# Multiple Poles at Negative Integers for $\int_{A} f^{\lambda} \square$ in the Case of an Almost Isolated Singularity 

By

Daniel Barlet*


#### Abstract

Résumé Nous donnons une condition nécessaire et suffisante topologique sur $A \in H^{0}(\{f \neq 0\}, \mathbb{C})$, pour un germe analytique réel $f:\left(\mathbb{R}^{n+1}, 0\right) \rightarrow(\mathbb{R}, 0)$, dont la complexifiée présente une singularité isolée relativement à la valeur propre 1 de la monodromie, pour que le prolongement analytique de $\int_{A} f^{\lambda} \square$ présente un pôle multiple aux entiers négatifs assez "grands". On montre en particulier que si un tel pôle multiple existe, il apparaît déjà pour $\lambda=-(n+1)$ avec l'ordre maximal que nous calculons topologiquement.


## Summary

We give a necessary and sufficient topological condition on $A \in H^{0}(\{f \neq 0\}, \mathbb{C})$, for a real analytic germ $f:\left(\mathbb{R}^{n+1}, 0\right) \rightarrow(\mathbb{R}, 0)$, whose complexification has an isolated singularity relatively to the eigenvalue 1 of the monodromy, in order that the meromorphic continuation of $\int_{A} f^{\lambda} \square$ has a multiple pole at sufficiently "large" negative integers. We show that if such a multiple pole exists, it occurs already at $\lambda=-(n+1)$ with its maximal order which is computed topologically.

## Content

§ 1 Mellin Transform on $\mathbb{R}^{+}$
§2 Statement of the Result
§3 The Proof
References

## Introduction

The aim of the present Note is to generalize the result of [5] and its converse proved in [6] to the case of the eigenvalue 1 . So we shall give a

[^0]necessary and sufficient topological condition in order that the meromorphic extension of the holomorphic current.
$$
\lambda \rightarrow \int_{A} f^{\lambda} \square
$$
defined in a neighbourhood of the origin in $\mathbb{R}^{n+1}$ has a pole of order a least 2 at $\lambda=-(n+1)$, in the case of a real analytic germ $f:\left(\mathbb{R}^{n+1}, 0\right) \rightarrow(\mathbb{R}, 0)$ satisfying the following condition: we assume that the complexification $f_{\mathbb{C}}$ of $f$ admits an isolated singularity at 0 for the eigenvalue 1 of the monodromy. This notion, introduced in [2], means that for any $x \neq 0$ in $f_{\mathbb{C}}^{-1}(0)$ near 0 , the monodromy of $f_{\mathbb{C}}$ acting on the reduced cohomology of the Milnor fiber of $f_{\mathbb{C}}$ at $x$ has no non zero invariant vector.

Of course this hypothesis is satisfied when $f_{\mathbb{C}}$ has an isolated singularity at 0 , but it allows also much more complicated situations.

In our result the interplay between connected components of the semianalytic set $\{f \neq 0\}$ is essential: we denote by $A=\sum_{\alpha=1}^{a} c_{\alpha} A_{\alpha}$ an element in $H^{0}(\{f \neq 0\}, \mathbb{C})$ so $A_{\alpha}$ are connected components of $\{f \neq 0\}$ and $c_{\alpha}$ are complex numbers (we shall precise below the meaning of $\int_{A_{z}} f^{\lambda} \square$ when $A_{\alpha} \subset$ $\{f<0\}$ ). Our topological necessary and sufficient condition is given on $A$.

The main new point here, compare to [5] and [6] is the use of [3] which explains how to compute the variation map in this context of isolated singularity for the eigenvalue 1 , in term of differential forms.

I want to thank Prof. Guzein-Zade who point out to me that the orientations are not enough precise in [5]; so I shall try to take them carefully in account here. The reader will see that it is not so easy. I want also to thank Prof. B. Malgrange who suggests several improvements to the first draw of this article.

## § 1. Mellin Transform on $\mathbb{R}^{*}$

Let $\varphi \in C^{\propto}\left(\mathbb{R}^{*}\right)$ such that

$$
\begin{cases}\text { (i) } & \operatorname{supp} \varphi \subset[-A, A] \\ \text { (ii) } & \varphi \text { is bounded }\end{cases}
$$

We define for $\operatorname{Re} \lambda>0$

$$
M \varphi(\lambda):=\frac{1}{i \pi}\left[\int_{0}^{+\infty} x^{\lambda} \varphi(x) \frac{d x}{x}-e^{-l \pi \lambda} \cdot \int_{0}^{+\infty} x^{\lambda} \varphi(-x) \frac{d x}{x}\right]
$$

Examples. Let $\alpha \in \mathbb{C}$ with $\operatorname{Re}(\alpha) \geq 0$ and let $\varphi_{0}(x)=|x|^{\alpha}$ near 0 and $\varphi_{1}(x)$ $=|x|^{\alpha} \operatorname{sgn}(x)$ near 0 . Then we have

$$
M \varphi_{0}(\lambda)=\frac{1}{i \pi} \frac{1-e^{-l \pi \lambda}}{\lambda+\alpha}+\text { entire function of } \lambda
$$

and

$$
M \varphi_{1}(\lambda)=\frac{1}{i \pi} \frac{1+e^{-i \pi \lambda}}{\lambda+\alpha}+\text { entire function of } \lambda .
$$

So for $\alpha \notin \mathbb{N}$ we have a simple pole at $\lambda=-\alpha$. For $\alpha=2 k$ with $k \in \mathbb{N}, M \varphi_{0}$ has no pole but $M \varphi_{1}$ has one at $\lambda=-2 k$.

