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Some Limit Transitions between EC Type
Orthogonal Polynomials Interpreted on

Quantum Complex Grassmannians

By

Mathijs S. DIJKHUIZEN * and Jasper V. STOKMAN **

Abstract

The quantum complex Grassmannian Uq/Kq of rank / is the quotient of the quantum unitary
group Uq = UqM by the quantum subgroup Kq = Uq (n — /) X Uq (/). We show that (Uq, Kq) is a quantum
Gelfand pair and we express the zonal spherical functions, i.e. ^-biinvariant matrix coefficients of
finite-dimensional irreducible representations of Uq, as multivariable little e?-Jacobi polynomials
depending on one discrete parameter. Another type of biinvariant matrix coefficients is identified as
multivariable big ̂ -Jacobi polynomials. The proof is based on earlier results by Noumi, Sugitani and the
first author relating Koornwinder polynomials to a one-parameter family of quantum complex
Grassmannians, and certain limit transitions from Koornwinder polynomials to multivariable big and
little g-Jacobi polynomials studied by Koornwinder and the second author.

§1. Introduction

The first connection between ^-special functions and quantum groups was
revealed in the late 1980's by the interpretation of little ^-Jacobi polynomials as
matrix coefficients of irreducible representations of the quantum SU(2) group (cf.
[VS1], [Ms], [Kl]). In the past decade, many other connections between re-
presentation theory of quantum groups and the theory of ^-special functions have
been discovered.

For instance, Noumi and Mimachi [NM] showed that the zonal spherical
functions on Podles's one-parameter family of quantum 2-spheres can be identified
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with big g-Jacobi polynomials. In [K2] and [K4] , Koorawinder generalized these
results by replacing the notion of invariance under a quantum subgroup by the
notion of invariance under a twisted primitive element in the quantized universal
enveloping algebra. In particular, this infinitesimal approach allowed Koornwinder
to identify the zonal spherical functions on Podles spheres as a two-parameter
family of Askey- Wilson polynomials. Noumi's and Mimachi's results [NM] could
then be reobtained by sending one parameter to infinity. If both parameters are
sent to infinity, one obtains the interpretation of little g-Jacobi polynomials as zonal
spherical functions on the "standard" 2-sphere, i.e. the quantum 2-sphere which is
realized as the quotient of the quantum SU(2) group by the standard maximal
torus. On the level of g -special functions, these limits correspond to certain explicit
limit transitions from Askey- Wilson polynomials to big respectively little g-Jacobi
polynomials.

Analogous statements are valid for complex projective space, see Noumi,
Yamada and Mimachi [NYM] for the little g-Jacobi case, and Dijkhuizen and
Noumi [DN1] for the general case. In this paper we generalize these results to the
higher rank setting by interpreting certain subfamilies of Koornwinder's multi-
variable analogues of the Askey- Wilson polynomials and certain subfamilies of the
multivariable big and little g'-Jacobi polynomials (cf. [SI]) as zonal spherical
functions on quantum analogues of the complex Grassmannian

where U(ji) is the group of n Xn unitary matrices.
Koornwinder's infinitesimal approach to harmonic analysis on quantized

symmetric spaces was for the first time successfully generalized to higher rank cases
by Noumi [N]. The quantized symmetric spaces were now defined using in-
variance under certain two-sided coideals in the quantized universal enveloping
algebra. So far, this method has been successfully applied to all compact symmetric
spaces of classical type, e.g. [NS1], [NS2], [NDS], [Su], [ONI]. The related
zonal spherical functions can all be identified with Koornwinder polynomials or
Macdonald polynomials.

In particular, Noumi, Sugitani and the first author [NDS] introduced a one-
parameter family of quantum analogues of the complex Grassmannian. They
announced that the spherical functions associated with these quantized symmetric
spaces can be expressed as a two-parameter subfamily of the Koornwinder
polynomials.

In this paper we extend these results to the quantum subgroup case, i.e. we
determine the zonal spherical functions associated with the quantum analogue of
the complex Grassmannian (denoted by Uq/Kq) which is defined as the quotient of
the quantum unitary group Uq(n) by the obvious quantum subgroup Kq corre-
sponding to K= U(n — /) X 17(0- We show that the quantum space Uq/Kq can be
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formally obtained from the one-parameter family of quantum Grassmannians
defined in [NDS] by sending the parameter to infinity. We also show that this limit
transition on quantum Grassmannians is compatible with the limit transitions from
Koornwinder polynomials to multivariable big and little #-Jacobi polynomials,
which were previously studied by Koornwinder and the second author [SK].

In order to give a rigorous meaning to the above-mentioned formal limit
between quantum Grassmannians we use the recent result of the second author
[S4] that the limits from Koornwinder polynomials to multivariable big and little
#-Jacobi polynomials can be taken on the level of the orthogonality measures (in a
suitable weak sense). Indeed, this result allows us to rigorously compute the limit
of the quantum Schur orthogonality relations for the zonal spherical functions.
This in turn leads to a complete description of the harmonic analysis on the
quantum Grassmannian Uq/Kq. In particular, we obtain an identification of the
zonal spherical functions on the quantum complex Grassmannian Uq/Kq with
multivariable big respectively little g-Jacobi polynomials.

We remark that in the rank one case, there are several alternative methods for
determining the zonal spherical functions in the quantum subgroup case (see e.g.
[NYM], [VS2] ). However, the relatively indirect method using limit arguments
seems to be the only method which admits a direct generalization to the higher rank
cases of the complex Grassmannian.

There are strong indications that such limit arguments can also be applied for
other quantum compact symmetric spaces. Indeed, an important prerequisite for
applying such limit arguments is the existence of a suitable one-parameter family of
quantizations of the compact symmetric space under consideration. The occur-
rence of such a one-parameter phenomena on the quantum level is directly related
to the existence of a one-parameter family of covariant Poisson brackets on the
underlying symmetric space. The existence of such a one-parameter family of
covariant Poisson brackets in the case of a Hermitian symmetric space was
established by Khoroshkin & Radul & Rubtsov [KRR] and Donin & Gurevich
[DG] (see also [Dz] for more information and references).

The paper is organized as follows. In §2 we briefly recall some results on the
structure of the (classical) complex Grassmannian U/K and on the nature of its
zonal spherical functions. In §3 we recall the definition and the main properties of
the Koornwinder polynomials and the multivariable big and little g-Jacobi poly-
nomials. In §4 we collect some facts about the quantum unitary group that will be
heavily used in later sections. In §5 we determine the spherical dominant weights
for the quantum complex Grassmannian Uq/Kq. In §6 we recall the one-parameter
family of quantum Grassmannians and determine the corresponding spherical
weights. In §7 we express the zonal spherical functions on the one-parameter
family of quantum Grassmannians as a subfamily of the Koornwinder polynomials.
Many of the results in §6 and §7, previously announced in [NDS], are proved here
in full detail using so-called "principal term" type of arguments, cf. [NS2], [Su].
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Finally, in §8 we study the limit from the one-parameter family of quantum
Grassmannians to Uq/Kq, which in particular leads to the interpretation of
multivariable big and little g-Jacobi polynomials as zonal spherical functions on the
quantum Grassmannian Uq/Kq.

Throughout this paper we will use the convention that vector spaces are
defined over the complex numbers and that algebras have a unit element.

§2. The Classical Complex Grassmannian

Two general references for the contents of this section are Helgason [He] , and
Heckman and Schlichtkrull [HS] .

Throughout this paper, n>2 and !</<[y] are fixed integers. LetG-"=GL(«,
C) denote the general linear group with Lie algebra g = gl(n, C), and U'.= U(rC)
the unitary group with Lie algebra u. Let TCC7 denote the maximal torus
consisting of diagonal matrices in U. Write l)Cg for the corresponding Cartan
subalgebra. Let eij (!</, j<n) denote the standard matrix units. The matrices
hi '=en (1 </<«) form a basis of I). Write £/ ̂ f)* (1 <i<n) for the corresponding
dual basis vectors, and define a non-degenerate symmetric bilinear form on I)* by
<£/ , ey-> =dfj . The usual positive system R + in the root system R := R (g, ty) consists
of the vectors Bt—Bj (1 </</<«). Let P=Pn:= ® !<,-<„ Ze, denote the rational
character lattice of G(equivalently, the lattice of analytically integral weights of C/).
Recall that the cone of dominant weights P + =Pn

+ is given by

A2>->U. (2.1)

Denote by < the (partial) dominance ordering on P. One has / /<A if and only if

and S //,= !] A/. (2.2)

We write K:=U(n-l)X U (/) and I:=gl6i-7, C)©gl(/, C) for the corre-
sponding complexified Lie algebra I. K is regarded as a subgroup of U via the
embedding

(2-3)

The pair (U, K^) is symmetric. Indeed, the involutive Lie group automorphism
9:U^U defined by <9(g) :=JgJ with

/:= S ekk-Hek'k>, (fcx:=n + l-fc) (2.4)
\<k<n-l \<k<l

has fixed point group K. The differential of 6 at the unit element e£^U, extended
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C-linearly to a Lie algebra involution of g, will also be denoted by 0. The + 1
eigenspace of the involution 0 : g -> g is exactly the Lie subalgebra I. Writing p for
the — 1 eigenspace of 9 we have the eigenspace decomposition g = f © p.

For certain purposes, it is more convenient to consider the involution & : g — >
g defined by ff(X} '-=J'XJ' with

— 2 e*fc'~ 2 efc'fc. (2-5)

Since J' is conjugate to /, the involution 9' is conjugate to 9 by an inner auto-
morphism of g. Observe that both 9 and ff leave uCg invariant.

Let g = I'©p' be the eigenspace decomposition of ff into +1 and —1 eigen-
spaces. The intersection i) fl f is spanned by the elements hi+h? (1 </</) and ht (/
</</'), whereas the intersection a ^ f y f l p ' is spanned by hi—h? (!</</) and is
maximal abelian in p'. The positive system of R taken with respect to the
lexicographic ordering of I)R ".= 2"=i K hj relative to the ordered basis hi—hi', ... ,
hi—hi'9h\-\-hi'9 ... , hi+hi', hi+i, ..., hn-i coincides with R+ .

Write £,- for the restriction of Bf to a (!</</). The root system JRCI)* is
mapped under the natural projection fy* — »• a* onto the restricted root system 2'
= S/(g, a). Choose the positive system in S' with respect to the lexicographic
ordering of aR := ^R fl a relative to the ordered basis h\—h\'9 . . . , hi — hi' of aR . This
ordering is compatible with the lexicographic ordering of I)R introduced above in
the sense that /I ̂ I)| is positive if its restriction to OR is strictly positive. The
positive root vectors in Zi' are

e; (l<i</), e;±£/ (1</<7<0, 2e,' (!</</),

the roots e,- (!</</) occurring only if « ̂ 27. S' is isomorphic with 5C/ if n 7^27
and isomorphic with Ciifn=2L The root multiplicities corresponding to the short,
medium, and long roots are

mi = 2(n-2l\ m2 = 2 (/>!), m3=l. (2.6)

For later purposes, it is convenient to rescale the root system S' by a factor 2. So
we see S:=2S'Ca*, e,-:=2e/ (!</</). Then the corresponding weight lattice
Ps Ca* is the Z-span of the £/ (!</</), and the set PS of dominant weights // =
2i///£i (taken with respect to the lexicographic ordering on a^ introduced above)
is characterized by the condition //!>•••>/// >0. The dominance ordering < on
PS is explicitly given by

(2.7)
1=1 1=1

Let K'dU denote the connected subgroup corresponding to f . The symmet-
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ric pairs (£7, K) and (17, K'} are Gelfand pairs, i.e. every finite-dimensional
irreducible representation of U has at most one ^-fixed vector up to scalar
multiples. According to [He, Chapter V, Theorem 4.1], a highest weight AGP +

is ̂ '-spherical, i.e. corresponds to a representation with a non-zero JT'-fixed vector,
if and only if the restriction of A to t) fl f is zero and the restriction of A to a lies in
PS . Hence we get the following result.

