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An Integral Transformation and its
Applications to Harmonic Analysis on

the Space of Solutions of Heat Equation

By

Soon-Yeong CHUNG* and Yongjin YEOM**

Abstract

We introduce an integral transformation T defined by

ixy-W2 f(y)dy,

in order to do harmonic analysis on the space of C°° solutions of heat equation.
First, the Paley-Wiener type theorem for the transformation T will be given for the C°°

functions and distributions with compact support.
Secondly, as an application of the transformation the solutions of heat equation given on

the torus J" will be characterized.
Finally, we represent solutions of heat equation as an infinite series of Hermite temperatures,

which are to be defined as the images of Hermite polynomials under the transformation T.

§1. Introduction

By a temperature we mean a C°° solutions of the heat equation. In this
paper we will do harmonic analysis on the space of solutions of heat equation
(3f-A)i<(jc,0 = 0 on JTx(0,r).

It is well known that the Fourier transform plays an important role in
the usual harmonic analysis. .In order to do harmonic analysis on the
temperatures we need some integral transformation which maps the usual
functions or generalized functions on R" to temperatures. A point of this
paper is to combine advantages of the Fourier transform and standard properties
of temperatures so that we can obtain several parallel results as we might see
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in the usual harmonic analysis.
In this paper we first introduce an integral transformation T as a variant

of the Fourier transform, which is defined by

We introduce several interesting properties of such an integral transfor-
mation T which will be widely used throughout this paper.

As the first main theorem we shall give a Palay- Wiener type theorem of
this integral transformation T. Especially, C°° functions with compact support
and distributions with compact support will be characterized by entire
temperatures (see Definition 3.1) respectively, via their images of this integral
transformation T.

Next, we shall characterize periodic temperatures on JTx(0, T) or
temperatures on the w-dimensional torus J" without any condition on their
initial temperatures. The initial temperature of any temperature on the torus
will be identified with the help of the integral transformation Tin an easy way.

In the last section, we introduce the Hermite temperature JJ?n(x9 t) as an
image of the Hermite polynomial under the integral transformation T. Then
it will be shown that Hermite temperature has a similar orthogonal property
and can be used to expand the temperatures with some growth condition into
infinite series of Hermite temperatures.

§2. An Integral Transformation T

We start with a fundamental space on which we introduce the integral
transformation. For l</?<oo the space Lp(d^) is the set of all functions
whose p-th power is Lebesgue integrable with respect to the measure \JL on
IT. By y*(fP) or simply &p we denote the set of all functions / such that
for every e >0,/ belongs Lp(e~E^2dx), where dx is the Lebesgue measure. Then
it is easy to see that

for each p> 1. The topology is given on the space <£p(Rn) by the convergence
that fj-+Q in &P(R") if and only if for every e>0, /}-»0 in Lp(e~E^2dx). In
fact, the topology is the projective limit of Lp(e~E^2dx) as e-»0. i.e.
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Now we introduce the integral transformation as follows:

Definition 2.1. ¥or fe^R") and f>0 we difine

(2.1)

From this we can easily see that (Tf) (x9t) satisfies the heat equation

(dt - A) (Tf) (x, 0 = 0 on Rn x (0, oo).

Definition 2.2. By 3~(Rn++ 1) we denote the set of all infinitely differentiable
solutions u(x, f) of the heat equation (dt — A)u(x, 0 = 0 on 1?" x (0, oo) and we call
its element a temperature on J?++1. We give a topology on ^"(/?++1) with
the projective limit of the topology given by the semi-norms

for each t>Q. Then we have the following:

Theorem 2.3. The integral transformation T\<el(Rn)-*F(Rn+l) given by
(2.1) is linear, injective, and continuous. Moreover, we have

(2.2) sup|(7JOfo 01
xeH"

for each t>Q.
The transformation T plays a similar role as the Fourier transform in the

usual harmonic analysis, since it is actually the Fourier transform of / after
multiplication by the Gaussian function e~^x\2. Thus the transformation T
can be extended to the generalized function in a natural way. For example,
for a tempered distribution ue^" the temperature (Tu)(x, f) is defined by

by considering the function e~ixy~f^2 as a test function.
Now we present some properties of the transformation T, which will be

used later. From now on * denotes the convolution product with respect to
x variable.

