Theorem 1.1. Under the condition (Po), the equation (1.1) has a unique
formal solution which belongs to G(2N^-^2N\ where

N = I 1 (if k = Q and p> 1)

I 1/2 (if k = p = 0).

Remark 1. By our theorem we know that there exists a unique holo-
morphic solution if k = p = 0, which is a special case of Oshima [8]. In fact,
he studied the case k = 0 in our notation under the assumption that {at(x)}f=l

generates a proper and simple ideal of (9. Here we have to mention that if
we remove the assumption that {at(x)}f=l generates a simple ideal, the formal
solution does not necessarily converge, and it belongs to G&-^ as shown in
Example (4).

Remark 2. Precise estimates of Gevrey order in individual variables will be
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given in Theorem 2.1 after a linear transform of independent variables, which
reduces Dxa(Q) to its Jordan canonical form.

Remark 3. Our main result is a generalization of Hibino [2], where the
case (m,k,p) = (0,1,0) (nilpotent matrix of maximal rank) is studied. In [2],
we also study an asymptotic theory of formal solutions for a special type of
equations, which will be published in the forthcoming paper.

§2. Linear Transform of Operator and Newton Polyhedron

In order to prove Theorem 1.1 we shall transform the operator P(x,D) by
a linear transform of variables which reduces Dxa(Q) to its Jordan canonical
form. A reduced operator PI takes seven forms according to the values of m, k
and /?, as follows:

(I) The case m> I, k > 1, p>\\

where

TH—1 p m ( finite
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k nh-\ £ k nh I finite

h=l jh=\ yih h=\ jh=
y

p f finite

E l V ^ / I k \ / 1 \ 0 ( k \ 0 v2^ eq^ pky(x,y\...,yk,z}(yly ... (y")" z*

m I finite

E
'

where all coefficients cigLo\ ^* , etc., are holomorphic at the origin, and none of
them vanish at the origin unless they vanish identically. In the following
expressions, assume the same conditions for those functions appearing in the
coefficients.

(M) The case m > 1, k > 1, p = 0:

Pi =

where

E

finite

E
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k nh-l p

h=\ jh=\ jh
k nh I finite

+EE E
l \j^i|

finite

= E
'=1 y

=i,(x,/,...,/)

(iii) The case ra > 1, k = 0, p > 1:

m ^

where

m—1 3 m / finite
i ^—^ r. 0 ^—^ i 'C—^

P = > SfXi+i — + > > <1 / ./ ' l^1 fix. / ^ \ / ^
i=l Z /=! \|a|+|y|>2,|a|>l

p I finite

9=1 \N+M>2,|a |>l

/>

9=1 \IJ-1 2:2 / 1

m I finite «
/"/ "

\y\>2

finite

(iv) The case m > 1, k = p = 0:

m-l ^

= E ̂  T- fe0 xxa SX

m (finite

VI V^z^ 2-r
.=1 \W>2
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(v) The case m = 0, k > 1, p > 1:

where

finite

E
A=l A=

(
finite
^—^
// ->

bl=bl(y
l,...,yk,z)

finite

E

(vi) The case m = 0, k > 1, p = 0:

where

k nh-\

h=\ jh=\

I
finite

E

finite

E

(vii) The case m = k = 0, ^ > 1:

ay?,:
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where

Now we shall study the equation

(2.1) Piu = f,

with / holomorphic at the origin.
In order to give the Gevrey order in an individual variable for formal

solutions of (2.1), we study the Newton Polyhedron of the operator, which is
a generalization of the Newton Polyhedron introduced by H. Yamazawa [9].

Newton Polyhedron. Let

(f = ( f i , . . . , £ / ) , D = ( 5 / 5 f i I . . . ( 3 / a ^ ) ) be a linear partial differential
operator, where all coefficients are holomorphic at the origin and do not vanish
at the origin unless they vanish identically.

We put

and define the Newton Polyhedron N(P) by

N(P) = Ch{e(a,£); (a,/?) with a^ ± 0},

where Ch(A) denotes the convex hull of a set A c Rd+l.
Now we shall apply the above general definition to the equation (2.1) for

the cases (i)-(vii). We remark that the correspondence of variables between
(*, yl , . . . , yk, z) and £ is given by

(i)
(ii)
(iii)
(iv)

(v)
(vi)
(vii)

s
(x,y\...,yk,z}
(x,yl,...,yk)

(x,z)
-

(y ... v , z)
( y , y )

z
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In order to state the main theorem in this section, we shall define the sets S/
(/= 1,2,3,5,6 and 7), Sj, S- and S" (7 = 1,2 and 3) whose elements give the
Gevrey order of formal solutions of (2.1).

