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Hilbert C*-Module Representation on Haagerup
Tensor Products and Group Systems

By

Jaeseong HEO*

Abstract

Using the Hilbert C*-module representation associated with completely multi-positive linear
maps [Heo], we give another representation on Haagerup tensor product without the bridging
maps. We also construct covariant representations of covariant group systems on Hilbert
C *-modules.

§1. Introduction and Preliminaries

In the theory of C *-algebras, we can see many results with various kinds
of dilations. The two fundamental results are the Stinespring dilation theorem
[St] and the Hilbert C*-module representation given by Paschke [Pas].
Moreover, there are dilations associated with a multi-state [Kap] and a
completely multi-positive map [Heo] enhanced more than existing dilation
theorems.

Christensen and Sinclair [CS] formulated the notion of completely
bounded (respectively, completely positive) multilinear operators from a
C*-algebra into $(3^) and gave representations for completely bounded
multilinear operators. Paulsen and Smith [PS] extended a representation of
completely bounded multilinear maps to the case of subspaces of C*-algebras
using the correspondence between completely bounded multilinear maps and
completely bounded linear maps on Haagerup tensor products.

In this paper, we will give another representation on the Haagerup tensor
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product using the Hilbert C *-module representation associated with completely
multi-positive linear maps. In the quantum field theory and statistical
mechanics, the representations of covariant algebras play an important
role. Takesaki [Tak] made a study of covariant algebras and their represen-
tations. We will construct covariant representations of covariant group
systems on Hilbert C*-modules. This implies that every covariant completely
positive linear map from covariant group systems into C *-algebras arises from
a dilation to a covariant unitary representation on Hilbert C*-modules.

A pre-Hilbert B-module over a C*-algebra B is a right i?-module X
equipped with a $-valued inner product (-,-y:XxX-+B which is ^-linear
in the second variable and has the properties;

O, yy = (y, *> * <*, *> > 0 with the equality iff x = 0.

If, in addition, X is complete with respect to the norm \\x\\ = ||<;t,x>||25 then
X is called a Hilbert B-module or Hilbert C*-module over B.

Let X and Y be Hilbert ^-modules. We denote by 8B(X9 Y) the space of
all bounded ^-linear operators of X into Y. We write &SB(X) for
&B(X,X). With the operator norm, &B(X) is a Banach algebra. We denote
by 3PB(X9 Y) the set of all ^-module maps T:X~* Y for which there is an
operator T*: Y-+X, called the adjoint of T, such that

<7*,;v> = <*,r*y>, xeX9 yeY.

By the Banach-Steinhaus Theorem, Te&B(X, Y) is bounded. We write &B(X)
for £?B(X9X), which becomes a C*-algebra with the operator norm [JT, Lemma
1.1.7]. By a representation of a C*-algebra A on a Hilbert ^-module X, we
mean a *-homomorphism n: A -> &B (X).

The following theorem [Heo] generalizes the Stinespring representation
for a completely bounded linear map whose proof depends on the fact that
any closed subspace of a Hilbert space is complemented [Pau]. Since Hilbert
C*-modules are, in general, not complemented, the decomposition property
of the Hilbert C*-module can not be used in the proof of Theorem 1.1. To
get a representation on a Hilbert C*-module associated with completely
bounded maps, we have used the representation associated with a completely
multi-positive linear map.

Theorem 1.1. Let A and B be C*-algebras with B injective. If <j)'.A-+ B
is a completely bounded linear map, then there exist a Hilbert B-module X,
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a representation n of A on X and vectors xl,x2£X with the properties'.

(i) (f>(a) = (xt , n(a)x2y for each aeA,

(ii) the set {n(a)(Xi'b):aeA, beB, /=1,2} spans a dense subspace of X.

Two Hilbert ^-modules (IXvX), (AT 2 <- , ->2) over a fixed C*-algebra
jB are isomorphic as Hilbert C*-modules if and only If there exists a bijective
bounded IMinear mapping S:X1-^X2 such that the identity (x,yyi = (S(x),

holds for every x,yeX.

Examples 1.2. (1) Let 0^ be the C*-algebra generated by these isom-
etries sl9s29-" such that

00

sfsj = dijl and X^*=1-
i = i

Denote by Jf ^ the space of all sequences {at} in (9^ that are square sum-

mable in the sense that Z£L10/|t0i converges in 0^ with the inner product

Define T: 0^ -> ̂ eao and S:J^ffao -> (?„ by

J* f l = J*fl and

Clearly T is an injective 0^-module map. We easily see that TS({ai}) = {ai}9

ST(a) = a and <7\fl), T(b)y = (a,by. Hence (P^ and Jf^ are isomorphic as

Hilbert C*-modules.
(2) Let 0n9 (n>2) be the C*-algebra generated by isometrics sl9-~9sn such
that S"=15'^*=l. Let 1% be the space of all complex sequences {zJJ=1 and
ll®&n the space of all sequences {flJJ=i with atEOn.

