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Sierpinski Gasket as a Martin Boundary II
(The Intrinsic Metric)

By

Manfred DENKER* and Hiroshi SATO***

Abstract

It is shown in [DS] that the Sierpinski gasket ^aRN can be represented as the
Martin boundary of a certain Markov chain and hence carries a canonical metric
pM induced by the embedding into an associated Martin space M. It is a natural
question to compare this metric pM with the Euclidean metric. We show first that
the harmonic measure coincides with the normalized //=(log(Af+l)/log2)-dimensional Hausdorff
measure with respect to the Euclidean metric. Secondly, we define an intrinsic metric p which
is Lipschitz equivalent to pM and then show that p is not Lipschitz equivalent to the Euclidean
metric, but the Hausdorff dimension remains unchanged and the Hausdorff measure in p is
infinite. Finally, using the metric p, we prove that the harmonic extension of a continuous
boundary function converges to the boundary value at every boundary point.

§1. Introduction

The Sierpinski gasket in RN~l (see Sierpinski's work (1915) in [S] and
Mandelbrot [M]) is a fundamental example of fractal sets. Its Hausdorff

logN
dimension equals H= in the Euclidean metric || • || and the ^-dimensional

Iog2
Hausdorff measure \i is positive and finite ([Ma] and [F]). The harmonic
analysis of the Sierpinski gasket has been investigated by many authors. For
example, Barlow and Perkins [BP] defined a Brownian motion on the Sierpinski
gasket and Kigami [K] established a harmonic analysis from an analytical
viewpoint. On the other hand, the authors [DS] represented the Sierpinski
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gasket as the Martin boundary of a certain Markov chain. This note is a
continuation of the investigations in [DS] intending to establish a harmonic
analysis of the Sierpinski gasket from this point of view.

It is known (see [DS]) that the Sierpinski gasket (&, \ • ||) in J^'1 is
homeomorphic to the Martin boundary (dM,pM) of some Markov chain
X = {Xn}, where pM denotes the Martin metric (see (2) below). The state space
'W is the word space over the alphabet j/ = {1,-~,N}9 and the associated
Markov operator is denoted by P. Dynkin's theorem says that every bounded
harmonic function / for P has an integral representation

for a function ^eL^O^), where ii± is the harmonic measure on <? and k=k(w,£)
(we^5 £eE) denotes the Martin kernel extended to Sf. Our first result shows
that the harmonic measure JLLI equals the normalized canonical Hausdorff
measure on Sf.

The transition probabilities are defined by

— if
2N

9
N

for some involution % and where w = a\i~-a1/, (1 <^<^V5/i> 1, 1 <i<s) is a finite
word over the alphabet s/ (see Section 2 below for details). This Markov
chain has the state space W consisting of all finite words over s/ and has
long range dependence with respect to the natural metric on the tree 'W. It
follows that M='Wuy is a model of the Martin space of X equipped with
the coarsest topology for which the functions 5^3fh-»fc(w,£) (we^) are
continuous. This topology is determined by the extension of the metric

(1) p(w,v) = |2-'<w>-2-'W|+£ -1- sup |fc(u,w)-fc(u,v)|
w = o (2yv) ue^

d(u) = n

to M, where d(W) denotes the length of the word weT^. It should be noted
that (1) is Lipschitz equivalent to the Martin metric
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(2) -

as can be easily deduced from Theorem 3.4 in [DS] (see also Lemma 2.1
below). (2) is the standard metric for the Martin space introduced by Dynkin
in [Dy]. Hence (1) provides the canonical metric structure on M, and therefore
we call p the intrinsic metric. Likewise we call p|^x^, the restriction of p to
tf x <f, the intrinsic metric on the Sierpinski gasket and denote it also by p.

Let E denote the space of one-sided infinite sequences x = (xk)ej/N, and
define an equivalence relation x— y iff x=j or

3w>l such that xk=yk Vk<n and xn=yn+k, yn = xn+k (Vfc>l).