(I) For ( / i J ( r 1 , . . . , ^ ,T )6 [ l , oo ) d (p = (Pl,... ,/>m)V = (<rf, ...,<)
(h= ! , . . . , £ ) ,T = ( T I , . . . , ^ ) ) we put

A: 1

(ffh -1) • <sth + (T -1) • ar - ir > -1 v,

+ (^ - 1) • ̂  - ^ >

where 1 = (!, . . . ,!) and define

(ii) For (/>,«T ' , . . . , «T*) e[ l ,oo) r f we put

1, . . . ,** = J ^,^1, . . . ,^*, IT e Rrf+1; » - 1 - X

k

Y,
h=\

A2(p,al, . . • ,ek) =

k
Y^
h=\
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and define

(lii) For (p,r) e [1, oo)^ put

A3(p, r) = {(#, JT, i^) E R^1 ; (p - 1) • % + (T - 1) • % - W > - 1},

yi3(/?, T) = {(#", JT, TT) e R^+1; (/? - 1) • X + (T - 1) • ̂  - TT > 0}

and define

(v) For ( a 1 , . . . , < j * , T ) 6 [ l , o o y put

and define

(vi) For (o-1, . . . ,0-*) G [1, oo)^ we put

k

and define

(vii) For T e [1, oo)rf put

T) e R^+1; (T - 1) - & - W > 0}
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and define

Then we obtain the following result:

Theorem 2,1. For each case (i)-(vii) let us assume the following condition:
( i ) p'«' = 0 =* s = (p,o1,.. .,»*,*) 6 Si

P{' = 0 => s = (/>, ff1 , . . . , <7*, T) e Si n Si n S(,
pj'", p ; '^o^s = ( />,(7 1 , . . . ,<7 t ,T)€ 1s 1n5 1

( ii ) pj'" = 0 =* s = (/», ff1 , . . . , ak) e S2 n S2,
PJ' = o => s = (p,ffl, . . . ,<Tk) e s2 n s2 n ^,
p{''',p{' / o => s = (/»,»', . . . ,^) e s2 n s2

(iii) p;'" = o^s = (/> ,T)e
P," = 0 => s = (/»,r) e
p«", PC ̂  o => s = (p,

(iv) s = ( l , . . . , l ) ,
( v ) s = ( f f l , . . . , a k , T ) e S 5 ,
(vi) s = ( f f 1 , . . . , < T k ) e S 6 ,
(vii) s = T e Sj.
Then the equation (2.1) with f in G® has a unique formal solution which

belongs to G^.

Remark 1. In the case (iii), when P"",P" =£ 0, s = (p, T) must belong to
£3 n £3 l~l Sj' not to 53n53nS3- For example, let us consider the equations

(2.2) (l+xDx-y
2Dx)u(x,y)=f(x,y),

(2-3) (l+xDx-X
2Dy)u(x,y)=f(x,y),

(2.4) (1 + xDx - x2Dy - y2Dx)u(x, y) = f(x, y),

where f(x,y) =ZHn^0x'"y"(= ( l / ( l - x ) ) ( l / ( l - y))). Here -x2Dy and
— y2Dx correspond to P" and P"", respectively. For (2.2) and (2.3), the formal
solution converges, but for (2.4) it diverges. More precisely, the formal so-
lution u(x, y) = E™,«>o umnXmyn satisfies w(0, y) » ^n>\ n^n^ which is proved
as follows: Let up(x, y) = Y^m+n=P

 umJnXmyn be the homogeneous part of u(x, y).
Then we obtain uo(x,y) = \,u\(x,y) = (l/2)x + y and the following recursion
formulas for p > 2:
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y = 2, . . . , / ? -2,

«(.5-i=

Therefore it follows that

(3/1) (3/t-l) (3/1-2)
-

- 3
W0,3« ^ "1,3/1-2 - W2,3«-4 ^ 3 W0,3«-3

3rc -3 3rc -6 3n-3k (3n-3k)
^ 3 3 3 "0,3/7-3*:

3^ -3 3ft - (3/i - 3) (3)

^—3 3 "0,3

which implies the conclusion.
The same is true for the cases (i) and (ii).