We see that if fc = /(« — 1) + 1 for each /= 1, 2, • • -, then there exist orthogonal
projections /?19 •••,/?& in On such that

J 7 1 + - - - + j p f c = l , ^f=/?i and sfst=l ( i=l ,--- , / i ) .

Then (PB and ll®@n, (k = l(n-l)+l) are isomorphic as Hilbert C*-
modules. For let Ju-- - ,^ be as in above argument. Define T:&n-*
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and S:l%®(9n-»&n by

) = {Sfa}k
i^ and S({a

It is easy to check that TS({ai}) = {ai}9 ST(a) = a and <T(a
In particular, $„ and 3%>

Gn are isomorphic as Hilbert C*-modules.

(3) Let A be a unital C*-algebra with orthogonal projections pi9 -°,pk such

that/^-f- ••- +pk=^Ai uiuf=Pi and ufui=\A for each !</<&. By the same
argument in (2), we have that A~ll®A as Hilbert C*-moduIes.

(4) If A is a unital C "-algebra with orthogonal projections P i 9 p 2 9
m ~ such

that ^,^ipi = lA9 uiu*=Pi and ufui = lA for each l<i<fc, then we see that
A^J^A as Hilbert C*-modules. Let X be a countably generated Hilbert
A -module. By the Kasparov's stabilization theorem, we get A~X®A as
Hilbert C*-modules.

Let X be a Hilbert ^-module and Y a Hilbert ^-module. Let ^O^ be
the algebraic tensor product and A®B the spatial tensor product of A and
B. We define an A QB- valued inner product

for xl9x2eX and yl9y2£Y. We can extend the ^O^-module structure by
continuity in two steps to get a right A® ^-module structure on X®Y. X®Y
is called the exterior tensor product [JT].

Let A and B be C ̂ -algebras. We regard A and B as a Hilbert A -module
and a Hilbert jB-module, respectively. Consider the exterior tensor product
A ®B as a Hilbert A ® 5-module where A ® B is the spatial tensor product. Then
^4®^ is exactly A®B as a Hilbert C*-module with the A®B- valued inner
product

Proposition 1.3. Let A and B be unital C*-algebras. Let $:A-»B be
a unital completely positive map. Then the fallowings are equivalent:

(i) (/) is a *-homomorphism;
(ii) ker <P is a Hilbert A®B-submodule of A ® B where a linear map €* : A ® B -» B

is defined by $



HlLBERT C*-MODULE REPRESENTATION 761

Proof. (i)=>(ii) Suppose that $ is a *-homomorphism. Clearly, ker€»
is a linear space. To show that ker«l> is a Hilbert A®B-submodule of A®B,
take any jc = 5^®^eker® and a®beA®B. Then we have

(ii)=>(i) Conversely, suppose that ker<D is a Hilbert ^4(x)$-submodule of
A®B. For any aieA, we have al®\E— lyi(g)(^(^1)*6ker€>. Since we have

for any al5a2e^, we get 0(fl1a2)*
 = (^(^2)*0(fli)*- Hence $ is a homomorphism.

By the representation theorem in [Pas, Theorem 5.2], we get 0 is a *-
homomorphism. Q

§2. Representations of Haagenip Tensor Products

In recent years, the Haagerup tensor product has played an important
role in various aspects of the operator algebra theory and is closely tied to
the advances in the theory of operator spaces, quantum groups and cohomology
theory of C*-algebras. Completely bounded multilinear maps can be linearized
by considering the Haagerup tensor product.

Let A and B be unital C *-algebras. The Haagerup norm on the algebraic
tensor product A®B is defined by

(2.1) IMU=inf

where this infimum is taken over all representations of u as a finite sum
I.a^bi. This is equivalent to

||ii||fc = inf{||£|| ||F||:ii = JE®F, EeMln(A\ FEMnl(B)}.

The infimum in the definition is attained. Moreover E and F may be chosen
to have linearly independent sets of components. The resulting normed space
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is written A®hB (without completion). The Haagerup norm is injective. This
is surprising since the definition closely resembles that of the projective tensor
product norm. For a fuller account of the theory of operator spaces and
Haagerup tensor products, see [PS] and [SS].