For $\alpha=2 k+1$ with $k \in \mathbb{N} M \varphi_{1}$ has no pole but $M \varphi_{0}$ has one at $\lambda=-2 k-1$. This is reasonnable because $|x|^{2 k}$ is $C^{\infty}$ at 0 and $|x|^{2 k+1} \operatorname{sgn}(x)$ is also $C^{\infty}$ at 0 for $k \in \mathbb{N}$. So poles of $M \varphi$ measure the singularity of $\varphi$ at 0 , as usual.

Without the condition ii) the situation is slightly more complicated: we shall use the following elementary lemma.

Lemma 1. Let $P$ and $Q$ in $\mathbb{C}[x]$ of degrees at most $k-1$ and let

$$
\varphi(x)= \begin{cases}P(\log x) & \text { for } x>0 \\ Q(\log |x|-i \pi) & \text { for } x<0\end{cases}
$$

near 0 , and assume $\varphi$ satisfies condition i) and $\varphi \in C^{\infty}\left(\mathbb{R}^{*}\right)$.
Then $M \varphi$ has no pole at $\lambda=0$ iff $P=Q$. Morever if $P=Q M \varphi$ is entire.
Proof. For $P=Q$ we have $M \varphi(\lambda)=\frac{1}{i \pi} \int_{-1}^{+1} P(\log z) z^{\lambda} \frac{d z}{z}$ modulo an entire function of $\lambda$, where $\log z=\log |z|+i \operatorname{Arg} z$ with $-\pi<\operatorname{Arg} z<\pi$. From Cauchy formula on the path

this give $-\int_{-\pi}^{0} P(i \theta) e^{i \lambda \theta} d \theta$ which is an entire function of $\lambda$.
If $P \neq Q$, as we have already seen that $\int_{-1}^{+1} Q(\log z) z^{\lambda} \frac{d z}{z}$ is entire in $\lambda$, it is enough to show that $\int_{0}^{1}(Q-P)(\log x) x^{\lambda} \frac{d x}{x}$ has a pole of order $\geq 1$ at $\lambda=0$. But we have

$$
\begin{aligned}
\int_{0}^{1}(\log x)^{l} x^{\lambda} \frac{d x}{x} & =\frac{d^{l}}{d \lambda^{l}}\left(\int_{0}^{1} x^{\lambda} \frac{d x}{x}\right) \\
& =(-1)^{l-1} \frac{(l-1)!}{\lambda^{l+1}}
\end{aligned}
$$

which gives the conclusion.

## § 2. Statement of the Result

Let $\left.f: X_{\mathbb{R}} \rightarrow\right]-\delta, \delta[$ a Milnor representative of the non zero real analytic germ $f:\left(\mathbb{R}^{n+1}, 0\right) \rightarrow(\mathbb{R}, 0)$. This is, by definition, the restriction to $\mathbb{R}^{n+1}$ of a Milnor representative of the complexification $f_{\mathbb{C}}:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ of $f$.

Let $\left(A_{\alpha}\right)_{\alpha \in[1, a]}$ be the connected components of the relatively compact semianalytic open set $\{f \neq 0\} \cap X_{\mathbb{R}}$ and denote by $A=\sum_{\alpha=1}^{a} c_{\alpha} A_{\alpha}$, where the $c_{\alpha}$ are complex numbers, a fixed element in $H^{0}\left(\{f \neq 0\} \cap X_{\mathbb{R}}, \mathbb{C}\right)$.

Definition. For a compactly supported $C^{\infty} n$-form $\varphi$ on $X_{\mathbb{R}}$, and for $-\delta<$ $s<\delta$, set

$$
I_{\alpha}(s)=\int_{(f=s) \cap A_{\gamma}} \varphi
$$

where the orientation of $\{f=s\} \cap A_{\alpha}$ is choosen in such a way that we have

$$
\left.\begin{array}{ll}
i \pi M_{I_{y}}(\lambda)=\int_{A \alpha} f^{\lambda} \varphi \wedge \frac{d f}{f} & \text { if } A_{\alpha} \subset\{f>0\}  \tag{1}\\
i \pi M_{I_{y}}(\lambda)=-e^{-l \pi \lambda} \int_{A \alpha}(-f)^{\lambda} \varphi \wedge \frac{d f}{f} & \text { if } A_{\alpha} \subset\{f<0\}
\end{array}\right\}
$$

where the open set $A_{\alpha}$ is oriented by the canonical orientation of $\mathbb{R}^{n+1}$ (assumed to be fixed in the sequel).

For $A=\sum_{1}^{a} c_{\alpha} A_{\alpha}$ we define

$$
I_{A}(s):=\sum_{1}^{a} c_{\alpha} \int_{(f=s) \cap A_{y}} \varphi
$$

with the previous conventions. So we shall get, by definition,

$$
\begin{gathered}
i \pi M_{I_{A}}(\lambda)=\int_{A} f^{\lambda} \varphi \wedge \frac{d f}{f} \quad \text { where } \\
\int_{A} f^{\lambda} \varphi \wedge \frac{d f}{f}:=\sum_{A_{\alpha} \subset\{f>0\}} c_{\alpha} \int_{A \alpha} f^{\lambda} \varphi \wedge \frac{d f}{f}-e^{-l \pi \lambda} \sum_{A_{\imath} \subset\{f<0\}} c_{\alpha} \int_{A \alpha}(-f)^{\lambda} \varphi \wedge \frac{d f}{f}
\end{gathered}
$$

with the natural orientations of the open sets $A_{\alpha}$.