Remark 2. In each of the seven forms of the reduced operator PI, if we
assume that all coefficients of quadratic polynomials in the operators do not

vanish, we get the biggest Gevrey order given by pQ = (N 4- 1/2, . . . ,N + 1/2),
ra p

and TI = (2, . . . ,2) . The "biggest" means that if s satisfies the conditions in
Theorem 2.1, the following inclusion holds for each case:

_, 3 ' =

^o) (if p{' ̂  0), G^ c G^^o ..... * (if p(' = 0),
(iii) G^ c G^i'Tl), (if P'{ ̂  0), G^ c G^'Tl), (if Pj' = 0),
(iv) G^
(v) G(s)

(vi) G^
(vii) G^s)

In the following examples we will determine Gevrey order concretely.
Let /?, cri, cr2 and i denote the Gevrey order of the variables x, y,z and w,

respectively.
(1) (the case (vii))

PI = 1 + w2/V
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For the operator w2D}V, we demand (1 - r) 4- (1 — r) 4- T < 0, that is, T > 2.
Therefore we have G(T) c G(2).

(2) (the case (vi))

Pi = l+zDy + y2Dz.

For the operators zDy and y2Dz, we demand (1 — <72) -f <TI < 0 and (1 — <TI) 4-
(1 - <7i) + <T2 < 0, respectively. Thus we obtain G^1^ c G^3'4).

(3) (the case (v))

PI = 1+ zD3, + y2Dz 4- w2Dz.

For the operators zDj, and j2Dr, we demand the same inequalities as above,
respectively. For w2Dz, we assume (1 — T) + (1 — T) + 02 < 0. It follows that
Q(<I\, 0-2,7) <_ £(3,4,3)_

(4) (the case (iii), P'{" = 0)

PI = 1 4- xDjc 4- *2#w

For the operators xDx and ^c2Ay, we demand (1 — p) +- p < 1 and (1 — /?) +
(1— /?) + r < l , respectively. For w2At-3 we require r>2 as in (1). These
inequalities imply that G(p^ a G(3/2i2).

(5) (the case (iii), P'{ = 0)

PI = 1+ xDx + w2Dw +

For xD^ and w2Dw, we demand the same inequalities as above, while, for w2Dx,
we assume the inequality (1 - r) -f (1 - T) +p < 1. Thus G(/?'T) c= G(1'2) holds.

(6) (the case (iii), P'{, P'{" * 0)

PI = 1 4- *!)* + *2Av + w2DM, + w2Dx.

For xDx, x2Dw and x2Dw, the same inequalities are demanded, while, for w2Dx,
the inequality (1— T) i- (1 — r ) 4 - / ? < 0 i s required instead of (1 — T) -h (1 — r) +
/? < 1. These inequalities imply that G^ c G(3/2'2).

(7) (the case (ii), P'{" = 0)

PI = 1 4- xDx 4- x2D= + zD^ + j;2Dz.

For the operators xDx, x2Dz, zDy and y2Dz, we demand (l—p)+p<l,
(I -p) + (\-p) 4-0-2 < 1, ( l -<T 2 ) + o-i <0 and (1 - <7i) 4- (1 - o"i) 4- a2 < 0,
respectively. Thus we have G(p^^ c G(5/2>3'4).

(8) (the case (ii), P'{ = 0)

PI = 14- xDx 4- ^ + J2I>z 4- Z2DX.

For z2Dx, the inequality ( l -(72) + ( l -<7 2 ) + / > < ! is demanded. The other
inequalities are the same as in (7). It follows that G(p^ai^ a G(l iM).
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(9) (the case (ii), P^P^O)

PI = 1 + xDx 4- x2Dz + zDy + y2Dz + z2Z)x.

For z2Dx, we demand (1 — 0-2) + (1 — cr2) +/? < 0 instead of the inequality
(1 - 02) 4- (1 — 02 }+ p < 1. By considering the same inequalities as in (7) for
the other operators, we obtain G(p^1^ a G(5/2i3'4).

(10) (the case (i), P'{" = 0)

PI = 1 + xDx + *2£>z + zDy

By the inequality (1 — T) + (1 — T) + 02 < 0 demanded by w2Dz and those in (7),
we have G^1'^ c G(5/2'3'4'3).