It is known that 2* is bi-Lipschitz equivalent to the quotient space S/~,
where Sf carries the Euclidean metric ||f —f / | | (^E^) and 3/~ a metric
derived from the word space metric ZII^12~"l{JCn,tyn} (for x = (xn), y = (yw)eE).
Our second result is to show that (see Section 3)

(3) —II
32

where ^rje^, and where A is some constant depending only on N. A
particular consequence of (3) is that the intrinsic metric p is not equivalent
to the Euclidean metric on £f. It also follows from this inequality that the
Hausdorff dimension H under the intrinsic metric does not change and that
the //-dimensional Hausdorff measure with respect to p is infinite.

A harmonic function h on if is an eigenfunction for the eigenvalue 1 of
the Markov operator P of X. It is known that the algebra of bounded
harmonic functions is isomorphic to L^i). In Section 4 we estimate the
modulus of continuity for harmonic functions in terms of its representing
bounded measurable function on y. It turns out that the modulus of continuity
(over cylinder sets) of harmonic functions h is uniformly bounded by the
variation of its representing function in the space C(Sf) of continuous functions
on Sf over cylinders. Another consequence of (3) is that uniformly continuous
functions in the p-metric are uniformly continuous in the word space metric
and vice versa. Hence we can define the space 3fc of uniformly continuous
harmonic functions independently of the metric, and it follows that the
algebra fflc is isomorphic to
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§2. Harmonic Measure on the Slerpinskl Gasket

Let & = A(pl9-',pN) denote the non-degenerate regular simplex generated
by Appoints/?!, '-,pNeRN~l (N>2). For every fixed IOE{!, • • - , 7\f}, the midpoints

p..^=-J* - 19 ( j = l 9 " - , N ) define a corresponding simplex

and an affine map

satisfying/-^) =p{ >£o. We denote the diameter of a subset BaRN~l by \B\ and,
for simplicity, assume |A| = 1. It follows from [Ha] and [Hu] that the iterated
function system {/); \<i<N} has a unique nonempty compact set 5^, called
the Sirpinski gasket, satisfying

^= U /,(n
i = l

Let j* = { 1,2, 3, ••-,#} be the alphabet of N letters (N>2) and

be the space of finite words, where we also allow n = 0 to denote the empty
word 0. If v = v1v2v3~-vn and w = wiw2w3--wn' are two words their product
is defined by

and the /ewgf/z of ¥ is denoted by rf(v) = w. Let ^ denote the set of words
of length n (n > 0), ̂ + = \J ™= i Wn and E the set of all si- valued sequences. We
define rf(x) = oo for xeS.

If a finite word w includes at least two different letters, then w has a
representation w=u0ife, where ueiF, a,6ej/, (a^b\ and fc>l, and we define
the conjugate of w by ws = ufeafc. If w contains at most one letter, then w = ak

for 0ej/ and fc>0 (where a° = 0) and we define the conjugate of w to be
w* = ak = w. Let ^8 denote the set of all finite words w for which

Similarly we define the conjugate of xeH by
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*r • -Xnba™, if 30, &(0 7* 6)e j/ such that x = jq • • -xnab™

otherwise,

where xl"-xjba°° denotes xl"'Xnbaaa-". The conjugation defines an equiva-
lence relation ~ on 3 by

x~y ^ x = y or y*.

It is known that the Sierpinski gasket &* can be identified with the quotient
space 3/~ and in the sequel we do not distinguish between them. Let
II: Hi— >S/ ^ denote the canonical projection. We extend n to a map defined
on T^uS taking the identity operator on *W and define Hn:

Of v = i 2 ' "
n\ '* i i/ \(x, a(x) < n.

for x =

Let v be the Bernoulli measure on H, that is, the product measure v = n^L l vk9

where each vfc k>\9 is the uniform probability measure on j/. It is known
that ^ = voll~1 is the normalized Hausdorff measure on £f.

In [DS] we considered the Markov chain (Xn)n^,l with state space 'W
defined by the following transition probabilities Xv»w)> ^,

(a) For w = ak where CIEJ/ and k>0

— , if Icejtf such that w = afe

) = N
0 , otherwise.

(b) For v = ®abk where ue^, a,be<s/, (a + b\ and

0, otherwise.

