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Abstract

We study the blowing up n : X -> X of a 3-dimensional terminal singularity X of index m > 2 such

that the exceptional locus of n consists of a prime divisor E with discrepancy 1/m. A complete

classification of such blowing ups is given and it is proved that these correspond to weighted blow ups
by a certain kind of maximal weights except for the case where X is of type (cD/2). We shall treat the

(cD/2) case later. These also give examples of contractions of extremal rays which contract a divisor

to a point.
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§ 1. Introduction

Let X be a projective 3-fold with only terminal singularities defined over the
complex number field C. If the canonical divisor K% ofX is not nef, then there is
a projective surjective morphism n i X —> X, which is the contraction of an extremal
ray. If dim X< 3, then n is called a fiber type contraction. If dim X — 3, then n is
a birational morphism. Let E be the exceptional locus of n. Then n is called a
divisorial contraition if E is an irreducible divisor and called a flipping contraction
if dimE=l.

The most difficult part of the Minimal Model Program was to construct the
flip TT+ : X^ —> X when n : X —> X is a flipping contraction. This was established by
[MoriS8] and the structure of flipping contractions and their flips are well-
understood by [KM92].

Divisorial contractions n: X->X were considered to be the easy part of the
Minimal Model Program since X has only terminal singularities. However the
detailed description of these are not known except for a few cases :

(1) If X is smooth or has only Gorenstein terminal singularities, then there is
a complete list of n ([Mori82], [Cut88]).

(2) If X has a cyclic quotient terminal singularity, then X is obtained by a
weighted blow up ([Kaw96] ).

(3) If the index of X is not greater then that of X, then X is restricted to a very
few cases and we can construct it explicitly ([Luo98]).

Recently it seems that a classification of divisorial contractions is indispensable
for the birational study of 3-folds ([Cor95], [Kol97]).

In this paper, we shall study divisorial contractions n : X —> X which contract
an irreducible divisor to a point under some assumptions. Since X has only terminal
singularities, we start with a germ of a 3-dimensional terminal singularity X and
look for projective birational morphisms TL : X-^X which give divisorial con-
tractions. Examples in [Kaw96] and some explicit calculations indicate that the
discrepancy of the exceptional divisor E of n is small in many cases. We shall adopt
this as our assumption. Thus our problem becomes as follows :

For each germ of a 3-dimensional terminal singularity X of index m, find all
projective morphisms n : X —> X such that

( i ) X has only terminal singualrities,
(ii ) the exceptional divisor E of n is irreducible, and
(iii) K*=n*(Kj+±:R

Such a morphism n will be called a divisorial blow up with discrepancy 1/m.
The purpose of this paper is to determine all divisorial blow ups of X with

discrepancies 1/m if X is a germ of a 3-dimensional terminal singularity of index m
> 2. Our main results says that this is possible except for the (cD/2) case. These
are all obtained by weighted blow ups and there is a one-to-one correspondence
between these blow ups and certain set of weights. Moreover we found that the
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axial weight will not increase after a divisorial blow up with discrepancy 1/m. By
studying singularities more carefully, we know that we can resolve the singularitiy
of X by a succesion of these blow ups. These are summarized in Section 4 in a
precise form. For the (cD/2) case, we can also determine all divisorial blow ups
with discrepancies 1/2, but some of them are obtained by a different type of
weighted blow ups and the one-to-one correspondence as above does not necessarily
hold. So we shall not include these results here and we treat the (cD/2) case
separately.

By [Kaw93], there is at least one divisor which has discrepance 1/m over X
(this also holds if X is of index 1 by [Mar96]). Our method to find divisorial blow
ups with discrepancies 1/m is similar to the one in [Kaw93] and sometimes we use
the same weighted blow ups. In [Kaw93], the blown up varieties may have non-
terminal singularities or the exceptional divisors may not be irreducible. By
studying these blow ups more carefully, we can determine all the divisorial blow ups
with discrepancy 1/m completely.

This paper is organized as follows : In Section 2, we recall the results on
classification of 3-dimensional terminal singularities and some definitions. In
Section 3, we review the notion of weighted blow ups and discrepancies of divisors.
The notation and definitions in these sections are used later. Main results and some
of their corollaries are summarized in Section 4 with some comments on the proofs.
In Section 5, we shall show the results on cyclic quotient terminal singularities and
some lemmas which is used to estimate the number of divisors with discrepancies
1/m. Sections 6-10 are devoted to proving our main results. We shall use the
classification of 3-dimensional terminal singularities.

The author would like to thank Professor S. Mori for his invaluable sugges-
tions and encouragement.

Notation. The following are the notation which we shall use frequently in
this paper.

(1) For a rational number x, we denote its integral part by [x] and its
fractional part by <x>, i. e. [x] satisfies [x] GEZ,x —1< [x] <x, and <x> =x — [x].

(2) Let/EiC{xi, ..., x«} and let M be a monomial. We write ME!/if the
coefficient of M in the power series expansion off is nonzero.

(3) For/(x) = £anx
neC{x}, we define ord(/(x))-min{n |an

§ 2. Classification of 3-dimensional Terminal Singularities

In this section we fix our notation and summarize the results on classification
of 3-dimensional terminal singularities, which will be used in the following sections.

2.1. We denote the complex space C" with coordinates x\, ..., xn by (xi, ...,
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Xn). Let Zm be a cyclic group of order m. We define the action of Zm on (xi , . . . ,
Xn) by r(xi)=faixi, ... 9 rOO^ £"""*« where T is a generator of Zm , T is a primitive
root of unity and a\ , ... , an are integers. The quotient space of (xi, ... , xn) is
denoted by (xi, ..., xB)/Zm(ai, ..., «„) or (x ls ..., Xn)/Zm or Cn/Zm if there
would be no confusion.

Let <p(xi , ... , xn) £C{xi , ... , XB} be a Zm-semi-invariant. Then Zm also acts
on the germ of the hypersurface {<p(x\ , ... , *„) =0} ^ (x\ , ... , xn). We denote the
quotient space by {<P(XI, ... , xn)=0}/Zm(ai9 . ..,«„) or fe>(xi, ... , x«) = 0}/Zm,
which we call a hyperquotient singularity.

In this paper, we mainly deal with the n = 4 case and we shall often use the
coordinates x, j>, z, w (in this order) instead of xi, x2, x3, x4. So C4 with these
coordinates will be denoted by (x, y, z, u).

Now we state the results on classification of 3-dimensional terminal singular-
ities. The first one is due to [Reid83] which deals with terminal singularities of
index 1, and the second one is due to [Dan83] , [MS84] and [Mori85] which treats
the case where index > 2.

2.2. Theorem. A ^-dimensional singularity is terminal of index 1 if and only
if it is an isolated cDV point.

2.3. Theorem. Let X be a germ of a 3-dimensional terminal singularity of
index >2. Then there is an embedding j : X ^ (x, y, z, i/)/Zm such that one of the
following holds :
(cA/m) X~ {xy-\-f(z, u) =0}/Zm(a, —a, 1, 0) where a is an integer prime to m
andf(z} w)eC{z, u} is a Zm-invariant.
(cAx/4) X- {x2+/+/(z, ii)=0}/Z4(l, 3, 1, 2) where /(z, w)eC{z, u] is a Z4-
semi-invariant and w$/(z, u}.
(cAx/2) X- {x2+/+/(z, w)=0}/Z2(05 1, 1, 1) where /(z, ii)e(z, w)4C{z? u} is
a Z 2 -invariant.
(cD/3) X- {^(x, j, z, i/)=0}/Z3(l, 2, 2, 0) w/zere ^) has one of the following

forms :
(cD/3-1) (p=u2+x*+yz(y+z)9

(cD/3-2) <p=u2+x*+yz2+xy4X (/)+///(/) where

(cD/3-3) ^) = w2

(cD/2) X—{<p(x, y, z9 u^=Q}/Z2(l9 1, 0, 1) w/iere 9 /zas one of the following
forms :

(cD/2-1) (p=u2+xyz+x^+y2b-^-zc where a9 b>29 c>3,
(cD/2-2) (p=u2+y2z+^yx2a+l+g(x9z^ where AeC, a> 1, g(x, z)^(x4

9 x2z2,
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(cE/2) X^{u2+x3+g(y, z)x+/z(j>, z)=0}/Z2(0, 1, 1, 1) w/zere g(j>, z)<=
(^,z)4C{^,z},/i(3;,z)e(^z)4C{3;,z}\(j;,z)5C{j;,z}.

TTze mt/ex o/^T is e#wa/ to f/ze orcfer of the cyclic group Zm.

2.4. For each 3 -dimensional terminal singularity X of index m > 2, there is an
embedding j : X ^ (x, j>, z, w)/Zm as in (2.3). We fix one of such embedding and
call it a standard embedding of X

The following result is due to [KSB88] (see also [Ste88]), which completes
the classification of 3 -dimensional terminal singularities.

2.5. Theorem. Let X be one of the hyperquotient singularity {<p(x,y, z, u) =
Q}/Zm listed in (2.3). Assume that <p(x, y, z, M) — 0 defines an isolated singularity
at (0) and that the action ofZm is free outside (0). Then X is terminal.

2.6. Axial weights. Let X = [<p (x, y, z, u) = 0} /Zm (a, 0, 7, <5) be a germ of
a 3-dimensional terminal singularity of index m >2 at the origin PEST as in (2.3).
Then there is a linear form /£<C{x, y, z, u} such that q>+l is a Zm-semi-invariant.
For a Zm-invariant open neighborhood C7 of the origin of (x, y, z, u), let

3T= {(x,y,z, u, t^UXC\(p(x,y,z, i i )+f /Gc,y f z, u)=0}/Zm(a, A r, 5, 0),

and let/? : 3T -> C be the projection to the ?-axis. If C7 is sufficiently small and if
0< t |-C1, then/?"1^) has only cyclic quotient terminal singularities (see [Kaw
86]). The number of cyclic quotient singularities of p~l(f) is called the axial
weight ofX at P. We shall denote this by aw (AT, P) or simply aw (AT) if there would
be no confusion. If X is smooth or has an isolated cDV point at P, then we shall
define aw (AT, P) = l.

Using notation of (2.3), the explicit values of axial weights are as follows :

ord(/(0, w)) if X is of type (cA/m),

(ord(/(0, u) + 1)/2 if X is of type (cAx/4),

2 if X is of type (cAx/2) or (cD/3),

c if X is of type (cD/2-1),

ord ( g (0, z) ) if X is of type (cD/2-2) ,

3 if X is of type (cE/2).

This notion coincides with the notion of "weight" in [Morr86] and "axial
multiplicity" in [Mori88] except for the (cAx/4) case. If X is of type (cAx/4),

aw CAT) =
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then these three notions are all different.

2.7. Bivisorial blow ups. Let X be a germ of a 3 -dimensional terminal
singularity.

By a partial resolution, we mean a projective birational morphism 0 : Z — > X
such that Z has only terminal singularities. For a Q-Cartier Weil divisor D on X,
the proper transform of D by 0 will be denoted by 0-1 [D].

Let 0 : Z -> Jf be a partial resolution of Z and let SE/ be the exceptional
divisor of (p. Then we can write

where 0<fl/E=Q. The coefficient a/ is called the discrepancy of Et over Z and it is
denoted by a (Ei , X). The discrepancy of Ef only depends on the discrete valuation
on the function field of X associated to Ef and does not depend on the choice of 0.
Thus we shall often identify prime divisors with the corresponding discrete valua-
tions when we speak about "divisors over X".

A projective birational morphism n : X — > X is called a divisorial blow up with
discrepancy a(>0) if the following conditions are satisfied :

( i ) X has only terminal singularities,
( ii ) the exceptional set of TI is an irreducible divisor E, and
(iii) Kx=n*(Kx)+aE.

Moreover, if n is a blow up, then we shall often say that n is divisorial with
discrepancy a.

In this paper, we are interested in divisorial blow ups with discrepancies 1/m
where m is the index of X.

§ 3. Weighted Blow Ups and Weighted Valuations

3.1. Let Y= Od , . . . , xB)/Zm («!,..., an^) be a cyclic quotient singularity. We
can describe this by using the theory of toric varieties (cf. [Oda88] , [Ful93] ) . Let

*i=(l, 0, ...,0), . . . ,*„=(<>, ...,0, 1) and e=-^(al9 ...,«„).

Then Y = ( X I , ..., jcn)/Zm(ai, ..., an) is the toric variety corresponding to the
lattice N = 1^ei + ••• +Zen + Ze and the cone C = R> 0 ei+ ••• H-]R>0en, precisely
N and the fan A consisting of all the faces of C.

3.2. Weighted blow up. Let a=-^(a\ , ... , fl«) ̂ N be an element with a\ ,
. . . , an > 0 and assume that e\ , . . . , en and o generate the lattice N. Such aG N will
be called a weight. We can construct the weighted blow up ft : Y -> Y= (xi , . . . , ;*„)/
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Zm with weight a as follows (cf. [KM92, 10]):
We divide the cone C by adding the 1 -dimensional cone JR>0a, that is, we

divide C into n cones :

Let A' be the fan consisting of all the faces of Ci, ... , Cn. Then Y is the toric
variety corresponding to N and A ', and n is the morphism which is induced from
the natural map of fans (N, A'} - > (N, A}.

The variety Y is covered by n affine open sets U\, ... 9 Un which corresponds to
the cones C\ , . . . , Cn respectively. These affine open sets and ft are described as
follows :

(3.2.1) tf/=Cxi, ...,

(3.2.2) it trt: ̂ B(x l y ..., JCB) I

The exceptional divisor E of ft is isomorphic to the weighted projective space

3.3. Let <p (xi , . . . , Xn) EEC {xi , . . . , xn} be a Zm -semi-invariant. For a hyper-
quotient singularity X= {<pbi , ... , *„) =0}/Zm Q (Xl , ... , Xn)/Zm , let X=fTl \_X\
be the proper transform of X by TT and let TT^TT i be the restriction of ft. Then
TT : Z - >Z is also called the weighted blow up with weight o or simply the o-blow
up. Furthermore, we set Ui = Ul <\x for f = l, ... , n. Each Uf is a hyperquotient
singularity in t// and J? is covered by £/i , . . . , Un • In this paper, I// (resp. C7/) is
called the Xt -chart of Z (resp. 7).

3.4. Let a=:-^-(ai , ... , «„) ̂ JV be a weight. We define the function

as follows :
First we put o-wt(xi) =a\/m, ... , a-wf CO —an/m. (We shall often abbreviate this
as a-wfs(xi, ..., ;O=-^r(fli, • • • » flu)-) Next for monomials M=xji ... ;cj», we
define

Finally for general /=2/ a/ M/, a/^C, M/ : monomials, we define

a-wf (/) = min (o-wt (M/) | a/ ̂  0} .
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For/=I]/a/M/£C{xi, ... , xn} and /^Q, we define

For a rational number k, we also define

which is an ideal of G{XI , ... , xn}.
The following is immediate from (3.2) and the above definitions :

3.5. Lemma. Let ft : Y-> Y= (xi , ... 9 xn)/Zm be a o-blow up and let D be
the Q-Cartier Weil divisor defined by a Zm-semi-invariantf^C{xi , ... , xn}. Then
we have

where E is the exceptional divisor ofn and n~l [D] is the proper transform of D.

From now on until the end of this section, we denote by X a germ of a 3-
dimensional terminal singularitiy of index m>2 and assume that the canonical
cover of X is not smooth.