Define now, for any $\alpha \in[1, a]$

$$
F_{A_{x}}:=f^{-1}\left(s_{0}\right) \cap A_{\alpha} \quad \text { if } A_{\alpha} \subset\{f>0\}
$$

and

$$
F_{A_{\alpha}}:=f^{-1}\left(-s_{0}\right) \cap A_{\alpha} \quad \text { if } A_{\alpha} \subset\{f<0\}
$$

where $s_{0}$ is a base point in $D_{\delta}^{*}$ choosen in $D_{\delta}^{*} \cap \mathbb{R}^{+*}$. Here we assume that we have a Milnor fibration for $f_{\mathbb{C}}$ :

$$
f_{\mathbb{C}}: X_{\mathbb{C}}-f_{\mathbb{C}}^{-1}(0) \rightarrow D_{\delta}^{*}
$$

and we shall denote by $F_{\mathbb{C}}$ the complex Milnor fiber (that is to say $F_{\mathbb{C}}:=$ $\left.f_{\mathbb{C}}^{-1}\left(s_{0}\right)\right)$. We define then $F_{A}:=\sum_{\alpha=1}^{a} c_{\alpha} F_{A_{\gamma}}$ as a closed oriented $n$-cycle of $X_{\mathbb{R}}$, the orientation of the $F_{A_{g}}$ being given by (1).

We define $\theta_{\alpha}: F_{A_{g}} \rightarrow F_{\mathbb{C}}$ as the obvious inclusion if $A_{\alpha} \subset\{f>0\}$; and for $A_{\alpha} \subset\{f<0\} \theta_{\alpha}$ is given by the closed embedding of $F_{A_{y}}=f^{-1}\left(-s_{0}\right) \cap A_{\alpha}$ in $f_{\mathbb{C}}^{-1}\left(s_{0}\right)=F_{\mathbb{C}}$ given by a $C^{\infty}$ trivialisation of $F_{\mathbb{C}}$ along the half-circle $|s|=s_{0}$ and $\operatorname{Arg}(s) \in[-\pi, 0]$.

For $A=\sum_{\alpha=1}^{a} c_{\alpha} A_{\alpha}$ define the closed oriented $n$-cycle $G_{A}$ of $F_{\mathbb{C}}$

$$
G_{A}=G_{A^{+}}-G_{A^{-}}=\sum_{A_{x} \subset\{f>0\}}\left(\theta_{\alpha}\right)_{*} F_{A_{\alpha}}-\sum_{A_{y} \subset\{f<0\}}\left(\theta_{\alpha}\right)_{*} F_{A_{y}} .
$$

The minus sign in this definition comes from the following facts:
In our definition of Mellin transform, $\mathbb{R}^{*}$ is oriented by the natural orientation coming from $\mathbb{R}$. Using the monodromy brings the orientation of $\mathbb{R}^{*-}$ we have chosen to the opposite orientation of $\mathbb{R}^{*+}$. If we want to keep the global orientation of $\mathbb{R}^{n+1}$ in this transfert (we push the Milnor fiber $F_{\mathbb{R}}:=$ $f^{-1}\left(-s_{0}\right) 】 f^{-1}\left(s_{0}\right)$ in $\left.F_{\mathbb{C}}\right)$ we have to change the orientation in $f^{-1}\left(-s_{0}\right)$. This explains our definition of the cycle $G_{A}$ in $F_{\mathbb{C}}$.

When $\varphi \in C_{c}^{\propto c}\left(F_{\mathbb{C}}\right)$ is a $n$-form, we have

$$
\int_{G_{A}} \varphi:=\sum_{A_{y} \subset\{f>0\}} c_{\alpha} \int_{F_{A_{y}}} \theta_{\alpha}^{*}(\varphi)-\sum_{A_{x} \subset\{f<0\}} c_{\alpha} \int_{F_{A_{\alpha}}} \theta_{\alpha}^{*}(\varphi)
$$

where $F_{A_{g}}$ is oriented as before.
This gives a linear form on $H_{c}^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ associated to the oriented $n$-cycle $G_{A}$ in $F_{\mathbb{C}}$ :

$$
\varphi \rightarrow \int_{G_{4}} \varphi
$$

where $\varphi \in C_{c}^{\propto}\left(F_{\mathscr{C}}\right)$ is a $d$-closed $n$ form.

We shall denote by $\delta(A)$ the cohomology class in $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ which gives this linear form on $H_{c}^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ via the Poincare duality: $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right) \times H_{c}^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ $\rightarrow \mathbb{C}$. Our result is the following analogue of [5] and its converse [6].

Theorem. Let $f:\left(\mathbb{R}^{n+1}, 0\right) \rightarrow(\mathbb{R}, 0)$ a non zero real analytic yerm. Assume that $0 \in \mathbb{C}^{n+1}$ is an isolated singularity relative to the eigenvalue 1 of the monodromy of $f_{\mathbb{C}}$ the complexification of $f$.

Let $A=\sum_{\alpha=1}^{a} c_{\alpha} A_{\alpha}$ an element in $H^{0}(\{f \neq 0\}, \mathbb{C})$ and $\delta(A)$ the corresponding class in $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ (see the definition above). Then we have an equivalence between:
(i) $\delta(A)$ has $a$ non zero component on $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)_{i=1}$ in the spectral decomposition of the monodromy acting on $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$
(ii) the meromorphic extension to the complex plane of the distrihution $\lambda \rightarrow \int_{A} f^{\lambda} \square$ (holomorphic in $\lambda$ for $\operatorname{Re} \lambda>0$ ), admits a pole of order $\geq 2$ at $\lambda=$ $-(n+1)$. Moreover, the order of the pole $-v$ for $v \in \mathbb{N}$ and $v \geq n+1$ of the meromorphic continuation of $\frac{1}{\Gamma(\lambda)} \int_{A} f^{\lambda} \square$ is exactly the nilpotency order of $T-1$ acting on $\delta(A)_{1}$, the component of $\delta(A)$ on $H^{n}(F, \mathbb{C})_{\lambda=1}$. 圈

Remarks. 1) The notion of an isolated singularity relative to the eigenvalue 1 of the monodromy has been introduced in [2]. It means that for any $x \neq 0$ near 0 in $\mathbb{C}^{n+1}$ such that $f_{\mathbb{C}}(x)=0$, the monodromy acting on the reduced cohomology of the Milnor fiber of $f_{\mathbb{C}}$ at $x$ has no non zero invariant vector.
2) In the case where $A$ is a connected component of the open set $\{t \neq 0\}$, (ii) is equivalent, in term of asymptotic expansion of integrals $s \rightarrow \int_{A \cap f^{-}(\Delta)} \varphi$ when $s \rightarrow 0$, with $\varphi \in C_{c}^{\infty}(x)$ is a $n$-form, to the non vanishing of the coefficient of $s^{p}(\log |s|)^{J}$ for some $p \in \mathbb{N}$ and some $j \in \mathbb{N}^{*}$ (for some choice of $\varphi$ ).
3) The precise order of poles at large negative integers is describe in a purely topological way.