The associated Markov operator P is defined by

and a function/: iJf-*R is called harmonic if P/=/ Every harmonic function
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h satisfies

(2.1) A(v) = A(v*) for neW.

We call a function/on W symmetric if/satisfies (2.1).

The n-step transition probabilities are given by

XO,v,w) = <JVtW

p(n, v, w) = £ /?(Y, z)p(w -1, z, w), » > 1, v, weTT,
ZS-T

the Green function gf(v,w) by

and the Martin kernel by

It is shown in [DS] that g($9w) = N d(w)>0,

and hence

for ¥,we^ such that d(v)<d(w).

For a finite word w = wiw2w3--wn€'W+ define

w~ =

and define the cylinder set <^w)> in ^uH by

We also use the notations <w> = <w>n^+ and [w] = <w>nH.

An explicit formula of the Martin kernel is derived in [DS], Theorem 3.4.
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Lemma 2.1. Let &(v,w)>0. Then either v=w and k(v,w) = Nd(v\ or
v) + 1 < rf(w) and w has the form

-wwc or

In case w = v~WQWiw2'-wnc we have

(2.3) *fcw)= *(v»= A*

T(V) denotes the last letter of v, a«rf 0(v) w defined by

In view of this, we define a metric pM on W by

n (v nA — I?~d(v) ?~d(w)| J_ V OAA~d(z)| Mf iA H-y w^lpM(v, wj — |z — z i -h 2^ 1^^VJ I MZJ *J—MZ? WJI>

for VjWei^ (cf. the introduction). Let M = i^ be the pM-completion of
^. Then (M,pM) is a compact metric space and the functions wh-»/:(v,w),
(ve^), are extended to M continuously. These extensions are also denoted
by &(v,£), fe^veTT. The boundary BM=W\i^ is called the Marrm
boundary and can be identified with the Sierpinski gasket &* (see [DS]). In
fact, combined with [Dy] this result leads to

Theorem 2.2. [DS]
(1) The function ¥ -* fc^(v) = /:(v, ̂ ) w harmonic in w for every %£<?.
(2) y w £/ze space of exits aj defined in [Dy].
(3) For every harmonic function h>Q there exists a unique finite measure uh

on y such that

(4) For every bounded harmonic function h, there exists a unique bounded
measurable function cp on y such that
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(2.4) h(i)=

lira
«-* oo

(5) Conversely for every bounded measurable function (p on

(2.5)

defines a harmonic function on 'W .

We shall denote the map sending a bounded measurable function cp on
^ to hy by ,/, that is,

and we call /?^ r/ze harmonic extension of q>.

Theorem 2930 The harmonic measure ul on ^ in Theorem 2.2, coincides
with the canonical normalized Hausdorff measure ^ = voll~1.

Proof. By Theorem 2.2, the harmonic measure ̂  is uniquely determine by

On the other hand for every ve^ we have

^(y,n(x)) = lim^(¥?nw(x)) and sup %,Ow
" «>l,JceS

Therefore, by the bounded convergence theorem, (2.2) and the definition of v,
for every ve^ we have
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= lim
n J,-,

d(v),v,w) -L=l.
TV

Remark 2.4. The measure ju is /M// on y , that is, every non-empty open
subset of £f has a positive measure.

Proof. Since v is full on E with respect to the product topology, and
since the map n is surjective-and continuous, it is evident that n = voll~1 is
also full.

§3. The Intrinsic Metric

There is a natural metric on the Sierpinski gasket induced by the Euclidean
norm \\£ — ri\\, £,rie&'. In [DS] we defined another metric 3. which is Lipschitz
equivalent to ||£-??||, but only defined on 5?( = dM=W\ifr) and not on the
word space 'W. In this section, using the Martin kernel, we define a new
metric p on i^+\j^. The metric p is Lipschitz equivalent to the metric pM

of the Martin space M (by Lemma 2.1) and, when restricted to <$**, is 'almost'
Lipschitz equivalent to ||£ — f/||.