Theorem 2.1. The set P/ CP + of K -spherical dominant weights consists of all
dominant weights of the form

A : = U i , ..., A / , 0 , ...,0, -A/, ..., -AO.

Write A * := (A i , . . . , A/) for a dominant weight A ^P/ . The assignment A I — >
A * defines a bijection of P/ onto PS - Let G7rQP/ be the spherical weight for which
&} = ( T) . Then Pf = ®i <r </ Z^ Gtr . We will call {&jr} U i the fundamental domi-
nant spherical weights.

Let A denote the algebra of polynomial functions on U, A(T) the algebra of
polynomial functions on the maximal torus T. A (T) may be naturally identified
with the algebra C[z±r] =C[zf\ ..., z^1] in n variables z/ (l<i</i) in the
following way. Observe that T—ify^/ImP via the exponential mapping, where
P : = © ! <; <„ Z hj . Then the coordinate functions zy can be defined by zy :=esj, where
efj ( [AT] ) := efj w for [X] F r with X&fa a representative of [X] . More explicitly,
Zj is given by

zj : diag(^i , *"2, ... , *"») h— ^', (fte [0, te))

where diag (a\, ... , fl«) is the diagonal matrix with ai, ... , an on the diagonal.
Let 2tf d A denote the subalgebra of Jr'-biin variant functions. One has the

decomposition

tf= © tf (A), Jf(A):=^niF(A), (2.8)
Aep/

denoting the subspace spanned by the matrix coefficients of the irre-
ducible representation of highest weight A . Each of the subspaces Jf (A) (A E=P/)
is one-dimensional, since (U9 K') is a Gelfand pair. Any non-zero element #>(A) of
ffl (A) is called a zonal spherical function.

Set

Ti:=exp(iaR)/(exp(iaR) n^O-WR/MC^, (2.9)

with Qs ^OR the coroot lattice of S. More explicitly, the coroot lattice Qs is the
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Z-span of the elements yCA/ — A/0 (!</</), exp(/aR) are the diagonal matrices

diag(e"i, ...ei0i, 1, ..., 1, e-"i, ..., <T"0 (0,GE [0, 2ar)),

and exp(faR) HiC' are the matrices in exp(mis) of order 2.
Write log : T/ — *• m^ for the multi-valued inverse of the exponential map exp :

is®. ~~^ T/ . Similarly as for A (T) , the algebra of polynomial functions on T/ may
be identified with the algebra CC*111] of Laurent polynomials in the / variables Xj
(1 <j </), where the identification is given by x/(0 :=ee/losto> . in other words, the
map Xj is given by

If follows that the algebra C[x±1] of polynomial functions on T/ can be
naturally embedded in the algebra C [z*1] of polynomial functions on the maximal
torus T by the assignment

Xi=ZiZn\ X2=
:Z2Zn-l, . - . , Xi=ZiZn + l-l. (2.10)

Let 6 := ©/ denote the permutation group on / letters, W := iT/^Zj XI ®/ the Weyl
group of S - The natural action of 'W on aR descends to T/ . Hence ^ acts nat-
urally on the algebra CCx*1]. Write C^*1]^ for the subalgebra of iT-invariant
Laurent polynomials. By Chevalley's restriction theorem and the above-mentioned
natural embedding of C[x±1] into Cfe*1], we have the following theorem.

Theorem 2.2. Restriction to T induces an isomorphism of 3F onto the algebra
<C[x±l~]ifr of i^ -invariant Laurent polynomials in the variables x/ (!</</).

By Theorem 2.2 the direct sum decomposition (2.8) of $? gives rise to a
unique (up to rescaling) linear basis of C[x±1]ir. This linear basis can be
expressed in terms of EC type Heckman-Opdam polynomials, which we will now
define.

Let VHO denote the set of triples k'-=(ki9k2, &3) of real numbers such that k\
+fc3 > ~ y , k2 >0, fc3 > — y . Define an inner product < • , • >#o = <\' ,• }k

Ho on
C[x±lV by

L
J T

; k}dt. (2.11)

Here dt denotes the normalized Haar measure on the torus T/ . The continuous
positive weight function t I — > AHO (t ; /c) on T/ is defined by
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; *) == n (eT«a,i°gCO>_e-.-<*,iog(0>) (2

The multiplicity parameters ka are by definition equal to fc,- (/= 1, 2, 3), depending
on whether a GE 2 is a short, medium, or long root. It / = 1 there is no dependence
on k2.

Recall that the usual orbit sums

^Cx):=S^ U&P^) (2.13)
yeiTA

form a linear basis for the algebra C[x±l~\^ . The Heckman-Opdam hyper-
geometric orthogonal polynomials associated with the root system S=I?C/ (cf.
[HS, Part I ]) are the uniquely determined family {Pf°UeP^} such that

(i) Pf°=mA + Sc^m^ (ii) <Pf° Jm^o=Ofor^<A. (2.14)

It is proved in [HS, p. 18] that, for any k^VHo, the Pf°Gt ; k} are mutually
orthogonal with respect to the inner product (2.11).

In the following theorem the zonal spherical functions on the symmetric space
U/K are expressed as BC type Heckman-Opdam polynomials (cf . [HS, p. 76] ) .

Theorem 2.3. Under restriction to the maximal torus T, the zonal K' -spherical
function <p(X) (A EEP/) is mapped onto (a scalar multiple of) the Heckman-Opdam
hypergeometric polynomial P^°(x ; fc) with /^—ym/ (/— 1, 2, 3).

Of course, the zonal ^-spherical functions can be described in the same way,
since the subgroups K and K' are conjugate.

For later purposes, it is convenient to rewrite the zonal spherical functions in
terms of generalized Jacobi polynomials, which are defined as follows. Write
C[x]s for the algebra of symmetric polynomials in the variables x/ (!</</). A
linear basis of this algebra is formed by the monomial symmetric polynomials
mA(x):=S^eSA^ (A£P^). Let Vj denote the set of triples (a, £, r) of real
numbers such that a, fi > — 1 and r >0. For any (a, ft, T)^¥J, we define an inner
product < - , - > / = < • , - > ^ A T o n C [ x ] s b y

<P, Q>J-= - PCx) gOO ̂ /Cx ; a, 13 ; r)dx, (2.15)
u / X j = 0 J x^ — 0

with dx=dx\ ... dxn and

J/x ; a, /8 ; T) := ft (1 -x,)"*f | A (x) | 2r, (2. 16)
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where ^/(x) "•= IL-</Cx/— x/) is the Vandermonde determinant. The generalized
Jacobi polynomials {P/(x ; a, fi ; r) | A £Ps } (cf. Vretare [Vr] ) can now be defined
by the same conditions (2.14) with ra^ replaced by m^ and < • , • )#o replaced by

< - , - > , .
As shown in [SK, §3], the simple change of variables xf \ — > — -^ (xt+xT1 —

2) transforms the symmetric polynomials P{ into (a scalar multiple of) the *W-
in variant Laurent polynomials P^°. The parameter correspondence is

a=k!+k3-—, P=k3-—, T=k2.

Under this change of variables, the orthogonality relations of the Heckman-Opdam
polynomials with respect to < • , • }Ho become the orthogonality relations of the
generalized Jacobi polynomials P/ with respect to ( - , • ) / • The integral of the
weight function Aj^x ; a, & ; r) was first evaluated by Selberg in his well-known
paper [Sb] :

f1
 o - P 0 n \x-xj\* uxf

J-i-o J.ro,« ,-i

M r(a +^ + 2+ (/+y-2)r)r(r+ 1)

By the above-described relation between EC type Heckman-Opdam polynomials
and generalized Jacobi polynomials, the zonal spherical functions in Theorem 2.3
can be rewritten as generalized Jacobi polynomials with parameter values a=n —
21, £ = 0andr=l .

Observe that the zonal spherical functions, being matrix coefficients of
irreducible representations, are mutually orthogonal with respect to the L2 inner
product onj4CL2(£7, c?g), where dg is the normalized Haar measure on U (Schur
orthogonality). The restriction of the L2 inner product to the algebra ffl of bi-K'-
invariant matrix coefficients coincides under the isomorphism of Theorem 2.2 with
the inner product < • , • }HO on C[x±l^ up to a non-zero positive constant. This
constant can be explicitly determined using the evaluation of the Selberg integral
(2.17).

§3. BC Type g-Hypergeometric Orthogonal Polynomials

In this section we recall three families of multivariable (BC type) basic
hypergeometric orthogonal polynomials. Later on, certain subfamilies of these
multivariable orthogonal polynomials will be interpreted as zonal spherical
functions on quantizations of the classical complex Grassmannian. These families
are ^-analogues of the generalized Jacobi polynomials (or, equivalently, q-
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analogues of the BC type Heckman-Opdam polynomials) and multi variable
analogues of well-known families of basic hypergeometric orthogonal polynomials
occurring in the Askey tableau [AW] .

We start with introducing some notations and conventions. We fix Q<q < I in
the remainder of this paper. The g-shifted factorial is given by

(fl j^i-no-^fl) c/ez+), (a j^oo^n (i-g'a).
j=0 j=0

We use the shorthand notation

U {°°})

for products of g-shifted factorials. Fix JVeZ and a, /3£<C. The Jackson ^-integral
truncated at N is defined by

/
& CP c®

f(x)dq>Nx:= I nf(x)dqtffX — \ nf(x)dqtNx,CL u 0 i/O

*+I) if #>o,
:=o if JV<Q.

The (non-truncated) Jackson g-integral is defined by

I f(x)dqx '•= lim I f&)dqtNx,
J a N-* oo j a

provided the limit exists. The three families of multivariable orthogonal polyno-
mials we recall in this section are the Koornwinder polynomials (cf. [K3] , [S3] ,
[S4]), and the multivariable big and little g-Jacobi polynomials (cf. [SI], [S4]).
The Koornwinder polynomials are multivariable analogues of the well-known
Askey- Wilson polynomials. In the multivariable setting, these families depend on
one additional deformation parameter t £ (0, 1). Since we only need the case t =
qk with k > 1 integer in this paper, we restrict ourselves to recalling the definitions
and results for this special case. We first specify the parameter domain Vx and the
orthogonality inner product <( • , • X* for each family (X=K,B9L\ where K stands
for Koornwinder polynomials, and B resp. L stands for big resp. little g-Jacobi
polynomials.

For the case X^K we refer to [K3], [S3], [S4]. Take VK to be the set of
quadruples t_'= (t0, t\, t2, t$) such that

(1) r0, fi, f2, *3 are real, or appear in complex conjugate pairs,
(2) tttj£R*i for 0</</<3.