3.6. Let j : X ^> (x, y, z, w)/Zm(a, /?, 7, d) be the standard embedding of X
as in (2.3) . We shall say that the embedding / : X <-> (x', y'9 z', u')/Zm (a, /3, 7, <5)
is liftable if there is a Zm-equi variant automorphism x ' (*?.)>» z> u) —* (x'9 y', z', u}
such that x °j=f where x '• Oc, y, z, w)/Zm -> (x'9 y', z, u'^/1*m is the automor-
phism induced by X- Such an automorphism x is called a liftable automorphism and
we sometimes identify this with x if there would be no confusion.

Since all the automorphisms x of C 4/Zm and all the embeddings/ : X ^-> (x\
y' ', z ', u')/Zm are liftable in this paper, we shall often omit the word "liftable" and
just call automorphisms and embeddings respectively.

If f iX1-* (x', y\ z', w')/Zm is an embedding, then the canonical cover of X
is a hypersurface in (xx, y'9 z ', u}. The defining equation of this hypersurface is
called the defining equation of/. Thus we see that if (p is a defining equation of j,
then (l~0*(^) is a defining equation of/.

3.7. Weighted valuations. By apseudo weighted valuation v', we mean a pair
consisting of a liftable embedding/ : JTC-^ (x', y', z'9 u'^)/Zm and a weight o' =
—(a, b, c, d\ We denote it by v' = (/, <7X)- This defines a weighted blow up of X
as in (3.2) and (3.3). We call this blow up the weighted blow up associated to v' or
the v'-blow up. If the v'-blow up has an irreducible exceptional divisor, then this
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divisor determines a valuation on the function field of X, which is equivalent to the
one determined by o'-wt. In this case, we call v' the weighted valuation. In general,
the exceptional divisor may not be irreducible, so we call v' the pseudo weighted
valuation.

Let v'=(f, a') and v" = (/' , a"} be two pseudo weighted valuations. We
define v'<v" if for all liftable automorphism x ' (*" , /, z" , u")/Zm -> (x, y', z',
ti')/Zw such that x °/ =/ and f°r all Zm -semi-invariant f^C{x', y', z', u}, the
inequalities a'-wK/) <o" -wt (%*/) hold.

This relation defines a pseudo order on the set of pseudo weighted valuations.
Hence the relation v' ~v" defined by v' •< v" and v" < v' gives an equivalence relation.

3.8. Lemma. Let v'=(y', a') and v" = (jff, tf") be two pseudo weighted
valuations. Then the following ( i ) and (ii) are equivalent :

( i ) v'<v".
(ii) For all liftable automorphism x : (x" ,y" ,z" ,u")/Zm-> (x',y',z',u')/Zm

with x °j" —f) we have

(3.8.1)
t(z'} and

We further assume that a" -wt (x"\ ..., off-wt(juff^)<(/f-wt((pff^ where <p" is the
defining equation off'. Then ( i ) and ( ii ) are also equivalent to the following :

(iii) For some liftable automorphism x '• (*", y" , z" , u"^/1*m — > (x7, y' ', z ', u}/
^m with x°f =/, rtc inequalities (3.8.1) /zo/cfc.

Proo/ It is enough to prove that ( iii ) implies ( ii ) . Let Xi '• (x" , y" , z" , u' )/
^m — * Ocx, j', ^', w')/^m (/ = 1, 2) be liftable automorphisms satisfying ^ o/7 =7'.
Then we have %* (x }-%*&} ^<p" <C {x" , y" , z" , u"}. By our assumption,
<AwK**CO)<<AwKp"). Thus we see that o / r-wr(%i*Cx /))=t/ r-wK%2*(x /)).
This equality holds if we replace xx by j/, z or wx. Therefore we see that (iii)
implies (ii). D

We shall often abbreviate the condition (3.8.1) as

(3.8.2) o'-Wts(**Cx',/,z/, u»>o'-wts(x',y',z', u'\

3.9. Discrepancies. Let v /== (/, a') be a pseudo weighted valuation and let
a/:=-^-(a, b, c, d). Then we constructed the a'-blow up n : Y - > Y= (x', y ', z ',
u')/%m and the v'-blow up n : X - >X (cf.(3.2), (3.3)). Let E denote the
exceptional divisor of n. By using the theory of toric varieties or by direct
calculations using (3.2.2), we have
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KT=7t*KY+—(fl+b+c+d-m)£,

where <p' is the defining equation of/ : X ^ (*', y', z', t/)/Zm and w^o'-wt.
We define

(3.9.1)

—m

and call it the virtual discrepancy of v'. If E x is irreducible and reduced, then we
(1?!*, JO (cf.(2.7)).

3.10. For a positive rational number a, we define

/ : X -> (x', /, z', n')/Z« : liftable embedding,
v /= (/,</)

a': weight, if (v') =a

When we fix a liftable embedding / : X <-+ (x9 y', z', u )/Zm, the subset of ifa with
fixed embedding/ is denoted by TiFa(/).

The relation < and ~ in (3.7) also define a pseudo order and an equivalence
relation on i^a respectively. So the relation < defines an order on 1^a/~-

One of our main objects to study is the maximal elements in i^i/m/~ where
m is the index of X.

§ 4. Main Results and Comments on the Proof

In this section, we shall summarize the main results obtained in this paper and
give some comments on the proof. Our main result is the following :

40lo TheoreiEo Let X be a germ of a ^-dimensional terminal singularity of
index m>2, and assume that X is neither a cyclic quotient singularity nor of type
(cD/2). Then the following holds :

(1) Ifv EH^i/m is maximal with respect to <, then the v-blow up ofX is divisorial
with discrepancy 1/m.

(2) For each divisorial blow up n : X-^X with discrepancy 1/m, there are some
such that n is isomorphic to the v-blow up of X.

(3) There is a one-to-one correspondence between the set of all maximal elements
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of if\/m/~ and the set of all isomorphism classes of divisorial blow ups ofX with
discrepancies 1/m.

4.2. In order to prove (4.1), we proceed as follows :
First we determine all the possible weights a such that (/, a')^^i/m for

some embedding/ : X^-> (x', y', z', u')/Zm. Since X is terminal, the defining
equation of/ must have some lower degree terms, which restricts the possible
weights. We fix one embedding j\ : X ^-> (x\, y\, z\, Ui)/Zm and determine
^i/mO'i) and maximal elements of ^i/m(ji)- This is immediate from the
discussion just above.

Let v = O'i, a) ^i^i/m0"i) and let n : X->X be the v-blow up of X. We shall
study singularities of X and the exceptional divisor of n. This calculation will be
done by using the description given in (3.2).

If the exceptional divisor of n is reducible or if X has non-terminal
singularities, then closer analysis of these naturally leads to another pseudo
weighted valuation v' > v. We repeat the process starting with new pseudo weighted
valuation v'. This process terminates by the "boundedness" of weights.

Let Vi, ..., v* be all the pseudo weighted valuations which give divisorial blow
ups of X with discrepancies 1/m by the above procedure and assume that these
v/ -blow ups of X are not mutually isomorphic.

Next, we shall prove that for every maximal element v'ei^1/m, v'>vt for some
/. Since the v/ -blow up is divisorial, it follows from (5.8) that v'—v,-. Thus we know
that Vi, ..., vk represent all the maximal elements in iV\/m/~. Thus we can prove
(4.1) (1).

Lastly we count the number of divisors with discrepancies 1/m. Starting with
one divisorial blow up n : X —> X obtained earlier, we shall make a partial resolution
of v : Z -*X so that all divisors with discrepancies 1/m over X appear as divisors
on Z. Such divisors may have discrepancies ^ 1/m over X, however these can be
determined by case by case analysis. These calculations will be done by using (5.1)
and (5.3).

Let d\ be the number of non-isomorphic divisorial blow ups of X with
discrepancies 1/m and let d2 be the number of divisors with discrepancies 1/m over
X. In general, we have d\<d2.

\fd\-d2 (this always holds if X is of type (cA/m), (cAx/4) and (cAx/2)),
then (4.1) (2) will be proved by using (5.7).

I f d i < d 2 (this occurs only ifX is of type (cD/3) and (cE/2)), then we shall
again look for the blow up extracting the divisor with discrepancy 1/m. In all the
cases these are obtained by the v'-blow up for v'e^1/m which are not maximal.

Thus for each divisorial blow up n : X -> X with discrepancy 1/m, we can find
the maximal element v in i^\/m such that the v-blow up of X is isomorphic to n, and
this will complete the proof of (4.1) (2).

If v, v'^T^i/m satisfy v~v', then the v-blow up and v'-blow up of X is
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isomorphic by (5.6). Hence (4.1) (3) is an easy conseqence of (4.1) (1) and (4.1)
(2).

4.3. Remark. If X is a cyclic quotient terminal singularity of index m>2,
then 'W\/m/— contains infinitely many elements and we can not determine the
maximal elements of if\/m. In this case, there is a nice resolution of X as described
in (5.1) and all the divisorial blow ups of X is determined by [Kaw96].

If X is terminal of type (cD/2), then (4.1) (2) and (4.1) (3) are not true in
some cases. Indeed, if X is of type (cD/2-1) and assume that a =2, b > 3 in (2.3),
then we can see that ifri/2/~ has only one maximal element, however X has 2
divisors with discrepancies 1/2 and both of them can be obtained as exceptional
divisors of some divisorial blow ups with discrepancies 1/2. If X is of type (cD/
2-2), the situation is more complicated. The details of these will be analysed in our
future paper.

The following three corollaries will be obtained in the course of the proof of
our main theorem. These include the case where X is a cyclic quotient terminal
singularity. In this case, proofs of these colollaries are given at the end of this
section.

4.4. Corollary,, Let X be a germ of a ^-dimensional terminal singularity of
index m>2. Assume that X is not of type (cD/2). Then there is at least one
divisorial blow up ofX with discrepancy \/m. Moreover, for each divisor E over X
with discrepancy 1/m, there is a v = (_/, a)G=i^\/m such that the v-blow up n : X —>
X satisfies the following :

( i ) X has only canonical singularities, and
(ii ) E is the exceptional divisor of n.

4.5. Corollary. Let X be a germ of a ^-dimensional terminal singularity at P
eX Assume that the index m ofX at Pis > 2 and that X is not of type (cD/2). Let
n : X-> X be an arbitrary divisorial blow up with discrepancy 1/m. Then we have

S (awOP, fi) -1) <aw(Jf, P) -1.
Q^X

The equality holds only ifX is a cyclic quotient singualrity or of type (cD/3).

4.6o Corollary. Let X be a germ of a ^-dimensional terminal singularity of
index m>2. Let n be the number of divisors of discrepancies 1/m. Using the
notation of (2.3), we have the following :
(cA/m) Let r-wt(z) = 1/m, r-wt(n) = 1. Then n=r-wt(f(z, w)).
(cAx/4) Let r-wfGO = 1/4, r-wf GO = 1/2 and assume that r-wf (/(z, tO) = (2/c +
l)/2. Then,
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( i ) n = 1 if fr-m=(2k+ 1^/2(2, w) is not a square,
( ii ) n = 2 otherwise.

(cAx/2) Let T-wt (z) =r-wr(ii) = 1/2 and assume that r-wt(/(z, w)) =fc. ITzen,
( i ) n = 1 iffT-wt=k(z, w) zs nor a square,
( ii ) n = 2 otherwise.

(cD/3-1) 7i = 3.
(cD/3-2) 71=2.
(cD/3-3) We denote the power series expansion o/a(z3) ere. 6y a(z3) =
a2z

6-\ — , etc. Consider the system of equations

m x. Then,
( i ) n = 1 if (*) /zfls no solutions,
( ii ) n =2 z/ (*) /zas a solution.

(cE/2) WKe denote the degree 4 part o f h ( y , z ^ ) by h^%^y, z) and the power series
expansion ofg(y, z) and A ( j>, z) fry g( j>, z) = Hitjaitjy

izs and h(y,z} = ^j,jbitjy
izj

respectively.
( i ) Ifh^^y, z) does nor /zave a fnp/e or a 4-ple factor, then n— the number

of distinct factors of ndeg 4 ( J> , 2). In particular, n < 4.
(ii) -//" /2deg4(j, ^) nas a triple factor and a single factor, and if we assume

hfeg4(y, z) =y*z, consider the system of equations

(t) x3 +a0,4X+6o) 6 = 0, 3jc2+6o,6=0, a0 ,6X+6o,8 — 0, 01,3^+61,5 = 0

m x. T/zen,
( ii - i ) 7i =2 z/ (t) has no solutions,
( ii - ii ) n = 3 if (t) nas a solution.
(iii) Ifhdeg4(y, z) /zas a 4-ple factor, and if we assume ndeg4(^, z) =j;4, we first

consider the above system of equations (t).
(iii- i ) n = 1 if (t) n&s no solutions.

If (t) nas a solution, there is an embedding j\ of X such that

0, 1, 1, 1)

, 1, 1, 1)

w/zere A^C, r-wKgiCj, z))>3, T-wt(hi(y, z))>5 w/zen we ser r-wr(j^) =3/2 and
r-wr(w) = 1/2. JVow we consider
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Then,
(iii - ii ) n = 2if0is irreducible and reduced,
(iii-iii) n=3 if 0 has 2 distinct irreducible components.
(iii-iv) n=2 if 0=u2i and the (y'i, -y(4, 3, 1, 7))-Wow up ofX is divisorial,

(iii-v) n = 3 if 0=u2i and the ( j i , -y (4, 3, 1, 7))-Wow up ofX is not divisorial.

If X= (x, y, z)/Zm(a, —a, 1) is a cyclic quotient terminal singularity, then
(4.5) and (4.6) hold by [Kaw96] and (5.1). We define the embedding

;:Z-{w=0}/Zm(a, -a, 1, 0^(x,y, z, ii)/Zm(a, -a, 1,0)

and a weight cr= ( (a/m), (~a/m), l/m, 1). We denote v= (7, a). Then the v-
blow up of X extracts the unique divisor with discrepancy l/m over X. This proves
(4.4) if X is a cyclic quotient terminal singularity. We shall omit cyclic quotient
singularities when we consider terminal singularities of type (cA/m).

Many parts of these corollaries have counterparts in the (cD/2) case. For
instance, (4.5) also holds and we can calculate the number of divisors with
discrepancy 1/2 for terminal singularities of type (cD/2). These also will be
treated in our future paper.

§ 5. Some Auxiliary Results

In this section, we shall collect some results which will be used in the following
sections.

The following proposition is due to Danilov and Barlow (see [Reid87, (5.7)])
which shows the existence of economic resolutions of cyclic quotient terminal
singularities.

58lo Proposition. Let X= (x, y, z)/ZTO(a, —a, 1) (a is prime to m) be the
germ of a cyclic quotient terminal singularity of index m > 2. Then there is a
projective birational morphism y : Z —> X such that

( i ) Z is non-singular,
(ii) Kz = v*(Kx) + Hr=~il-^Fi, where SfLV-Fi is the exceptional divisor of v.

Furthermore, if D is a Q-Cartier Weil divisor on X defined by a 1*m-semi-invariant
f(x, y, z) eC {x, y, z}, then

(iii) y* (D) =v~l [D] + T?=\ldiFi, where v~l [D] denotes the proper transform
ofD by v, and di = Oi-wt(f(x, y, z)), o/= ( <m/m>, <—ai'/m>, i/m).