Christensen and Sinclair showed that each completely bounded multilinear
operator is representable in terms of representations of the C*~algebra using
Wittstock's theorem of matrix-sublinear functionals. Paulsen and Smith gave
the representation for completely bounded maps on subspaces of C*-algebras
using the correspondence between completely bounded multilinear maps and
completely bounded linear maps on Haagerup tensor products. In [CS] and
[PS], the bridging operators were used to connect Hilbert spaces and another
Hilbert spaces. Using representations for completely multi-positive linear maps
we will give a representation without bridging operators.

Let V\ i^ x W -» $(3tiF ) be a bilinear map where if and *W are operator
spaces. With each bilinear map V\ V x Hf -» J'pf ) we may associate a linear
map (/) : i^®hW -* ̂ (^ ) on the Haagerup tensor product by (j)(v®w)=V(v,w)
for ve'V, weW. The following lemma was proved by Paulsen and Smith
[PS].

Lemma 2.1. Let F: ̂  x iT -» $(jf) be a bilinear map and let $ : iT ® hi^
-> 38(Jtf) be the associated linear map. Then V is completely bounded if and

only if (j> is completely bounded and \\V\\ cb=\\<l>\\cb.

We call an element v of a *-algebra A quasi-unitary if vv* = v*v =
and say that A is a U*»algebra if it is the linear span of its quasi-unitary
elements. All Banach ^-algebras are £/*-algebras. Notice that it A is unital,
then u E A is unitary if and only if 1 — u is a quasi-unitary, so in this case A
is a f/*-algebra if and only if it is spanned by unitaries.

Even though the completion of the Haagerup tensor product of C *-algebras
is not a C*-algebras, it becomes a Banach algebra [ASS]. But Paschke gave
a representation on a Hilbert C*-module for a completely positive linear map
from a unital t/*-algebra to a unital C*-algebra. Note that we can give a
^-operation on A®hB with (a®b)*=a*®b*, which is, in general, not
isometric. Since A and B are unital and A®hB is generated by unitaries, we
may regard A®hB as a t/*-algebra. We can see that Theorem 5.2 in [Pas]
can be applied to a Banach algebra which is an operator space. Hence we
can use Theorem 1.1 to prove the following Proposition.
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Proposition 2.2. Let C be an infective C*~algebra. If $:A®hB-* C is a
completely bounded linear map, then there exist a Hilbert C-module X,
representations nl of A9 n2 of B on X and vectors xi9x2eX such that on
elementary tensors

bzB.

Proof. By Theorem 1.1, there exist a Hilbert C-module X, a representation
7i of A®hB on X and vectors xl9x2eX such that

We define ni(a) = n(a®l)9 aeA and n2(b) = n(l(S)b)9 beB. Hence we have
(t>(a®b) = (xl ,7i1(fl)7i2(fc)x2> on elementary tensors a®b with aeA9 beB. This
completes the proof. D

Corollary 23. Let C be an injective C*-algebra. If V:AxB -* C be a
completely bounded bilinear map, then there exist a Hilbert C-module X,
representations n± : A -> J^c (X\ n2:B-+ 5£c (X) and vectors xi9x2eX such that
for each aeA and beB

Proof. By Lemma 2.1, the associated linear map </):A®hB-»C is
completely bounded. By Proposition 2.2, there exist a Hilbert C-module X,
representations n^ : A -> £?c (X\ n2:B^ j*?c (X) and vectors xl , x2 e X such
that on elementary tensors

Hence we have V(a9b)=(xl,nl(a)Ti2(b)x2y for each aeA, beB. D

§3. Covariant Completely Positive Operators on Group Systems

Let G and H be topological groups and let Aut(G) be the group of all
automorphisms of G endowed with the pointwise convergence topology. The
action T of H on G is a continuous homomorphism of H into Aut(G). We
will refer to this as a group system. Regarding the group G as a subset of
the group algebra C[G], we may consider a completely positive linear map
(j):G-+Bofa group G into a C *-algebra B. Let X be a Hilbert ^-module. We
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also call a *-homomorphism n: G -»J£?B (X) a representation n of G on X If
<j>:G-*B Is a completely positive linear map, we see that $ is a positive
definite H-valued function on G, that is, for each gj, • • •, gn E G and bi9"-,bneB,

(3.1) E Wter1*/^.
u=i

Let G be a topological group, 5 a C ̂ -algebra and X a Hilbert
5-module. Given a *»homomorphism 7i:G-» J^g(l") and an element ^eX, we
define the linear map <j):G -» B by

(3.2) 0(*) = <&*(g)O for each geG.

