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A Theorem of Tits, Normalizers of Maximal Tori
and Fibrewise Bousfield-Kan Completions

By

Frank NEUMANN*

Abstract

We use a theorem of Tits on the presentation of the normalizer of a maximal torus of a
connected compact semisimple Lie group in terms of generators and relations to give several
equivalent conditions for the splitting of the associated normalizer group extension and interprete
them in terms of p-adic fibrewise homotopy theory.

§0. Introduction

The isomorphism type of a compact connected semisimple Lie group G is
completely determined by the isomorphism type of the normalizer of the maximal
torus J\G) as it was shown by Curtis, Wiederhold and Williams [C-W-W]. This
was generalized much later by Notbohm for any compact connected Lie group
[N]. In their classical paper Curtis, Wiederhold and Williams also studied the
related question when the group extension

0 -» T(G) -»N(G) ^ W(G) -» I

is a split extension and the normalizer N(G) is completely determined by the
action of the Weyl group W(G) on the maximal torus T\G\ Using a theorem
of Tits [T2] giving an explicit description of the normalizer in terms of
generators and relations, they could decide case-by-case for which simple Lie
groups the above normalizer sequence is split exact.

In this note we use the theorem of Tits to interprete the splitting of the above
normalizer group extension in terms of fibrewise p-adic Bousfield-Kan
completion [B-K] of the associated fibration of classifying spaces. It turns

Communicated by K. Saito, November 9, 1999.
1991 Mathematics Subject Classification. 20 F 55, 20 G 20, 20 J 06, 22 E 15, 57 T 10
Mathematisches Institut, University of Gottingen, Bunsenstr. 3-5, D-37073 Gottingen,
Germany
e-mail: neumann® cfgauss.uni-math.gwdg.de



712 FRANK NEUMANN

out, that the splitting question only has to be considered locally at the prime
2. Namely, we have

Theorem. Let Gbea compact connected Lie group. The group extension

0 -> T(G)-»N(G) ^ W(G) -> 1

is a split extension if and only if the fibration

(Z/2)^BT(G) -> (Z/2)l>BN(G) * BW(G)

has a section, Le. is fibre homotopy equivalent to the fibration

(Z/2)^BT(G) -> EW(G) x W(G)(Z/ 2) ̂ BT(G) -> BW(G).

Moreover, it turns out that for odd primes p the fibrewise p-adic completed
fibration of classifying spaces

(Z/p)^BT(G) -> (Z/p)^BN(G) * BW(G)

has always a section.
Here we will consider only the Lie group case, but it is interesting to ask if

it is possible to derive a similar homotopy theoretic interpretation in the case of
a split semisimple reductive algebraic group G over a field fc, where the theorem
of Tits is also known [T2].

§1, A Theorem of Tits and the Splitting of the Normalizes of a
Maximal Torus of a Compact Connected Lie Group

Let G be a compact connected semisimple Lie group. Fix a maximal torus
T(G) of G and let N(G) be the normalizer of T(G) in G. The Weyl group of G is
given by W(G) = N(G)/T(G). First we recall some basic facts from Lie group
theory [B-tD]. The normalizer N(G) acts on J\G) by conjugation

N(G) x T(G) -» r(G), n -t = ntn ~

The action restricted to T(G) is trivial, so factors through the quotient W(G)
=N(G)/T(G) inducing an action of W(G) on J\G)

W(G)xT(G)->T(G), n'
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We will study the group extension

0 -» T(G) -» N(G) ^ W(G) -» 1

and derive several equivalent conditions under which this extension is a split
extension so that

N(G)^T(G) xi W(G\

Denote by L(G) the Lie algebra of G which we identify with the tangent space
to G at the identity element e of G. Formally we may split L(G)^L(T\G))
©Z,(G/71[G)), where L(G/J\G)) is the orthogonal complement of L(T(G)) with
respect to the W(G)-in variant inner product on L(T\G)).