. For eG{r0 ,f 1 , ^2 , ^3} with \e >1, let Ne^Z be the largest integer such
that | eqNe | > 1. Take Ne := - 1 if | e \ < 1. Let ST, dxl - - • dxk denote fc-fold contour
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integration along the complex unit circle in counterclockwise direction. For 0<m
</ define a sesquilinear form < • , • > m , 9 ) r on the space C[x±1]'r by

<P oy .=
 2m(-} v rei ... fe<* r... r

^ y'm' (M)'-"1 -./^ J «1=° J *»=° J J <W1. ..-.'/)^T /_m

dxm+i

(1—g)xi (1—

Here the sum is taken over all e^GE {f0, t\, t2, ^3}, and the partial weight function
4m(x', liq, qk} is defined by

m /

//m(x):=n wi(x r ; er;fr,gr, hr\ q) H w2(x,; i ;0) II (xf^' ;^) f c ,
r=l s=m + l i<y

£,£ '£{±1}

with w2 the continuous weight function of the one-variable Askey- Wilson polyno-
mials,

, , N . 2 ~ 2

W2(x ; 1 ; q) .= ,
(t0x, t0/x, tix, ti/x, t2x, t2/x, t3x, h/x ; q)™

and

f i f i -\ -w^eq1 ;e;f,g,h;q) -=

where the/, g, /z are such that ( e , f , g, A) is a permutation of (f0, fi , t2, t^). Then

-= <p, e>m CP,
m=0

defines a positive definite inner product < • , • X^O , • >i ) 9 , r , which is symmetric
in the parameters t0 , t\ , f2 , t3 .

The integral of the weight function *fK,q,t:==(l, Oi,9,f is a g-analogue of
Selberg's integral (2.17):

t^q^t^t1 I,t0t2t
j I,t0tit

j I,tit2t
j l,tihtj I,t2t3t

j 1 ; g ) c o

(3.2)

For the case \tQ\, \t\ , 1 1 2 \ , | f 3 1 < 1 this was first proved by Gustafson [G] . The
general case was proved in [S4] .

For the multi variable big and little g-Jacobi polynomials (X=B,L) we refer to
[SI] and [S4] . Take VB to be the set of quadruples (a, b, c9 d} such that c, d >0
and
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-c/fl?, \/q), b£L(-d/cq, \/q), (3.3)

oia=cz, b=—dz withzeC\R. Fix (a, b, c, d)^VB and define a positive definite
inner product < • , • >B = < • , • >&,*,; c,' d on C [x] s by

<p,Q>B=fc P ••• P pooeoo/^GcXx,...^*,, (3.4)
»>/ Xj — — a J X2~ ~d J X[— — a

with weight function JB(X ; a, b9 c, d ; q, qk^) given by

^GC)=//GC) iWooruf-V'**;/*,;^-.. (3.5)1=1 i<j

Here //(x) := Hi </<;•</ GC/— x/) is the Yandermonde determinant and

, ,. (gx/c, -qx/d; q}^
WB(X ; a, b, c, d ; q) .= ^ - , ., .

(gox/c, -qbx/d;q^oo

is the weight function of the one-variable big g-Jacobi polynomials. The evaluation
of the integral ./&,£,'•*:= <1, l>Jf^,c/d was first conjectured by Askey [A] and
subsequently proved by Evans [E] :

A
- (36)

where f =9* (/c> 1 integer), a=qa , b =q& and with

the <7-Gamma function. Note that (3.6) is another ^-analogue of Selberg's integral
(2.17).

Finally, take VL to be the set of pairs (a, 6) such that a e (0, \/q) and b 6E
( — °°, 7/^) . Fix (a, 6) G VL and define a positive definite inner product < • , • >L =
<• ,- >!•.*,, on C[x]e by

<p, e>L= f - f PW goo A^XX, ... dqXl, (3.7)
i / X i — 0 u Xi — 0

with weight function AL(x;a,b;q, qk} given by

jL(*)=j(x) riwiCx,) nxi2*-1^1-^/** ;«)»-!. (3.8)
1 = 1 i<7

and
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L , .
(qbx ; q)oo

the weight function of the one-variable little g-Jacobi polynomials. The evaluation
of the integral ./£',*, t : = < l > 1 >£',«,* was conjectured by Askey [A] and proved
independently by Habsieger [Ha] and Kadell [Ka] :

where £=<?fc (fc> 1 integer), a = qa , b=q^ . This integral is yet another # -analogue
of Selberg's integral (2.17).

We now define the corresponding families of orthogonal polynomials.
It will be convenient to write mf (AEiPs) for WA C^— ̂ 0 or m* (X=B, L).

Fix t=qk (k>l integer) and fix parameters in Vx. The Koorn winder, multi-
variable big resp. little g-Jacobi polynomials {Pf|/l£Ps} (X=K, B resp. L) are
uniquely determined by the following two conditions :

(i) Pf=mf+ EcJmJ, (ii) <P?,m*>x = QfoTVL<L (3.10)

After suitable rescaling of the parameters, the Koornwinder polynomials tend
to the Heckman-Opdam hypergeometric polynomials associated with EC\ in the
limit q-+ I (cf. [Djl, §4]), and the multivariable big resp. little g-Jacobi poly-
nomials tend to the generalized Jacobi polynomials in the limit q-*l (cf. [SK,
Thm. 5.1]).

TheP/ are joint eigenfunctions of a certain second-order ^-difference operator
Dx which is self -adjoint with respect to { • » " ) * :

i)j--Id) &=K,B9L), (3.11)

where Tq-\j is the (multiplicative) g±1-shift in the variable jc/. In the case X=K
one has explicitly

The eigenvalues in this case are given by
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:i;«,0 = 2
7 = 1

For the ^-difference operators Dx and their eigenvalues in the cases X=B, L see
[SI].

As shown in [S3] CAT=JO and [SI] (X=B, L), the self-adjointness of Dx with
respect to ( • , • )* may be used to prove full orthogonality :

<Pf,P/>T = 0 a,//GEP^,A^//). (3.12)

We remark that for 1^ F# with £0 , t\ , f2 , Us | < 1, the orthogonality measure
for the Koornwinder polynomials reduces to the completely continuous orthogo-
nality measure which was considered for the first time by Koornwinder [K3] .

For certain values of the parameters, for instance t§t\tit^ \_—q, 1), one has
Ex^E* if X<IJL (cf. [SK, Prop. 4.6] ). The Koornwinder polynomials may then be
characterized by the conditions

(i) P/ =1*1 +2 <:**„, (ii) DfPf=E?Pf. (3.13)
0 < A

Using this characterization, we can read off certain elementary symmetry proper-
ties of the Koornwinder polynomials from the corresponding symmetry properties
of Koornwinder's second-order ^-difference operator and its eigenvalues. In the
following lemma we formulate two of them.

Lemma 3.1. Let t^VK such that £0*1*2*3 ^ [ — q, 1). Then the Koornwinder
polynomial PA(. ; 1 ; q, 0 is symmetric in the four parameters to, t\, t2 and £3, and
satisfies

where — * :=(— x\, ..., —xi) and, similarly, ~t_=(—t0, —t\, —t2, ~ti).

Write |A| :=Z7=iA, for A^Pf, andcx:=(cxi, ...,cx/) forc^C. We have
the following limit transitions from Koornwinder polynomials to multivariable
big resp. little g-Jacobi polynomials (cf. [SK], [S2]). Fix A^P^ and k> 1. For
(a, b, c, cTj^Vs we have the limit transition

Jim -F ; l,(e) I 9, 9*=^U ; «, *, c, d ; 9) «*), (3.14)

where
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1*00 := (e"1 (*c/d)t -g-^/Ot £a(qd/c^, -£b(qc/d^. (3.15)

For (a, b}^VL we have the limit transition

2^- ; iL(e) ; q, qk=Pf(x ; a, b • q, qk\ (3.16)
q2

where

IL(» := (e~lq^9 ~aq±, £bq±, -q^). (3.17)

To understand how ^"-invariant Laurent polynomials can tend to symmetric
polynomials observe that lime J O £ | A | ̂ uOc/e) ^mxCc) (A^Ps)-

Let us write mf (!</</) for the orbit sum in C[x±1]ir corresponding to the
I'-th fundamental weight (X=K) resp. for the i-th elementary symmetric polyno-
mial in C[x]s Gr=jB, L). It is known (see [B, Ch. VI, §4, Thm. 1]) that the mf
(1^/<0 are algebraically independent and generate the algebra C[jc±1]1(r resp.
C [x] s . It therefore makes sense to introduce the notation

(3.18)

The f$ are (non-symmetric) polynomials in / variables. We may reformulate the
above limit transitions in terms of these polynomials in the following way.

lim (se *) P?(s£J>i, ..., s*eyi; IL(^) ; q, qk}=Pji(.y\, ..., yi; a, b ; q,
£ J O

lim (sf O^'/SCwn, ... , 4y, ; i,(e) ; q, qk) =Pf (y,, ... ,y,;a,b,c,d; q, <?*)
£ 4 0

(3.19)

with s£ '-=q^/£ (cc?)^", and

(3.20)

Important for our applications of the multivariable orthogonal polynomial
theory to the study of zonal spherical functions on quantum Grassmannians is the
fact that the limit transitions (3.14) and (3.16) extend to rigorous limits on the
level of the orthogonality measure. This means that the orthogonality measure of
the Koornwinder polynomials tends (in a suitable weak sense) to a non-zero
multiple of the orthogonality measure of the multivariable big respectively little q-
Jacobi polynomials in the limit (3.14) resp. (3.16) (see [S4]). In particular, the
quadratic norms of the multivariable big and little #-Jacobi polynomials can be
derived by computing the limits (3.14) and (3.16) in the quadratic norm
expressions of the Koornwinder polynomials (cf. [S4]).
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We reformulate this observation as follows. For parameters 1GE VK , (fl, b, c, d)
G=F* and (a, 6) £ Fz, , let the renormalized quadratic norms JVjr(A) :=JVjc(A ; 1 ; <?,
0, ^U) :=#!,(A ; a, 6, c, rf ; g, 0 and ^(A) :=^(A ; fl, 6 ; g, 0 for A<=P^ be
defined by

#r(A):= ^y* , (Z=K,B,L^ (3.21)
\I, l/jf

By the positive-defmiteness of < • , • >*, it follows that Nx(h) is strictly positive for

Proposition 3820 ( [S4] ) For (a, b, c, d^VB, we have

lim (eCcd/^T^IjVitt ; fc(e) ; ̂ , 0=^(A ;a,b,c9d', q, 0,
e|0

For (a, 6) G FL , we have

lim (£g-i)2|Ai^(A ; fe(e) ; g, O=^L(A ; a, 6 ; g, 0,

Remark 3.3. For the explicit evaluations of the quadratic norms of the
Koornwinder polynomials and the multivariable big and little g-Jacobi polynomials
in terms of products and quotients of g-Gamma functions, we refer the reader to
[S4]. The quadratic norm evaluations for the Koornwinder polynomials were
derived earlier in the paper [Dj2] .

§4. Preliminaries on the Quantum Unitary Group

Various aspects of the quantum unitary group have been studied in many
different papers. Our main references will be [NYM] and [N, §1], which are
based on the ,R -matrix approach described in [RTF].