Proof. The proofs for ( i ) and (ii) can be found in [Reid87, (5.7)] and
(iii) follows from (3.5). D
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5.2. Corollary. Let X be a germ of a 3-dimensional cyclic quotient terminal
singularity of index m >2. Then there is a unique divisor with discrepancy i/m over
X for each i = l, 2, ... , m — 1.

The following will be used to estimate the number of divisors with minimal
discrepancies :

5.3. Proposition. Let X be a germ of a ^-dimensional terminal singularity of
index m>2. Let n : X — > X be a divisorial blow up with discrepancy l/m and let E
be the exceptional divisor of n. Let v : Z -» X be a partial resolution ofX and
be the exceptional divisor of v. If v* (E) = v~l \_E] + Sfl/^/ , then we have

for each i. In particular, ifQEUX is of index <m and Q£=E, then there are no prime
divisors over Q with discrepancies l/m over X.

Proof The first part follows by comparing Kz with v * (TT* (Kx) ). The second
part is easily deduced from the first part. D

Next, we shall show some lemmas which will be used to determine the maximal
elements in iPi/m. In the following lemmas (5.4)-(5.8), X denotes a germ of a 3-
dimensional terminal singularity of index m>2 and assume that the canonical
cover of X is not smooth.

5.4. Lemma. Let v = (y, a), v'= (/, a') ^'W\/m and assume that 0=0'. If
a=-^-(a, b, c, G?) satisfisfies 0<a, b, c, d<m, then we have v~v'.

Proof. Let x • (*', y', z, u}/lLm -> (x, y, z, u}lLm be a liftable automorphism
such that x °f=j- Since x comes from a Zm-equivariant automorphism of C4, we
have

</-wte(**Cx,.y, z, ii))=-^-(a, b, c, d} modZ4.

Thus our assumption implies that

o'-wts(x* Oc, y, z, 11)) >— (a, b, c, d) =o-wts(x, y, z, u).

This shows that v'>v. Similarly, we can prove v'<v. D

5.5. Lemma. Letv=(j, a), v/= (/, aO^^i/m and assume that 0=0 and
v<vx. Then we have v~v'.
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Proof. Let % '• C*', y', *'> u')/Zm -> (x, j>, z, ii)/Zm be a liftable automor-
phism such that ̂  o/ =j and let/(x, j;, z, u) GC {x, j;, z, w} be a Zm -semi-invariant.
We assume that o-wt(f)=l and write f=fa-wt=i+fa-wt>i* Since v<v', we have
tf'-wtf (# * (/) ) > /. Let /i be the lowest degree part off0.wt=i. Since % comes from an
automorphism of C4, X*(/i) does not vanish and a /-wf(#*(/i))=ff-wf(/i)=i
Hence o'-wt (%*(/)) =/ and we know that v ~v'. D

5.6. Lemma. Ler v9 v'E^Wi/m satisfy v ~v'. Then the v-blow up ofX and v'-
blow up of X are isomorphic.

Proof. This is obvious since blowing up ideals coincide. D

The following proposition will be used to prove our main results and it is
proved in [FA92, 6.2] and [Luo98, 2.4].

5.7. Proposition. Let n : X -> X (resp. n : X' -> X} be a divisorial blow up
with exceptional divisor E (resp. £')• IfE and E' define the same valuation on the
function field C(AT) of X, then X and X' are isomorphic over X.

Proof. Since Kx=n* (Kx) + aE for some a > 0, we see that E is Q-Cartier and
— E is TT-ample. Similarly, E' is also Q-Cartier and — E' is Tr'-ample. By our
assumption, E corresponds to Ef by the rational map n~l °TT. Thus we get that

J?-Proj(© 7r*(-/E))-Proj(e n'*(-iE'}}-X'. D
^ i^Q ' ^ i^O /

The following lemma easily follows from [Kaw96] and will also be used in the
proof of our main results :

5.8. Lemma. Let v = ( j, a\v'= (/, o ) e if\/m satisfy v<v'. If the v-blow
up ofX is divisorial with discrepancy 1/m, then we have v~vx.

Proof. Let n : X -> X be the v-blow up and let E be the exceptional divisor of
TT. Since — E is 7r-amples there is a general member L^\—IE\ for a sufficient large
and divisible /. Let D=n* (L). Since D ~0, D is defined by a Zm -in variant /(x, y,
z, 11). Then we have TT* (D) -7T"1 [D] + (o-wt(f))E by (3.5).

Let ^ : Y'-^ (x', y', zx, wx)/Zm be the c/-blow up, let E' be the exceptional
divisor of n and let n : X ' -> Z be the restriction of TT'. By (3.5) and d (v' ) = 1/m,
we have

*,< =*""**+— (^U'wi

where % : (xx, j;', zx, u'}/lLm — > (x, j, z, w)/Zm is a liftable automorphism such that
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Let v : Z -> X and v : Z -> Jf ' be common resolutions and let SF; be the
exceptional diviosr of v.

Since X has only terminal singularities, we have Kz = v* (Kx) + So/^} with all
fl/>0. So we see that Kz = v* n* (Kx) +~^(v* (£) + UmajFj) and therefore we get
E'\r = v* (v* (E) + EmcyFy). On the other hand, we have TT'* (D) =^/~1 [D] +
(o-wt (/))i4 v* (E) since L ^TT"1 [D] is general. Thus we know that

(a-wt (/) -o-wt(x* (/)))v; L* (E) = (a'-wK

Since vx>v, we have o-wt(f) <ax-wKz*(/)) so that we have v*(Zma7F;)=0.
Since all the o/X), we see that E'\x' is irreducible and reduced. We also see that
Ef x' and E define the same valuation on the function field of X. Therefore X and
X' are isomorphic over X by (5.7).

Let Dx be the Q-Cartier Weil divisor on X defined by x = 0. Then we have

(o-wt (x) )E and

since the canonical cover of Jf is not smooth. Since X and X' are isomorphic, we
see that o-wt (x) = a'-wf (# * GO ). Thus cr-wt ( g) = crx-wr (# * ( g) ) for all Zm-semi-
in variant gEiC{x, y, z, u}. This shows that v ~v'. D

§ 6. Terminal Singularities of Type (cA/m)

6.1. Let X be a germ of a 3-dimensional terminal singularity of type (cA/m)
with m>2. By (2.3), there is a standard embedding

j:X^{xy+f(z, i/)=0}/Zm(a, -a, 1, 0)c (*, 3;, z, ii)/Zm(a, -a, 1,0)

where a is prime to m and/(z, M) is a Zm-invariant. In this case, we have aw(Z)
= ord(/(0, w)). We denote the defining equation ofj as #>=xj;+/(z, u). We
assume that X is not a cyclic quotient singularity.

6.2. Lemma. Let f : X*-> (x', y', z, u'^)/Zm(ia9 —a, 1, 0) be an arbitrary
embedding and let q' be the defining equation off. Then, after a permutation of
coordinates if necessary, we have

(1) xy'^tp'ifm>$. (2) x /2,/2<E<p' or x'y'^<p' ifm=2.
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Furthermore, if (/, a') ^^i/m , then o-wt(z} = 1/m, o'-wt(u'} = I.

Proof. Since X is not a cyclic quotient singularity, <pf does not contain linear
terms, so the first part follows. To prove the second part, we denote w=o'-wt.
Since x y'Ei<pf or x'2, j/2EE0>', we have wOc') +w(j/) >w(#/)° By (3.9.1), we see
that

Thus we get w(z') = 1/m and w(w') = 1 since w(w') is a positive integer. D

For the standard embedding j, we denote r-wf(z) = l//w, r-wKw) = l and
assume that r-wf (/(z, «)) =fc This fc is a positive integer. We define oajb=^-(a,
b, 1, m) and v a > & — (y, aa, $) for positive integers a and &.

6.3o Proposition,, For the standard embedding j, we have

^i/»0) = {v«,a 0<a,b^Z9a+b<mk9a = -b=a (modm)}.

In particular, maximal elements in ^i/m(j) are those va,b with a+b=mk.

Proof. If ( 7, a) e ^1/m (y) , then a-wf (z) = 1/m and o-wt (w) = 1 by (6.2) . It
follows from (3.9.1) that o-wt(xy) =o-wt(<p^. We also have o-wt(<p)<T-wt(if(z9

w)). Hence a +b<mk. Since a£Z4+^-(a, —a, 1, 0)Z, we get the desired result.
a

684o Theorem, For each va>6^^i/m(j) wzYA a+b=mk, the va>b-blow up
Ka, b ' %a, b ~* X is divisorial with discrepancy 1/m and SQCE xa b (aw (Xa> b , Q) — 1) =
max {aw 00 — fc — 1, 0}. JTzese ;ra>6 are not mutually isomorphic over X. Further-
more, there are exactly divisors with discrepancies 1/m over X.

Proof. We first show that Xa, b has only terminal singularities. Let Ea, b be the
exceptional divisor of 7ta, b> Let Q\ (resp. Q2 , 20 be the origin of the x-chart (resp.
j;-chart, w-chart). Since

Ea,b-{xy+f™t=k(z, w)=0}cp(a, b, 1, m),

we see that Ea>b is Cartier outside (Q\ , Q2, Q*} nEatb and that

Sing(Efl, 6) c {gj , Q2} U {x =^ -0} .

By (3.2), Xaib is covered by the following four affine open sets :
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m, -b, -1, -m),

U2={x+f(yl/mz,yu)/yk=Q}/Zb(-a, m, -1, -m),

U4 = {xy+f(zul/m, u)/uk=Q}Zm(a, b, 1, 0).

Since X has only isolated singularities and na, b is isomorphic over the smooth locus
of X, Xa, b has singularities only on Ea,b> By the above description, the origin Q\ of
U\ is isomorphic to (x, z, w)/Za(m, — 1, — m) and the origin Q2 of C/2 is isomorphic
to (3;, z, w)/Zfe(m, — 1, — m). We also see that Xa, b has only isolated cDV points
along the w-axis of C/3, and the origin g4 of U4 is at worst terminal of type
(cA/m). Thus we see that Xa>b has only terminal singularities. We also have

S
0

Since Q4eZfli 6 if and only if aw (30 >fc, we see that Zeejefl b(aw(Xa, b , 2) — 1) =

max{aw(Z)-fe-l, 0}.
Since Ef l>6 is irreducible, we have jRT^a b=n*b(]K-x) +-^~Ea,b> Therefore naib is

divisorial with discrepancy 1/m.
Let D be the Q-Cartier Weil divisor on X defined by x = 0. By (3.5), we have

Hence these blow ups are not isomorphic over X.
In order to count the number of divisors with discrepancies 1/m, we first take

some vfl, b^^i/m with a +6 =mk and blow up as above. By (5.3), singularities on
Xa, b with index <m will not produce divisors with discrepancies 1/m over JT. So
we shall study singularities on^?a,6 with index >m. We can resolve the origin Q\
of U\ by using (5.1). There is a projective birational morphism v : Z — *• Xa,b such
that

a ,

where S?^1 Ft is the exceptional divisor of y over Qi . Since Ea, b is defined by x =
0 near Qi , we have

By (5.3), we have
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a m

Hence a (Ft, X) = 1/m if and only if i = 1, 2, ..., [a/m~\. Similarly there are exactly
[&/m] divisors with discrepancies 1/m over Q2. Including Ea,b, the number of
divisors with discrepancies 1/m is [a/m] + \b/m\ + l=fc since a and b are both
prime to m. D

6.5o Proposition. Ifv'=(j'9 <7')£=^i/m w maximal, then there exists va,b
with a+b=mk such that v'>vfl, &.

Proof. Letj/-{v f l )6eiT1/mO)|v f l>6<vx}. By (5.4), we have v'>v f l0 i fco if a0,
b0<m. Thus we see that jtf=£0. Hence there is a maximal element vf l,&£j/.
Assuming that a Jrb<mk, we shall derive a contradiction. Let # : (X, j/, z', H')/
^m -*• (x, j>, z, u)/Zm be a liftable automorphism such that %°f=j. We shall
denote

Then <p' =pq +/(r, s) is the defining equation of/. Since v' > va, & , we have a'-wt (/?)
>a/m and cr'-wK^) >b/m. If at least one of these inequalities are strict, then vx>
va+m, 6 or v'XVfl, 6+m , which is a contradiction. Hence e/-wf (/O =a/m and c/-wr (^)
=b/m. Smcca+b<mkando/-wt(f(r9s^>k,WQhavcG'}vt((p/^ = (ia+b^/m. It
follows from (6.2) that, after a permutation of coordinates if necessary,

for some positive integers a and Z?x. Since J(vx) = 1/m, we see that a ' +b ' —
Since % is induced by an automorphism of C4, after a permutation of x andy' if
necessary, we see that a =a and b =b'. Thus we have vx ~vfl, 6 by (5.5) . This also
contradict the maximality of v' Therefore a +b =mk, which completes the proof.

D

606. By (6.4), (6.5) and (5.8), we see that va, b^i^i/m with a+b=mk repre-
sent all the maximal elements in T^i/m/~. Hence there are exactly k maximal
elements in 'W\/m/^. On the other hand, we have k divisors with discrepancies
1/m over X by (6.4). By (4.2), this completes the proofs for (4.1) and (4.4).
(4.5) and (4.6) are the direct consequences of (6.4).

Figure 1 shows the elements of 'W\/m/— and their relations, in which we are
assuming that 0 < a < m and /3=m—a. For the va, &-blow up na, b'-Xatb-^X with a
+b<mk9 the exceptional divisor of 7Cajb is not irreducible.
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a + (fc - Dm,

Figure 1. K^i/m/~ for (cA/m) type terminal singularities

§ 7. Terminal Singularities of Type (cAx/4)

7.1. Let X be a germ of a 3 -dimensional terminal singularity of type (cAx/4) .
By (2.3), there is a standard embedding

j : X^ {x2+/+/(z, 11) =0}/Z4(1, 3, 1, 2) c (*, j, z, ii)/Z4(l, 3, 1, 2),

where /(z, w) is a Z4 -semi-invariant and w^/(z, w). In this case, we have aw GO
= (ord(/(0, w)) + l)/2. We denote the defining equation of j as <p=x2+y2 +

f(z, «).

7.2. Lemma. Lef f : X ~> (x'9 y, z', ii/)/Z4(l, 3, 1, 2) Z?e an arbitrary
embedding, and let q>' be the defining equation of j'. Then, after a permutation of
coordinates x' and z' if necessary, we have x2 , y'2^<p' or x z', y'2^<p'. Furthermore,
if we assume that (/, a') e^1/4, then the following holds :

(1) //V2,/2e<p', then 0=^(21+ 1, 2/ + 3, 1, 2) for some even integer I or c/ =

^r(2/ + 3, 2/+ 1, 1, 2) for some odd integer I.

(2) //xV,/2^', then a =40, 3, 1, 2), ^(1, 3, 5, 2) or ^(5, 3, 1, 2).

Proof. The first part is obvious. For the second part, we write w — o'-wt. In
case (1), since x2 ,y/2^<p', we have 2w (x' ) , 2w(j/)^> >*>(#/), in particular w(x') +
w(j/)>w(#/)- Since c?(vx) — 1/4, we have

4+i-(l, 3, 1, 2)Z, we see that wCxO^wCz7)^ 1/4, w(/) = 3/4, wCw7

= w (^ ) = 1/2 mod Z. Hence we get w (z ) = 1/4 and w (11' ) = 1/2. Then w (x )
, so we get IwCxO—^C/ ) =1/2.