(i) For feLl(Rn)
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= $E(x-y9

where A denotes the Fourier transform and E(x9 1) denotes a fundamental
solution of the heat operator dt — A.

(ii)

where 8 is the Dirac measure and DK=^rdx. More generally, if

P(x)= Y, a<*x<* *s a polynomial, then

(Hi) For a function / and a distribution u the translation tft by heRn is
defined by

and

for any test functions <^(x) corresponding to u. Then for we 5^' we have

(iv) For UE&" we have

and

where /'(x) is a polynomial.
(v) For UE&" and ^e^ we have

But, we should note here that
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(vi) Using the semigroup property of the heat kernel E(x, t) we obtain

for t>0 and s>Q when
(vii) An analogue of Parseval's identity for the transformation T can be

derived as follows: For / and g in

(77) (x, Wg) (x, t)dx=p-yj (30

= - \E*fE
(271)" J

= (27r)" \f(-x)3=

=(27c)"

(viii) For ftLl(Rn) we can take a (pointwise) limit

,0 + )= lim U-^-
t-*o+ J

Thus (7/)(x, 0 is a temperature whose initial value is just/(x), so that
the integral transformation can be regarded as a generalization of the
Fourier transform.

§3. PaSey-Wiener Type Theorems

The Paley- Wiener theorem characterizes distributions or functions by the
growth of their Fourier-Laplace transforms. Then it will be quite interesting
to consider an analogue for the integral transformation T introduced in the
previous section.

Let K be a compact subset of Rn and ueS"(K). Then since the function
e-iy$-t\y\2 js (rearj analytic everywhere in Rn the transformation T
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is well defined. Moreover, it is easy to see the followings:
(i) (Jw)((,r) is an entire function of £ in C".

(ii) (dt - Ac) (Tii) (C, 0 = 0, on q x (0, oo).

Definition 3.1. An infinitely differentiable function w(£, f) on C" x (0, oo) is
called an entire temperature if it satisfies (i) and (ii) above.

Now we state the Paley- Wiener type theorem for the transformation T
of the distributions and functions with compact support.

Theorem 3.2. Let K be a compact convex subset of Rn.
(i) If feC%(K) then (T/)(f»0 is an entire temperature satisfying that for

any N>Q there exists a constant C>0 such that

(3.1) |(17)(C, 01 < C<O A

where <*> = <! 4- |x|2>1/2 and
xeK

Conversely, if F(£9 i) is an entire temperature satisfying (3.1) then there
exists a unique /e C$(K) such that

(T/)(C,0=F(C,r) on q?x(0,oo).

(ii) If u is a distribution of order N with support in K then (Tu)(£9t) is an
entire temperature satisfying that there exists a constant C> 0 such that

(3.2)

Conversely, if F(^ i) is an entire temperature satisfying (3.2) then there
exists a unique u<=£'(K) such that (Tu)(£,t)=F(£9t) in Cc°°x(05oo).

Proof. The uniqueness is easily obtained applying the well known
uniqueness theorems for temperatures (see [16]).