Let ¥(G) be the set of roots and *F°(G) be a simple root system of G. For
any root ae*F°(G) let s^ be the corresponding reflection of L(T\G)). The Weyl
group W(G) has a presentation as a finite real reflection group with generators the
set of reflections S={s(X:ae*¥°(G)} subject to the relations

(1) ^2 = 1
(2) ( v/f)-' = 1 for all a * /? and m^ e {2, 3, 4, 6}

The W(G)-invariant inner product allows us to identify the W(G)-
representation L(T(G)) with the dual representation L(I\G))* = HomR(L(T(G))9

R). Denote this isomorphism by K\L(T(G)}-+ L(T(G))*.
For ae*F(G) and xeL(T(G)) we have

where a* = 2a/<a,a> is the coroot corresponding to a. For the set of coroots
of G let us write T(G)*={a*:ae^((j)}. If it becomes necessary to distinguish
between L(T(G)) and L(T(G))* we will denote by OCA =K(a*)eL(r(6))*5 the
inverse root of a. Let exp:Z,r(G)-» T(G) be the exponential map and set
7=ker(exp) and /*={aeL(r(G)*:a/c: Z}. I is called the integral lattice and
7* the lattice of integral forms. We get the following commutative diagram
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0 -* Z" -» Rn ^ JIG) -* 1

1 1 II

0 -» / -» L(JIG)) ^P JIG) -» 1

0 -» z -» I? -^ C/(l) -» 1

where e:R-* U(l) is given by fh->exp(27n"r) and 0a: JIG)-» £7(1) is defined by
exp(H)\-*exp(2nitt(H)) as the global root corresponding to aeL(J(G))*. It is
easy to see that *F(G) c 7* and ¥(G)* c / [B-tD].

For every root ae¥(G) we now define an element hxGJ\G) by
/ia = exp(|aA). We get immediately from the above considerations that h% = l
and /ia = A _ a .

The normalizer N(G) of the maximal torus T(G) also has a presentation with
generators and relations like a braid group mixed with the toral part as given in
the following theorem of Tits [Tl]. See also [C-W-W]. In [T2] Tits proved a
similar theorem in the case of a split semisimple reductive algebraic group G.

Theorem 1.1 (Tits). Let G be a compact connected semisimple Lie group,
JIG) a maximal torus and N(G) its normalizer in G. For every simple root
ae¥°(G) there exists an element qaeN(G) such that

with the following properties'.

(1) ?.2=*.
(2) (Braid condition)

#«#/#«"• =(lp(I<z<lp'"for all x^P where the factors are repeated m^ times,
where wa/?e{2,3,4,6}.

(3) qJq^=s&)forteT(G\
Moreover, the normalizer N(G) is isomorphic to the group generated by the set
r(G)u{#a:ae*F°(G)} subject to the relations (1), (2), (3) and those coming from
r(G). a

Let T^(G) be the subgroup of T\G) of elements having finite order, called the
discrete approximation of J\G). We have Tao(G)^(Q/Z)n where n is the rank of
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G) is mapped to itself under the action of the Weyl group W(G). For
all ae*F°(G) the element hx lies in rjG). Let 7VJG) be the subgroup of N(G)
generated by the set rjG)u{#a:ae¥°(G)} subject to the relations (1),(2), (3)
in the theorem of Tits and those from T^G). Then N^G) is the discrete
approximation of N(G).

The inclusion i:Tao(G)-^T(G) induces a homomorphism of group
extensions

0 -> rjG) -> NJG) ^ W(G) -> 1

i1 I II

0 -* J\G) -» N(G) ̂  W(G} -* 1

For a fixed prime p let Tp00(G) denote the subgroup of T^G) of elements
having order a power of/?. We have Tpao(G)^(Z/pcc)n where n is again the rank
of T(G) and Z//?00 denotes the group Z[%]/Z=colimsZ/ps. The Weyl group
W(G) acts on Tp00(G) and the inclusion

j: I] V(G)^roo(G)
p prime

is a W((?)-equivariant isomorphism.
From the universal property of the product we get therefore a unique

homomorphism np«> : TJfl) -» Tp00(G) making the diagram

T,J(G) - 7-JG)
p prime

commutative. The map np00 is also a W(G)-equivariant map.
Now let Np00(G) be the subgroup of Nm(G) generated by the set

rpoo(G)u{^a:ae¥0(G)} subject to the relations (1), (2), (3) in the theorem of Tits
and those coming from Tp00(G). The homomorphism np00 induces a
homomorphism of group extensions
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0 -> rjG) -> JVJG) W(G) -> 1

0

Since hi = 1 for all ae¥°(G) it follows that haET2ao(G). Therefore for all
odd primes p we have npao(ha)=l.

From this it follows immediately that for odd primes p the group Npao(G) is
generated by the set Tp00(G)u{qOL:aEl¥0(G)} subject only to the relations

(!') <7«2 = 1
(2') (?«?,)"" = 1 for all «?*/»
(3') ^-'=^(0 forfeit).