This metric p on W\jy is defined by

sup

for c^e^u^, where 4^)= + 00 for £e^, p({, 0) = p(0, Q = I and p(0,0) = 0.

p is Lipschitz equivalent to pM. In fact, by definition, it is evident that
P<PM- On the other hand by Lemma 2.1 fc(u,w) does not vanish only if
u = nd(tt)(w)~fl or u = (nd(u)(w)*)~a for some aej/ so that

which implies pM<4Np.
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Let x,ye^uS, define a(x,y) by

min{k > 1; Ilft(x) ^ flfc(y)}, if x ^ y

+ 00, ifx = y,

and jS(x,y) by

' a(x,y), if nk(x)${Hk(y),Tlk(j)*} for V£>a(x,y)9

R, , ._ min{/> a(x, y); rij(x) ̂  II|(y), n^y)*}

if Ilfe(x)e{nfc(y),rifc(y)s} for some fc>a(x,y),
+ 00, if x = y or y^

Note that oc(x,y) = J(x) +1 if y = xz (xeiT^e^+uH), and that Ofc(x) = n&(y) for
fc<a(x,y). Obviously we have a(x,y)<j?(x,y).

First we prove the following lemma.

Lemma 3.1. --2~^(x'y)<p(n(x),n(y))/c?r every x,yeiT+uS.
8

Proof. Let x,ye^uS. Then if y = x or x*, we have /J(x,y) = oo so that
the assertion is trivial.

Next, consider the case where y7^x,xtf,y6^+ and x is an extension of
y, i.e. x has the form ^=yxmxm+lxm+2--, where m = rf(y) + l, whence
a(x,y) = /J(x,y)=m. Therefore for u = nm(x) = yxm we have fc(u,y) = 0 and

- N™ so that
4

1 N™ _ 2 _ m _ 2 _ l2-0(x,y)

4" ~ " 4

Now consider the general case when x and y are neither dual nor an
extension of the other sequence. Then we may write

where ¥ = x1x2---xm_1e^, m = a(x,y), a,b(a^b)E3/, xm+p+i(=£b\ xm+p+2,

xm+p+39-'-,ym+q+l(*a)9ym+q+29ym+q+39'--Es/v^
sicne y7^x,x*? we have m+p<co and
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m, if p = 0,

Case 1. d(x)>m+p + l. In this case put u = nm+p+l(x)=^abpxm+p+l.

Then we have

u*=^

if

m , i f Q=p<q a n d xm+1/0,
v~0T(v)2, if 0 =/? < q and *m+ 1 = a / T(V),

v*T(v*)2, if 0 =/? < ^ and xm + 1 = « = T(V).

It follows that u ~, (u*)" 7^ nm+p(y) so that (by Lemma 2.1) A:(u,n(y)) = 0 and

)>-— '-Nm+p+i. Consequently we obtain
4

Case 2. d(x) = m+p9 p>l. Since y^x*=vaip, we get that y = x*a€~p

. For u = nm+p+1(y) it follows that fc(u,n(x)) = 0 and £(u,II(y))

hence
2

P(n(x),n(y))>

Case 3. d(x) = m<d(y) (p = G). If u = Om+1(y), then A:(u,n(x)) = 0 and

>-Nm+l whence

Case 4. d(x) = m = d(y\ p = 0. Since x^y, for u = x, we have fc(u,y) =

and k(u,x) = Nm so that
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The estimate in the previous lemma is sharp as the following example
shows. However, restricting the metric on y we are able to improve the
estimate as shown in Lemma 3.3 below.

3e20 Let a e j/. Then a(a°°, <ft) = p(a">, am) = m+l and
4'2-ft(a°°'am) for every m>2.

A direct calculation using (2.3) shows that

TV, ifl<n<m, 11=0"

0, otherwise

and

TV", If u = an for some n>\

0, otherwise.

It follows that

3o30 p(n(x)5n(y))>- j5(x,y) 2~/?(x'y) for any x,yeS.