(11) (the case (i), P|; = 0)

PI = 1 + xDx + zDy + J2DZ + w2£z + y2Dx.

By the inequality (1— 0*1 ) + (!— di ) + / > < ! demanded by J2DX and those
similar in (10), we obtain G^1'^ c G^1 '3 '4 '3).

(12) (the case (i), P;',PJ'"^0)

PI = 1 + xDx + x2Dz 4- zDy + J2DZ + w2Dz + j2/)^.

As for y2Dx, we demand the inequality (1 — <7i) + (1 — cri) +/? < 0 instead of
the one (1 — di ) + ( 1 — ai ) + /? < 1. For other operators, the same inequalities
as in (10) are demanded. Thus G^ f f ' ' f f 2 'T> c G^/2'3'4'3^ holds.

By using the above inclusion relations in Gevrey spaces and by the change
of independent variables we obtain Theorem 1.1 from Theorem 2.1 and the next
Lemma 2.1. Thus the proof of Theorem 1.1 is reduced to that of Theorem 2.1.

Lemma 2.1. Let u(x) = EaeN^ u*x* e G(j'J""'s) (•*>!). Then for any
linear transform L = (lij)ij=\^d • £>d — » Cd, it holds that v(y) = u(Ly) E
Q(S,S,...,S) ^

Proof. First, we remark that u(x) e G^'-"s) if and only if there exist some
constants C and K such that

where «W(jc) = D%u(x) = (d/dxi)*1 . . . (d/dxdY
du(x). By an easy calculation,

we can obtain

where & — max{/y-; /, y = 1, . . . , d}, which implies

Therefore we obtain the Lemma.
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In order to prove Theorem 2.1 in the cases (i)-(vii), we will prove the cases
(i), (ii), (iii) and (iv) by a same method. On the other hand, the cases (v), (vi) and
(vii) are proved by the same method different from the one used for the cases
(i)-(iv). Therefore we shall prove only the cases (ii) and (vi) in the following.

§3. The Banach Spaces C7(s)(J?) and G(sl'*2)(Rl,R2)

Theorem 2.1 is proved by a contraction mapping principle in a Banach
space. For this purpose we define two Banach spaces necessary in the proof,
and we prove lemmas needed later.

Definition 3.1. Let s = (s\,... ,sd) e R+ (R+ = {r e R;r > 0}), (s1^2) =
(A pl 02 C2 \ _ u^i+^2 2? CD J? ^ <= flD \ Jf i lA^ <mA (pi J?2\
(Sl ' • • • ' sdi' 51 ' • • • ' Sd2)

 e K+ ' K — (Kl' • • • ' Kd) G (K+ \ 1UJ J ana V^ 'K J ~
( ^ J , . . . , J^, ^ f , . . . , Rj2) e (R+\{Q})dl+d2. The spaces of formal power series
G®(R) and G^'8^^1,^2) are defined as follows:

We say that u(x) = ̂ E^dU^ belongs to G(*\R) if

---- \-ad, s • a = =1

We say that u(x, y) = E^e^.^ u^x'yf e &•* '^ (Rl , R2) if

- E

= «, + . . - + ^ , |/j| = / ? , + . . . + p^ si . a = Y,ti */«*, s2 -ft = £*i iffy),
where k\ = r(k+l), k>0. Then G^(R) and G(*1-§2)(J«1,/J2) are Banach
spaces equipped with the norms || • ||}j and ||| • |||^i'^2, respectively.

Similar definitions of Banach spaces of Gevrey type can be found in
Miyake-Hashimoto [5].

Lemma 3.1. (i) If si > 1 for all i= l,...,d, then

G® = U G(S)(R).

(ii) If s},sj > 1 for all i=l,...,di; j=l,...,d2, then

Proof, (i): By Stirling's formula we can easily show that

oc!< |oc | !< Jw«! and A-B^ <-^—< C • D
(s-a)!
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for some constants A, B, C and D, where (oc!)s = (on!)*1 . . . (a</!)J</. This
completes the proof.

(ii): Similar to (i). H

Lemma 3.2. Assume that a(x) = ^pENd a$x? and a(x, y) = Z^^N^I •

aysxyyd are holomorphic functions on H/iiiX' E ^5 xf\ < Tt} and n£i{*i e ^;
N £ 7?} x ILiiby e C; \y]\ <Tf}(T = (Tl,..., Td) e (R+\{0}/, (r1, T2) =
(Tl ,..., rj, , r,2, . . . , 7* ) 6 (R+\{0})dl+*), respectively.