The quantized coordinate ring Aq (Mat (n, C)) of the space of nXn complex
matrices is defined as the algebra with generators tfj O<Z',J'<H) and relations

tik tjk = qtjk tik (i < j ) ,

In more compact notation, these relations may be written RTiT2 = T2TiR. Here
T\'.= T®I, T2'-=I®T(I unit matrix, ® the Kronecker product of matrices), and

R := S qsijeii®ejj+ (q~q~1} S e^e^ (4.1)



POLYNOMIALS ON QUANTUM GRASSMANNIANS 467

with the efj (l<i, y<n) denoting the standard matrix units. The matrix R is
invertible and satisfies the Quantum Yang-Baxter Equation.

The quantized coordinate ring^ig(G) of the general linear group G=GL (n, C)
is defined by adjoining to Aq(Mat(n, C)) the inverse det^1 of the quantum
determinant

det,:= S (-?)/(ff)fia(n ... tnaW^Aq(Matq(n, C))

(/ denoting the length function on (5), which is central. It follows from [NYM,
Lemma 1.5] that Aq (Mat (n ; C)) has no zero divisors.

There is a unique Hopf algebra structure on^49(G) such that (f/7) becomes a
matrix corepresentation. The antipode S : Aq(ff) -*Aq(0) is given on the gener-
ators by

Sfe,.) :=(-<?)'-' ftCdet-'

with ic'-= {1, ... , n}\{i}, and with the quantum minor f/ for subsets /= {M < • • •<
i r ] , J= [ji < •"</,} C {1, ...,«} defined by

Aq((j) becomes a Hopf *-algebra by requiring (fy) to be a unitary matrix Co-
representation. In particular, this means that the *-structure is given by t* *.=S(f/i).
We write Aq(U^^Aq(JJ(n}} for Aq(G} endowed with this *-operation. The
mapping r".= * oS is a conjugate-linear involution on^49(t/) such that t(ti^=tji.

The quantized Borel subgroups AqQS^ of upper resp. lower triangular
matrices are defined as the Hopf quotients of Aq (G) by the relations

ttj = Q (/>/) resp. fy = 0

The corresponding projections will be denoted by n± : Aq(G} -^AqQ}^. Note
that the zi'.= 7r±(tii) (!</<n) in ^4g(5

±) are invertible. Corresponding to the
diagonal subgroup Tct/(n) we have a natural surjective Hopf *-algebra mor-
phism IT of Aq(lJ} onto the Laurent polynomial algebra^(T) '•=C[zitl, ..., z^1].

Next, we briefly recall the "global" description of finite-dimensional corep-
resentations of Aq(jT). For every A£=P (cf. §2), we may define a linear character
(i.e. one-dimensional corepresentation) zl'-—z\\ •" z*p of^4g(5±) or^4(T). Using
these linear characters it is completely straightforward to define (highest) weight
vectors in left or right ^(LO-comodules. We take highest weight vectors of right
resp. left ^4g(t/)-comodules with respect to Aq(B

+^) andAq(B~^) respectively. For
instance, a highest weight vector of weight A ^P + in a right ^4g(£/)-comodule M is
a non-zero vector v EEM such that
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PM '- M — > M®Aq(U} denoting the comodule mapping. Finite-dimensional Aq(JJ}-
comodules are then completely reducible and unitarizable (see, for instance,
[NYM] , [DK2] ) . Recall that a right Aq (17) -comodule M endowed with a positive
definite inner product (taken to be conjugate linear in the second variable) is called
unitary if

S <V(l ) , W(l)>w£)V(2) = <V, W>1 (V, W^M),
(v)(w)

where the symbolic notation S(v)V(i)®V(2) :=JOM(V) is used. The irreducible finite-
dimensional Aq( 17) -comodules are parametrized by dominant weights AGP + as in
the classical case (cf. [NYM, Th. 2.12]). The irreducible right Aq(ff) -comodule
with highest weight X ̂ P + is denoted by VR (A). The vector space VL (A) := Horn
(F*(A), C) has a natural left Aq(Jf) -comodule structure, which is also irreducible
of highest weight A. If no confusion is possible, we will write F(A) for the left
comodule Fz,(A) respectively for the right comodule F*(A).

Remark 4.1. Let M be a finite-dimensional right Aq(jT) -comodule with
comodule mapping pM : M -> M®Aq(U). Write M° for the vector space complex
conjugate to M and a : M®Aq(U) ->Aq(U^ ®M for the flip. Then the mapping

A&:M°^^(I7)(8>M0, pZ := (r®id) o aopM, (4.2)

where r=* o$, defines a left Aq( 17) -comodule structure on M° . In (4.2) PM is
considered as a conjugate linear map from M° to M®Aq(U}, and r(8)id as a
conjugate linear map from Aq(U^) 0M to Aq(Jf) ®M° .

The assignment M I — > M° is a 1-1 correspondence between right and left
A 9( I/) -comodules preserving weights and highest weights. Hence M° is isomorphic
to the left Aq(U^) -comodule Horn (M, C). A right Aq( 17) -comodule intertwiner W :
M -> N also intertwines the left Aq(lf) -comodule structures of M° and N° (i.e.
when W is considered as a map from M° to JV°).

Recall that the comultiplication A : Aq(U} -^> Aq(Jf) ®Aq(LT) defines a bico-
module structure on Aq(lf). Let FF(/l)Cy4g(C7) (/l^P+) denote the subspace
spanned by the matrix coefficients of either F*(A) or FL(A). The irreducible
decomposition of the bicomodule Aq(lf) reads

Aq(U}=® W(X}, WW^VL(ti®V*(ft. (4.3)
Aep +

Let h be the normalized Haar functional on^4g(!7). It can be characterized as the
unique linear functional on^4g(LO which is zero on FF(A) for 0^ A EEP + and which



POLYNOMIALS ON QUANTUM GRASSMANNIANS 469

sends l£=Aq(U) to 1£<C. The subspaces W(X) are mutually orthogonal with
respect to the inner product <<p, 0> :=A(0*p).

We consider now in some more detail the vector corepresentation, its dual
representation, and their exterior powers. Let V denote the vector space C" with
canonical basis (v,). V becomes a right ^49((/)-comodule (called vector corepre-
sentation) with

p F :Fh— V®Aq(U}, pr(v,):=i>i®f</ (!<;<«). (4.4)
i = \

V is irreducible with highest weight Si and highest weight vector Vi . Note that the
vectors vz have weight £/ . The corepresentation V is unitary with respect to the
inner product <v/, y/)=5//.

Let F* denote the linear dual of V with dual basis (v*). F* becomes a right
^(t/)-comodule (contragredient of F) with

p K * : F * l — >F*®^(10, pK*(v ;*):=i]v*®f,* (!<7<n). (4.5)« = i

F* is irreducible with highest weight — Bn and highest weight vector v*. Note that
the vectors v * have weight — £/ . The corepresentation F* is unitary with respect to
the inner product <v*, v/):^"^1^^, where p := E*=iGi— fc)£*. This follows
from the weU-known fact that S2(^) =q<2p' er e?ttj (1 </,;<«).

Let Aq(V) resp. ̂ lg(F*) denote the associative algebra generated by Vi , ... , vn

resp. v* , ... , v* with relations

v I-Av/ = 0 (l<i<n), v I-Av J=-g-1y /Av, (i<j) (4.6)

respectively

v,*Av*=0 (!</<«), y /*Av/* = -^-1v/*Ay/* (1X7). (4.7)

Thenyl9(F) resp. ylg(F*) inherits a natural right^49((7)-comodule structure from
F resp. F* by extending the comodule mapping pv resp. pF* as a unital algebra
homomorphism. Aq(V) resp. ylg(F*) also has a natural grading such that the
generators v£ resp. v * have degree 1 :

Write v/^v/, A ••- Av/r resp. v/* :=v*A ••• Av* if /= {/i< ••• <ir} C {1, ...,«}. Write
/ for the cardinality of/. Then the v/ resp. v/* ( j / | =r) form a basis of ylj

resp. ylJ(F*). One has the multiplicative property (/, JC {1, ...,«})

v* Av* :=sgn9(/ ; 7)v*u/
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where

o if inj^g,
sgng (I ;/):=•

(-^)K/;J) if /n/=0,

and 1(1; J) := {(/, j)^IXJ\i>j} . The comodules ylj(F) and >1J(K*) are
irreducible subcomodules of Aq(V), and the coactions satisfy

(|J|=r). (4.8)
|/|=r |/|=r

From this it follows immediately that

//(£/)= S #®f/ ( / , Jj =r) (4.9)
|JC| =r

and hence

S aS(f/)=&./ (I/!, l / l=r) . (4.10)
1*1 =r

We furthermore recall (cf. [NYM, (3.2)]) that the quantum minors satisfy

| = |/l =r), (4.11)
sgn g / ; l c

where /C:={1, . . . ,«} \I.
The^9(C/)-comoduleyl5(F) resp. ylj(F*) has highest weight A-' =^H ----- 1-

Br resp. An-r-~An = —£n-r+i ----- £n with highest weight vector v i A - - - A v r resp.
v* A - - - Av*- r+i- The inner product on Ar

g(V) such that <v/, v/>=(5/,j is^4g(C/)-
invariant. On the space yl£(F*) we have the invariant inner product (v/*, v/) :=
^^-^.V, where &:=S/6/£,.

Let C/g(g) = C/g(gI(n, C)) denote the quantized universal enveloping algebra
(cf. DrinfeFd [Dr], Jimbo [J]) associated with the Lie algebra g = gl(«, C). In
our notation we essentially adhere to Noumi [N, §1]. We refer to this last paper
for any details not treated here. The algebra t/9(g) is generated by elements qh

(AGP) and ei9fi (1<J<« — 1) subject to the quantized Weyl-Serre relations.
More useful for the purposes of this paper are the L -operators L/}", L^ EE Uq (g)

(l<i,7<n). They generate C7g(g) subject to certain commutation relations that
may be conveniently expressed by means of the matrix R defined in (4.1) (cf.
[RTF] ) . The matrices L± := (L//0 are upper resp. lower triangular, and L^=q± li

The Hopf * -algebra structure on Uq(j£) is uniquely determined by

(4.12)
k

The involution r=* 05 : C/9(g) — > t/g(g) acts on the generators as
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(4.13)

There is a natural Hopf *-algebra duality < • , • > between t/9(g)
This means in particular that we have

(4.14)

We write Uq(tj) for the subalgebra generated by the qh (/z&P). It is Laurent
polynomial in the elements qB* ( l<i<n). There is an induced Hopf *-algebra
duality between Uq (I)) and A (T) such that

V,zA> :=?<*'*>, z*=z}i-zj» (h, AGEP).