Proof. We may assume that y/x,x*. Let s(u) = \k(u,Tl(x))--k(M,YI(y))\
for ue^+. Then, as before, we may write

where v = v1v2-~vm-1eifr
9 m = a(x,y), a,b(a^b)E<z/9 c(-£b\ xm+p+25xm+p+3,--,

ym+q+i(*a)>ym+q+2>ym+q+3>'''e^>anAO^P^q£ + <x>- Then, since y ̂  x? x
s,

we have m +p < oo and

m,

Fix 1 <fi <m. Then for u = v^2 • - - vn_ ±b it follows from (2.3) again that
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m - l - M J f*, \ m + p-n
"W *™ I y *b\vn + kJi ,

4 I ft—*,) 2* fc=m^+i 2fc ' &= +^- + 2h

: = 0 ^- & = m - n + l

(since c^b) and

^ 2^ 2n

Notice that fc(u,n(y))>A:(u,n(x)), hence

— JV-

Fix m<n<m+p. Then for u=i

and it is not difficult to show using Lemma 2.1 that IlIJ_1(y)/u , (u*) , hence
fc(u,II(y)) = 0.

As a result wer get

and finally

P(n(x),n(y))>m|" -L. ̂  jv- _

=-^-^TTTI^ g^--'--

Example 3.4e Let N>3 and let a,b,c be different letters in jtf. Define
ji = abpcco and j = bap+1cao for some p>\. It can be calculated in a similar
way as above that a(x,y)=l, ^(x,y)=/7 + 2 and
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The details are left to the reader.

Next we give an upper estimate for p(Il(x5Il(y)) for xeH and

Lemma 3,5, p(O(x)5 O(y)) < 6jS(x, y)2 ~ *x'y)

for any xeH and

Proof. If n(x) = n(y), then x = y or y*. It follows that p(II(x),n(y)) = 0
and j?(x,y)=oo, proving the lemma in this case.

Let x,yeH and assume Il(x)/n(y). Then without loss of generality x
and y have representations

K = (Xk)=™bpxm+p+1xm+p+2-- and y = (yJ=vba*ym+q+1ym+q+2—9

where v = vlv2-~vm-l9 a + b, a^ym+q+l, b^xm+p+i, and 0<p<g<+oo. We
have a(x,y) = w3 and j5(x,y) = m if p = Q and j5(x,y) = m+/? + l if p>l. Since
O(x)/n(y)5 m+p< + co.

Let UE'W be arbitrary.
We first consider the case when d(u) < m. Then fc(u, II(x)) and k(m, O(y)) > 0

only if either p~ or (us)~ =nd(u)_1(x) = nd(u)_1(y) and we have

or

4

Consider the first case, i.e. u ~ = IId(u) _ i(x) = IId(u) _ ̂ y). If T(U) 7^ a, b, then

0(li) °° 1 A/rfO1)
| A:(u, n(x))-A:(u,

*r fc = m + p-d(u)+l

If i(u)=fl, then

^ fc = m-d(u) + l

Similarly if i(u) = fes then we have
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+ p-d(u) /¥ /V \ 1 /,. \\ m + p-d(u) 1 1 il*>\xdu+k) W d + i J — 1

fc = m - d(w) \ / ^ / fe = m - d(u) + 1 ^ ^ 2

The case where (u*)~ =nd(u)_1(x) = nd(u)_1(y) is similar. Consequently we

have

0(u) M 1
:(u,n(x))-A:(u,n(y))|<2-^ Nd("}—-——- <^ V // \ ' V « 7 / / I — * /^m-)-n — rJ^H^ ~~^

Now consider the case where m<d(u)<m+p. Then k(u,Il(x))>0 if and
only if u" or (u*)"=n4l(11)_1(x).

Assume first that u~ = nd(u) _ ̂ x). Then k(u, Il(y)) > 0 if and only if t(u) = b
where u* = nd(1I)(y). Therefore, if T(II) = &, we have

If iu)/6 we have

fc = m + p - d(u) + 1 2

Replacing u~ by (M t)~, i.e. (u*)~ =nd(u)_1(x) and u~ or (u*)~ =nd(u)_1(y),
we obtain the analogous estimate

t + P - d

Last, consider the case where d(u)>m+p. Then we have

The above estimations show that
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p(n(x),n(y))

* 1 N" m+p 1 AT

It is left to consider the case where xeS and
Define j(u) = W»9n(x))»^u,y)| for PE^+. We have j8(x5y)<4y)-hl< -hoo.