## §3. The Proof

We shall use here the notations of [3]. For $A$ given, let $\varepsilon$ be the component of $\delta(A)$ on $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)_{\lambda=1}$, the spectral subspace of $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ associated to eigenvalue 1 of the monodromy.

Assume $e \neq 0$ and let us prove that (i) $\Rightarrow$ (ii). As the canonical hermitian form $h$ is non degenerated on $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)_{\lambda=1}$ (see [2]) there exists $e^{\prime} \in H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)_{\lambda=1}$ such that $h\left(e^{\prime}, e\right) \neq 0$.

From [3] we know that $h$ is topological and can be computed by the following formula:

$$
h\left(e^{\prime}, e\right)=I\left(\widetilde{\operatorname{var}}\left(e^{\prime}\right), e\right)
$$

where $I$ is the (hermitian) intersection form on $F_{\mathbb{C}}$ which gives the Poincare duality

$$
I: H_{c}^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right) \times H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

which is invariant by the monodromy and where

$$
\widetilde{\text { var }}: H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)_{\lambda=1} \rightarrow H_{c}^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)_{\lambda=1}
$$

is the composition of the "ordinary variation map" (built in this context in [3]) and of the automorphism

$$
\begin{gathered}
\Theta(x):=\frac{1}{x} \log (1+x) \quad \text { with } \\
1+x:=\left.T\right|_{H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)_{\ell=1}}, \quad \text { here } T \text { is the monodromy. }
\end{gathered}
$$

So, if $e^{\prime \prime}:=\Theta\left(e^{\prime}\right)$, we have

$$
I\left(\operatorname{var}\left(e^{\prime \prime}\right), \delta(A)\right) \neq 0
$$

using the fact that $I$ is monodromy invariant, which implies that the spectral decomposition of $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ is $I$-orthogonal.

If now $\varphi \in C_{c}^{\infty}\left(F_{\mathscr{C}}\right)$ if a closed $n$-form representing $\operatorname{var}\left(e^{\prime \prime}\right)=\widetilde{\operatorname{var}}\left(e^{\prime}\right)$ in $H_{c}^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ we shall have

$$
\begin{equation*}
\int_{G_{A}} \varphi \neq 0 \tag{2}
\end{equation*}
$$

But in [3] it is explained how to represent $\widetilde{\operatorname{var}}\left(e^{\prime}\right)=\operatorname{var}\left(e^{\prime \prime}\right)$ by a de Rham representative (that is to say how to build such a $\varphi$ ) for a given class $e^{\prime} \in$ $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)_{\lambda=1}$. Let us give a direct construction of the variation map in this context (as suggested by B. Malgrange) following [9].

Let $\Psi_{1}$ and $\Phi_{1}$ the spectral parts for eigenvalue 1 of the monodromy of respectively nearby and vanishing-cycle sheaves of $f$. The assumption says that $\Phi_{1}$ is concentrated at 0 and so we have an isomorphism

$$
R \Gamma_{\{0\}} \Phi_{1} \xrightarrow{\sim} \Phi_{1} .
$$

Now the variation map var : $\Phi_{1} \rightarrow \Psi_{1}$ gives a map $R \Gamma_{\{0\}} \Phi_{1} \rightarrow R \Gamma_{\{0\}} \Psi_{1}$. The composition

$$
\Psi_{1} \xrightarrow{\mathrm{can}} \Phi_{1} \xrightarrow{\sim} R \Gamma_{\{0\}} \Phi_{1} \longrightarrow R \Gamma_{\{0\}} \Psi_{1} \longrightarrow R \Gamma_{c} \Psi_{1}
$$

induces our variation map (see [3])

$$
H^{n}(F, \mathbb{C})_{\lambda=1} \rightarrow H_{c}^{n}(F, \mathbb{C})_{\lambda=1}
$$

Let $\mathscr{E}$ the complex of semi-meromorphic forms with poles in $f=0$ and
$\mathscr{E}[\log f]$ the complex given by polynomial in $\log f$ with coefficients in $\mathscr{E}$ and the differential

$$
\left.D\left(u \cdot(\log f)^{(J)}\right)=d u \cdot\left(\log f^{(J)}\right)+\frac{d f}{f} \wedge u \cdot(\log f)^{(J-1)}\right)
$$

where $(\log f)^{(J)}:=\frac{1}{j!}(\log f)^{J}$.
Then the exact sequence of complexes

$$
0 \rightarrow C^{\infty} \rightarrow \mathscr{E}[\log f] \rightarrow \mathscr{E}[\log f] / C^{\infty} \rightarrow 0
$$

corresponds to the distinguished triangle

and $\mathscr{E}[\log f]$ is a complex of fine sheaves representing $\Psi_{1}$.
Let consider now a $n$-cycle $x$ in $\mathscr{E}^{n}[\log f]$