536 TAKAYUKI HAYAKAWA

In case (2), we can prove more easily. D

For the standard embedding j, we denote r-wr(z) = l/45 r-wt(u^) = l/2 and
assume that T-wt(f(z, 11)) = (2fc+1)/2. Since r-wf (<p) = 1/2 modZ, we see that k
is a non-negative integer. For non-negative integers 7, we define

-^(27 +1, 27 + 3, 1, 2) if / is even,

J-(27 + 3, 2/+1, 1,2) i f / i s odd,

and v/=0, a/).

7.3. Proposition. For £/ie standard embedding j, we have

^1,4(7) = {v/|/ = 0, 1,2, . . . , fc}.

In particular, vk is the unique maximal element in 1^ 1/4(7).

Proo/ IfO, a/)e 1^1/4(7), then it follows from (3.9.1) that (27+l)/2 =
a/-wf(00 <r-wr(/(z, n)) = (2fc+1)/2, hence 7<fc D

7o4. Theorenio Lef n :X-^X be the Vk-blow up and let E be the exceptional
divisor of n. Then X has only terminal singularities and Sge % (aw (X9 Q) — 1) = max
(aw(X)— fc — 2, 0}. Moreover, iffT.wt=(2k+v/2(z,u^) is not a square, then n is divisorial
with discrepancy 1/4 <2«<f E w f/ie unique divisor with discrepancy 1/4 over X.

Proof. We first show that X has only terminal singularities. We shall assume
that k is even. Let Qi(resp. Q2, Q*) be the origin of the x-chart (resp. j;-chart, u-
chart). Since

E^{x2+/r.w,=(2fc+1)/2(z, iO=0}cp(2fc+l, 2fe + 3, 1, 2),

we see that E is Cartier outside {Q2, g4} HE and that Sing(E) c {x =0}. By (3.2),
X is covered by four affine open sets U\, Ui, £/s and U*. Since Q\^E, we do not
need U\ to cover X :

,4, -1, -2),

, 1, 1, 0).
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The origin Q2 of U2 is isomorphic to (x, z, u)/Z2k+3(2, — 1, —2), the origin Q4 of
U4 is at worst terminal of type (cD/2), and other singularities of X are all isolated
cDV points. Hence X has only terminal singularities. We also have

s; (awe?, e)-o=-

Since Q4E? if and only if aw(X) >fc+1, we see that See* (aw G?, Q) — 1) =max
{awCD-A;-2, 0}.

It is easy to see that E is reducible if and only if/T-wt=(2fc+0/2(2, u} is a square.
Thus we know that iffT-wt=(2*4-0/2 (z, u) is not a square, then n is a divisorial blow
up with discrepancy 1/4.

In order to count the number of divisors with discrepancies 1/4, we shall study
each singularity on X. We can resolve the origin Q2 of U2 by using (5.1) and get
a projective birational morphism v : Z —> X such that

2k + 2 •

where 2?=T2 Ft is the exceptional divisor of v over Q2. Since E is defined by
fr-wt=(2*+0/2(2, w) near Q2, we have

*•,+ s

for some c?/>0. By (5.3), we have

-=y if i = l, • - . ,

if f = f c + 2,

Thus there are no divisors with discrepancies 1/4 over Q2. By (5.3), we see that
other singularities on X will not produce divisors with discrepancies 1/4 over X.
Therefore E is the unique divisor with discrepancy 1/4 over X.

If k is odd, we can do the same calculation as above by replacing x with y.
D

7.5. Proposition. Ifv'= (/, a') is maximal in T^i/4, then vf>vk.

Proof. Let l = max{l\v'>~Vi}. Since v'Xvo, we see that />0. Assuming that
Kk, we shall derive a contradiction. Let % : (x', y', z', i/)/^4 -> (x, j, z, w)/Z4

be a liftable automorphism such that %°/=y, then ^ /=%*(^) is the defining
equation of/. We first assume that / is even. Since v 'Xv/ , we see that
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(/-wts(x*k,y,z9 1 0 ) ( 2 7 + 1 , 2/ + 3, 1, 2).

If <7'-Htf(z*GO) > (27 +0/4, then v '>v/+i , which contradicts the maximality
of /. Hence a'-wt (x *(*)) = (27 + 0/4. We also see that a'-wr (* * (/(z, M) ) ) >
r-wr(/(z, ii)) = (2Jt+0/2. Hence c/-wf(ff /)=o /-wK^*Oc2+<y2+/(zf M))) =
(21+ 0/2. By (7.2) and (3.9.0, we have o=ot. Therefore v '- (y, a/) by (5.5).
This also contradicts the maximality of v7 since Kk. Similarly, we can derive a
contradiction if / is odd. D

7o6e In the case fT-wt= (2*+ 0/2 (z, u) is not a square, we have v'—v^ for every
maximal element v'eiTi/4 by (7.4), (7.5) and (5.8). Thus (4.1) and (4.4) hold.
By (7.4), we also see that (4.5) and (4.6) hold. Figure 2 shows the elements of
if 1/4 /~ and their relations.

7.7. We shall assume that fT.wt= (2* +0/2(2, w) is a square in the rest of this
section. Let fT.wt=(_2k+ 0/2(2, M) = — g(z, w)2 . By (7.4), the exceptional divisor of
Vfe-blow up is reducible. This naturally leads to the following automorphisms and
embeddings. We only treat the case k is even, since otherwise the same proof below
will work by replacing x with y. Let x± - (*> y, z, u^)/Z4 -> Gci , y\ , z\ , Wi)/Z4 be
the automorphisms defined by

=J>, ^±(zi)=z and

and let y± =x± °j :X^> (xi,yi,zi , Wi)/Z4(l, 3, 1, 2) be the embeddings. Then the
defining equations of yV are

i , MI)

where /z(z, 11) =/T-wr>(2fc+o/2(2, M).

7.80 Fropositioiio For each embedding j± , we have

^1/4(7^) ={(7±,e j / ) | / = 0f 1,2, ...,*+!}.

/n particular, v± = (j± , (7fc+i) w the unique maximal element in

Proof. Assume that (j±, a/)e^i/4. Then one sees that orwt(.(p±) = (2/ +
0/2. On the other hand, orwt(<p±) <arwt(xig(zl , MI)) < (fc+/ + 2)/2, hence we

D

7o9. Theorem. Let n± : X± -^ Xbe the v±-blow ups. Then n± are both divisor-
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ial with discrepancies 1/4 and Zee^±(awCf±, Q) — 1) =max{aw(Z) — k — 3, 0}.
These n+ and n~ are not isomorphic over X. Furthermore, there are exactly 2 divisors
with discrepancies 1/4 over X.

Proof. Let E± be the exceptional divisor of n^ and let Q\ (resp. Q2 , g4) be the
origin of the x -chart (resp. j;-chart, w -chart). Since

±~ { + 2g(z, ii)x+/+A«=(2*+3)/2fe, «)=0}^P(2/c + 5, 2fc + 3, 1, 2),

we see that E± is Cartier outside {Qi , Q4} HE and that Sing(E) c: {y=0} . As in
the proof of (7.4), X± is covered by three affine open sets :

^^ -1, ~2),

z^

, l)x+j;2+/z(M1/4z, w1/2)/w(2fc+3)/2-0}/Z2(l, 1, 1,0).

The origin Qi of U\ is isomorphic to (j;, z, w)/Z2fc+s(2, — 1, —2), the origin g4 of
C/4 is at worst terminal of type (cD/2), and other singularities on X are all isolated
cDV points. Hence X± has only terminal singularities. We also have

aw(Jf±, g4) -1 =aw(AT) —fc —3 if g4£?±,

0 ifQ4^X±.

Since g4Q?± if and only if aw (AT) >fc + 2, we see that £fie*±(awQF±, g) —1) =

Since £± is an irreducible divisor, we have Kg+ — #± 0^) + \E±. Thus n± are
both divisorial with discrepancies 1/4.

LetD be the Q-Cartier Weil divisor on AT defined by x+g(z, u) =0. By (3.5),
we have

4 <*

Hence TT+ and TZ:_ are not isomorphic over X.
In order to count the number of divisors with discrepancies 1/4, we shall use

TT+ as the first blow up. We can resolve the origin gi of U\ by (5.1) and get a
projective birational morphism v : Z —> X+ such that

Kz = v*

where S?i|4F/ is the exceptional divisor of v over Q\. Since ^+ is defined by
— 2g(z, w) +j2+/zT-wr=(2fe+3)/2(z, u) =0 near gi, we have
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where d/>0. Hence we get

1
2k + 5 4

III—1,

i J_ 4fc+10-4/ = 1
4 ° 2fc + 5 2 ' •"'

>\ ifi=k + 3,

By (5.3), we see that other singularities on X+ will not produce divisors with
discrepancies 1/4. Therefore£+ andFi are the divisors with discrepancies 1/4 over
X. D

TolOo Proposition. Ifv'= (/, ax) is a maximal element in nFi/4, then v x >v+
or vx>v-.

Proof. We shall show that v r>v- assuming v x^v+. Let # : (xx, j;7, z9 u'
~^ (xi, yi9 zi, u\)/1*4 be a lif table automorphism such that x °f=j+- Then #>/=::

#* (<^+) is a defining equation of/. By (7.5), we see that v'>v fc~ (y°+ , afc). Hence
we get

l, 2^ + 3, 1, 2).

Our assumption v x ^v+ implies a /-w^(^*Oci)) = (2fc+l)/4. If we assume that
a/-wKl*(xi-2g(Z1, in))) = (2fc + l)/4, then a'-wf($O =a/-wf(%*(x(x-2g(z,
tt))+^2+A(z,tt))) = (2Jt + l)/2. Since rf(v7) = 1/4, (3.9.1) and (7.2) imply that
o' = ok. By (5.5), we see that vx~ (y'+ , afc) is not maximal. Therefore t/-wf (%* Od
-2g(z! , MI))) > (2fc + 5)/4, and this shows that v '>v_. D

Vo

Case :/r-wr=(2&+ 0/2(2, w) is not a square

Vo Vi V2 — — Vk

Case :/T-«=(»+0/2(2, w) is a square

Figure 2. 7^1/4 for (cAx/4) type terminal singularities
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7.11. In the case fT.wt=(.2k+0/2(2, w) is a square, we have v'~v + or v'~v- for
every maximal element v'eiT 1/4 by (7.9), (7.10) and (5.8). Thus (4.1) and (4.4)
hold. By (7.9), we also see that (4.5) and (4.6) hold. Figure 2 shows the elements
of i^i/4/^- and their relations.

§ 8. Terminal Singularities of Type (cAx/2)

8.1. Let X be a germ of a 3-dimensional terminal singularity of type (c Ax/2).
By (2.3), there is a standard embedding

j:X^{x2+y2+f(z, w)=0}/Z2(0, 1, 1, 1)E (x, y, z, ii)/Z2(0, 1, 1, 1)

where/(z, w) £ (z, w)4C {z, w} is a Z2 -invariant. In this case, we have aw (AT) =2.

The discussions below are almost the same as the one in section 7 and the
proofs can be done by a similar method. So we shall omit the proofs here.

8.2. Lemma. Let f : X^ (x', y', z', u')/Z2(0, 1, 1, 1) be an arbitrary
embedding, and let cp' be the defining equation off. Then, after a permutation of
coordinates if necessary, we have x'2, y'2£=<p''. Furthermore, assume that (/, a')£=
^Ti/2, then 0=^(1, /+!, 1, I) for some even integer I or a'=-f (/+!, /, 1, 1) for
some odd integer I.

For the embedding j, we denote r-wr(z)=r-w^(i/) = l/2, and assume that
r-wf (/(z, u)}=k. Then A: is a positive integer. For positive integers /, we define

—(/, /+!, 1, 1), if/ is even,

y 0 + 1,7,1,1) , i f / i s odd,

andv/=(j, a/).

8.3. Proposition. For the standard embedding j, we have

^1/2(7) = {v/ | /=l , 2, ...,£}.

In particular, vk is the unique maximal element in 1^1/2(7).

8.4. Theorem. Let n : X-> X be the Vk-blow up and let E be the exceptional
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divisor of n. Then X has only terminal singularties and See* (aw C?, Q) — 1) =0.
Moreover, iffT.wt=k(z, M) is not a square, then n is divisorial with discrepancy 1/2 and
E is the unique divisor with discrepancy 1/2 over X.

8o5o Proposition,, Ifv'= (/, a') is a maximal element in if 1/2, then v'>vk.

8.6. We shall assume thatfr.wt=k(z9 «) is a square in the rest of this section.
Let/r.w,=fc(z, ti) = — g(z, w)2 . As in section 7, we only treat the case k is even.

Let x± • (x,y, z, w)/Z2 -> (xi , j?i , Zi , u\)/Z2 be the automorphisms defined by

=z and %±(HI)=I/ ,

and letj± =%± °y : X ^ (xi , ji , Zi , i/i)/Z2(0, 1, 1, 1) be the embeddings. Then the
defining equations of j± are

where h (z, 11) =fT-wt>k(z, u).

8.7. Proposition. For each embedding j± , we have

In particular, v±= (_/± , 0^+1) is ?/ie unique maximal element in H^\n (j±).

8.8. Theorem. Lef TT± : X± -> X be the v±-blow ups. Then n± are both divi-
sorial with discrepancies 1/2 and See *+ (aw (AT, Q) ~ 1) — 0. These TT+ and n~ are
not isomorphic over X. Furtheremore, there are exactly 2 divisors with discrepancies
1/2 over X.

8.9. Proposition. Ifv'= (/, a7) 15 a maximal element in Win, then v'>v +
or vx>v-.

8.10. By the same discussion as in section 7, the above propositions and
theorems complete the proofs of (4.1), (4.4), (4.5) and (4.6). The elements of
^i/2/~ and their relations are almost the same as in Figure 2. (The minimal
element is v\ in this case.)

§ 90 Terminal Singularities of Type (cD/3)

9.1. Let X be a germ of a 3-dimensional terminal singularity of type (cD/3).
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By (2.3), there is a standard embedding

j:X^{(p(x,y,z,u^=0}/Z3(2, 1, 1, 0)cCx,< v > z ,M)/Z3(2 f 1, 1,0).

In the above expression,

, or

) +;cz4/3(z3) +j;z5r(z3) +z6S(z3),

where A(/),//(/)eC{/}, 4A3 + 27//2^0, a(z3),^(z3), 7(z
3), 5(z3)^C{z3}. In

this case, we have aw GO =2.

As before, we first determine all the possible weights o such that (/, a ) £E
TTi/3 for some embedding/ : X <-> (*', /, z', n7)/Z3(2, 1, 1, 0).

9.2. Lemma. Ler / : Z "-> (x7, /, z', w')/Z3(2, 1, 1, 0) oe an arbitrary
embedding and let <p' be the defining equation off. Then u'2, x'* and some cubic
terms in y' and z appear in <p'. Furthermore, //*(/, o'^^'Wi/i, then the following
holds :

(1) ///W, then a=i(2, 1, 1, 3), i(2, 4, 1, 3) or i(5, 4, 1, 6).

(2) ///2zW or /z/2e^, r/zen c/=i(2, 1, 1, 3), -f (2, 4, 1, 3) or i(2, 1, 4,

3). In particular, if the cubic part in y' and z' o/^x does not have a triple factor, then
a'=i(2, 1, 1, 3), i(2, 1, 4, 3) or i(2, 4, 1, 3).