Let Bp00(G) be the subgroup of Np00(G) generated only by the set
{ga:oce¥°(G)} subject to the relations (1s), (T\ (3'). The homomorphism
n : Npao(G) -> PF(G) maps Bp00(G) isomorphically onto W[G) since the elements
n(q(X) = s(X for ae¥°(G) generate the Weyl group W(G) and Bp00(G)nTp00(G) = 9.

Therefore we have shown the following theorem:

Theorem 1.2. Let G be a compact connected semisimple Lie group. For

each prime p / 2 the group extension

0 -> 7>(G) -» ̂ (G) W[G) -> 1

is a split extension with Np00(G)^Tp00(G) xi fF(G). D

In the special case that A a =l for all ae*F°(G) we can derive a stronger
result. Then the group N(G) is generated by the set r(G)u{ga:ae¥°(G)}
subject to the relations

(1) rf = l
(2) (M/ir-^l for all a /j?
(3) qafq;l=sJ(t)torteT(G).
and in the same way as above we get immediately N(G)=T{G) xi W(G). From
this we can conclude the following equivalent algebraic conditions for the

splitting of the normalizer exact sequence:

Theorem 1.3. Let G be a compact connected semisimple Lie group. The
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following statements are equivalent:
(1) For every ae¥°(G) it is h,= l.
(2) The group extension

0 -» r200(G) -» ̂ 200(G) ̂  ^(G) -> 1

•srp/ite, z.e. ^2o0(G)^r2o0(G) xi FT(G).

(3) I7ze grow/? extension

0 -> r(G) -> N(G) ^ W(G] -> 1

xi W[G). D

In [C-W-W] Curtis, Wiederhold and Williams used special elements in
the Lie algebra L(T(G)) to check case-by-case for which simple Lie groups the
normalizer sequence splits. This was also investigated earlier by Tits. He
considered also groups obtained by quotienting out proper subgroups of
centers. It turns out that for SU(2n+l), SU(2n)/Z, SO(n\ G2 the normalizers
always split, while the normalizers of SU(2n\ Sp(n)/Z, Spin(n\ F4, E69 El9 E8

and their quotients modulo centers Z do not split.

§2. Fibrewise Bousfield-Kan Completions and the Splitting of the
Normalizer Sequence

Now we will use fibrewise homotopy theory to interprete the algebraic
conditions for the splitting of the normalizer of a maximal torus of a compact
connected Lie group in topological terms. Let R be a commutative ring. For
a fibration of topological spaces

fibrewise .R-completion in the sense of Bousfield-Kan [B-K] gives in functorial
manner a fibration

where R^F is the jR-completion of the fibre F. Let p be a prime. We will use
fibrewise Bousfield-Kan completion for the ring R = Z/p and for simplicity
will always write Fp

A =(Z/p)nF and x; = (Z/p)°nX.
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Consider the following diagram of group extensions and homomorphisms of
group extensions for a compact connected Lie group G.

0 -» j\G) -» N(G) W(G) -> 1

r' t ii
0 -> rjG) -> NJ(G) ^ W(G) -» 1

Iv i II
0 -+ r00(G -* # o o G

Applying the classifying space functor B(l) and fibrewise p-adic completions
of the rows for a fixed prime p in the sense of Bousfield-Kan yields the following
diagram of fibrations and maps of fibrations:

-> BN(G)°P ->• BW(G)

t t II
I - I - II

JG); -> BNX(G)°P ^ BW(G)

I - i - II

with fibrewise homotopy equivalences. We obtain therefore the following
interpretation of theorem 1.2 in terms of fibrewise homotopy theory:

Theorem 2.1. Let G be a compact connected Lie group. For each prime
the fibration

-» BN(G)° - BW(G)

has a section, i.e is fibre homotopy equivalent to the fibration

BT(G); -

In other words

xi
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where EW(G) is a free acyclic W(G)-space. D

Proof. First of all let Z(G) be the center of G. The compact Lie group
G/Z(G) has maximal torus T(G)/Z(G) and Weyl group W(G] and the normalizer
of the maximal torus is given by N(G)/Z(G). We have a commutative diagram

0 -» T(G) -» N(G) ^ W(G] -» 1

I'' i II
0 -» J\G)/Z(G) -> N(G)/Z(G) -» W(G) -* 1

So the top extension splits if the bottom one is a split extension. Therefore
(see [B-tD], Theorem 7.1) we can always assume that G is simply connected. But
if G is simply connected it is certainly semisimple (see [B-tD], Remark 7.13). So
the theorem follows from the above considerations and theorem 1.2. D