For a right ^4g(C/)-comodule (M, pM), the ^4g(C/)-coaction pM can be "differ-
entiated" using the Hopf algebra pairing < • , • > • This yields a left Uq($) -module
structure on M (cf. [NYM] ) . To be precise, the left Uq(§) -action on M is defined
by

x • v:=S Or, v(2)>v (i), Create), V^M), (4.15)

where pM(v) =: S(v)V(o (8)V(2)^M(x)y49(t/) for vGM. For example, differentiating
the vector corepresentation (4.4), the corresponding left Uq(&) -action gives rise to
an algebra homomorphism pv : Uq(o) -* End(F), which is uniquely determined by
the formulas

R± = Zeij®pv(L$\ (**)-' = £ ei,.<x>pK(Sa,7)). (4.16)
ij ij

Here R~:=R~l, R + =PRP, and P=S,-,yC//(8)^ is the permutation operator. By
differentiation of righty4g(£/)-coactions, a 1-1 correspondence is obtained between
right ^4?(C7)-comodule structures on a finite-dimensional vector space M and P-
weighted left Ug (g) -module structures on M. Recall that M is P-weighted if it is
spanned by vectors that transform under Uq (I)) according to qh • v =q(-ht A> v (A EEP) .
A highest weight vector v of highest weight A in a left C/g (g) -module M is then
characterized by the conditions L/J • v=0 0">j) (or, equivalently, X? • v = 0 for
f£[l , Ti — 1]) and qh • v=g< A > ; i >v. There is a similar relationship between left
^9(t/)-comodules and right t/9(g) -modules. For a right £/g (g) -module M, a weight
vector O^vEEM is a highest weight vector if v • L^^O (/</) (or, equivalently,
v • *r=0 for /e [l,7i-l]).

Remark 4.2. For a right ^49(C/)-comodule (M, pM) and for an element
we write v ° when considering v as an element in the left Aq (17) -comodule (M° , PM)
(cf. Remark 4.1). Then the differentiated right £/g(g) -module structure on M° is
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related to the differentiated left Uq (g)-module structure on M by v ° -X= (X* • v)
where v GM and X^Uq (g) .

The coalgebra structure of Aq(U) naturally induces a ^49(C7)-bicomodule
structure on Aq(lf). By differentiating this ^49(£7)-bicomodule structure, Aq(U)
becomes a Uq (g) -bimodule with Uq (g) -symmetry . The action of the L -operators is
then given by

Lf • T2=T2R
±

9 T2 •Lr=R±T2. (4.17)

Obviously, the irreducible decomposition of the l/9(g) -bimodule Aq(JJ) is given by
(4.3). This decomposition may also be characterized as the simultaneous eigen-
space decomposition of Aq(U^) under the action of the center JfC£/9(g).

It can be shown that the pairing < • , • > is doubly non-degenerate (cf. [KS,
Cor. 23, 54]). In particular, Aq(U} can be embedded as Hopf *-algebra into the
Hopf *-algebra dual of I79(g). The image under this embedding is the Hopf
subalgebra spanned by matrix elements of finite-dimensional P-weighted t/9(g)-
modules.

§5. Spherical ^representations

We call 4, GO :=Aq(U(n -/)) ®^(tf (/)) the quantized coordinate ring of K.
Corresponding to the embedding (2.3) there is an obvious surjective Hopf *-
algebra morphism nK : Aq(]U(n)} -+Aq(fC). Write Aq(U/K) for the right Aq(K)-
fixed elements inAq(U\ i.e.

^(D/*:):=fee^g(tA)|(id®^)oJ(^)=^®l}. (5.1)

Observe that Aq(U/K) is a left ^g(C7)-comodule *-subalgebra of Aq(U\ The
algebra Aq(U/K) can be interpreted as a quantized algebra of functions on the
complex Grassmannian U/K.

For the study of Aq(jJ/K) it is important to obtain explicit information about
Aq(K)-spherical corepresentations of Aq(U\ i.e. finite-dimensional right Aq(lf)-
comodules with non-zero Aq(fC)-fixed vectors. Recall that a vector v in a right
Aq ({/) -comodule M with comodule mapping pM'.M-> M®Aq (17) is Aq (AT) -fixed if

(id®;r*) opM(v)=y(8)l. (5.2)

One defines Aq(K}-fixed vectors in left^4g((7)-comodules in a similar way. In this
section we discuss the proof of the following theorem, which states in particular
that the pair (Aq(U\ Aq(K^ is a quantum Gelfand pair :
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Theorem 5.1. Every finite-dimensional irreducible corepresentation of Aq(lT)
has at most one Aq(K)-fixed vector (up to scalar multiples}. The finite-dimensional
corepresentations with non-zero Aq(K)-fixed vectors are parametrized by the classical
sublattice PK of spherical dominant weights (cf. §2).

Remark 5.2. Let M be a finite-dimensional right Aq([/)-comodule. It follows
from Remark 4.1 that a vector v GM is Aq GO -fixed if and only if v EEM ° is Aq GO -
fixed. Hence, any statement about A q GO -fixed vectors in right Aq( 17) -comodules
immediately translates to a corresponding statement for left Aq(U)-comodules and
vice-versa.

For the proof of Theorem 5.1 it suffices to show that the irreducible decom-
position of Ffl(/l) as a right Aq(]C)-comodule is the same as the decomposition of
the irreducible finite-dimensional representation of U(n) with highest weight A
when restricted to the subgroup K. One way of establishing this result is by
differentiating the coaction of Aq(lf) on Kn(A) using the doubly non-degenerate
Hopf algebra pairing between Aq(U) and I79(g). Then the desired result follows
from well-known results on the representation theory of quantized universal
enveloping algebras. This approach is quite general, and is treated in more detail in
[SD].

In this section we discuss another proof of Theorem 5.1 which does not rely on
the quantized universal enveloping algebra technique. The strategy will be to relate
the decomposition of the restriction to Aq(K} of the right Aq(U}-comodule Fj?(A)
(A £P +) to characters on the maximal torus T. The following general result about
corepresentation theory of semisimple coalgebras is needed (a coalgebra is said to
be semisimple if every finite-dimensional A -comodule is completely reducible).

Proposition 5.3. Let A and B be semisimple coalgebras. Then every finite-
dimensional A (8)B-comodule is completely reducible. Write {Va \ a &!} and {¥$ |$E=
B} for a complete set of mutually inequivalent, irreducible, finite-dimensional right
A- and B-comodules, respectively. Then

{VamVfi\a^A9 $^B] (5.3)

is a complete set of mutually inequivalent irreducible finite-dimensional right A ®B-
comodules. Here Va^V/3 = Va

(^Vff as a vector space and it has right comodule
structure given by Pa^pp'-^^i o (pa<E>/00), where <723 is the flip of the second and
third tensor component and where pa and p$ are the right comodule mappings of Va

and Vp, respectively.

The proof of the proposition is similar to the analogous, well-known result for
tensor products of semisimple algebras and will therefore be omitted here.
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For A GP + with An >0, define the Schur polynomial 5A (z) EA (T) by

with A (z) := II/</fe— z,-) the Vandermonde determinant. For arbitrary A £P + with
A n >-m (mGZ) define SA(z):=z~myln,SA4-m^(z)e^(T). Thenthe^ (A&P+) are
well-defined and form a basis of the subalgebra ^4(T)S« of symmetric Laurent
polynomials. Recall that the character of a finite-dimensional ./49(lO -comodule M
is defined by XM:= L/7TZ7&4g(C7), where the ni^Aq(ff) are the matrix coefficients
of M with respect to a basis of M. The character %M is independent of the particular
choice of basis for M. As shown in [NYM, (3.22)] , the character %^Aq(JJ} of the
irreducible comodule F*(A) satisfies

), (5.4)

as in the classical case (0 = 1).

Proposition 5.40 Let A ^P + . The restriction of the Aq (17) -comodule VR (A ) to
Aq(K) decomposes as

(5.5)

the sum ranging over //EEPB~t/, v^P/^. If ere f/ze c^,v are f/ze non-negative integers
characterized by

...,z,,) = 2cji,^fei, ...,zn_/>v(zn- /+i, ...,zjs (5.6)

the sum ranging over //GPn"t/, i^eP/+.

Proof. There exists a decomposition (5.5) for certain uniquely determined
non-negative integers c^v by the previous proposition. It follows from (5.4) that
the c^tV satisfy (5.6), since %M^N=XM®XN^Aq(K^) for a finite-dimensional right
A q (£/(«—/)) -comodule M and a finite-dimensional right A 9 ((/(/)) -comodule N.

D

We conclude from Proposition 5.4 that the abstract decomposition of an arbitrary
finite-dimensional right A q( 17) -comodule M into irreducible A ̂  (^T) -comodules is
the same as in the classical (q = 1) case. Hence, at this point we see that Theorem
5.1 is a consequence of Theorem 2.1.

Remark 5.5. The proof of Theorem 5. 1 can also be derived from Proposition
5.4 using the Littlewood-Richardson rule (cf. Macdonald [M2]), which is a
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combinatorial rule for computing the coefficients c#iV in (5.6).

§6. A One-Parameter Family of Quantum Grassmannians

In this section we define a family of quantum Grassmannians depending on
one real parameter — oo<cr<oo (cf. [NDS, §2]). The key ingredient in the
definition will be the n X n complex matrix Ja defined by

q°ekk>- S <fek>k, (6.1)

where fc':=n— fc+1 (!<&<«). Observe that \ima^0*Ja=J°° , where /°° is defined

by

=•/":=!]«*. (6.2)
lfe = l

The subspace !a C t/9(g) is by definition spanned by the coefficients of the matrix

g). (6.3)

It follows from (4.12) that 1° is a two-sided coideal in *79(g), i.e. A (fa) C t/9

fa+T(x) C/,(g) and e(ta) =0. This remains true when Ja is replaced by any n Xn
matrix / in the definition of !CT . Moreover, since J° is a symmetric matrix, it follows
from (4.13) that 1° is r-invariant.

Define the subalgebra^(ta\[/) C^(C7) as the subspace of all left f ""-invariant
elements mAq(U\ i-e. alla^Aq(U} such that 1° • a=0. As is well-known (cf. for
instance [DK1, Prop. 1.9]), the fact that ICT is a r-invariant two-sided coideal
implies the Aq(l

a\U} is a *-subalgebra which is invariant under the right l/g(g)-
action on ̂ (17) (or, equivalently, the left coaction of Aq(U^) on itself). Important
for the study of Aq(l°\U^) is the fact that X=J° is a solution of the reflection
equation

RnXlRnlX2=X2R2ilXlR2l9 (6.4)

where Rn'=R,R2i'=PRP(=R+^Xi^X®idvzndX2'=idv®X- This fact can be
verified by direct computations.

Remark 6.1. The algebra Aq (I
 CT\t/) can be considered as a quantized coor-

dinate ring on the complex Grassmannian U(n}/(U(ji — /) X t/(/)) in the following
way (see [NDS] for more details) . The quantum space of nXn Hermitean
matrices is defined as the algebra generated by X= (x//)// with relations given by the
reflection equation (6.4). It can be endowed with a *-structure and a left ^
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coaction (the quantum analogue of the adjoint action) . Since J° is a solution of
(6.4) it gives rise to a (*-invariant) character of the quantized algebra of functions
on the space of Hermitean matrices. In other words, J° corresponds to a classical
point in the quantum space of Hermitean matrices. Then Aq(t

a\U^) may be con-
sidered as the quantized algebra of functions on the adjoint orbit of the classical
point corresponding to Ja (see [NDS, Prop. 2.4]). Since Ja has two different
eigenvalues 1 and — q2a with multiplicity n—l and / respectively, this quantum
adjoint orbit is isomorphic with the complex Grassmannian U(n)/(U(ji— /) X

The quantized function algebra Aq(U/K) (5.1) can formally be interpreted as
the algebra Aq(l°\U^) with o -> °°. To make this a little bit more explicit, we write

L+ = \ 0
\ 0

where UL+ is an I XI matrix, 22L+ an (n — 2/) X (n —27) matrix etc. Let D be the
I XI matrix with Fs on the antidiagonal and O's everywhere else. The coefficients
of the matrix L + Ja—J°L~~ coincide with the coefficients of the following six
matrices up to a sign :

(i) qa(D*31L--"L+ «D) + (l-g20(11L+-11L~)

(ii) nL + +q°D - 32L~ ,

(iii) 23L+ -^D + 21£-,
(6.5)

(iv) 22L+-22L-,

(v) HL+ *qaD-qaD • 33L~,

(vi) *L^ *q°D-~qaD * 11L~.