Assume first that x is an extension of y. Then x has the form x =
yxmxm+1xm + 2 - - - where /w = d(y)+l(>2), hence w = a(x9y) = j3(x9y).

We consider three cases. First, let d(n)>m. Since d(w)>d(j), we have
fc(u,y) = 0 and

4 &=o 2

Next, let rf(u) = m— 1. Then, if ni = y we have

and if ii 7^ y we have fc(u9y) = 0 so that s(u)< -TV™ 1.

Finally, let 1 < d(u) < m — 2, which implies m > 3. Then fc(u,Il(x)) = ^(u9y) = 0

unless u" or (w*)~ =nd(1I)_1(y). If u~=nd(f f l )_1(y) then we have

2k2*i ^k 2*i
k = 0

~ 4

We have the same estimate when (u*)~ =nd(U)_1(y).

Combining the above estimations and observing that m>2 we get
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Mn(x),n(y))=p(II(x),y)

m-2 1 Tun

Finally, consider the case where x is not an extension of y. Then without
loss of generality x and y are expressed in the form

*=mbpxm+p+ixm+p+2>- and y=vbapym+p+iym+p+2'-yd(y},

where v = viv2'-vm,i, a^b, and l<m<m+/?<+oo and either a^ym+q + l or
i. We have a(x,y) = m, and j8(x,y)=m if p = Q and j8(x,y)=m+/? + l

Applying (2.3) to fc(u,y), then by similar arguments as those in the case
x,yeH (observe that an additional term 2~d(y)+d(u) appears due to the fact that
y is a finite word) we have

.f

if

if

so that

- sup Xn)
n=l

Lemma 386e There exists a positive constant A=AN (depending only on N)
such that

for all x,yeE.

Note that under our assumption of |A| = 1 we have A<19 and in the case
of a symmetric simplex A of diameter 1, it follows from elementary calculations
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that A2=- and 16^^ = l-(8y|]V_1)~2.
4

Proof. Let x,yeE.

If II(x) = n(y), then we have /?(x, y) = oo and nothing has to be shown.
Therefore, we may assume that II(x)/II(y). Then /? = /?(x,y)< +00, and

n/?_1(x) = n /?_1(y)or =n /f_1(y)f.
If w = w 1 - - -W| is a finite word, we denote by A (w) the image of A under

the composition of naps/Wl °--°/Wl.
In the first case we have II(x), n(y)eA(n^_1(x)) so that

In the second case A^^^x)) and Afn^-^x)*) have a point £ = II(z) = II(z*)
in common, where i = n/3_1(x)T(n)?_1(x))00. Therefore

Iin(x)-n(y)|| < ||n(x)-f n + |IC-n(y)|| <2|A(n^_1(x))|=22-^.

In order to derive the lower bound, notice that A(Il^ + 1(x)) and
do not have a point in common, hence

where A is the minimum distance of two disjoint triangles in {A(w);w
Combining Lemmas 3.3, 3.5 and 3.6, we can compare p(£, r\) and ||f — ij\\

on y.

Theorem 3.7* For any £,^ey, we have

32

Proof. This follows from a direct calculation observing that the function
n\-^ne~n is decreasing in n.

The above theorem shows that the Hausdorff dimensions H of y with
respect to the metrics ||£ — Y\\ and p(^,rj) coincide. It also follows from standard
considerations that the //-dimensional Hausdorff measure with respect to the
metric p is infinite.

Our next aim is to characterize the cylinder sets by the metric p.
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Lemma 3.8. p(v, w)<6a(v, w)2~a(v'w) for v, weTT+.

Proof. Without loss of generality we may assume v^w and

l<d(v)<d(w) and m = a(y,w)<4v)+l.