(i) If Q < RI < TI for all i— 1, . . . ,d, the multiplication operator a(x) is
bounded on G^(R) for all s (Vs/ > 1) with the norm bounded by 5^/SeNrf \aP\T^ •

(ii) 7/0 < /?/ < T/ a«J 0 < Rj < Tffor all i = 1, . . . ,</ i ; y = 1, . . . , J2, rAe
multiplication operator a(x,y) is bounded on &s's\Rl,R2) for all (s^s2)
(Vj/,Vj? > 1) wiYA ^ norm bounded by E(7,<5)eN^2

Proof, (i) is easily proved by the inequality

Similarly we can prove (ii) if we note that

|a|!|/?|!

§4. Proof of Theorem 2.1 (when m = 0)

In this section we shall prove Theorem 2.1 when m = 0 (i.e., the cases (v),
(vi) and (vii)). As mentioned in Section 2 we only consider the case (vi).
Furthermore, for simplicity we assume k = 1. We denote a formal power series
solution as u(y) — EaeN^ u^ an(^ use tne Banach space G^(Y) instead of
G®(R). Therefore u(y) e G^(Y) means

We recall that the operator PI has the following form: PI = i(0) + b\ +
where
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Our problem is the unique solvability in G^ of the equation

(4-1) PiU(y)=f(y),

with f(y)eGW.
We assume that a satisfies the condition (vi) in Theorem 2.1.

Proof of the case (vi) of Theorem 2.1. We may assume b(Q) = 1 since
b(Q) ^ 0. Next we estimate the operator norm of b\ and P"' on the space

By Lemma 3.2, it holds that bi : G^(Y) -> G^(Y) is bounded for suf-
ficiently small Y with the estimate

finite

for some constant C. Here and hereafter Y = (Y\,...,Yd) is taken so small
such that the coefficients of the operators d/dyj, etc., and a function f ( y )
belong to G^(Y). In order to estimate the operator norm of P"' we need the
following:

Lemma 4.1. Let (j, ft, and ft1 satisfy

(4.2) Oi>\ (W= ! , . . . , £ / ) and a •(£-/? ' )> l/?i-

operator y^D^' is bounded on G^ ( Y) and the operator norm is bounded
by

Remark 1. Put

T) eR^+ 1 ;((7-l) • ^ - iT > 0}

and

Then the condition a e S is equivalent to (4.2).

Proof of Lemma 4.1. For U(y) = EaeN
rf ^Ja e G^(F), we have

Here ot> (!' means that a/ > /^ for all z. Thus we have

(a



DIVERGENCE PROPERTY OF FORMAL SOLUTIONS 911

Furthermore, by (4.2) it holds that

a! <*

(a -/?')! (*- (a

Therefore we obtain

The proof is completed. H

Proof of the case (vi) of Theorem 2.1 (continued}. By the assumption
o- e S6, Lemma 3.2 and 4.1, it holds that P{" : G^(F) -> G^(^) is bounded for
sufficiently small Y and that

d-\ Y d /finitefinite \ , 1

E1* y •
l/^2 / 'J

Therefore for sufficiently small Y the operator bi + P'{' : G^(Y) -> G ( f f )(7)
is bounded with the estimate

finite d-\ v ^ d ( finite
, rtlll II ^ y~r J

* '• I ^.. rf

7=1 7 7=1

for some constant C. The constant K can be taken arbitrarily small by an
appropriate choice of Y. Hence, by taking Y so that K < 1 the operator T
defined by

is a contraction mapping on G(o}(Y) in the sense of \\TU - TV\\ < K\\U - V\\,
because /(j;)eG^(F). Hence there exists a unique U(y)eG^(Y) which
satisfies TU(y) = U(y). Thus U(y) e G(ff) is a solution of (4.1) by Lemma 3.1.
This completes the proof. •

Remark 2. The cases (v) and (vii) are proved similarly as the case (vi).
Here we only refer to Banach spaces employed in the proof.

(v) Let us assume k=l. We use the Banach space G (^'T))((
whose elements u ( y , z ) = Z^a^eN"^ u*py*z^ (njrp = d) satisfy

( lQ t l + l/?l)! yxzfl

(vii) We use the Banach space G^(Z) whose elements u(z) =
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satisfy

Remark 3. In the above proof we considered the case k=l. In the
general case k > 2, for the variables ( j f , . . . , y%h) (h = 1 , . . . , k) corresponding
to a nilpotent matrix Bh, we have a similar estimate as (4.3), which implies the
conclusion.