Proof. The first part is obvious. Let w=o'-wt and v/=:: (/, </)• Then in case
(D^ehaveSwCxO^wC^O^wC^O^wC^) and 2w(wx) >*>(<//)• Si
1/3, (3.9.1) implies that

Since a ^Z4+i-(2, 1, 1, 0)Z and w(^7)^Z, we see that wOO-2/3, w(/) =
H> (z7 ) = 1/3, w (wx ) = 0 mod Z. So the above inequality shows that w (z' ) = 1/3 and
w(#/) <6. Using these, the rest follows from case by case analysis. For example,
if w(p7)=6, then we have w(xx)>8/3, w(/)>7/3, w(w')>3. Thus we get
w (x ) + w ( j/ ) + w (zx ) + w (w7 ) — w (#/ ) — 1 > 4/3, which is a contradiction. There-
fore w (<// ) = 6 does not occur. Case (2) can be treated similarly. D

We define
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ao=y(2, 1, 1, 3), ai.i=y(2, 4, 1, 3),

a1)2=y(2, 1, 4, 3) and C72=y(5, 4, 1, 6).

9.3. Let/ : X -> (x'f /, z', i/')/Z3(2, 1, 1, 0) be an embedding and let <p' be
the defining equation of/. We shall consider the following conditions on <p' '. (See
(3.4) for the definition of FI. i(4) etc.)

(9.3'. 1) p'=ii'2+;c/3+yz'2modr7i. i(3).
(9.3.2) p7= (t/2+x'3+;cy4£o+z'6c5o) + (/V+jcy^+z'^i) mod J"i, i(4)

for some /30, f i i , 60, <5i €=C.
(9.3.3) ?/=(i*'2+jc/3HVz/^o+z'%)+/z/3^

mod/ai, i(4) for some aQ, ... , <5i^C, andj/3£#/.
(9.3.4) ^ = w/2 + Ax /2z /2+j; /3+(^>V3+^V7 + 73;V8 + 5z/12mod/a2(5) for

some a, £, 7, 5, AeC and

9o4. Proposition. Ler n : X^X be the (/, <7i, O-&/GW wp ancf E 5e the ex-
ceptional divisor of n. Then the following holds :

(1) If (9.3.1) or (9.3.2) holds, then n is divisorial with discrepancy 1/3.
(2) If (9.3.3) holds, then X has only canonical singularities and E is irreducible.

Furthermore , if the system of equations

/ifl5 «o solutions in x, then n is divisorial with discrepancy 1/3.
(3) Assume that (9.3.1), (9.3.2) or (9.3.3) Ao&fe. In case (9.3.3), we further

assume that (*) has no solutions. Then the origin of the y' -chart of X is the unique
non Gorenstein point and it is terminal of type (cAx/4) with axial weight 2.

Proof. First we assume that (9.3.1) holds. Then E - {u2 +x3 +yz2 = 0} ci p (2,
4, 1, 3), and it is irreducible. We easily see that E is Cartier outside

({z=u=Q}U{x=y=z = Q})nE={(0: 1 :0:0)}

and that Sing(E) = {(0:1:0:0)}. As in (3.3), X is covered by four affine chart
U\, ... , 1/4 . Since X has only isolated singularities, we see that X is smooth outside
the origin of the j/-chart U2 . On the other hand, since

U2={u2+x3+z2+y<l>(x,y,z, fi)=0}/Z4(2, 1, 1, 3)

for some </)^C{x,y,z9u}, we know that the origin of U2 is terminal of type (cAx/
4) with axial weight 2. Since d(y'} = 1/3, we see that K* =n* (Kx) +\E. Thus n



BLOWING UPS OF TERMINAL SINGULARITIES 545

is divisorial with discrepancy 1/3. This proves (1) and (3) when <p' satisfies
(9.3.1).

Next, we assume that <p' satisfies (9.3.3). ThenE- {w2+x3+xz4/30+z6<5o=0}
QP(2, 4, 1, 3), and it is also irreducible. As before E is Cartier outside {(0 : 1 :
0 : 0)} and

{ (0 :1 :0 :0 ) } if x3-f Xj8o+S0 has no multiple root,

{(0 : 1 : 0 : 0)} U {(? : * : 1 : 0) | *^C} if Cc-?)

Thus, in order to study singularities of X, we need only the y' -chart U2 and the z-
chart U3 :

2, 1, 1,3) and U,=

where

modj>C{x, j;, z, u},

-dl) modz2C(x, y, z, u}.

We also have y2Ei(p2 and y3z2^(p3. Since Jf has only isolated singularities, we see
that Smg(U2)^{y = 0} and Sing(Z73)^ {z = 0}.

If (*) has no solutions, then we see that U2 and U$ have only isolated
singularities and these are all isolated cDV points except at the origin of U2 . The
origin of U2 is a terminal singularity of type (cAx/4) with axial weight 2. If (*)
has a solution x = ?, then X has 1 -dimensional singular locus, which are canonical.

In each case, we have Kx=n* (Kx) +T^ since dGO^l/3. Hence TT is
divisorial with discrepancy 1/3 if (*) has no solutions. This proves (2) and (3)
when <p' satisfies (9.3.3).

The proof for the case (9.3.2) is almost the same as the one for (9.3.3). In this
case, SingG?) is always isolated and n is always divisorial with discrepancy 1/3.

D

9.5. Proposition. Assume that <p' satisfies (9.3.4). Let n\ X-^X be the
(/, o^-blow up and let E be the exceptional divisor of n. Then n is divisorial with
discrepancy 1/3 and X is Gorenstein outside two points. One of them is the origin
Qi of the x -chart ofX and it is isomorphic to ( y, z, w)/Z5(l, 4, 4). The other point
Q2 is isomorphic to C3/Z2(1, 1, 1). Furthermore, E is defined by u2+Az2+y3+ayz3

+£z7+7o;z8+Sz12=0 near Ql .

Proof. This can be proved by almost the same method as (9.4). D
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§ 9.A. Terminal singularities of type (cD/3-1)

9.6. In this subsection, we assume that X has a standard embedding

j:X^{u2+x*+yz(y+z)=0}/Z3(29 1, 1, 0)£ (x, 3;, z, ii)/Z3(2, 1, 1,0).

The following is immediate from (9.2).

9.7. Proposition. For the standard embedding j, we have

^1/3(7) = (0, o)\o=o0, GI, i or GI, 2} .

In particular, Vi, i=(y, ai, i) and Vi,2=0", #1, 2) flre ^e maximal elements in

9.8. We need another pseudo weighted valuation for our study of (cD/3-1)
case. This naturally arises if we consider the (j, cr0)-blow up of X.

Let Xi : Gc, j;, z, w)/Z3 -> (xi , j>i , Zi , «i)/Z3 be the automorphism defined by

=z and z*(wi)=w.

We get the embedding y'i =Xi °j:X-* (xi ,yi,zi, i/i)/Z3(2, 1, 1, 0). The defining
equation of j\ is

We denote vi, 3= (ji , (7i, i), which is maximal in 1^1/3 (y'i).

9.9. Theorem. For each i = 1, 2 anc? 3, f/ze v i, , -^?/ow w/? nt :Xi-^X is divisorial
with discrepancy 1/3 and Sge^.CawC?/, Q) — 1) = 1. These TCt are not mutually
isomorphic over X. Furthermore, there are exactly 3 divisors with discrepancies 1/3
over X.

Proof. By (9.4) (1), n\ is divisorial with discrepancy 1/3. We also see from
(9.4) (3) that Sfie jp. (aw OP/, C)-l) = l. Similarly, n2 and 7T3 have the same
properties.

Let D be the Q-Cartier Weil divisor on X defined by y = 0 and let Et be the
exceptional divisor of TT/ (/=!, 2, 3). By (3.5), we have

^ r l [ D ] + £ 1 and ̂ (i})^^-1^] + £ 2 .

Hence Xi and X2 are not isomorphic over X. Similarly n\ , n2 and 7T3 are not
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isomorphic over X.
In order to count the number of divisors with discrepancies 1/3, we use n\ as

the first blow up. By (9.4) (3), X\ has a unique non Gorenstein point which is of
type (cAx/4). By (7.4) and (7.9), every terminal singularity of type (cAx/4) has
at most 2 divisors with discrepancies 1/4. Hence there are at most 3 divisors
(including E\) with discrepancies 1/3 over X by (5.3). On the other hand, we
already know that there are 3 divisors with discrepancies 1/3 over X. Therefore
there are exactly 3 divisors with discrepancies 1/3 over X. D

9.10. Proposition. Ifv' = (/, a ) is a maximal element in i^\/i , then v' > Vi, ,-
for some /=!, 2 or 3.

Proof. If o'=o0, then v'~ (7, a0) is not maximal by (5.4). Hence we may
assume that o=Oi, \ or o\t 2 by (9.2). By symmetry, we assume that a f = o\t \ . We
shall show that v'>vi, 3 assuming that v'^vi, i and v'^vi, 2 . Let % '• (*', y', z, "')/
Z*i -* GC, y, z, «)/Z3 be a liftable automorphism such that %°j'=j. By our
assumption,

o'-wts(x*(x,y,z, i i ) ) ^ ( 2 , 4, 1, 3) and £ ( 2 , 1, 4, 3).

Thus we see that o'-wt (^* ( j;)) =of-wt(%* (z)) = 1/3. For the defining equation
<P'=#*(<P) of/, we have o'-wt(<p'^=2 since d(v') = l/3. On the other hand, if
a7-wr(^*(j;+z)) = l/3, then a'-wr^7) =ax-wK%* (M2+x3+jz(j;+z))) - 1,
which is a contradiction. Hence a'-wf (%*(j>+z))>4/3, which shows that vx>
v i , 3 . D

9.11. By (9.9) and (9.10), we see that (4.1) and (4.4) hold. (4.5) and (4.6)
follows from (9.9). Figure 3 (9. A) shows the elements of T^i/3/~ and their
relations.

§ 9.B. Terminal singularities of type (cD/3-2)

9.12. In this subsection, we assume that X has a standard embedding

2, 1, 1,0)

cCx,j,z,ii)/Z3(2, 1, 1,0),

,//(/)£C{/} and 4

As before, we first determine 1
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9.13. Proposition. For the standard embedding j, we have

^1/3 0") = {(.A cr)|a=a0, ol} , or a1>2}.

In particular, V i f i = (y, ox i) and Vi i 2=(j , #1, 2) 0re ?Ae maximal elements in

9.14. Theorem. For eac/z / = 1 a«d 2, the Vi, / -Wow wp ̂  : Jf/ -> X is divisorial
with discrepancy 1/3 and Zgeje.CatC?/, Q) — 1) = 1. T/iese ;TI and n2 are not
isomorphic over X. Furthermore, there are exactly 2 divisors with discrepancies 1/3
over X.

Proof. By (9.4) (1), n\ is divisorial with discrepancy 1/3. By changing j; and
z and applying (9.4) (1), n2 is also divisorial with discrepancy 1/3. Thus we get 2
divisorial blow ups with discrepancies 1/3. By (9. 4) (3), we also see that Sgeje.
(awG?/, g) — 1) = 1 for i = l and 2. As in the proof of (9.9), these are not
isomorphic over X.

For the last part, we use n\ as the first blow up. By (9.4) (3), X is non
Gorenstein only at the origin of

C/2-{fi2+x3+z2+x/A(j;4)+j;6//(/)=0}/Z4(2, 1, 1, 3).

Since x* +xy4 A (0) +j>6// (0) can not be a square, (7.4) shows that there is a unique
divisor with discrepancy 1/4 over X\ . Thus there are exactly 2 divisors with
discrepancies 1/3 over X as in the proof of (9.9). D

9.15. Proposition. If v/= (/, <7X) is a maximal element in W\/3, then v'>
Vi, i or v x > V i , 2 .

Proof. As in the proof of (9.10), we may assume that a/ = <7i, i. We shall
derive a contradiction assuming that vx /Vi , i and v'^vi, 2 . Let % : (x\ y', z, u'^)/
1*3 -^ (x, y, z} w)/Z3 be a liftable automorphism such that % °f=j. Then we have
o'-wt (%* (3;)) =o'-wt(x* (z)) = 1/3 by our assumption, so that o'-wt (#* (j;z2)) =
1. Thus we get o'-wt(<p'^ = 1 for the defining equation <p'=%* ($) of/. This is a
contradiction since d (vx ) = 1/3. D

9.16. By (9.14) and (9.15), we see that (4.1) and (4.4) hold if X is of type
(cD/3-2). By (9.14), we also see that (4.5) and (4.6) hold. Figure 3(9.B) shows
the elements of ^"i/3/~ and their relations.
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§ 9.C. Terminal singularities of type (eD/3-3)

9.17. In this subsection, we assume that X has a standard embedding

j : X- {«2+x3+3;3+xj;z3a(z3) +xz4£(z3) +yz5r(z^ +z6S(z3) -0}

/Z3(2, 1, 1, 0)^0c,j;,z, ii)/Z3(2, 1, 1, 0),

where a (z3), £(z3), r(z3), £(z3) eC {z3} . We denote the power series expansion of
a(z3), etc. by a(z3) =aQ+aiZ3+a2z

6-i-aiZ9+ ••• , etc. Here we consider the system
of equations

in jc, and divide the case whether (*) has a solution or not. As we shall see later,
the (7, <7i, i)-blow up of X is divisorial if (*) has no solutions. But if (*) has a
solution, then the (7, ox 0 -blow up of X is not divisorial and we need another
pseudo weighted valuation for our study of this case.

9.18. Under the notation and the assumption (9.17), we first assme that (*)
has no solutions in x. We shall study this case in (9.19)-(9.22).

9.19. Proposition. For the standard embedding 7, we have

T^ 1/3(7) = (0'» o)\o=a0 or 01, i}.

In particular, vi, 1 = (7, <7i, i) is the unique maximal element in 1^1/3(7).

Proof. By (9.2), it is enough to prove that (7, 02)^^1/3(7). If 0, ^2)^
-TVsO"), then (3.9.1) implies that a2-wf(p)=4. Thus we get #> =n=SQ= 6i = 0.
This is a contradiction since (*) has a solution x = Q. D

9.20. Theorem. The vi, i -6/ovv up n :X->Xis divisorial with discrepancy 1/3
and 2ee^(aw(/P, Q) — 1) = 1. T^e exceptional divisor E of n is the unique divisor
with discrepancy 1/3 over X.

Proof. Since (*) has no solutions, (9.4) (2) implies that n is divisorial with
discrepancy 1/3. By (9.4) (3), we have Seej?(aw(Z, Q) — 0 = 1 and J? is non
Gorenstein only at the origin Q of

U2= {t/2+x3+j;2+xj;z3a( jz3) +xz4£( jz3) +j;z5r( jz3) +z6S( j;z3) -

/Z4(2, 3, 3, 1).
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As x3H-xz4/80+z6(5o is not a square, (7.4) implies that there is exactly one divisor F
with discrepancy 1/4 over Q and F is obtained by the weighted blow up with weight
^r(2, 5, 1, 3) over U2 - We denote this blow up by v : Z -> X. Since E is defined by

y = 0 in t/2, (3.5) implies that v* (£) ^v'1 [£] +|-F. By (5.3), we see that a (F, JST)
= 1/4 + 5/4 • 1/3 = 2/3. Thus we know that E is the unique divisor with discrep-
ancy 1/3 over X. n

9.21. Proposition. If V = (/, a') is a maximal element in 1^1/3, then v'>

Proo/ As in the proof of (9. 10) , we may assume that a = o\, \ or o2 . We shall
derive a contradiction assuming that v'^-vi, i . Let % : (x', y', z', tt')/Z3 -> (x, j;, z,
w)/Z3 be a liftable automorphism such that % °/=j and (p'=%* Op) be the defining
equation of/. By our assumption, we see that z'e#* ( j). This implies that z'3^
<p', so we have cr'-wf (#>') = 1. This contradicts the fact that d(vx) = 1/3. D

9.22. By (9.20) and (9.21), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (9.18). Figure 3(9.C.a) shows the elements of ̂ 1/3 /~ and
their relations.