Obviously, the coefficients of the following matrix are also contained in f a :

O(33i+-33^~)- (6.6)

For later use, observe that the following elements of the "Cartan subalgebra" C/g(I))
belong to la :

U-Lu (/<i</0, U-Lp-f (!</</), Lj-Lh (!</</). (6.7)

It is clear from (6.5) and (6.6) that, in the limit a-^ °°, the matrices in ( i )—
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(vii) tend either to zero or to the following matrices

"L + -nL-, 12L+, 2 1L~, 22L+-22L~, 33L+-33L-. (6.8)

Again, the subspace !°° C L/g(g) spanned by the coefficients of the matrices in (6.8)
is a r-invariant two-sided coideal. Now, on the one hand, l°°-invariance in a left or
right C/g(g) -module M is obviously the same as invariance with respect to the Hopf
*-subalgebra

, O) - t/g(gl(n, C)),

where invariance of vGM with respect to wet/g(g) should be interpreted as u • v
=e(w) • v (if M is a left Uq (g) -module) . Using the Hopf algebra duality between
Aq(lT) and LT9(g) it can be easily shown that invariance of vE=M with respect to
Uq(f) is the same as invariance with respect toAg(K) (cf. [DK1, Prop. 1.12]). It
follows that Aq(K) -in variance is equivalent to !°° -in variance, hence Aq(l°°\U^ =

Remark 6.2. It should be observed that the matrix J°° also satisfies the
reflection equation (6.4), but the subspace spanned by the coefficients of the matrix
L^ J°° — J°°L~ is strictly smaller than f°° and of little use for the purposes of this
paper.

The following lemma is now a direct consequence of the arguments given
above.

Lemma 6.3. Let M be a finite-dimensional right Aq(U} -comodule with linear
basis {v/}/. Consider M as left t/g(g) -module using the differentiated action (4.15).
Suppose that va'-

= SiC/(a)v/ (c/(a)EEC) is a la-fixed vector for all cr^R and that
c,-:=limff-»ooC/(a) exists for all L Then Si-c/Vf is an Aq(jC) -fixed vector in M.

Remark 6.4. In some suitable algebraic sense (cf. [CP, Prop. 9.2.3]) the
algebra C/g(g) "tends" to C/9(g) when q tends to 1. The corresponding limits of the
L -operators are given by

(cf. [N, (1.10), (1.11)]). Hence, by (6.8) respectively (6.5), the subspace laC
(7?(g) (p =00 respectively cr^O) tends to the Lie subalgebra I = gl(w— /, C)©
gl(/, C)Cg respectively fCg (cf. §2) in the limit q -> 1.

Reflection equations play an important role in the quantization of symmetric
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spaces (cf. [N, §2], [NS1]). For the purposes of this chapter, the importance of
this equation lies in the following fact. Recall that a vector w in a left Ug (g) -module
M is called I a- fixed if ICT ° w = 0 (a similar definition can be given for right t/9(g)-
modules).

Proposition 6.5. ([NS2, Prop. 3.1], [NDS]) Let J be any nXn complex
matrix. Write I J C Uq (g) for the two-sided coideal spanned by the coefficients ofL + J
—JL ~ . The element

in the left Uq(o)-module F®F* is a 1J -fixed vector if and only if J satisfies the
reflection equation (6.4).

Proof. In the proof the same notational conventions as in [N, Proof of
Proposition 2.3] will be used. Recall that the I79(g) -module structure on F*
corresponding to the dual^ClO-comodule ^* is given by

11 -v*(v):=v*(S(ii) >v)

Set v:= (vi , ... , vn), then it follows from (4.16) that

Lf • Y2-v2 - R?2, Lf - Y2*-Y2* - (Rii)'2, Lf • v2*=v2* • (^2
+i)r2- (6.9)

Here f 2 denotes transposition with respect to the second tensor factor. An equation
likeLi+ • y2 = T2 • R?2 should be interpreted as L$ ° vk = ^=i(Ru)jkVi for all l<i,y,
k<n, where ̂ i^— 2/,7, k,i(Rn)l]i&ij®^ki • Using the identities (6.9) one computes in
shorthand notation,

since by (6.9) one has LI+ ° (v*)2=-Rri 8 (v*)2. On the other hand,

r - (v*)2

since by (6.9) one has L\ s (v*)2=-R2
+i(v*)2. It follows from the two preceding

computations that wj is Infixed if and only if RuJiRiiJi^JiRnJiRfi. Multi-
plying this last equation from the left and from the right by the permutation
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operator P gives (6.4), which proves the proposition. D

By Proposition 6.5 and the fact that the matrix Ja satisfies the reflection equation
(6.4), it follows that

y

is a !a-fixed vector in the left Uq(g)-module F® F*. Observe that lima^ «, wa=wco,
with w°° the right Aq(U/K}-fixed vector defined by

E®v*. (6.11)

Since V® F* - F(aJi) © F(0) as left Uq (g) -modules (where F(0) is the trivial
module) and since w° has a non-zero weight component of weight W\, it follows
that F(fiJi) has a non-zero !CT-fixed vector.

Next we construct a right fa-fixed vector in F°®(F*)°. Observe that a
vector w = S/,; J/;v/®v./* ̂  F° ® (F*) ° for a real matrix /= S0 J/ye/7 is right f CT-fixed
if and only if w is left S (Ia) -fixed as element in F® F* by the r-invariance of la and
by Remark 4.2. Reasoning as in the proof of Proposition 6.5, it follows that w is left
S(fa) -fixed if/is a solution of the linear equation

Tvfj?-}*1 T ((D- Vn-i — i?fi 7 f i? fn-i r^ ^^ n^J \\JK2l) « /2VV^2lJ J ~-tv J2V^v J Ji VD. 12J

where Ja is given by (6.1). A solution J=Ja of (6.12) is given by

a—I X"1 2(fc—/) a—1 X~" 2(k'—/) /'/r 1 ^^
^ /' y ^fck' y / i C[ &k'k • VO.l jy

We write w a=Z0 J^v^v/* for the corresponding right !ff-fixed vector in F° ®
(F*)°. In the same way as in the case of left fCT-fixed vectors it follows that
F(OTi)0 has a non-zero right !a-fixed vector. Observe that lim (7^ooWa=w00, with
w°° the .4 g (^0 -fixed vector given by (6.11).

Recall from the previous section that F(A) has at most one !°°-fixed vector up
to scalar multiples, and that F(A) has non-zero !°° -fixed vectors if and only if A £
PK (cf. Theorem 5.1). We have the following analogous statement for Infixed
vectors (— °o<a<°o).

Theorem 6.6. ([NDS, Thm. 2.6]) Let A£P+ and fix -oo<a<oo. The
irreducible left Uq($) -module F(A) with highest weight X has at most one la -fixed
vector (up to scalar multiples^). There exist non-zero la-vectors in F(A) if and only if
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A E=P/. The same statement holds for right la-fixed vectors in F(A) °.

In the remainder of this section a proof of Theorem 6.6 will be given. Fix a
parameter — °o <o< °o. First of all, we have the following crucial lemma.

Lemma 60?0 Let A£P + and fix — °o<cr<°o, Then any non-zero 1° -fixed
vector in the left Uq (g) -module F(A) has a non-zero weight component of highest
weight A. The same statement holds for the right Uq (g) -mod ule F(A) °.

The proof of the lemma follows by analyzing the particular form of the two-
sided coideal la. The details are omitted here, since the proof is analogous to the
proof of [N, Lemma 3.2] and [DN1, Prop. 3.2].

Since the vector subspace of F(A) (respectively F(A) °) consisting of weight
vectors of weight A is one-dimensional, it follows from Lemma 6.7 that every
irreducible finite-dimensional P- weighted Uq (g) -module has at most one Infixed
vector up to scalar multiples.

SetP*^ ® i< r</Zoj r , where Wr are the fundamental spherical weights (cf. §2).
Observe that the assignment A I — > A * as defined in §2 extends to a bijection from
PK onto PS . For /j, £PS , we write //b £P# for the inverse of fj, under the bijection

b| . For later use let us record the following elementary facts. Recall that 'W^-'W
i denotes the Weyl group of the root system 2 (cf . §2) .

Lemma 6e8* The bijection A I — > A * preserves the dominance ordering on PK
and PX> IfvELPK then the image under A I — * A * of (<3n ° i/) HPK is equal to the 'W-
orbit -W • ̂  inPs.

The following lemma is immediate from the fact that the Cartan type elements
listed in (6.7) belong to 1° .

Lemma 6,9. Let A £P/, — oo < o< °o and assume that v e F(A) is a non-zero
left la -fixed vector. Let v = Y>n<x v^ be the decomposition ofv in weight vectors, where
Vv has weight jLt ̂ P. Then Vf, = 0 unless /z GP#. The same statement is valid for the
right Uq($)-module F(A)°.

It follows from Lemma 6.7 and Lemma 6.9 that if F(A) (respectively F(A) °)
has a non-zero Infixed vector, then AGP/.

To finish the proof of Theorem 6.6 we have to show that all modules F(A) and
F(A)° (AGP/) have non-zero !a-fixed vectors. The existence of non-trivial l°-
fixed vectors in F(QJi) and in V(&\) ° is already proved. Explicit intertwining
operators

Wr:
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will be constructed to prove the existence of la- fixed vectors in higher fundamental
spherical representations. The proof of Theorem 6.6 is then completed by
computing the so-called principal term of <Fr((wa)®r), with wa(EF(tsri) the ta-frxed
vector given by (6.10).