§5. Proof of Theorem 2.1 (when m > 1)

We shall prove Theorem 2.1 when m > I (i.e., the cases (i), (ii), (iii) and
(iv)). We consider only the case (ii). By the same reason as in the previous
section we consider the case k = 1. We denote a formal power series as u(x, y)
= Ys(ap)ENni+nUapx*y^ (m + n = d) and use the Banach space &P^(X,Y)
(resp. ' G^'V((X, Y}}} instead of G(^^(Rl,R2) (resp. G^
Therefore u(x, y) e G(p^(X, Y) (resp. G«**»((X,Y)}) means

= V^ \1J o\

rpqnresp.

We recall that the operator PI has the following form: PI
JLiXi(d/dxi) + b(0) + P{ + Pf + Pr 4- Pf", where

Our problem is the unique solvability in G^'^ of the equation
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(5-1) Plu(x,y)=f(x,y),

with f(x,y) e G^'ff).
Now we assume that (p,a) satisfies the condition (ii) in Theorem 2.1.

Proof of the case (ii) of Theorem 2.1. First we define the operator
Ab : 6^'ff) -> 6^'ff) by

Then by the condition (Po) the operator Ab is bijective and A^1 is given by

E •**•/= E
where A • a = J^i A/a/.

Keeping in mind the above expression we introduce a new unknown
function U(x, y) by

U(x, y) = Abu(x, y), that is, u(x, y} = A^1 U(x, y).

Then the equation (5.1) is equivalent to the following one:

(5.2) U(x, y} + b2 U(x, y} + P'2 U(x, y} + P'± U(x, y)

+ Pli'V(x,y)+P!inV(x,y)=f(X^

where

m—l %

finite

E

n finite

E E
j=\ \ft\>2

m finite

E
finite
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Next we estimate the operator norm of 62 + ^2 + P2 + P2 + PT on trie

space G(X, F), where

G(X Y} = l ^*\X, Y) (if P'i / 0, that is, P'{ * 0)
1 ' } * ) ) ( i f P £ = 0 , that i s , P ( ' = 0 ) .

Hereafter Jf and F are taken so small that the coefficients of the operators
and a function f(x,y) belong to G(X, Y).

Since |1/(A • a-h&(0)) | < C for some constant C, the operator
V : G(P^(X, Y) -> G^jr, F) (resp. G^ff))((Jr, F)) -* G^^((X, F))) is
bounded and we have

III Vtf life? < C|||tf||fe? (resp. IM^t/Hg'^ < C||C/||<£$).

Therefore by Lemma 3.2, ft2 = G(p^(X, F) -» G^ff)(Z, F) (resp. G^>*n((x, F))
, F))) is bounded and we have

resp. \\b2u\\^<c

In order to estimate the operator norm of P'2 + P% + P^' + ^2/X we neec^
following lemma:

Lemma 5.1. (i) Let p , < j , y , d , y r and 61 satisfy

(5.3) Pi,aj>l (V/,7) and p - (7 - /) + ^ • (S -d'} > \y\ + \d\.

Then the operator x? ys D?x' D
s
y' A^1 is bounded on G(p^(X,Y) and

, F))5 and the operator norm is bounded by CXyYd/Xy'Y6'.

(ii) / / M > 1 ,

(5.4) Pi^j>\ (V/,y) and p • (y - /) + ff - (5 -6') > \y\ + |J| - 1,

r/ze« r/ze operator xyydD^D6yA^1 is bounded on G(p'a](X, F), and the operator
norm is bounded by Cyy>X^Y6 /X?' ' Yd> ' .

(ill) I f \ y ' \ > I and (5.4) hold, then the operator xyysD?' ' D6
y ' A^1 is bounded

on G^a»((X, F))3 and the operator norm is bounded by Cjdy,d'X^Y6 /X? ' Y6' '.

Remark 1. Put

e R^+1 ; X, > yt - yf, <S/j > Sj - <Jj, nr < |/ + |<5'|},

e R^+1 ; (p - 1) • % + ((j - 1) • 9 - W > - 1},

e R^+1 ; (/? - 1) - X + (a - 1) • ^ - ^ > 0}
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and set

s = {(p,<r);N(x*ysDi>D>') = A(P,«)},

5 = {foff); Ar^y^'flf) = A(p,o)}.