9.23. Under the notation and assumption (9.17), we next assume that (*)
has a solution x = fGE C. Then x = £ is a double root of x3 +/30x + do = 0, so we can
write x3+@0xz4+d0z

6= (x -fz2)2 (x + 2fz2). This leads the automorphism %i ' (x,
y, z, tt)/Z3 -* (xi ,yi,zi, iii)/Z3 defined by

=z and i*(wi)=w,

and the embedding ji=Xi°j : X*-* (x\, yi, Zi, «i)/Z3(2, 1, 1, 3). The defining
equation of j\ is

where a'(z3) =a(z3), ^(z3) = Q3(z3) -^)/z3, /(z3) = (f a(z3) +7(z
3))/z3,

= [(/S(z3)-/S0)l
:+(5(z3)-5o)]/z6. As before, we denote the power series

expansion of a'(z3), etc. by a'0+ a{z3 '+ a'2z
6 H — , etc. We shall study this case in

(9.24)-(9.28).

9.24. Proposition. For the embedding j \ , we have

=0o, Oi,ior o2}.
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In particular, v2 = (j\ : a2) is the unique maximal element in i^i/itji).

9.25. Theorem. The v2 -blow up n : X' -> X is divisorial with discrepancy 1/3
and SgeEjrCawC?7, Q) — 1) — 0. There are exactly 2 divisors with discrepancies 1/3
over X.

Proof. Since the defining equation <p\ satisfies (9.3.4), we can apply (9.5) and
see that n is divisorial with discrepancy 1/3 and that Se^jKawC?', Q) ~ 1) =0.

Each point of X' has index < 3 except at the origin Q\ of the x\ -chart U\ and
X' is isomorphic to (j;, z, w)/Z5(l, 4, 4) near Q\ . We can resolve Q\^X' by using
(5.1) and get a projective birational morphism v : Z -> J?' such that Kz = v* (A>)
+ 2?=il~.F/, where 2f=i-F, is the exceptional divisor of v over Q\ . Let Ef be the
exceptional divisor of n. By (9.5) and (5.1), we have

Using (5.3), we see that a (fi , X) = 1/3 and a (Ft , JT) >2/3 for i >2. Therefore E'
and FI are the divisors with discrepancies 1/3 over X. D

9.26. Remark. Thus we know that there are exactly 2 divisors with dis-
crepancies 1/3 over X. One of them is obtained as the exceptional divisor of the
v2 -blow up. The other one is obtained as the exceptional divisor of the weighted
blow up n : X -* X associated to (7, o\t 0 ~ ( ji , o\, i) . This is not divisorial since X
has non-terminal singularities.

9.27. Proposition. -//V=(/, a') is a maximal element in ^1/3, then v'>

Proof. We may assume that o—o^\ or o2 as in the proof of (9.10). By
(9.21), we see that v> (;, (Ji, i) ~ (ji , aif i).

If o'=Oit i , then (5.5) shows that v'~ (y'i , (7i, i) is not maximal.
Let a=o2 and let % : Oc', y', z'9 u')/Z*^> (xi, Ji, Zi, iii)/Z3 be a liftable

automorphism such that % °/— ji . Since vx> (y"i , ai, i), we have

(/-WteC^Cx!,^,^,^))^!,^ 1,3).

Thus we have to show that a /-wKl*U))>5/3 and o'-wt(% *(«))> 2. Since
d(v7) = l/3, (3.9.1) shows that a/-wr(^)/)::=:4 where ^ /==Z*(^i) is the defining
equation of/. Let

P=**Cxi), ?=X*(^,), r=X*(.Zl), s^'
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If z/3&, then z/6e#>', so we have o'-wt (<p') <2, which is a contradiction. Hence
z'3 05 and we get o'-wt (s) > 2. Let /? =GXX +6z'2 + (other terms) and r =cyf -\-dz' +
(other terms) . Since x is an automorphism, a =£ 0, <i ̂  0. Since a'-w£ (#>' ) — 4, the
coefficients of xz'4 andz'6 in <p' are both zero, so that we have ab(3b + 6gd^) =b2(b
+ 3fc/2) =0. These equalities imply that b =0 which shows o'-wt (p) > 5/3. Thus
we know that v'>v2 . D

9.28. By (9.25), (9.26) and (9.27), we see that (4.1), (4.4), (4.5) and (4.6)
hold under the assumption (9.23). Figure 3(9.C.b) shows the elements of if 1/3 /
~ and their relations.

9.29. By (9.22) and (9.28), we complete the proof of (4.1), (4.4), (4.5) and
(4.6) if X is of type (cD/3-3).

v0

(9.C.a)

Vi, i - V2

(9.A) (9.B) (9.C.b)

Figure 3. Wi/3 for (cD/3) type terminal singularities

§ 10. Terminal Singularities of Type (cE/2)

10.1. Let X be a germ of a 3-dimensional terminal singularity of type (cE/2).
By (2.3), there is a standard embedding

j:X^{u2+x3+g(y9z^x+h(y9z)=0}/Z2(Q9 19 1, 1)

3, 1, 1, 1)

where g(y, z), h(y, z)^(j;, z)4C{j, z} and the degree 4 part /ideg4(js z) of
h (y, z) is not zero. In this case, we have aw(JT) =3. We shall denote the defining
equation as (P=u2-i~x3+g(y9 z)x+/i(j;, z), also we denote the power series ex-
pansion of g(y, z) and h(y, z) as g(y, z) = Hi,jaijy

izj and h(y, z) = Hi,jbijy
izj

respectively.

As before, we first determine all the possible weights a such that (/, of) G iifm
for some embedding/ : X -> (xx, j;', zx, wx)/Z2(0, 1, 1, 1).

10.2. Lemma. Let / : Jf <-» (x7, /, z7, ^X)/Z2(0, 1, 1, 1) be an arbitrary
embedding and let cp' be the defining equation off. Then, after a permutation of



BLOWING UPS OF TERMINAL SINGULARITIES 553

coordinates if necessary, u2, x'3 and some degree 4 terms in y ', zf appear in <p'.
Furthermore, if (/, a') ^^1/2, then the following holds :

(1) ///4EE<p', thent/=l(2, 1, 1, 0,1(2, 1, 1, 3), 1(2, 3, 1, 3), 1(4, 3, 1, 5),

1(4, 3, 1, 7) or 1(6, 5, 1, 9).
(2) ///VGEp', then </=l(2, 1, 1, 1), 1(2, 1, 1, 3), 1(2, 3, 1, 3), 1(2, 1, 3,

3) or 1(4, 3, 1,5).
(3) ///VW, then a'=l(2, 1, 1, 1), 1(2, 1, 1, 3), 1(2, 3, 1, 3) or 1(2, 1,

3, 3). In particular, if the degree 4 part in y' and zf of cp' does not have a triple or a
4-ple factor, then a '=1(2, 1, 1, 1), 1(2, 1, 1, 3), 1(2, 3, 1, 3) or 1(2, 1, 3, 3).

Proof. The first part is obvious. Let w=a-wt and v'= (/, a'). If w'2,*'3,/4

', then we see that 2w(w') >w(<p'), 3w(x') >w(<p') and 4w(/) >w(^). Since
^l/2, it follows from (3.9.1) that

Since a^Z4+ 1(0, 1, 1, 1)Z and since w(<p'^Z, we see that w(x')=Q, w(/) =
w(z') =w(wx) = 1/2 mod Z. So the above inequality shows that w>(zx) = 1/2 and
w(^?x) < 12. The rest follows from case by case analysis. For example, if w(#?') =
9, then we have w(x') >3, w(/) >5/2, w(wx) >9/2. Since a'-wf (x^Vw7) =21/2,
these inequalities must be equalities. Therefore we have o'=\(6, 5, 1, 9). We can
prove other cases similarly. D

We define

ao=y(2, 1, 1, 1), ai=y(2, 1,1,3), o2, i=y(2, 3, 1, 3), a2>2=~(2, 1, 3, 3),

C73-y(4, 3, 1, 5), <74=y(4, 3, 1, 7) and a5=y(6, 5, 1, 9).

10.3. Let/ :X <-+ (x',y, z, w/)/Z2(0, 1, 1, 1) be an embedding and let <p' be
the defining equation of/. We define r-wt (y'^)= 3/2, r-wt (z' ) = 1/2 and T-wt ( 3;' )
= 5/2, r'-wr(z') = 1/2. We shall consider the following conditions on <p'. (See (3.4)
for the definition of F^ i(4) etc.)

(10.3.1) ^=w /2+x /3+flo14Z /V+^0)6Z /6+
(10.3.2) ^ /=(ll / 2+JC / 3+fla4Z /V+fta 6Z /O

+60, 8z
/2) +/V2mod/a2, 1(5) for some attj, bitj

(10.3.3) ^^(i/^+x^+flo^z^' + ̂ eZ^
+60, 8z

/2) mod/a2, 1(5) for some aij9 bitj^C, and y/?>z or j;/4

(10.3.4) v'=u2+Xx'2z'2+g^t=^y\z}x+h^t=,(y',z'} mod/a3(6) for some

(10.3.5) ^= (axV+^/z/2+rz/5)W
/+x/3+gr.vv^4(/,z/)x/+/ir.w^6(3;/,z/) mod
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for some a, & r^C, g(/, /),*(/, z')eC{y, z'}, and u7

(10.3.6) ^=ii/2+jc/3+g^=6(y, z')x'+/Zr'-wr=9(y, z')mod/a5(10) for some

The proofs for the following propositions (10.4)-(10.7) are almost the same
as the one for (9.4) and (9.5). So we shall omit their proofs.

10.4. Proposition,, Let n : X -* X be the (/, o2, \)-blow up and let E be the
exceptional divisor of n. Then the following holds :

(1) If (10.3.1) or (10.3.2) holds, then n is divisorial with discrepancy 1/2.
(2) If (10.3.3) holds, then X has only canonical singularities and E is irredu-

cible. Furthermore, if the system of equations

(t) x3+ao,4Z4;*:+6o, 6 — 0,

has no solutions in x, then n is divisorial with discrepancy 1/2.
(3) Assume that (10.3.1), (10.3.2) or (10.3.3) holds. In case (10.3.3), we

further assume that (t) has no solutions. Then the origin of the y' -chart ofX is the
unique non Gorenstein point and it is of type (cD/3).

10.5. Proposition. Assume that <p' satisfies (10.3.4). Let n : X->X be the
(/> 03) -blow up and let E be the exceptional divisor of n. Then the following holds :

(1) If y'3 z' E^<p' , then n is divisorial with discrepancy 1/2.
(2) //>/3z W, W '2+Ax/2z/2+g™r=3( ^ z')*'+*™=5(y, /) u irreducible and

reduced and y'4^(p, then n is also divisorial with discrepancy 1/2.
(3) Under the above conditions of (1) or (2), X is Gorenstein outside two points.

One of them is the origin Q\ of the x -chart ofX and it is isomorphic to ( j;, z, w)/Z4

(3, 1, 1). The other point is the origin Q2 of the y/ -chart ofX and it is isomorphic to
(x,y, tt)/Z3(l, 1, 2) in case (1) and (x, z, w)/Z3(l, 1, 2) in case (2). Moreover,
E is defined by u2jrhz2+gT.wt=3(y, z)+/ir.wr==5(j, z)=0 near Q{. Near Q2, E is
defined by y = 0 in case (l) and t22+Ax2z2H-gr.wf=3(l, z)x+/zT.wf=5(l, z) =0 in case
(2).

10.6. Proposition. Assume that <p' satisfies (10.3.5). Let n: X-^X be the
(/, 04) -blow up and let E be the exceptional divisor ofn. Then the following holds :

(1) If (a, £, 7) ̂  (0, 0, 0), then n is divisorial with discrepancy 1/2.
(2) Ifa=P=7=Q, then X has only canonical singularities and E is irreducible,

Moreover, X is terminal outside the z -chart ofX and Sing(Z) is isolated.
(3) X is Gorenstein outside the origin Q of the u -chart ofX and it is isomorphic

to (x,y, z)/Z7(4, 3, 1). E is defined by (axz+]3yz2±rz^+x3+gT-wt=*(y9 z)x +
hr-wt=6(y9 z^Onear Q.
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10.7. Proposition. Assume that <p' satisfies (10.3.6). Let n\X~>Xbe the
(/> o'^-blow up and let E be the exceptional divisor of n. Then n is divisorial with
discrepancy 1/2 and X is Gorenstein outside two points. One of them is the origin
Q\ of the y' -chart ofX and it is isomorphic to (x, z, w)/Z5(4, 4, 1). The other point
Q2 is isomorphic to <C3/1*i(2, 1, 1). E is defined by u2+x3jrgT'.wt=6(l, z)x +
hT>.wt=9(l, z) =0 near Q\ .

Now, we divide the case into several cases.

§ 10.A. /zdeg4( y, z) has 4 distinct factors

10.8. If /zdeg4(j>, z) has 4 distinct factors, we may assume that the standard
embedding^' is given so that h^^y, z) —yz(y + Aiz) (j> + A2z) for some Ai , A2EEC
by a linear change of y and z. We shall treat this case in (10.9)-(10.13).

The following proposition is immediate from (10.2).

10.9. Proposition. For the standard embedding j, we have

^1/2(7) = (0, a) a=a0, a\ , o2, \ or o2, 2} .

In particular, v2,i = (j, cr2> 0 andv2,2=Q, o2}2) are the maximal elements in

10.10. We need two more pseudo weighted valuations, which naturally arise
if we consider the (y, <7i)-blow up of X. For each i = \ and 2, let Xt "• (*, y, z, u}/
2^2 ~> (xi9yi, zi9 Ui)/W*2 be the automorphism defined by

X* Cx/) =x, if (yd =y + A,z, x* fe) =^ and

and letjt=Xt°j • X ^ (xi9yi9zi9 i/I-)/Z2(0, 1, 1, 1) be the embedding. Then their
defining equations are

<Pi=ut+xl+gi(yt9zdxi+hi(yi9 z/),

where gf(j;, z) =g(j>— A/z, z), /zz(j;, z) =h(y— A/z, z). In particular, the degree 4
part of hi(y, z) is.yzC.y— A,-z)(j;— ///z) where fi\ = A i — A2, //2 = A2— AI. Letv2 ,3 =

O'i, t72,i), v2)4=0'2, C72, i), then v2, 3, v2, 4

10.11. Theorem. For eac/z z = l, 2, 3 and 4, f/ie v2,,--Wow wp TT, : X(^>X is
divisorial with discrepancy 1/2 and Sge^XawC?,, Q) — 0 = 1. ITzese 7rz are not
mutually isomorphic over X. Furthermore, there are exactly 4 divisors with dis-
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crepancies 1/2 over X.

Proof. By (10.4) (1), n\ is divisorial with discrepancy 1/2. As terminal
singularities of type (cD/3) have axial weight 2, we see from (10.4) (3) that
SfiejpjCawC^i , Q) — 1) = 1. Similarly, x2, KI and 7T4 have the same properties.