(i) First, we note that for a constant C>0

(3.3)
/ y \

<ClaUla | /2a!1/2exp(—|jc|2J,

This inequality can be easily obtained by use of Cauchy's integral formula. Then
we have
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= (V'G'We-'M1 f ( y ) \
J \ /

= { ^^Z(
JK /*<«1 K

Thus, for any N>Q and \a\<N we obtain that

r

JK

° I
J

for some constant C^O and C(N,f)>Q. Then it follows that

", f >0

for a constant C>0.
Now we prove the converse. Define

=^p |(3.4)

The righthand side is independent of ?>0, since

where ^^ is the inverse Fourier transform. This can be seen by taking the
Fourier transform on (dt — A^)F(^t) = 0. By the decay condition (3.1) we can
see that/(jc) is a C°° function and (Tf)g,i)=F(^t) for (eq1 and t>Q. Now
it remains to show that suppfaK. Fixing t = t0 and shifting the path in (3.4)
we have

<C(t
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Now let x£K. Since K is compact and convex the Hahn-Banach theorem
gives a hyperplane {yeRn\(y,rioy = c} for some rj0ERn such that

<j,f/0><c9 yeK

and

Then it follows that

Taking ri=kr]0 (k>0) in (3.5) we have

\f(x)\
Then the righthand side goes to 0 as A: goes to oo, which implies that/(jc)
0. Thus we have suppfcK.

(ii) First, we choose a cut-off function xdeCo(Kd) for 0<<5<1 where
K6={x+y\x€K and \y\<S}, so that

and

Since %du = u and u is a distribution of order N we have

|(7V«)(C, r)|= <«,**-

<c £ |£|i«-

I Z
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where C denotes a constant which is not essentially the same in each step.
Then if we take <5 = 1/1+|C| we obtain

which is required.
Now we prove the converse. Since Fl; f) is a tempered distribution for

each t>Q we can take the inverse Fourier transform ^T1 with respect to
£ variable. Put

Then u is also a tempered distribution and does not depend on the parameter
?>0 by the same argument before. Moreover, it is true that (Tu)(£,t)=F(£,t)
for all CeC" and t>0.

On the other hand, it follows from (3.2) that the usual Paley-Wiener
theorem gives cotES>'(K) for each t>Q such that

Therefore, we have u = et^2a)t. But since e'^^O everywhere and supp
a>tc:K we can see that supp uaK which completes the proof.

§4. Periodic Temperatures on the Tours Tn

For a multi-index aeN% by |a| we have denoted |a| = at + a2 H h an. But
for aeZ", ||a|| denotes the Euclidean length i.e. ||a||2 = af + al+ •••+«;[
throughout this section where Z is the set of all integers.

As an application of the transformation T we shall give a characterization
of periodic temperatures on Rn x (0, T). Here by a periodic temperature we
mean the temperature u(x,t) such that

u(x + OL,t) = u(x,t) on Rnx(Q,T)

for any aeZ". A periodic temperature can be regarded as a temperature on
the ^-dimensional torus Tn. In fact, it is well known that if w(x, f) is a periodic
temperature on R x (0,1) with the initial temperature f(x) = u(x, 0) which is
integrable on (0,1), then u(x,t) can be represented by the Fourier series
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(4.1) u(x,t)= £ ane-4n2n2t+2*inx
9

n= — co

where

pi
(4.2) an= f(x)e~2ninxdx.

Jo

Here, we shall characterize arbitrary periodic temperature on Rn x (0, T), without
any condition on its initial temperature. More precisely, the initial temperature
of any periodic temperature will be given a meaning via the integral
transformation T.

In oreder to do this we first introduce some space of functions of certain
decay rate.

Definition 4.1. By y^ we denote the set of all C°° functions satisfying
the following: for every aeNn there exists a>Q such that

(4.3) ||(£||a>fl = sup \d*<l>(x}\eaW2

xeRn

is finite and by y\ we denote the strong dual space of y^ with respect to

the topology defined by the norm (4.3).

Remark, (i) Each element u of the space y\ belongs to the space of
Schwartz distributions, which is defined by the set of all continuous linear
functionals on the space CQ. In fact, it can be represented by u = d*f(x) for
some a and a continuous function/(*) on Rn such that for some a > 0 and C> 0

This can be proved by the same method which was used for the structure
theorem for tempered distributions (see [13]).