As an immediate consequence we get the following result in terms of group
cohomology, which was also announced in [C-W-W], Appendix 2:

Corollary 2.2. Let G be a compact connected Lie group G. Then

or equivalent ly

$\ Q

For a compact Lie group G and a fixed prime p let Sp W(G) denote a/?-Sylow
subgroup of W(G) and SpN(G) the inverse image of SpW(G) in N(G). SPN(G) is
called a p-normalizer of 7V(G). Now we can state the main theorem of this
section:

Theorem 2.3. Let G be a compact connected Lie group and p be a fixed
prime. The following statements are equivalent:
(1) The group extension

Q^Tp*(G)-+Np»(G)-
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splits.
(2) The group extension

0 -» T(G)

splits.
(3) The fibration

Aos a section.
(4) 77ze fibration

/zaj a section.
(5) The fibration

/zflj* a section.

Proof. That assertion (2) follows from (1) is an immediate consequence
of the following commutative diagram combining a pullback and a pushout
diagram:

0 -» Tp00(G) -> Np00(G) -* W(G) -» 1

II t t
0 -» rp00(G) -* 5/rp.(G) -^ Sp»tG) -* 1

I I II
0 -* JIG) -» S/^G) -» SP»TG) -^ 1

The assertion (3) follows at once from (2) by applying the classifying space
functor B(l) which sends a splitting homomorphism to a section.

To show that (4) follows from (3) suppose now that the fibration

B7\G) -> BSPN(G) -» ̂  W[G)

has a section a. After fibrewise/7-adic Bousfield-Kan completion we still have a
section in the completed fibration

BT(G);
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Since the homomorphism in cohomology

i * : H

is a monomorphism (see also [N]) it follows that the fibration

BT(G)$ -*BN(G)°P-+BW(G)

has a section as required.
Now we show that (5) follows from (4). Let F be the homotopy fibre of the

completion map

Then we have

where n is the rank of J\G) and we get the following diagram of fibrations

F = F -> *

I I I
BTp00(G) -> BNp00(G) -> BW(G)

I I II
-* BN(G)°p -> BW(G)

where the bottom fibration has a section. Obstruction theory (see [W]) shows

that this section can be lifted to a section of the middle fibration, because

since W(G) is a finite group and char(gp)=0 (see [B]).
Finally we have to prove that (1) follows from (5). So suppose the fibration

BTpOD(G) -» BNp00(G) -> BW(G]

has a section cr. The groups Tpao(G\ Npao(G) and W(G) are discrete groups and
therefore the long exact sequence of homotopy groups degenerate to the following
short exact sequence of groups

0 -> ni(BTp*(G)) -* n,(BNp00(G)) -> n,(BW(G}) -> 1



722 FRANK NEUMANN

which is nothing else than the group extension

0 -» Tp00(G) -> Np00(G) -> W(G) -> L

The section a induces a splitting homomorphism in the short exact sequence of
fundamental groups and hence in the group extension. D

We note that the same proof would apply also to an arbitrary extension of a
torus T by a finite group H

and so the previous theorem remains true even in this more general situation.
As an immediate corollary we get finally from the algebraic considerations of

the first section the main theorem as mentioned in the introduction:

Theorem 2.4. Let G be a compact connected Lie group. The group
extension

0 -> T(G) -* N(G) A W(G) -» 1

is a split extension with N(G) = 1\G) xi W(G) if and only if one and hence all of the
statements in the previous theorem hold for the prime 2. D

Explicit cohomological calculations of Andersen [A] show that a statement
analogous to Theorem 2.1. is also true in the case of a connected /^-compact
group in the sense of Dwyer and Wilkerson [D-W], which are adequate
homotopy theoretic replacements of compact Lie groups, having all the notions
of maximal torus, Weyl group and normalizer. Andersen, instead of using the
result of Tits, calculated the low-dimensional cohomology groups of the Weyl
groups in all necessary cases. But it is still an open problem if in this
framework there is an analogous statement of the theorem of Tits, giving an
explicit description of the normalizer with generators and relations, which then
would also allow to decide the splitting of the normalizer for any connected
finite loop space with maximal torus [M-N] in the same manner as described
in Theorem 2.4. In the case of ̂ -compact groups the Weyl groups are p-adic
pseudoreflection groups, so not real reflection groups anymore as in the Lie
group case. The work of Broue, Malle and Rouquier [B-M-R] on the
classification of complex reflection groups and their associated braid groups
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is closely related with this question.
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