Let D be the Q-Cartier Weil divisor on X defined by y = 0 and let Et be the
exceptional divisor of TT, (z = l, 2, 3, 4). By (3.5), we have

^ r 1 [ D ] + £ i and

Hence TTI and TT/ (/=£!) are not isomorphic. Similarly n\9 7T2, 7T3 and 7T4 are not
isomorphic over X.

In order to count the number of divisors with discrepancies 1/2, we use n\ as
the first blow up. By (10.4) (3), the origin of the z-chart of X\ is the unique non
Gorenstein point of X\ and it is of type (cD/3). By using the results in section 9,
we see that there are at most 3 divisors with discrepancies 1/3 over X\ . By (5.3),
there are at most 4 divisors with discrepancies 1/2 over X (including E\). On the
other hand we already have 4 divisors E\, ... , E* with discrepancies 1/2 over X.

D

10.12. Proposition. Ifv'= (/, </) EET^i/i is maximal, then v'>v2iifor some
i = l, 2, 3 or 4.

Proof, If a = OQ, then v'~ (7, CTO) is not maximal by (5.4). In case o=o\ , it
is also easy to see that v'~ (7, GI) is not maximal.

Thus we may assume that o'=02, i or o2, 2 by (10.2). By symmetry, we assume
that o'=o2i i . We shall show that vx>v2, 3 or v'>v2, 4 assuming that v'^v2, i , vx^
v2> 2 • Let % : (x', y', z', u^/Z2 -^ (x, j, z, w)/Z2 be a liftable automorphism such
that 7"=% °/. Since vx> (7, CTI), we have

.^z, w))>y(2, 1, 1, 3).

Thus our assumption implies that a /-wK%*(j^)) =a/-wf(#*(z)) = 1/2. For the
defining equation (p'^%* (<p) off, we have c/-w? (^x ) = 3 since d (vx ) = 1/2. Hence
^ /-wt(%*(j+A1z))>3/2 or a /-wr(^*(j;+A2z))>3/2. This proves that v'>v2,3

orv / >v 2 > 4 . D

10.13. By (10.11) and (10.12), we see that (4.1), (4.4), (4.5) and (4.6)
hold if /Zdeg4(j>, z) has 4 distinct factors. Figure 4 (10. A) shows the elements of
T^i/2 /~ and their relations.
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§ 10.B. h d e B 4 ( y , z) has I double factor and 2 single factors

10.14. If hfcgt^y, z) has 1 double factor and 2 single factors, we may assume
that the standard embedding j is given so that h^^y, z) =yz2(y+z) by a linear
change in y and z. We shall study this case in (10.15)-(10.19).

The following proposition easily follows from (10.2).

10.15. Proposition. For the standard embedding j, we have

^1/2(7) = {(7, a)|a=ao, tfi, 02, i or <72,2}.

In particular, v2, i=0', a2, i) and v2, 2=(y, cr2,2) are f/ze maximal elements in
-^1/2(7).

10.16. As in (10.A), let *, : (x, 3;, z, w)/Z2-> (xi, j>i , Zi, iii)/Z2 be the
automorphism defined by

*i*(xi)=x, Z*(j>i)=J>+z, **(zi)=z and **(HI)=H,

and let 71 =*i o/ : JT-> (xt, j?i, Zi, t/i)/Z2(0, 1, 1, 1) be the embedding. The
defining equation of 7*1 is

wheregi(^,z)=g(j;— z ,z ) ,Ai ( j ; , z )=A(^— z,z) so that degree 4 part of AI(J; ,Z)
j^-z). Thenv 2 f 3 =(7i» ^

10.17. Theorem. For eae/z i = l, 2 and 3, r/ie v2,i-blow up ^ : Xt->X is
divisorial with discrepancy 1/2 and SQG^XawG?/, Q) — 1) = 1. T/zese TT/ are nor
mutually isomorphic over X. Furthermore, there are exactly 3 divisors with discrep-
ancies 1/3 over X.

Proof. By (10.4)(1), we see that each TT/ is divisorial with discrepancy 1/2.
By (10.4) (3), we also see that Seeje.(aw(Z/, Q) — 1) = 1. These ;rz are not iso-
morphic over X as in the proof of (10.11).

In order to count the number of divisors with discrepancies 1/2 over X, we
shall use n\ as the first blow up. By (10.4) (3), X\ has non Gorenstein point only
at the origin of

2, 1, 1, 0)
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which is of type (cD/3-2). There are exactly 2 divisors with discrepancies 1/3 over
this point by (9.14). Thus we know that there are at most 3 divisors with dis-
crepancies 1/2 over X by (5.3). On the other hand, we already know that there are
at least 3 divisors with discrepancies 1/2 over X. D

We can prove the following by the same method as the proof of (10.12).

10.18. Proposition. Ifv'= (/, of ) EE i^\/2 is maximal, then v'>v2, if or some
i=l, 2 or 3.

10.19. By (10.17) and (10.18), we see that (4.1), (4.4), (4.5) and (4.6)
hold if /Jdeg4(j>, z) has 1 double factor and 2 single factors. Figure 4(10.B) shows
the elements of if\/2/~ and their relations.

§ 10.C. /zdeg4( y, z) has 2 double factors

10.20B If /Zdeg4(j>, z) has 2 double factors, we may assume that the standard
embedding is given so that /zdeg 4(3^, z) —y2z2 by a linear change of y and z. We shall
study this case in (10.21)-(10.24).

10.21. Proposition* For the standard embedding j, we have

^1/2(7) = {(7, a) |a=ob, o\ , az, i or o2, 2} •

In particular, v2, i=(y, o2, i) and v2,2 = (y, 02,2) flre r/ze maximal elements in

10022. Theorem,, For each i = I and 2, the v2, ,- -blow up n{ :Xt-^X is divisorial
with discrepancy 1/2 and Sge^XawC?/, Q) — 1) = 1. These n\ and n2 are not
isomorphic over X. Furthermore, there are exactly 2 divisors with discrepancies 1/2
over X.

Proof. By (10.4) (1), we see that n\ and n2 are both divisorial with
discrepancies 1/2. By (10.4) (3), we also see that Sfie=*.(awG?i, Q) — 1) = 1. As
in the proof of (10.11), n\ and n2 are not isomorphic over X.

For the last part, we shall use K\ as the first blow up and let E\ be the
exceptional divisor of n\ . As in the proof of (10. 17), there are 2 divisors FI and F2

with discrepancies 1/3 over the origin of U2. These are obtained by the weighted
blow up with weight Ti=-|-(2, 1, 4, 3) and r2=^-(29 4, 1, 3) over C/3 respectively.
Since El is defined by j;=0, (3.5) and (5.3) imply that a(Fl9 JO = l/3 + l/2 '
4/3 = 1 and a (F2 , X) = 1/3 + 1/2 - 1/3 = 1/2. Thus E\ and F2 are the divisors with
discrepancies 1/2 over X. D
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We can easily prove the following as in the proof of (10.12).

10.23. Proposition. // v'= (/, a') eiT 1/2 is maximal, then v'>v2, i or v'>

V 2 . 2 -

10.24. By (10.22) and (10.23), we see that (4.1), (4.4), (4.5) and (4.6)
hold if /zdeg4(j, z} has 2 double factors. Figure 4(10.C) shows the elements of
^i/2/~ and their relations.

^ V 2 , 2 _

v0 - vi v° - Vi:::: - V 2 > 2 V°

(10.A) (10.B) (10.C)

Figure 4. 'Win for (cE/2) type terminal singularities

§ 10.D. hfcg 4(3;, z) has a triple factor and a single factor

10.25. In the case h^^y, z) has a triple factor and a single factor, we may
assume that the standard embedding j is given so that h^^y, z} =y3z by a linear
change of y andz. As in (9.C), we first consider the system of algebraic equations

(t) X3+a0) 4*+&o, 6 = 0, 3x2+a0i4 = Q, flo,6X+60, 8 = 0, fli

in x and divide the cases whether (t) has a solution or not.

10.26. We first assume that (t) has no solutions in x and we shall study this
casein (10.27)-(10.30).

10.27. Proposition. For the standard embedding j, we have

^1/2(7') = {(./, a)|a=a0, <7i, ̂ 2, i or o2, 2} .

/n particular, v2, i=(j, a2, i) anc? v2 ) 2=(j, a2, 2) are r/ie maximal elements in

/ By (10.2), it is enough to prove that (j, a3)^^ 1/2(7). If (7, cr3)e
^1/2(7), then (3.9.1) implies a3-Htf(00 = 5. Thus we get 00,4=60, 6=b0> 8=61, 5 = 0.
This is a contradiction since (t) has a solution x = 0. D
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10.28. Theorem. For each i = I and 2, the v2, / -blow up n{ iXt-^X is divisorial
with discrepancy 1/2 and Sgejf.(aw(^/, Q) — 1) = 1. These n\ and n2 are not
isomorphic over X. Furthermore, there are exactly 2 divisors with discrepancies 1/2
over X.

Proof. We see that n\ (resp. 7T2) is divisorial with discrepancy 1/2 by (10.4)
(2) (resp. (10.4) (1)). We also see that Sc^CawGF/, fi) - 0 = 1 by (10.4) (3).
Since singularities on X\ and X2 are different, n\ and n2 are not isomorphic over X.

We can prove the last part exactly by the same method as (10.22) using n\ as
the first blow up. D

We can easily prove the following as in the proof of (10.12).

10.29. Proposition. // v'= (/, c/) ̂ ^1/2 is maximal, then v'>v2> iorv>

V 2 . 2 -

10.30. Thus, if /Zdeg *(y, z) =y*z and if (t) has no solutions in x, then (10.28)
and (10.29) imply that (4.1), (4.4), (4.5) and (4.6) hold. Figure 5(10.D.a) shows
the elements of l^i/2/~ and their relations.

10.31. We next assume that (t) has a solution x = g^C and we shall treat
this case in (10.32)-(10.36).

In this case, X3jraoj4xz4+boi6z
6=(x~gz2y(xjr2gz2) as in (9.23). Let^i : (x,

y, z, w)/Z2 -^ (xi , y\ , z\ , ui)/Z2 be the automorphism defined by

=z and ^

and letji =%i °j : X ^ Od , j;i , z\ , i/i)/Z2(0, 1, 1, 1) be the embedding. Then the
defining equation of ji is

where g{(y, z^)=g(y, z^)-aQ,4z
4, hi(y, z)=fz2(g(j, z)-a0,4Z4) + Qi(y, z)~

bQi 6z
6) . Since ̂ c = f satisfies (t) , we know that r-wr ( gi ( y, z) ) > 3, r-wt (h \ ( y, z) )

> 5 if we denote r-wf ( jO =3/2, r-wf (z) = 1/2.

10.32. Proposition. For the embedding j\ , we have

^1/2(71) = {(y'i , a) | a=a0, o\ , a2) i , <72) 2 or a3}

particular, V3=(j ' i ,03) anc? vi,2=(7i, <72>2) are f/ie maximal elements in
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10.33. Theorem. The v3 -blow up 7T3 : X3 -* X and the v'2, 2-blow up K2:X2->
X are both divisorial with discrepancies 1/2 and these 7T3 and n2 are not isomorphic
overX. We also have Sfi6E*3(aw(X3, g)-l)=0and SQe^2(aw(Z2, Q)- 1) = 1.
Furthermore, there are exactly 3 divisors with discrepancies 1/2 over X.

Proof. By (10.5) (1) (resp. (10.4) (1)), we see that 7T3 (resp. 7T2) is divi-
sorial with discrepancy 1/2. By (10.5) (3) and (10.4) (3), we also see that
SeeEx3(awCf3, g) - 1) =0 and See*2(awC?2, g) - 0 = 1. These n3 and n2 are
not isomorphic over X since singularities of X2 and Jf3 are different.

In order to count the number of divisors with discrepancies 1/2, we shall use
7T3 as the first blow up. Let j£3 be the exceptional divisor of 7T3 . By (5.1), there is
a projective birational morphism it : Z — > X^ , which is a resolution of the origin
Qi of the x\ -chart U\ and the origin Q2 of the y\ -chart U2 , such that Kz = v* (A>3)

i?=iir-F| + S/=i-3-Gy, where S-F/ (resp. SG/) is the exceptional divisor of v over
(resp. g2). By (10.5) (3) and (5.1), we have

Z),a(F3,Z),fl(G2,Z)>l. Therefore
E3 , F\ and GI are the divisors with discrepancies 1/2 over X. D

10.34. Remark. Among these three divisors, two of them are obtained in
(10.33). The remaining one is obtained as the exceptional divisor of the v2> \ -blow
up 7T2> i : X2> i -> X where v2, i = (7, cr2) i) . This is not a divisorial blow up since X2j i
has non-terminal singularities.

10.35. Proposition. Ifv'=(f, d}$ELlW\/i is maximal, then v'>v3 or v'>
v 2 > 2 .

Proof. As in the proof of (10.12), v' is not maximal if o'=o0 or o\. Hence we
may assume o'=o2i \ or <73 by (10.2). We shall show that v'>v3 assuming that v'^
v 2 ) 2 . Since V 2 j 2 ~ v 2 j 2 , (10.29) implies that v'>v2> i~ (71, o2j i). If a=o2i i, then
v'~ (71, o2t 0 is not maximal by (5.5). So we assume 0=03 in the following.

Let% : (x',y',z, wx)/^2-^ (x\,y\,Zi, Wi)/Z2 be a liftable automorphism such
that x °j'=ji and we dence

Then ^ /=%* (<pi) is the defining equation of/. Since v'> (71, <72j i), we have

(2, 3, 1, 3).
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If X&, then y'2^<p' so that o'-wt(<p') <3, which is a contradiction. Hence yf^s.
Similarly we see that z/3^s and x'z'gzs. Thus we get o'-wt(s) >5/2. Letp =a;c'4-
6z'2 + (other terms) and q(x', y', z', «') =cy'+dz' + (other terms). Since % is an
automorphism and z $£r, we see that a ¥= 0 and d =£ 0. As o'-wt (<p') = 5, we see that
the coefficients of x'z'4 and z/6 are both zero. So we have ab(3bjt-6£d2} =b2(b +
3fc?2) =0, which shows that b =0. Thus we get e/-wf (/O >2. Therefore v'>v3.

D

10.360 By (10.33), (10.34) and (10.35), we see that (4.1), (4.4), (4.5) and
(4.6) hold if /Zdeg^J, z)=j;3z and if (t) has a solution in x. Figure 5(10.D.b)
shows the elements of lW\/i./~ and their relations.

10.37. By (10.30) and (10.36), we complete the proof of (4.1), (4.4), (4.5)
and (4.6) if ^deg4( J, z) has a triple and a single factors.

(lO.D.a) (lO.D.b)

Figure 5. "W\n. for (cE/2) type terminal singularities

§ lO.Eo /zdeg 4( y, z) has a 4-ple factor

10.38. If /Zdeg4(j>, z) has a 4-ple factor, we may assume that the standard
embedding y is given so that h^^y, z) =y4 by a linear change of y and z. As in
(10.D), we first consider the system of equations

(t) X3jra0i 4XJrbQt6 = Q9 3x2+a0j4 = Q9 a0, 6*+&o, 8 = 0, ai

inx.

10.39o We first assume that (t) has no solutions in x and this case will be
treated in (10.40)-(10.43).

10o40. Proposition., For the standard embedding j, we have

^ 1/2 00 = (0, cr) \o=0o, Oi or o2, J.