Let m=l. Since k(u9vf)<Nd(n) for any ueifr+ and wei^+? we have

00

p(v,w)2-d(v)+ Y

Assume m>2. Then we have vk = wk, \<h<m—\.
For iiei^+ such that d(u)<m — l we have WiW2--wm-i=vlv2--'Vm-.l and

and fc(w, w) do not vanish if and only if u~ or (u*)~ =w1w2"-wd(11)_1,
where w0 = 0. In each of the cases we get

>m-d(u)

_
^ ^ L

~
2

For ue^ such that d(ii)>ra we have

-» 9fc

= 0 ~

so that

a m-1

'<V) + 2 „?, ^^ + 2

As a corollary of Lemma 3.5 and 3.8 we derive

Lemm 3.9. For any weif+ we have

p(w,n(x))<6a(w,x)2-a(w'x)<64w)2-d(w) for Vxe«w».

Proof. Let wei^+. If xe<w> then a(w,x) = rf(w)+ 1 and by Lemma 3.8

p(w, x) < 6a(w, x)2 ~ a(w'x) = 6(d(w) +1)2 "(
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If xe[w]9 then by Lemma 3.5

p(w, H(x)) < 6j3(w, x)2 - ̂ (w'x) < 6a(w, x)2 ~ a(w'x) = (3rf(w) 4- 3)2 ~ d(w),

since a(w, x) < j3(w, x).

Lemma 3.10. Lef welT+ aw</ xe*T+uS. 7fa?/i p(w?n(x))<-2~d(w)

8
implies

Without loss of generality we may assume that x/w, w®. Lemma
3.1 implies jS(w,x)>fif(w) and, by definition of j?(w,x), we have j8(w,x)<rf(w)4- 1.
Therefore j8(w,x) = J(w)-hl and we have xe<^w^ or Cw8^>.

Combining Lemmas 3.1, 3.3, 3.5 and 3.9, we derive the following theorem.

Theorem 3.11. Ifv,weif+ then

8

7/WSTT+ and £ey then

-2-^w'x)<p(w,,J)<6^(w,x)2-p(w-x), for
O

then

for every xell"1^) and

§40 Variation of Harmonic Functions

In this section we estimate the variation of harmonic functions for the
Markov chain by that of the boundary functions on the Sierpinski gasket,
which is identified with the quotient space 3/~. The following lemma is basic
in the sequel.

Lemma 4eL For every bounded measurable function cp : &* -* R the harmonic
function
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h(w)= f *(w,
J y

satisfies

sup
xe[v-],ye[w-]

+ sup |(?(n(x))-<p(ri(y))|.
2 *e[(v*)-],ye[(w*)-]

for every Y,

Note that the case when v=?* (resp. w = w*)is formally included in the
statement, since in this case 0(v) = 2 (resp. 0(w) = 2) and the proof below covers
also this case.

Proof. Let v = viv2'--vm and w = wlw2w3--wn be words in ^+. Then by
Lemma 2.1 and Theorem 2.3, we have

- f
Js

+ f Z
J[(v*)-] ^ = 0

y 2~ki (x
[(w#)-] k = 0

where xk denotes the k-ih coordinate of x e 3.

Define a bijective map f : [v~]-»[w~] by
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T(W), if *fc_d(W)+d<V) = T(v) and fc>

TW> if xk-d(w)+d(v) = <™) and
x&_d(w)+d(v)? if *fc-d(W)+d(V)7M^ <w) and

For example we have

Then it follows that for every non-negative measurable function / on 3

f f(t(^)v(dK) = Nd^-d^ I
J[v-] J[w

and that

Therefore we conclude that

£ 2-ftIt(v)(xd(v)+fc)(p(n(x))v(rfx)
[V-] fc = 0

[V-] fc =

[v-] * =

[v-] ft =

[V-] fc =

[V-] fc =
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<2 sup
xe[v-],ye[w-]

Applying the same reasoning to v* and w*, the lemma follows
immediately.

Lemma 4.2. For every we^+, ve<w> implies (v*)~e<w~>u<(w*)~>.

Proof. For every ?e <w>, there exists ue W such that v = wu. If u + u*, then
v* = wii* so that (v8)~e<w~>. If u = u*, then there exists aestf and fc>0 such
that u = afc. Moreover, if a^T(w), then we have v* = w~0T(w)d(u), hence
(v*) ~ e <w " >. Finally, if a = T(W), then Y* = w*T(wft)d(11) implies that (YS) " e <(w*) ~ >.