$$
x=x_{k}+x_{k-1} \cdot(\log f)+\cdots+x_{1} \cdot(\log f)^{(k-1)}
$$

(this strange way of indexation will be compatible with notations in [3]!).
Then $D x=0$ gives $d x_{k}+\frac{d f}{f} \wedge x_{k-1}=0, \ldots, d x_{2}+\frac{d f}{f} \wedge x_{1}=0$ and $d x_{1}=0$. To compute var on $[x]$ we have to write

$$
x=y+z+D t .
$$

Where $t \in \mathscr{E}^{n-1}[\log f], z$ is $C^{\infty}$ of degree $n$ and $y$ is in $\mathscr{E}^{n}[\log f]$ with compact support. So that $D(y+z)=0$ and $\widetilde{\operatorname{var}}[x]$ (see above $\widetilde{\operatorname{var}}=\Theta \circ \mathrm{var}$ ) is given by

$$
N(y+z)=N(y)=y_{l-1}+y_{l-2} \cdot \log f+\cdots+y_{1} \cdot(\log f)^{(l-2)}
$$

if

$$
y=y_{l}+y_{l-1} \cdot \log f+\cdots+y_{1} \cdot(\log f)^{(l-1)} .
$$

Now in [3] this is performed in an "explicit" way for a given $w(=x)$

$$
w=w_{k}+w_{k-1} \cdot \log f+\cdots+w_{1} \cdot(\log f)^{(k-1)}
$$

such that $\left.w_{k}\right|_{F_{\mathrm{c}}}=e^{\prime}$ in $H^{n}(F, \mathbb{C})_{\lambda=1}$.
In a first step $w$ is replaced by a cocycle $\hat{w}$ in $\mathscr{E}^{n}[\log f]$ with degree $k$ in $\log f$ such that $N \hat{w}$ has compact support in the Milnor ball $X$ and such that
$\hat{w}_{k}=w_{k}+\frac{d f}{f} \wedge \xi_{k}$ still induces $e^{\prime}$ in $H^{n}(F, \mathbb{C})_{\lambda=1}$. For a $C^{\infty}$ function $\sigma$ on $X$ which is equal to 1 on a large enough compact set, we will have

$$
D(\sigma \hat{w})=W=d \sigma \wedge\left(w_{k}+\frac{d f}{f} \wedge \xi_{k}\right)
$$

which is in $\mathscr{E}^{n+1}$ and has compact support near $\partial X$ and is $d$-closed. Using a Leray residu on $\{f=0\}$ near $\partial X$ (where 1 is not an eigenvalue of the monodromy of $f$ in positive degrees) we write

$$
\begin{align*}
W & =\omega+D(\alpha+\eta \cdot \log f) \\
& =\omega+\frac{d f}{f} \wedge \eta+d \alpha \tag{3}
\end{align*}
$$

where $\eta$ is $C^{\infty} d$-closed of degree $n$ with compact support near $\partial X, \omega$ is $C^{\infty}$ of degree $n+1$ with compact support near $\partial X$ and also $d$-closed, and where $\alpha \in \mathscr{E}^{n}$ has compact support near $\partial X$.

Then $\widetilde{\operatorname{var}}\left(e^{\prime}\right)$ is given by $\tilde{w}_{k}$ where

$$
\tilde{w}=\sigma \hat{w}-\alpha+\eta \cdot \log f
$$

induces a $n$-cocycle with compact support in $\mathscr{E}[\log f] / C^{\infty}$; so that $\tilde{w} \in \mathscr{E}^{n}[\log f]$ has degree $k \geq 1$ in $\log f$ and coincide with $\hat{w}$ on a large compact set ( $N \tilde{w}=$ $N \hat{w}$ and $\tilde{w}_{k}=\sigma \hat{w}_{k}+\eta=v_{k}+\eta$ with the notation in [3] p. 20).

Now (2) gives

$$
\begin{equation*}
\int_{G_{A}} v_{k}+\eta \neq 0 \tag{4}
\end{equation*}
$$

This will show that the meromorphic extension of $\int_{A} f^{\lambda}\left(v_{k}+\eta\right) \frac{d f}{f}$ will have at $\lambda=0$ a pole of order $\geq 1$ (see lemma 2 below). Consider now the meromorphic function

$$
\int_{A} f^{\lambda} \tilde{w}_{k+1} \wedge \frac{d f}{f}=\int_{A} f^{\lambda} \sigma w_{k} \wedge \frac{d f}{f}
$$

as

$$
\frac{1}{\lambda} d\left(f^{\lambda} \tilde{w}_{k+1}\right)=f^{\lambda} \frac{d f}{f} \wedge \tilde{w}_{k+1}+\frac{1}{\lambda} f^{\lambda} d \tilde{w}_{k+1} \quad \text { for } \operatorname{Re}(\lambda) \gg 0
$$

Stokes formula and the analytic continuation give

$$
\begin{equation*}
\int_{A} f^{\lambda} \sigma w_{k} \wedge \frac{d f}{f}=\frac{(-1)^{n-1}}{\lambda} \int_{A} f^{\lambda}\left(v_{k}+\eta\right) \wedge \frac{d f}{f}-\frac{1}{\lambda} \int_{A} f^{\lambda} \omega \tag{5}
\end{equation*}
$$

using $d \tilde{w}_{k+1}=d \sigma \wedge\left(w_{k}+\frac{d f}{f} \wedge \xi_{k}\right)+\sigma \frac{d f}{f} \wedge v_{k}$, (3) and the fact that $\sigma v_{k}=v_{k}$ ( $\sigma \equiv 1$ on the support of $v_{k}$ ). As $\omega$ is $C^{\infty}$ the meromorphic function $\int_{A} f^{\lambda} \omega$ has no pole at $\lambda=0$, and so $\frac{1}{\lambda} \int f^{\lambda} \omega$ has at most a simple pole at 0 . We conclude from (3) and (4) that $\int_{A} f^{\lambda} \sigma w_{k} \wedge \frac{d f}{f}$ has at least a pole of order 2 at $\lambda=0$ from the following lemma:

Lemma 2. Let $\tilde{v} \in H_{c / f}^{0}\left(X_{\mathbb{C}}, \mathscr{E}^{n}(k)\right)$ such that $\delta \tilde{v}=0$ and $\int_{G_{A}} \tilde{v}_{k} \neq 0$. Then the meromorphic extension of $\int_{A} f^{\lambda} \tilde{v}_{k} \wedge \frac{d f}{f}$ has a pole of order $\geq 1$ at $\lambda=0$.