In particular, v2, i — (7, cr2, i) is the unique maximal element in ^1/2(7)-

Proof. This follows from (10.2) and a similar calculations as in the proof of
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(10.27). D

10.41. Theorem. The v2, i -blow up n\ : X\ — > X is divisorial with discrepancy
1/2 and See^jCawO?!, Q) — 1) = 1. The exceptional divisor of n\ is the unique
divisor with discrepancy 1/2 over X.

Proof. By (10.4) (2) and (10.4) (3), we see that n\ is divisorial with discrep-
ancy 1/2 and that Sgeje^awC?! , Q) — 1) = 1. For the last part, we shall use n\ as
the first blow up. The origin of the^-chart of X\ is of type (cD/3-3) and we can
extract the unique divisor F with discrepancy 1/3 over X\ by the weighted blow up
with weight -f(2, 1 , 4, 3) . So a (F, X} = 1/3 + 1/2 -4/3 = 1. Thus EI is the unique
divisor with discrepancy 1/2 over X. n

We can easily prove the following as in the proof of (10.12).

10.42. Proposition. Ifv'= (/, a') ^-)T1/2 is maximal, then v'>v2, i .

10.43. By (10.41) and (10.42), we see that (4.1), (4.4), (4.5) and (4.6)
hold if /zdeg 4(y, z) =y4 and if (t) has no solutions in x. Figure 6(10.E.a) shows the
elements of 1^1/2 /~ and their relations.

10.44. If (f) has a solution x = gEi<C9 then we shall change the embedding as
in (10.31). Let Xi • (x, y, z, u^)/Z2-* (x\, y\, z\, u\)/Z2 be the automorphism
defined by

d=y, %*(zi)=z and z

and let ji =xi °j : X ^ (xi ,yi,zl9 i/i)/Z2(0, 1, 1, 1) be the embedding. Then the
defining equation of 71 is

where r-wt(gi(y, z))>3, T-wt(hi(y, z))>5 if we set T-wt ( j;) = 3/2, r-H
1/2. Let

Then the exceptional divisor of the (y'i , a3)-blow up of X is isomorphic to {0 = 0}
, 1, 3, 5). We divide the cases whether 0 is irreducible and reduced, or not.

10.45. Under the notation and the assumption (10.44), we further assume
that the above 0 is irreducible and reduced. This case will be treated in (10.46)-
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(10.50).

10.46. Proposition. For the embedding j\ , we have

ifi/2(ji)={(ji, tf)|<7=0b, <7i, O2>ior cr3}.

In particular, v3= (71, cr3) is r/ze unique maximal element in T^" 1/2(71).

Proo/ By (10.2), it is enough to prove that (71 , a4), (71 , <75) ̂ 1^1/2(71). If
(7*1, a/) GTJT 1/2(7*1) for / = 4 or 5, then (3.9.1) implies <7/-w?(<pi)>6. Thus we get
0—u]3 which is not our case. D

10.47o Theorem. The v 3 -blow up 7T3 : X^-^X is divisorial with discrepancy
1/2 and ZQE j?3(awC?3 , g) — 1) =0. TTzere are exactly 2 divisors with discrepancies
1/2 over X

Proo/ By (10.5) (2) and (10.5) (3), we see that 7T3 is divisorial with discrep-
ancy 1/2 and that Sge^3(aw(^3 , Q) — 1) =0. For the last part, we can carry out
almost the same calculation as in the proof of (10.33). The only difference is the
coefficient of G\ in v* (E3). In this case, it is 4/3, so we have a (G\ , JO = 1. Thus
E3 and FI are the divisors with discrepancies 1/2 over X. D

10.48. Remark. Among these two divisors with discrepancies 1/2, one is
obtained in (10.47), and the other one is obtained as the exceptional divisor of the
weighted blow up associated to v2) i~ (7*1 , <72( i)- The latter one is not a divisorial
blow up as we saw in (10.34).

We can prove the following by a similar argument as in the proof of (10.35).

10.49. Proposition. Ifv'= (/, </) ̂ .Hf\n is maximal, then v'>v3 .

10.50. By (10.47)-(10.49), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (10.45). Figure 6(lO.E.b) shows the elements of if 1/2 /~
and their relations.

10.51. Next we treat the case 0 is reducible or not reduced. If 0 is reducible,
then 3gx2iZ2i+giiT-wt=3(yi9Zi)xi-\-hijr-wt=5(yi9Zi) is square and we can set

for some a, @, r^C. Let x± ' (xi,yi, zly ui)/Z2-* (*2, J>2? z2, w2)/^2 be the
automorphisms defined by
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and *

and \Qtj±=X- °ji : X •-> (x2, J>2, z2, H2)/Z2(0, 1, 1, 1) be the embeddings. Then
their defining equations are

<p±=ul + 2(ax2z2+l3y2zlJrrz2)u2+X2Jrg2(y2, z2)x2+A2(j?2, z2),

where g2(y, z) =gi, ™ f>4( J>, z), A2( j>, z) =A l f r-wr>6(^, z). We denote the power
series expansion of g2( y, z) and h2(y, z) by g2( y, z) = S/jfl^/V and A2( 3;, z) =
^i,jb^]yizj respectively.

10.52. Under the notation and the assumption (10.51), we further assume
that axiZi+jSyiZi-f 7iZi=£0. Then 7'+ andj- give different embeddings. We shall
treat this case in (10.53)-(10.57).

10.53. Proposition. For each embedding j± , we have

f#ri/2(j±) = { ( j ± , o)\o=o0, 01, 02,1, Oior oj.

In particular, v±= 0'±, cr4) is the unique maximal element in if/r\/2^j±}>

Proof. If (j±, o5)^itri/2(j±*), then (3.9.1) implies o5-wt(<p±)=9. On the
other hand, we easily see that o5 -wt (<pf ) < o5 -wt ( (ax2 yi +$yl + 7^2Z2) u^ < 8, which
is a contradiction. D

10.54. Theorem. Let n± : X± ->X be the v±-blow ups. Then n± are both
divisorial with discrepancies 1/2 and 2ge^+ (awG? ± , Q) — 1) =0. These n+ and n~
are not isomorphic over X. Furthermore, there are exactly 3 divisors with discrep-
ancies 1/2 over X.

Proof. By (10.6) (1) and (10.6) (3), we see that n± are both divisorial with
discrepancies 1/2 and Sgez+(awC?±, 2) — 1)=0.

For the last part, we shall use TT+ as the first blow up. Let E+ be the
exceptional divisor of n+ . The origin g of the w2 -chart of X+ is the unique non
Gorenstein point. We can resolve this by (5.1) and get a projective birational
morphism v : Z~>X+ such that J^z = v*fe+) + S?=i4^» where SF/ is the ex-
ceptional divisor of v over Q. By (10.5) (3) and (5.1),
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Therefore a (ft , X) =a (F2 , X> = 1/2 and a (FJ - , X) > 1 for i > 3. Thus £+ , FI and
F2 are the divisors with discrepancies 1/2 over X D

10.55. Remark. Among these three divisors with discrepancies 1/2, two of
them are obtained in (10.54), and the remaining one is obtained as the exceptional
divisor of the weighted blow up associated to v2, i~ (j± , o2, i). But this is not a
divisorial blow up as we saw in (10.35).

10.56, Proposition,, Ifv'=(f, a') ^^1/2 is maximal, then v'>v+ or v'>
V-.

Proof. We shall show that v'>v- assuming v'^v + . Let % : (xx, y ', z9 u'}/
Z2 — * (x2 , J>2 , z2 > u2)/Z2 be a liftable automorphism such that % oj' =y + . Then #>x

=%* (9+) is the defining equation of/. By (10.49), we see that v'>v3= (ji , <73) ~
(j+ , cr3). We may assume that a=a4 since otherwise vx is not maximal by (5.5).
Thus (3.9.1) implies that a'-wt (<p' ) = 6. Since v'> (j+ , a3), we also have

o /-wte(^*(jc2,3'2,Z2,M2))>y(4, 3, 1, 5).

By our assumption, we have a'-wK%* (1/2)) =5/2. Thus a^wf (^x ) = 6 implies that
tf'-wf (%* (ttz — 2(ax2z2+^V2^+r^2))) >7/2, which shows that v x >v_ . D

10.570 By (10.54)-(10.56), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (10.52). Figure 6(10.E. c) shows the elements of lW\n/^
and their relations.

10.58e Under the notation and the assumption (10.51), we next assume ax\z\
-f/SjiZi+rz? =0. We see thaty'+ =j- in this case. So we shall denote the common
embedding byj2 and its defining equation by <p2 . We also denote v4= (72, #4). Let
7T4 : X4 — > X be the v4 -blow up and E+ be the exceptional divisor of 7T4 . By (10.6)
(2), X4 has only canonical singularities and E+ is irreducible. We also see that
Jf4 is terminal outside the z2 -chart C/3 of X4 :

2, z1/2)/z4

We divide the case whether X4 has only terminal singularities or not.

10.59* Under the notation and the assumption (10.58), we first assume that
X4 has only terminal singularities. This case will be studied in (10. 60)- (10. 64).

10o60« Proposition For the embedding j2, we have
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1^1/2(72) = {(J2, o) a=a0, a\ ,o2,i, a3 or o4] .

In particular, v4= (72, (74) is the unique maximal element in ^1/2(72).

Proof. Assume that 0"2, cr5) ^^1/2(72). We see from (3.9.1) that o5-wt (<p2)
= 9, hence a[ 2]= 0 if 5i +7 < 12 and b$= 0 if 5i +7 < 1 6. These conditions imply that
the origin of the z2 -chart U$ of X* is non-terminal. D

10.61. Theorem. The v4 -blow up n4: X4->X is divisorial with discrepancy
1/2 and SCe*4(aw(^4, Q) ~~ 0 =0. There are exactly 2 divisors with discrepancies
1/2 over X.

Proof. Since E+ is irreducible, the first part follows. For the second part, we
can do almost the same calculation as in the proof of (10.54). The only difference
is the coefficient of Ft in it *(£+). In this case, it is 12/7 and a (Fl , JST) = 1. Hence
£+ and F2 are the divisors with discrepancies 1/2 over X. D

10.62. Remark. Among these two divisors with discrepancies 1/2. One is
obtained in (10.61), and the other one obtained as the exceptional divisor of the
weighted blow up associated to v2, i~ (72, o2, i). The latter one is not a divisorial
blow up as we saw in (10.34).

We can prove the following by almost the same method as (10.56).

10.63. Proposition. Ifv'= (/, a')^^i/2 is maximal, then v />v 4 .

10.64. By (10.61)-(10.63), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (10.59). Figure 6(10.E.d) shows the elements of Wi/2/~
and their relations.

10.65. Under the notation and the assumption (10.58), we next assume that
X4 has non-terminal singularities. We shall study this case in (10.66)-(10.70). In
this case, we first analyse the non-terminal singularities more closely. By (10.6)
(2), we need to study only the z2 -chart U3 of X4. We see from the description of
LT3 that the non-terminal singularities in C73 lies in { y = d, z = 0} for some 6 £ C. Let
#3 : 0*2, J>2, z2) M2)/Z2-> (x3, J>3, 23, Ui)/Z2 be the automorphism defined by

X*(x3)=X2, X * ( y '3)=J?2— &1, %3*(z3)=z2 and %*(ui)=u2,

and let 73 =£3 °J2 - X ^ (x3 , J>3 , z3 , ii3)/Z2(0, 1, 1, 1) be the embedding. Then the
defining equation of 73 is
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where g3(j, z)=g2(j+£z3, z), h3(y, z)=h2(y+dz?> , z). We denote the power
series expansion of g3(j>, z) and A3( y, z) by g3( J, z) = S/.yfl/^VV and A3( J>, z) =
^i,jbijylzj respectively.

Now let ;ri : Xi -> Z be the vi -blow up. We have X* —X*. since v4 ~ vi . Thus the
z3 -chart of J?i has non-terminal singularities. Moreover, these lies in j;=z=0.
Thus, in addition to the conditions r-wr(g3(j;, z)) >4 and T-wt(hi(y, z)) >6, we
see that

(3)_ C 3 ) _ ( 3 ) __, (3)_ , (3)_ . (3) _,(3) _,(3) _n
fll, 5— 00, 8— #0, 10 — #2, 6—01, 9—#l, 11—00, 12—00, 14 ~ U,

which implies that r-wt ( g3 ( y, z) ) > 6 and r'-wf (/i3 ( j, z) ) > 9 if we set r'-wt ( j;) =
5/2, r-wf(z) = 1/2.

10.66. Proposition- For ?/ze embedding j^, we have

T^i/2 O's) = {(73 , a) | a=a0 , ai , a2> i , a3 , a4 or a5} .

In particular, v5= (j'3, a5) w f/ze unique maximal element in 1^*1/2 0'3).

10.67e Theorem,, I7ze v5-6/ow wp 7T5 : X5->X is divisorial with discrepancy
1/2 and £ge je5(awC?5 , Q) — 1) =0. There are exactly 3 divisors discrepancies 1/2
over X

Proo/ We see that 7T5 : X5-^X is divisorial with discrepancy 1/2 and that
See^CawCfs , Q) — 1) =0 by (10.7). Let E5 be the exceptional divisor of 7T5 . By
(5.1), there is a projective birational morphism y : Z-^X5 such that, which is a
resolution of the origin of the j-chart of Jf5, such that Kz = v*(Kx5) + S?=iT^/,
where S?=i^- is the exceptional divisor of v. By (10.7) and (5.1), we have

V*(E5)=^1[E5] +yF1+yF2 + yF3 + yF4.

Hence a (Fi , JT) = 1/2 and G (Ff , X) > 1 for i > 2. There is also an index 3 point on
X5 , so there are at most 3 divisors with discrepancies 1/2 over X. On the other
hand, as we shall soon see in (10.68), there are at least 3 divisors with discrepancies
1/2 over X. D

10.68. Remark. Among these three divisors with discrepancies 1/2, one is
obtained in (10.67), others are obtained as the exceptional divisors of the (j, <72, i)-
blow up and the (j'3, a4)-blow up.
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10.69. Proposition. // v' = (/, o ) e HT 1/2 is maximal, then v' > v5 .

Proof. Let x - (*', y', z', u'^/Z>2-* (x3, j;3, z3, w3)/^2 be a liftable auto-
morphism such that x °J3=f- By (10.63), we see that v />v4= (72, #4) ~ (73, o^).
Thus we have

(4, 3, 1, 7).

For the defining equation <p'=%* (^3), we have cr'-wf (<p' ) = 9 by (3.9.1). Let

Since y'$£s andz'^5, we have ux£s.
If x'z'^.s, then x'zu^<p'9 so we get a'-wK#>') <8, which is a contradiction.

Thus we know that xz'^tp'. Similarly, we see that y'z'2^s. Assume that z'4e/?.
Since x'^p, we see that x'2z'4e<p', so that o-wt (<p' ) < 8, which is a contradiction.
Hence z/4^p, which shows that a'-wt(p^) >3. By a similar argument, we see that
z'3^> and z/7^s, which shows that a-wt(r)>5/2 and o'-wt(s)>9/2. D

10.70. By (10.67)-(10.69), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (10.65). Figure 6(10.E.e) shows the elements of n^i/2/~
and their relations.

10.71. Thus we complete the proof of (4.1), (4.4), (4.5) and (4.6) if
) has a 4-ple factor.

(lO.E.c)

v0 Vi v2 v3 v4

(lO.E.d)

v0 Vi v2 v3 v4 v5

(lO.E.e)

Figure 6. <W\n for (cE/2) type terminal singularities
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