For every we^+, define the variation at w of a function /z on ^ by

Var,(w)= sup |A(u)-A(v)l,
n,ve<w>

and the variation at w of a function cp on ^ by

= sup
x,ye[w]

From Lemmas 4.1 and 4.2, we obtain the following proposition.

Proposition 4.3. For every bounded measurable function (p:£f->R the
harmonic function

!(w)= fc(w,

Var,((w)<

Proof. It is evident that ve<w> implies [v~]c=[w~] and that Lemma 4.2
implies [(v*)~]c:[w~]u[(w*)~]. Therefore by Lemma 4.1 it follows that for
any U,YG<W>

|/z(u) - /z(v)| < sup
x,ye[w-]u[(w«)-]

Define Z = WT(W)°° and conclude that zs = wttT(w*)GO, hence z*e[w~] and
z*e[(w*)~]. Since n(z) = II(z*) the proposition follows from
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Varh(w)

<max sup

<max sup
(. xetw-];y€[(wtt)-]

Corollary 4A Let cp be an s-Holder continuous function on (5^3 p) with

Holder constant C^. Then for every we'W we have

Proof. Let we^+. Then for every xe[w~] we have a(w~,x) = ^(w~9x)
= d(m) and by Lemma 3.9 p(w5n(x))<64w)2~d(w) whence p(n(x),n(y))<12J(w)

2~d(w) for every x,ye[w~]. This proves the corollary in view of Proposition
4.3.

Lemma 4,5* For every bounded measurable function <p:£f-+R the harmonic

function

A(w)=

satisfies

sup{|A(v)-A(w)|;

Fix any Y,we^+ such that p(v,w)<2~ (w+3). Without loss of

generality we may assume that d(w)<d(v). By Lemma 3.1 we have

so that j8(?5w)>^9 which implies Y,we<i>u<i*> where i = wlw2--'Wn. Con-

sequently by Proposition 4.3, even in the case where ?e<z> and w£<z*>, we have
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< Var,(z) + Var,(z«) < 2( Var^T} + Varjff) -)).

On the other hand by Lemma 3.9 xe[z~] implies p(II(x), O(z~)) < 6d(z)2~d(*\
since oc(z,x) = rf(z). Hence x,ye[z~] implies p(Il(x), II(y)) < 12J(z)2~d(z)< 12«2~M.

Theorem 4.6. LeJ cp be a continuous function on tf. Then h9 is extended
to a continuous function on l^u^, which coincides with cp on 5^. In particular
we have

lim

for every

Proof. Since by Lemma 4.5 h9 is uniformly continuous on ii^+ and 0
is an isolated point, h^ is uniformly continuous on the dense subset i^ of a
compact metric space i^\j^ and extends to a continuous function ̂  on '

On the other hand by Theorem 2.2(4) we have

, a.s.(P0)
n

and since n = P@ °X^1 we have

Since /i is a Radon measure on 5^ and full by Remark 2.4, we have Ji = q>.
Denote the set of all continuous function on & by C(£f) and that of all

bounded uniformly continuous harmonic functions on (i^,p) by Jfc.

Corollary 47.

Lemma 4.8. If a function f on if is uniformly continuous, then we have

(4.1) lim sup Var/(w) = 0.
«->oo W6^-n

Conversely, if a function f is symmetric, (4.1) implies the uniform continuity

off.

Proof. Assume that / is uniformly continuous on if and let
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Then, since a(u,w) = ^(w)+i for every ue<w> and by Theorem 3.9, we have
p(u,v)<6d(w)2~d(w) for any u,ye<w>. Therefore, the uniform continuity
implies

lim sup Var^w)
n W61TV,

u)-/(v)|; p(u,v)<6«2-",

Conversely, assume that u, we if+ and p(p, Y) < 2 ~ (n + 3) for some n > 1 . Then
without loss of generality we may assume d(u)<d(v) and as in the proof of
Lemma 4.5 we conclude that u, ve <z>u<z*> where z = uiu2u3 • - -un. This yields

<2 sup

as «-»oo.
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