Before giving the construction of Wr , we first introduce the notion of principal
term of a vector v ̂ Ar

q (F) ®A \ (F* ) (cf. [NS2] , [Su] ) . For the present setting it
is convenient to use a slightly modified definition of Noumi's and Sugitani's notion
of principal term (cf . [NS2] , [Su] ) . The definition is based on certain specific
properties of the comodule A r

q (F) ®Aq (F* ) . The comodule Ar
q (F) ®Ar

q (F* ) has
a multiplicity-free decomposition.

yi;(F)®^i;(K*) = © F(GT5) ( l<r</) (6.14)
s = 0

as right v49 (17) -comodules, where tar0
:— O^P/. The decomposition (6.14) can be

proved by computing the restriction of the character of the module Ar
q(y)®

Ar
q(V*} to the torus and using the classical Fieri formula for Schur functions

[M2, I , (5.17)] (cf. Proposition 5.4). Due to the multiplicity-free decomposition
(6.14), the module ylj(F) (x)ylj(F*) is very useful for the study of Infixed vectors
in F(crr), as will be shown in the remainder of this chapter as well as in the next
chapter. It follows from (6.14) that all the weights y^P of the module Ar

q(V} (8)
ylj(F*) are <Qjr, where < denotes the dominance order. The vector V[i,r](8)
v*n-r+\,n^Ar

q(y}®Ar
q(y*} is the highest weight vector of the unique copy of

F(c7r) within Ar
q(y} (8)/Lj(F*). Suppose now that v = S^c^ is the weight space

decomposition of a vector vG^lj(F) ®A J(F*), where v^ is the weight component
of weight IJL eP. Then the principal term of v is defined by

[v]:= S V (6.15)

(cf. [NS2], [Su]), where iir acts on (lr)^Ps CPS = Z/ by permutations and sign
changes (cf. §2). It follows from Lemma 6.8 that the principal term of a vector v
&AJ(F) ®A\ (F*) lies in the unique copy of F(orr) within A\(y) ®yi;(K*). By
Lemma 6.9 and Lemma 6.8 one has :

Lemma 6.10. Let v be a non-zero la -fixed vector in Ar
q(y} ®Aq(y*}. Ifv —

[v] has a non-zero weight component of weight v then V£=PK and v"^C(cTr), where

(6.16)

is the strict integral convex hull of

In the next proposition, the principal term of a Infixed vector in y
*} (respectively in Ar

9(V) ° ®Ar
q(V*} °) is compared with the elements ur , ur
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(l<r</) defined by

iir:= S v/®v/f fir:= Z q<2p'§I'\i®v? (6.17)
/C [1, /] U [/', n] /C [1, /] U [/', n]
l/|=r,/n/' = 0 |/|=r,/n/' = 0

where /':= {/'|zE!/}. The element ur lies in the unique copy of F(fi7r) within
Ar

q(V) ®Al
q(y*), whereas ur lies in the unique copy of F(GJr) ° within Ar

q(V) ° ®
Ar

q(y*) ° . Observe that by the explicit form of the !a-fixed vectors wa respectively
wa, we have

bf] = -ful, [#''] = -f-tqW-OuL (6.18)

For the construction of the intertwiner Wr , consider now the linear bijection ft : F*
» F0F* determined by

] vfe®vfc*. (6.19)
*<;

Write F, := F, F/* := F* (1 </ <r). Define a linear bijection

Wr-. (Fi®Fi*)(x)-.-(x)(Fr(8>F*)-^ (Fi(x)-<-(8)F r)(8>(Fi*(8)---<8>F*)

by

V,- = l3l.r°l32.r°~-°0r-l.r°-~°faOfa°0l2, (6.20)

y acts by definition as the identity on all factors of the tensor product except
for Vf (8) Vj , on which it is equal to ft. Write

prr: F® r—>-/Lj(F), pr* : (F*)®r—^^(F*)

for the canonical projections. We now have the following generalization of (6.18).

Proposition 6.11. Let \<r<l The operator

Wr: (F^)F*)®r^yig(F)^)yLj(F*)

defined by Wr'-= (prr®pr*) o Wr is a surjective intertwiner, and

/ Q° \r

0 )] =cr(a)Ur9 cr(o) :=( 2_i ) w I Q2^r,

7)®01 =cr(o)ur9 cr(o) '•=( =—: ) (a2; g 2 ) r -v q —I /
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Before giving a proof of Proposition 6.11, we first show it implies Theorem 6.6.
Since 1° is a two-sided eoideal and Wr an intertwining operator, Proposition 6.11
shows that IPXCw*)®11) is a non-zero ta-fixed vector. Proposition 6.11 implies that
the principal term of Wr((w

a) ®r) is non-zero, hence it follows that F(tcrr) (1 <r </)
has a non-zero !a-fixed vector. Since any AEEP/ can be written as a positive
integral linear combination of the fundamental spherical weights {crr}i<r</, it
follows by an easy argument using tensor products and Lemma 6.7 that any A £=PK
is actually spherical. For right Infixed vectors the same argument holds, since Wr

is also an intertwiner as map from the module (F° ®(F*)°)® r to Ar
q(V)°®

Ar
q(y*Y (cf. Remark 4.1).

So it remains to prove Proposition 6.11. The proof of this proposition, which
proceeds by induction on r, is broken up into a couple of lemmas.

Lemma 6.12. For 2<r<n-\-l the linear mapping

defined on the basis vectors v/*<S>v, (|/| =r—1, \<j<n) by

if

* ifr'~'J * * ' St, sgn?(/\;;y)

is an intertwining operator of right Aq(U)-comodules.

Proof. Let P : V® K-> F® V denote the flip. Define a linear bijection 7 : V
V®Vby 7*.= PR, withR as in (4.1). The action of 7 on the basis vectors

v/ ® y/ ( 1 < /, j < n ) is given by

r(v/®y/) =^v;-(8)v/+(^-^~1)ft-);V/®v7- (6.21)

with dij '•= 1 if i <j and ft>; := 0 otherwise. The fact that the commutation relations
between the tij^Aq(lf) can be written as RTi T2 = T2TiR (cf. §3) implies that 7 is
an intertwining operator. Since R is a solution of the Quantum Yang-Baxter
Equation, 7 satisfies

7i ° 7z ° 7i =72 ° 7i ° 72 , (6.22)

with 7/£End(F<8)3) acting as 7 on the fth and 0'+l)th tensor factors and as the
identity on the remaining factor. Note furthermore that the exterior algebra Aq(y)
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is isomorphic as a right ^4g(C7)-comodule algebra with r(F)/J, where T(F) is the
tensor algebra of V and 1C T(F) the two-sided ideal generated by ker (id— q~l 7) C
F®2 CT(F). Consider now the intertwiner Fk : V®(k~V® F-> V®Ak

q~
l(V) (2<k

defined by

fc-!) 0^0720 °~ork_l.

Application of [HH, Lemma 4.9(1)] to the Yang-Baxter operator q~l 7 shows that
there exists a unique bijective intertwiner

A : Ak
q~

l(y}®v^ V®A*~IW

such that Fk = fk ° (prfc- 1 <8) id) . By a straightforward computation one verifies that

for/C[l, TI] with |/ |=fc-l and !<;<«.
Next, the linear mapping 5fc : A

k
q(y*} -^An

q-
k(y)®C det'1 ( l<fc<n) de-

fined on the basis elements v* (|/| =fc) by £fc(v/*) :=sgn9(J ; /Ov^^detg"1 is a
bijective intertwiner by (4.11). With the canonical identification
C det^1® F we have an intertwining operator &r : ylJ-^F*) ® F->
defined by

Starting from the explicit expressions for fn-r+2 and dr-i, a straightforward
calculation shows that &r acts on the basis vectors v/* <8>y/ as required. D

Corollary 6ol38 The linear mappings fi, Wr, and Wr are right Aq(U^)-comodule

homomorphisms.

Proof. The assertion follows from the previous lemma, since /3 = 02 and the
natural projections prr and pr* intertwine the right ^49(£/)-comodule actions. D

Lemma 6014e Let l<r<L The bijective intertwining operator

defined by <&r-=/3i20/323 ° "' °&- 2,1—1 °j3r-i,r satisfies
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(id®pr*_i) o 0r = <2>ro (pr*_i®id).

Proof. For /= {/i < — <ir} C [1, «], set v/* :=v,*® — ®v£®vf*. It is clear
from the definitions that

(id®pr*-i) o $r(v

then

(id®pr*-0 o<p r(v*®y,)=g~1V;

where c (m, 7) := ( -q) l <*e/ 1 *<'<'> I if m ^/, and c (m, 7) := 0 otherwise. Using the
definition of the #-signum sgng, it follows that c(m,7°) =sgn^(/\7 ; m)sgn9(/\7 ;

7") -1 if wi <7, which concludes the proof of the lemma. D

Observe that the multiplication maps

are intertwiners of the ^(LO-coactions, since Aq(V) and Aq(V*} are Aq(U}-
comodule algebras.

Lemma 6.15. The intertwining operator

defined by 9r:= O/®//*) o (idA'-1(F)®<^r®idF*) satisfies

for 2<r<l.

Proof. If v is a vector of weight// in the domain of 0r, then 0r(v) is again a
weight vector of weight //, since 0r intertwines the right ^49(J7)-coaction. Hence,
for a fixed /C [1, /] U [/', n\ with /n/' = 0 and / =r — 1, we have that [£r(v/®
v* ®v,®v*)] =0 unlesss, t£l\JI' ands^t. By the explicit formulas for the action
of 0r (cf. Lemma 6.12), it follows that
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/, fc
V/Av t®V/ Av£ = -q" S C,V,®VJ*

where the first sum is taken over pairs (I, /c) with 1C [1, /] U [/', n], fc£ [1, /] U
[7, TI ], | / |=r— l,/n/' = 0 and fc^/U/', and the second sum is taken over subsets
JC [1, /] U [/', n] with JHJ' = 0 and |/| =r. The corresponding constant Cj is
given by

c,= S sgn,(Afc ; fc)sgn?(fc' ; /\fc') = 2 (sgn,(Afc ; fc))2= q*=

The proof for the leading term of $r(wr-i(8)wa) is similar. D

Proposition 6. 1 1 can now be proved by induction to r, using the previous lemma for
the induction step.

Proof of Proposition 6.11. Define an intertwiner

by

It follows from Lemma 6.14 that

(prr(8)pr*) o 0r = 0ro (prr-i®prrli®idK®idK*). (6.23)

From the definitions of Wr and 0r it follows that

and hence by (6.23)

(6.24)

This allows us to prove the proposition by induction to r. The proposition is trivial
for r = I . Suppose that r > 2. By the induction hypotheses and Lemma 6. 10 we have

where v^ is some weight vector of weight v* and C(JJL) is defined by (6.16). For
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1)) we have [0r(Vi>(8)wa)] =Q, hence the induction step for computation
of RFrCCw*)®')] follows by combining Lemma 6.15 with (6.24). The leading term

0] can be computed in a similar way. D

Remark 6.16. It should be observed that the proof of Theorem 6.6 differs in
important details from the proof of Theorem 5.1. Observe for instance that Lemma
6.7 does not hold with !CT-fixed replaced by f°°-fixed, since any I°°-fixed vector lies
automatically in the zero weight space of the module.

§7. Zonal (a, T) -Spherical Functions

In this section the I ̂ invariant (—°o<r<°°) functions are studied in the
quantized coordinate ring Ag(l°\U^) (—°°<(7<00). The results of this section
were announced in [NDS, §3]. The rank 1 case of these results were earlier derived
by Koornwinder [Kl] for n=2 and for arbitrary complex projective space by
Noumi and Dijkhuizen [DN1].

Let — oo < a, r<oo and denote Jtif a'T for the *-subalgebra of left ICT-invariant
and right ^-invariant function in Aq(U). From Theorem 5.1, Theorem 6.6 and
(4.3) we obtain the decomposition

the subspaces jfa>T(A) (A&P/) being one-dimensional. A non-zero element
0? f f>T(A)^^f a > T(A) is called a zonal (a, r)-spherical function. Since the
decomposition (4.3) is orthogonal with respect to the inner product <<p, 0> =
/z(0*<p), the zonal spherical functions <pa>T(/l) (AGP/) are mutually orthogonal
with respect to < • , • > •

Let M denote a right ^g(^7)-comodule with comodule mapping pM and an
invariant inner product < • , • > • With any two elements v, w^M we associate the
matrix coefficient

#M(V, w) := 2 (w(i)» v)w(2)£^4g(£/), PM(>V) '•= 2 W(i)®W(2). (7.2)
GO

The map 0M induces a linear map (denoted by the same symbol)

which is surjective onto the subspace spanned by the matrix coefficients of M. If
no confusion can arise we sometimes write O'-^Ou- The following lemma is a direct
consequence of these definitions (cf. [N, Lemma 4.8]).
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Lemma 7.1. Let M be a unitary right Aq(U} -comodule. The map 0M : Af ° ®
M -> ^49 (17) satisfies the following properties :

( i ) OM is a Aq(U}-bicomodule homomorphism, Le.