Proof. For $x \in \mathbb{R}$ near 0 define $\varphi(x)=\int_{(f=\lambda) \cap A} \tilde{v}_{k}$. Then we shall have $\left(x \frac{d}{d x}\right)^{k} \varphi \equiv 0$ on $\mathbb{R}^{*}$ near 0 because of the assumption $\delta \tilde{v}=0$. So we can apply lemma 1 to $\varphi$. The main point is now to show that if $P, Q \in \mathbb{C}[x]$ of degre $\leq k-1$ are such that

$$
\begin{array}{ll}
\varphi(x)=P(\log |x|) & \text { for } 0<x \ll 1 \\
\varphi(x)=Q(\log |x|)-i \pi) & \text { for }-1 \ll x<0
\end{array}
$$

we have $P \neq Q$ !
The hypothesis $\int_{G_{A}} \tilde{v}_{k} \neq 0$ can be written $\int_{G_{A^{+}}} \tilde{v}_{k}-\int_{G_{A^{-}}} \tilde{v}_{k} \neq 0$ if $A=A^{+}+A^{-}$with $A^{+}=\sum_{A_{x} \subset\{f>0\}} c_{\alpha} A_{\alpha}$ and $A^{-}=\sum_{A_{x} \subset\{f<0\}} c_{\alpha} A_{\alpha}$. We have $\int_{G_{A^{+}}} \tilde{v}_{k}=\varphi\left(s_{0}\right)$ by definition. To compute $\int_{G_{A^{-}}} \tilde{v}_{k}$ we have to follow, along the half-circle $s_{0} e^{\imath \theta}, \theta \in[-\pi, 0]$, the holomorphic multivalued function given by $\int_{(f=s) \cap A^{-}} \tilde{v}_{k}$ where $(f=s) \cap A^{-}$is a notation for the horizontal family of oriented, closed $n$-cycles in the fibers of $f_{\mathbb{C}}$ with value

$$
\left(f=-s_{0}\right) \cap A^{-} \quad \text { at } s=-s_{0}=s_{0} e^{-i \pi} .
$$

From the fact that $\varphi(x)=Q(\log |x|-i \pi)$ for $-1 \ll x<0$, this multivalued function is $Q(\log s)$ for the choice $-\pi \leq \operatorname{Arg} s \leq 0$. So we get $\int_{G_{A}^{-}} \tilde{v}_{k}=Q\left(\log s_{0}\right)$ and then $\int_{G_{A}} \tilde{v}_{k}=(P-Q)\left(\log s_{0}\right) \neq 0$.

So we have $P \neq Q$ and by lemma 1 we get the desired pole of order $\geq 1$ at $\lambda=0$.

So (i) $\Rightarrow$ (ii) is proved if we can choose $\tilde{v}$ in order to have

$$
f^{n+1} \tilde{v}_{k} \wedge \frac{d f}{f} \in C^{\infty}\left(X_{\mathbb{C}}\right)
$$

In fact $\tilde{v}_{k}=v_{k}+\eta$ where $\eta$ is $C^{\infty}$ so we only need to satisfy $f^{n+1} v_{k} \wedge \frac{d f}{f} \in$
$C^{\infty}\left(X_{\mathbb{C}}\right)$. But from [3] p. 20 we have

$$
v_{k}=w_{k-1}-d \xi_{k}+\frac{d f}{f} \wedge \xi_{k-1}
$$

and so $\frac{d f}{f} \wedge v_{k}=\frac{d f}{f} \wedge w_{k-1}-\frac{d f}{f} \wedge d \xi_{k}$. Now

$$
\int_{A} f^{\lambda} \frac{d f}{f} \wedge d \xi_{k}=\int_{A} d\left(\frac{f^{\lambda+1}}{\lambda+1} d \xi_{k}\right) \equiv 0
$$

by Stokes formula (for $\operatorname{Re} \lambda \gg 0$ so everywhere) and it is enough to choose $w$ such that $f^{n} w$ is holomorphic.

This is possible from [3] (see the begining of the proof of theorem 2) and this complete the proof of (i) $\Rightarrow$ (ii).

We shall prove now that $\delta(A)_{1}=0$ implies in fact that

$$
\frac{1}{\Gamma(\lambda)} \int_{A} f^{\lambda} \square
$$

has no pole at negative integers.
Proposition. Let $f:\left(\mathbb{R}^{n+1}, 0\right) \rightarrow(\mathbb{R}, 0)$ a non zero real analytic germ such that 1 is not an eigenvalue of the monodromy of $f_{\mathbb{C}}$ acting on the reduced cohomology of the Milnor fiber of $f_{\mathbb{C}}$ at any $x \in f_{\mathbb{C}}^{-1}(0)$ close enough to the origine.

Let $A_{0}$ be a connected component of the open set $\{f \neq 0\}$ in $X_{\mathbb{R}}$.
Then, the meromorphic extension of $\frac{1}{\Gamma(\lambda)} \int_{A_{0}}|f|^{\lambda} \square$ has no pole at a negative integers.