Then the linear map $ is completely positive. In the rest of this section, we
will assume that G and H are topological groups and B is a unital
C *-algebra. The following proposition and theorem are motivated by [JQ].

Proposition 3oL Let <j): G -»B be a completely positive linear map. Then
there exist a Hilbert B-module X, a representation n:G-+&B(X) and a vector
^eX such that

(i) 0(*) = <&*te)O far all g eG,
(ii) the set {n(g)(£-b):geG9 beB} spans a dense subspace of X.

Proof, We only sketch the construction since the details are routine and
similar to the proof of Theorem 2.1 in [Heo]. Consider the vector space

of all finitely supported functions from G Into B. For each
} and beB, we define

n fl if & — h
? \~"< j i /*\ I -"-Us U 6 —fl

x-o= > dib-Yp. where yjA)=<s^ ' *• /gl; (o, if g*h.

Then !FS(G,B) becomes a right 5-module. Define a B-valued positive
semi-definite form on ^S(G,B) by

Z a.'**, I ^-
i= i j= i

for gi9hj€G and ai9bjeB. By the Cauchy-Schwarz inequality, the set



HlLBERT C*-MODULE REPRESENTATION 765

Is a subspace of ^S(G,B). Furthermore, it becomes a H-submodule of
^S(G,B). The induced B- valued inner product on the quotient ^-module
&JtG9B)/N given by

is well-defined. Let X be the completion of ^S(G,B)/N with respect to the
induced inner product.

The representation n on X0 is given by

=i

By a simple calculation, we see that n is a unitary representation of G on
X0. Putting £ = xe + N where e is the Identity of G, we have n(g)(xe-b + N)
= b'Xg + N,so the linear span of {n(g)(^-b):geG, beB} is precisely XQ9 which
Is dense In X. Further, we have

for all g e G. This completes the proof. D

3.2. Leti:H-+ Aut(G) £e on acf 10/1 of H on G and u:H
a strongly continuous unitary representation. If <j):G-+B is a u-covariant
completely positive linear map, then there exist
(I) a Hilbert B -module X with a generating vector %,
(II) a strongly continuous unitary representation f : H -> £PB (X\
(HI) a ^-representation n\G-* &B (X\
(Iv) an element ve^B(B,X\
such that
(1) 0(g) = <&7c(g)O for each g EG,
(2) ^Ae linear span of [n(g)(l;-b):geG, beB} is a dense subspace of X,
(3) v *n(g)v = m^g) for each geG,
(4) ihv = vmUh for each heH,
where m is a left multiplication operator on B.

Proof. We will follow the notations of the proof of Proposition 3.1. The
statements (I) and (iii) are the part of Proposition 3.1, so It will be sufficient
to construct a unitary representation f of H on X and a ^-module map v
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satisfying (3) and (4). Since the details are similar to the proof of Theorem
3.1 in [Heo], we will only sketch the proof.

For each heH, we define a linear map f f c: ̂ S(G, B) -»^S(G, B) by

1=1

for each bteB and gieG. Let ZJL^-fo, ^=ibj'xhje^s(G,B). By the
w-covariance property of $, we have

i=l / \j=l i=l

l J=l

Therefore, the set 7V={xe ̂ s((j,J?):Oc,jt>=0} is invariant under the action of
ih. By passing to the quotient, we get an isometric linear map, again denoted
by f. It is straightforward to check that fft is a 5-module map. To show
that ffceJSfj,(JO, take x = I^=lai'Xgi + N and y = ̂ lbi'ih.^-N in X. Then
we have

Letting x = E"= 1a f-xg . - \ -NeX,geG and AeTf, it follows that
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i=l

f
V=l

Define the linear map v : B -» X by

for each

It follows immediately from the definition that v is a 5-moduIe map from B
into Jf. For each beB and jc = Z"=1<v;kieAr, we have

which implies that i;*(S?= ^^ • ^) = SJL t 0(^) a£, and so t; e ̂ (5, X). For each
and fte^, we have

It is easy to check that ahv = vmUh, which completes the proof. D

If G is a locally compact group, we can use Paschke's result [Pas] about
the corresponding group C*-algebra to give another proof. But the method
in Theorem 3.2 applies to arbitrary topological groups [JQ]. Note that for
(covariant) completely multi-positive linear maps from G into B we can give
the associated (covariant) representations on Hilbert ^-modules similar to
Theorem 2.1 (Theorem 3.1) in [Heo].
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