(ii) It is easy to see that (7$)( •, t)e^i for each t >0 and ^e^. Therefore,
the transformation T on 3~( is also well defined as, for

(iii) The space y^ is a little different from the space Si which was

introduced by Gelfand-Shilov([6]). But using the same arguments in [6] we
can see that the Fourier transform is an isomorphism between y^ and thei
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space y^ given by the set of all C°° functions $ satisfying that for any
there exist h>Q and C>0 such that

xeRn

i.e. # = &*
Now we are in a position to state the main theorem in this section.

Theorem 4.2. Let u(x, t) be a periodic temperature on Rn x (0, T). Then
we can find a unique distribution v(x) = ZaeZnca<5(x + 27ca)e^"I such that

(4.4)

where c^s are complex numbers satisfying the following: for every e>0

(4.5) |ca|<CXIH|2, aeZw.

Moreover, u(x, f) can be uniquely expressed as

(4.6) w(jc,r)= X v-4«2lNl*t+2iri« (x, /)e/?" x (0, T),

aeZw.z = ^2||a||2f ufrtty-^^dx,
Jo Jo

Proof. Since M(-, r) is periodic for each te(Q, T) it can be written as its
Fourier series expansion

(4.7) u(x, 0 = X 6(0, t)e2™*, xeR"
aeZ"

for each te(Q, I), where

(4.8) 6(0,0= f ••' f u(x,t)e-2ni*xdx aeZM.
Jo Jo

Moreover, since u(-,f) is C°° in jR" it follows that for any 7V>0

(4.9) |6(a,OI<MO(l + |a|)-^ aeZ"

for some constant bN(t) depending on N and t.
We now apply the heat operator dt — A to (4.7). In view of the condition
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(4.9) the Laplace operator A and the seminorm in (4.7) can be interchanged
in their order of applications. But it may be nontrivial whether 8t and the
summation should be also interchanged. But since dtu(x, i) is also a periodic
temperature if we use the decay condition and the uniqueness of the coefficients,
they can be also interchangeable. Then,

||a||2fe(

= 0

on R" x (0, 7). Thus from the uniqueness of the Fourier coefficients we obtain
an ordinary differential equation

at

for each aeZ". Thus we have

which implies that the function e47c2|'a||2r6(a,r) is independent of r>0, so that
we may write

c — pLCL V

This gives the expression (4.6). Moreover, it follows from (4.9) that for every

-JV*2n«n2', o<r<r.

Since cx is independent of r>0, we may choose t arbitrarily, so that for every
€>0 and some constant C>0 we have

Now take v(x) = SaeZnca5(x + 27ta), where ca's are the constants given
above. For any 0 in ̂  we have
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aeZ"

for some constant Q >0 and by taking e>0 so that s<4n2a. Thus v belongs
to y{. Since

we get for (x, OeJf" x (0, 7)

(7V)(jc,0=
aeZ"

On the other hand, the uniqueness in the (4.4) and (4.6) is easy.
Using the above result we can find the inital temperatures of arbitrary

periodic temperatures. To be precise, the initial temperature of any periodic
i

temperature belongs to the space (^)r. Namely, we have the following:

Theorem 4.3. Let u(x,t) be a periodic temperature on ITx(0, T). Then
i

there exists a unique M0e(^)' such that

(4.10) u(x,t)=(u0E(x-y,t)\ (

Proof. By Theorem 4.2 u(x9t) can be written as (Tv)(x9t) = u(x,t) for a
unique VE^~(. Thus it follows that

Taking w0= v we can easily see that UQ belongs to (3~^)' (see Remark above)
i

and u(x, t) converges to w0 = v in (3~^)' as t-+Q.
For a temperature u(x, i) on JTx(0, T) we say that it has the Huygens
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property if

u(x, t) = E(x-y, t-s)u(y, s)dy
J Rn

for every t and s with 0<s<t<T.

Corollary 4.4. Every periodic temperature on Rn x (0, T) has the Huygens
property there.