Proof. The point is to explain that the Bernstein-Sato polynomial $b$ of $f_{\mathbb{C}}$ at 0 has only one simple root in $\mathbb{Z}$ which is -1 . For that propose, remark that our hypothesis implies that the vanishing cycles sheaf $\Phi$ of $f$ satisfies $\Phi_{1}=0$, and so $\Psi$, the nearby-cycles sheaf of $f$ satisfies $\Psi_{1} \xrightarrow{\sim}(\mathbb{C}, T=1)$.

From [8] or [7] we conclude that all integral roots of $b$ are simple (using that 0 is a simple root of $b^{\prime}$ and the final inequalities of [8]). If $b$ has two different integral roots, then using the De Rham functor, we obtain a non trivial decomposition of $(\mathbb{C}, T=1) \simeq \Psi_{1}$. Of course this allows us to conclude that $b$ has exactly one integral (simple) root. But of course -1 is a root of $b$. So we obtain that $b(s)=(s+1) b_{1}(s)$ where $b_{1}$ has no integral root. Using now a Bernstein identity to perform the analytic continuation of $\int_{A_{0}}|f|^{\lambda} \square$ leads to, at most, simple poles at negative integers (because $b(\lambda) \ldots b(\lambda+k)$ has, at most, a simple root at $-\delta$ for $\delta \in \mathbb{N}^{*}$ ).

Corollary. If 0 is an isolated singularity for the eigenvalue 1 of $f_{\mathbb{C}}$, for any $A \in H^{0}(\{f \neq 0\}, \mathbb{C})$ the Laurent coefficients of the poles of $\frac{1}{\Gamma(\lambda)} \int_{A} f^{\lambda} \square$ at negative integers have there supports in $\{0\}$.

Proof. This is an obvious consequence of the proposition.
Assume now that we have a pole of order $j \geq 2$ at $\lambda=-k\left(k \in \mathbb{N}^{*}\right)$ for $\int_{A} f^{\lambda} \square$. Let $\mathfrak{I}$ be the coefficient of $\frac{1}{(\lambda+k)^{j}}$ in the Laurent expansion at $\lambda=-k$ of $\int_{A} f^{\lambda} \square$. Then $\mathfrak{I} \neq 0$ by assumption.

Let $N=\operatorname{order}(\mathfrak{I})$ (recall that $\operatorname{supp} \mathfrak{I} \subset\{0\}$ by the corollary) ant let $\varphi \in$ $C_{c}^{\infty}\left(X_{\mathbb{R}}\right)^{n+1}$ such that $\langle\mathfrak{I}, \varphi\rangle \neq 0$.

Using $a$ Taylor expansion at order $N$ at 0 for $\varphi$, we get a $\omega \in \Omega_{X_{\mathbb{C}}}^{n+1}$ such that $\left\langle\mathfrak{I},\left.\omega\right|_{X_{\mathbb{R}}}\right\rangle=\langle\mathfrak{I}, \varphi\rangle \neq 0$. Let $\rho \in C_{c}^{\infty}\left(X_{\mathbb{C}}\right)$ with $\rho \equiv 1$ near 0 . So the meromorphic extension of $\int_{A} f^{\lambda} \rho \omega$ has a pole of order $j \geq 2$ at $\lambda=-k$. Now using the fact that $f^{l} \Omega^{n+1} \subset \frac{d f}{f} \wedge \Omega^{n}$ near 0 in $\mathbb{C}^{n+1}$ for some $l \in \mathbb{N}$, we can assume that there exist $\alpha \in \Omega^{n}$ such that $\int_{A} f^{\lambda} \frac{d f}{f} \wedge \rho \alpha$ has a pole of order $j \geq 2$ at $\lambda=-k-l$.

Let $\omega_{1} \ldots \omega_{\mu}$ be a meromorphic Jordan basis form the Gauss-Manin system in degree $n$ near 0 for $f_{\mathbb{C}}$. We can write

$$
\alpha=\sum_{p=1}^{\mu} a_{p} \omega_{p}+d f \wedge \xi+d \eta .
$$

Where $a_{p} \in \mathbb{C}\{f\}\left[f^{-1}\right]$ and where $\xi$ and $\eta$ are meromorphic ( $n-1$ )-forms with poles in $\left\{f_{\mathbb{C}}=0\right\}$.

Now

$$
\int_{A} f^{\lambda} \frac{d f}{f} \wedge \rho(d f \wedge \xi+d \eta)= \pm \int_{A} f^{\lambda} \frac{d f}{f} \wedge d \rho \wedge \eta
$$

will have, at most, simple poles at negative integers because $d \rho \equiv 0$ near 0 (and the corollary). As is it enough to consider the case $a_{p}=f^{m}$ where $m \in \mathbb{Z}$ and this only shift $\lambda$ by an integer, we are left only with integrals like $\int_{A} f^{\lambda} \frac{d f}{f} \wedge \rho \omega$ where $\omega$ is an element of the Jordan basis ( ${ }^{*}$ ) for the monodromy acting on $H^{n}\left(F_{\mathbb{C}}, \mathbb{C}\right)$ where $F_{\mathbb{C}}$ is the Milnor fiber of $f_{\mathbb{C}}$ at 0 . If $\omega$ belongs to an eigenvalue $\neq 1$ we can assume $\omega=w_{k}$ with

[^1]\[

$$
\begin{gathered}
d w_{k}=u \frac{d f}{f} \wedge w_{k}+\frac{d f}{f} \wedge w_{k-1} \\
d w_{k-1}=u \frac{d f}{f} \wedge w_{k-1}+\frac{d f}{f} \wedge w_{k-2}, \text { etc } \ldots, \\
\text { and } \quad w_{0}=0, \quad 0<u<1 .
\end{gathered}
$$
\]

But

$$
u \int_{A} f^{\lambda} \frac{d f}{f} \wedge \rho w_{1}=\int_{A} f^{\lambda} \rho d w_{1}=-\lambda \int_{A} f^{\lambda} \frac{d f}{f} \wedge \rho w_{1}-\int_{A} f^{\lambda} d \rho \wedge w_{1}
$$

gives

$$
(\lambda+u) \int_{A} f^{\lambda} \frac{d f}{f} \wedge \rho w_{1}=-\int_{A} f^{\lambda} d \rho \wedge w_{1}
$$

and $d \rho \equiv 0$ near 0 with $u \in] 0,1\left[\right.$ gives that $\int_{A} f^{\lambda} \frac{d f}{f} \wedge \rho w_{1}$ has at most simple poles at negative integers $\left(\right.$ as $\frac{1}{\lambda+u}$ is holomorphic near $\left.\mathbb{Z}\right)$. An easy induction leads to the same result for $\int_{A} f^{\lambda} \frac{d f}{f} \wedge \rho w_{k}$.