Then the conditions (p,0) eS and (/?, <r) e S are equivalent to (5.4) and (5.3),
respectively.

Remark 2. In Lemma 5.1, (ii) does not hold on the space G((p^((X, Y)).
On the other hand, (iii) does not hold on the space G^ff\X, Y). Therefore
the operator ydD£D*'A^1 + XYydD*'A];1 ( |y | , | / |> l ) is bounded neither on
Gtt*°»((X,Y)) nor on G(**\X,Y\ even if (5.4) holds (cf. the example in
Remark 1 of Section 2).

Proof of Lemma 5.1. Because U(x,y) = Z^a^eN"7^ U<*px<xy^ satisfies

^ ^' 77 n^+y-y' vP+s-fi'
* S ^x-^y /Lb

<x>y',P>8''

we have

'" ' a!
Jx-Uy /l^'""v""" " ' "-"

y,

Similarly we have

a!

. a+,_y-
'

The case (i) is proved by the following inequalities: l / | A - a + fe(0)| < C,

a! y9! |a + y - y'|!|y9 + ^ -5' \ \a\\\p\\

a

(a-y')! (/f-5')! ( / > • (a + y - y ' ) + "• 0?+ «J-«J '))! ~ ( / » • « + »•

which are obtained by the condition (Po) and the assumption (5.3).
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The case (ii) is proved by the inequality

+ - a! ff!

< Cyy'

which is obtained by the condition (Po) and the assumption (5.4). Note that
|a _j_ y — y'| _ i > o since |y| > 1.

The case (iii) is proved by the inequality

a -

(|a| + \fl\ - 1)1

which is obtained by the condition (Po) and the assumption (5.4). Note that
- 1 > 0 since |a| > |y'| > 1. •

Proof of the case (ii) of Theorem 2.1 (continued}. When P2" = 0 (that is,
P™' = 0), it follows from the assumption (p, a) E 82 RS2, Lemma 3.2, (i) and (ii)
of Lemma 5.1 that the map b2 + P'2+ P2 + P'2' : G

(p**\X, Y) -+ G(p^(X, F) is
bounded. Moreover the operator norm is estimated as

m2+p'+p"+p"'\\\

When ^2 = ° (that is
? ^r = °)> it; follows from the assumption (/?, d) e

S^ Lemma 3.2, (i) and (iii) of Lemma 5.1 that the map 62 + ^2+
Pf + P™:G^*n((x, Y)}-^G^°»((X, Y}} is bounded. Moreover the op-
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erator norm is estimated as

When P%'', P^ ^ 0 (that is, P(w, P{; ̂  0), it follows from the assumption
(p,0) e SiriS^nS^, Lemma 3.2, (i) and (ii) of Lemma 5.1 that the map
b2 + ^2 + P2 + pf + Pf : G(^ff)(^5 ^) -^ G(P^(X, 7) is bounded. Moreover
the operator norm is estimated as

1 n—lv n I finite

+E^+E
*J j=\ J j=\

Finally we notice that we can take X and Y so that A/ < 1 (/= 1,2, 3),
which assure that each operator becomes a contraction on G(X, Y). This
completes the proof. M

Remark 3. The cases (i), (iii) and (iv) are proved similarly as the case (ii).
Here we only refer to Banach space employed in the proof for each case.

(i) Let us assume k — 1 . When P" ^ 0, we use the Banach space
G(P^\X, (F,Z)) whose elements u(x, j,z) - £(M,y)eN""*
(m + n + p = d) satisfy

\u R \X«YtZV < oo
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When P" = 0, we use the Banach space G((p*^((X, 7,Z)) whose elements
u(x, y,z) = E(a^,7)eN'"+'^ u^yx

a y^z^ satisfy

V oo°°-

(iii) When P{' ^ 0, we use the Banach space G(p^](X,Z] whose elements
u(x, z) = E(a,7)GN'»^ wa7xazy (m + p = d) satisfy

When PI; = O, we use the Banach space G((p^((X,Z}) whose elements

U(*,Z} = E(a,y)EN»^ "ay*"*7 Satisfy

(iv) We use the Banach space G^l\X) whose elements u(x)
satisfy

oo.
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