Proof. Using the semigroup property of E i.e. )

E(x9 t1 + t2) = E(x9 r J * E(x912), t i > 0, t2 > 0,

it follows from (4.10) that

u(x9t) = u0*E(x,t)

= u0 * E(x, s) * E(x, t — s)

= u(x,s) *E(x,t—s)

In fact, the last integral converges since

\u(x9t)\^QN9t)\x\N
9

for some N>0 and C(N,t) depending on N>Q and
As an another application the backward Cauchy problem for the heat

equation on the ^-dimensional torus Tn can be solved as follows:

Corollary 4.5. A solution of the backward Cauchy problem

f(3t-A)ii(jc,0 = 00/i rwx(0,/0)

can be uniquely expressed as

u(x9t)= £0a£

where

2ni*xdx, aeZ"
o o
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§5. Hermite Temperatures

The Hermite polynomial Hn(x) of degree n is defined by the Rodriguez
formula

Y
-) e~x, xeR

dx)

for n = 0,1,2,.... The orthogonality is defined by

Hn(x)Hm(x)e-**dx

O,
X2

Then it is well known that if e~^ f(x) is a tempered distribution, then we
can write the distribution / as

(5.1) /= Z anHn(x),
« = 0

where

(5.2) fln=

Moreover, the coefficients an have an estimate that

for some

Definition 5.1. For each neNQ we call the temperature (THn)(x,t) the
Hermite temperature of order n and denote it by ffl n(x, t). In fact, we have

= Hn(-D)E(x,t),

so that J^fn(x9t){E(x,t)}~1 is a polynomial of degree n. Although the
orthogonality of 2?n(x, t) is not valid any longer they still satisfy the following:
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(5.3) <^n(x, 4 ^m(^ 0>: = f •*„(*, t)JTJix9 t)dx
JR

= Hn(x)Hm(x)e-2t^2dx

0,

when t=\.

Now we will show that if a temperature satisfies some growth condition
at inifinity, it can be expanded via Hermite temperatures as follows:

Theorem 5.2. Let T>^ and u(x, f) be a temperature on R x (0, T) satisfying
that there exist M>0, N>Q and C>0 such that

(5.4) \u(x,t)\<C(xyMrN, xeR,Q<t<T.

Then it can be uniquely represented as

« = o

Here, the coefficient an is given by

. (9

I I 1 _ 2

B i— I ' 2/ «V 9 2)

L ni-^n J -oo

and satisfies that

kl<C(l+*)L, neN0,

for some L>0 and C>0.

Proof. For a positive integer m we put

r<0.

Multiplying / with a suitable C°° function with compact support we obtain
functions v(t) and w(t) with

*)=({'"•
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and supp wcifT/4, T/2] such that

(5.7)

where d is the Dirac measure.
Now take the integer m>N+2 where N is the constant in (5.4) and

consider functions on R x (05 T/2)

[T/2

G(x,t) = u(x,t+s)v(s)ds

and

rn
M) =

Jo

M)=f
Jo

H(x, t) = u(s, t+s)w(s)ds.
Jo

Then they are all temperatures on Rx(Q,T/2) and satisfy

T
'2

and

T
'I

Moreover, G(x, t) and /f (x, t) can be continuously extended to R x [0, T/2) and

Define g(x) = G(x,Q) and h(xj = H(x,0). Then g and h are continuous and

This implies that g and /z can be regarded as tempered distributions. By the
uniqueness theorem for temperatures (see [16]) we have

)=

)= E(x-y,t)h(y)dy = (
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If we define a tempered distribution MO by

then

2m

= u(x,t\

which implies that the initial value u(x,Q+) of u(x, t) is given by the tempered
distribution u0. Since the inverse Fourier transform ^~^(UQ) of u0 is still a
tempered distribution we can write it as

(5.8) <F-\u0)

for some sequence an such that \an\<C(\+ri)L, neN0. Now applying integral
transformation we have

and

anHn(x))= an(THn)(x,t)

which gives (5.5). Using the orthogonality (5.3) we also have (5.6). This
completes the proof.
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