So we are left with the eigenvalue 1 Jordan blocs, that is to say the $u=0$ case; but then, we are back to the computation made in the direct part of the theorem. The point is now that $\int_{A} f^{\lambda} d \rho \wedge w_{k}$ will not have (simple) pole at $\lambda=0$ because $\delta(A)_{1}=0$ will gives $I\left(\widetilde{\operatorname{var}}\left(e^{\prime}\right), \delta(A)\right)=0$. So these Jordan blocks for the eigenvalue 1 does not give pole, for $\frac{1}{\Gamma(\lambda)} \int_{A} f^{\lambda} \square$ at negative integers from our assumption $\delta(A)_{1}=0$ and the equivalence of i) and ii) is proved because we have contradicted our assumption $\mathfrak{I} \neq 0$. Let us prove now the last statement of the theorem:
Let $e=\delta(A)_{1}$ and let $h \in \mathbb{N}^{*}$ be the nilpotency order of $T-1$ acting on $\delta(A)_{1}$. So we have $N^{h-1}(e) \neq 0$ and $N^{h}(e)=0(N=T-1)$.

Then we choose $e^{\prime}$ such that

$$
h\left(e^{\prime}, N^{h-1}(e)\right) \neq 0
$$

and so $I\left(\operatorname{var}\left(e^{\prime \prime}\right), N^{h-1}(e)\right) \neq 0$.
Then, as var commutes with $N$, we have

$$
I\left(\operatorname{var}\left[N^{h-1}\left(e^{\prime \prime}\right)\right], \quad \delta(A)\right) \neq 0
$$

So we get now for $h \geq 2$

$$
\int_{G_{A}} v_{k-h+1} \neq 0 \quad \text { (notations as above) }
$$

and then a pole of order $\geq 2$ at $\lambda=0$ for $\int_{A} f^{\lambda} \tilde{w}_{k-h+1} \wedge \frac{d f}{f}$.
Now, using $\delta \tilde{w}=\left(\begin{array}{c}\omega \\ 0 \\ \vdots \\ 0\end{array}\right)$, we conclude that $\int_{A} f^{\lambda} \sigma w_{k} \wedge \frac{d f}{f}$ has a pole of order $\geq 2+h-1=h+1$ at $\lambda=0$. So we obtain that the order of poles of $\frac{1}{\Gamma(\lambda)} \int_{A} f^{\lambda} \square$ at (big) negative integers is at least the nilpotency order of $T-1$ acting on $\delta(A)_{1}$. The fact that this happens for $v=-(n+1)$ is obtained as in the case $h=1$. Conversly, if we have a nilpotency order equal to $h \geq 1$, arguing in the same way that in the proof of ii) $\Rightarrow i$ ), we conclude that the poles of $\frac{1}{\Gamma(\lambda)} \int_{A} f^{\lambda} \square$ are of order at most $h$.

## References

[1] Barlet, D., Interaction de strates consécutives pour les cycles evanescents, Ann. Sc. Ec. Norm. Sup. (4). 24 (1991), 401-506.
[2] —, La forme hermitienne canonique pour une singularité presque isolée, Aspect of Math., Complex Analysis, Proceedings of the International Workshops, Wuppertal (1990), 2028.
[3] —, La variation pour une hypersurface ayant une singularité isolée relativement à la valeur propre 1, Revue de Inst. E. Cartan, 15 (1997), 5-29.
[4] —, Monodromie et pôles de $\int_{X}|f|^{2 \lambda} \square$, Bull. Soc. Math. France, 114 (1986), 247-269.
[ 5 ! Barlet, D. et Mardhy, A., Un critère topologique d'existence des pôles pour le prolongement méromorphe de $\int_{A} f^{s} \oplus$, Ann. Inst. Fourier (Grenoble), 43 (1993), 743-750 et erratum 44 (1994), 629-630.
[6] Jeddi, A. et Mardhy, A., Pôles de $\int_{A} f^{s}$ pour une singularité presque isolée, Manuscripta Math., 97 (1998), 435-452.
[7] Kashiwara, M., Vanishing cycle sheaves and holonomic systems of differential equations, Lect. Notes in Math., Springer, 1016 (1983), 134-142.
[8] Malgrange, B., Polynome de Bernstein-Sato et cohomologie évanescente, Asterisque, 101102 (1983), 243-267.
[9] Deligne, P., "SGA 7 exposé XIV" in "Groupe de Monodromie en Géomètrie Algébrique", Lect. Notes in Math., Springer, 30 (1973), 116-164.


[^0]:    Communicated by M. Kashiwara, October 20, 1998.
    1991 Mathematics Subject Classifications: 32S40, 14P15

    * Université Henri Poincaré Nancy 1 et Institut Universitaire de France, Institut Elie Cartan, UMR 7502 CNRS-INRIA-UHP, BP 239-F-54506 Vandœuvre-lès-Nancy Cedex, France

[^1]:    ${ }^{(*)}$ see the computations with the sheaves $\Omega(k)$ in [1]