A o 0M= (0M®id) o (id®pj*), ^ o 0M= (id®0M) o (pi® id), (7.3)

where PM is defined as in Remark 4.1.
(ii) 9M(y, w)=r(0jf(w, v)) (v, wGEM).
(iii) If Mis irreducible of highest weight A <=P + , r/ie« <9M : M ° ®M-^ FFOQ is

an isomorphism of Aq(lT)-bicomodules.

Lemma 7.1 can be used to construct zonal (a, r) -spherical functions as
follows. Let VaOOeFOQ respectively v r(A)eF(A)° be a non-zero Infixed
respectively I T- fixed vector (Ae=P/). Let < • , • > be a positive definite inner
product on F(A), and write 0* for the map 9 in Lemma 7.1 with respect to the
unitary comodule (F(A), ( • , • )). Then

pa 'Tft):=ft(v rtt), vaa))ejfCT 'ra) (7.4)

is a zonal (a, r) -spherical function by Lemma 7.1. This leads to the following
lemma.

Lemma 7B2e Let — °o < a, r< °o and X £P/. T/ze /mage o/^a> T(A) tmefer r/ze
restriction map \T : Aq(U} -» Ji(T) w of the form

^ ra),T=c^m^(x)+ S c,jcv, c.eC, (7.5)
KEECa")

^0 an^ C(i/) given ^3; (6.16). ^ere the notation x^'.^x^x^'-xp for i> =
15 wsecf, wzYA the xt (!</</) 6emg defined by (2.10).

Proof. Since any A EEP/ can be written as a positive integral linear combina-
tion of the fundamental spherical weights {GJr} \<r<i> it follows by an easy argument
using tensor products and Lemma 6.7 that (7.5) for arbitrary A£P/ follows from
(7.5) for the fundamental spherical weights {ffir}

lr=\ •
So fix a fundamental weight GJr (1 <r </). Consider the Aq(Jf) -invariant inner

product

<v/®v;, vK®vt)=q-<to''j>6ItK8JtL (7.6)

on ^1J(F)®^1J(F*) (cf. §3) and write 9 for the map (7.2) associated with the
unitary comodule U;(K)®^;(F*), < - , - » . By (6.14), the comodule F(sjr)
may be considered as an irreducible component of ylj(F) ®ylj(F*) with invariant
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inner product given by the restriction of < • , • ) to F(taO. Then, by Proposition
6.11 and the fact that iir&AJ(K) ®AT

q(y*} (respectively fir&Aj(K) ° ®^1J(F*) °)
lies in the unique irreducible component F(Q7r) (respectively F(cjr)°), the
principal terms of the f a-fixed vector va(ccrr) and the Infixed vector vr(ffirr) are given
by

[va(fiTr)] =crur, [vr(ffirr)] =crur (7.7)

for non-zero constants cr, cr^C. For u^Aq(y) (£>^1J(K*) of weight i± and vve
Ar

q(V)° (8)yl£(F*)° of weight v we have 0(yv, V^)|T =0 if fi^v, and ^(VM, vM)|T is
a multiple of z^. Using Lemma 6.9 and the fact that C[x±1] is the subalgebra of

spanned by the monomials z^(=xfl ) (JJL£=PK), we obtain from (7.7) that

withc?(^)=crcr ^0, since 6(ur,ur} |T =wi(i'-)0c). This completes the proof of (7.5)
for the fundamental spherical weights. D

Lemma 7.2 has the following important consequence.

Corollary 7e3. The restriction of the map \T : Aq(U) ->A (T) to tfa'T defines
an injection from ^a'T into C D*^1] for — °o < cr, r< °o. /w particular, J^a'T is a
commutative algebra for — °° < a, r< °°.

Recall from [RTF] and [NDS, §3] the Casimir operator

Since C is central, it acts on JF(/l) (/i£P+) as a scalar ;fo(C), which is given by

j = V Q2^k+n~^

Also, C maps JfCT> T into itself. Therefore, if — °o < a, r< °o, the restricted Casimir

operator C : JfCT> T-^ Jf7 a> T induces an operator
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which is called the radial part of C. Explicitly, L is the map satisfying

Crucial for the identification of the zonal (p9 r) -spherical functions is the
identification of the radial part L of the Casimir element C with the restriction to
Jj?a'T\T of an explicit second-order #2-difference operator on CE**1]. Without
proof we will state here the result (see ENDS, §3]).

Theorem 7.4. ( ENDS] ) Let - ™ < a, r < °o and A <=P/. The operator L ~
%A(C)id coincides on J^O'T\T CCE^±11 with a constant multiple of Koornwinder's
second-order q: ''-difference operator D—E^ id in the variables x = (x\9 ...,*/) with
base q2 and parameters (l , 0 = (la> T , #2), given by

r__ a-r+l
(7.8)

For a proof of the theorem for rank 1, see EDN1] . In ENS1] a proof can be
found for the special case n = 2l and o=T=0.

Observe that for - °o < Oy r< oo we have t_a' T(= VK (cf. §3) and tg' Tt? Tt? ^ r^
(0, 1). In particular, the eigenvalues E^ are mutually different for compatible
weights when — °°<<7, r< oo (see §3).

We write Da, T for Koornwinder's second-order g2-difference operator in base
q2 with parameters Q , 0 = (lCT> \ q2), and we write E£* T 0/^P^) for the corre-
sponding eigenvalues. We furthermore write P^ T(x) '•=Pfl

K(x ; t_a' T ; q2 , q2 ) G/6E
PS ) for the corresponding monic Koornwinder polynomials. By Theorem 7.4,
<pa' r(A) |T^C [x±1] is an eigenfunction of Da, T with eigenvalue ̂  T for A £P/. By
ENS1, Lemma 6.2], any eigenfunction ^?(x)£CE^±1] of D0,T with eigenvalue

s ) and which is of the particular form

is a constant multiple of the Koornwinder polynomial P^Gc). Combined with
Lemma 7.2, the following main result of the paper ENDS] is obtained.

Theorem 7.5. ( ENDS] ) Let - oo < a, r< oo. ITze restriction <p°' T(A) JT

zona/ spherical function <pa>r(/l)ejf CT>T(A) (A^P/) w egi/a/ fo r/ie Koornwinder
polynomial P^T(x), wp ro a non-zero scalar multiple. In particular, |T defines an
algebra isomorphism from J^0^ onto CE*"1]^.

Remark 7.6. It should be observed here that the assumption — °° < a, r < °°
in the preceding arguments is absolutely essential. In fact, the map IT :
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factors through the projection nK : Aq(jLT) ->Aq(lC). This implies that the
image of ffl °'T under |T is one-dimensional as soon as either a or r is infinite.

§8. Limit Transitions on Quantum Grassmannians

In this section we study the right f ̂ invariant (— °o<r<°o) functions in the
quantized coordinate ring Aq(U/K} =Aq (I

00 \C7) . Our method will be to regard this
case as a limit of the case — °° <cr, r< °o by sending a to infinity. This limit can
be made rigorous by using explicit information about the limit transitions from
Koorn winder polynomials to multi variable big and little g-Jacobi polynomials. In
the rank 1 case these results were derived earlier by Koorn winder [Kl] for 2-
spheres and for arbitrary complex projective space by Noumi and Dijkhuizen
[DN1].

For the proper interpretation of the limit transitions of the zonal spherical
functions, a careful study is needed of the pre-images of the ^ -invariant functions
e,(x):=m(i*)(x) (1<5</) under the isomorphism |T : 3?°' T -^ C[x±l^ . For
— oo <a, r< oo, write e?' T for the unique element in 2? °' T such that its restriction
to the torus is equal to erGO (l<r</). It is convenient to put e0GO := 1 and
eQ'T'.= 1. Recall that the ^-invariant functions {er}r=\ are algebraically independ-
ent generators of C[jc±1]'*r (cf. §3). In other words, by setting

P(e, Oc), ... , *,Cx)) :=P(x), PEEC[x*i;r (8.1)

we get an algebra isomorphism P I — > P of C[x±1]ir onto C[j;], where 3;= (j>i,
. . . , yi) is an /-tuple of independent variables. It follows from Theorem 7.5 that the
elements {e?'T}l

r=i are algebraically independent generators of the algebra Jf a>T .
Using Theorem 7.5 it is now easy to derive an explicit form of the restriction

of the normalized Haar functional hto 3^0>T . Recall that the parameters t°' T lie in
the parameter domain VK for — °o<a, r< °o (see §3 for the definition of VK)-
Write <0>>a, T:= <<P, 1>^2 qi for the constant term of ^eC[x±!]^, with < • , • > *
defined by (3.1). Observe that <l>a, r is non-zero by the positive definiteness of
< • , • > * • Explictly, <l> a ,T can be given explicitly as product and quotient of q-
Gamma functions by Gustafson's evaluation of the multidimensional Askey- Wilson
integral (3.2).

Corollary 8.1. Let — °o < a, r < oo. The restricted Haar functional h : Jjf°' r -*>
C is explicitly given by

*, e?-\ ..., er»= ~^
\A/a, T

Proof. The left- and the right-hand side are both equal to zero for P=P£'T
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with OT^^PS, and both equal to 1 for P=l. The corollary follows now by
linearity, since the Koornwinder polynomials Pfr T(x) G/£Ps ) form a linear basis
ofCt^F. D

Recall the intertwiner

Wr: (y®V*}®r-^Ar
q(V}®Ar

q(V*}

defined in Proposition 6.11. Introduce left ta-fixed vectors
and right fr-fixed vectors wT

T^.Ar
q(V) ° ®ylj(F") ° by

Here we have used the notation w°°'=w00 (6.11) when T=C°, which is consistent
with the definition of wr for — °o < r< °° since lim^ 00w

T=wco . Consider now the
(a, r) -spherical elements

cpr
a'T:=0(wT

r, w?)e0 Jfa'T(fflO (l<r</) (8.2)
s = Q

(cf. (6.14)), where 9 is the map (7.2) associated with the unitary comoduleylj(F)
(x)/Lg(F*) endowed with the inner product < • , • > (see (7.6) for the definition of
< • , - » • It is convenient to put <pS' T'.= 1. By Theorem 7.5 and (8.2), <p? T\T is a
linear combination of the 1^-invariant functions es(x)^C[x±1]ir (0<s<r).

Lemma 8o2. Let — °o<a, r< oo, l<r</. In the expansion

each coefficient a\ is a polynomial in qa and qT which is the sum of monomials of
partial degree >i in each of the variables. Moreover, ar

r(q
a , qT^)=cqra+rT with c^O

independent ofqa and qT.

Proof. It is obvious from the definitions that the coefficients are polynomial
in qa and qT . To prove the estimates on the partial degrees, we study the action of
the intertwiner Wr on the vectors (wCT)®r and (wT)<8)r in detail. We proceed in a
number of steps.

( 1 ) Let 1 < i i < • • • < ir < n and 1 <j\ <-•• <jr < n be integers. We use the short-
hand notation (-=0'i, ..., 4), 7 : = ( / i> • • • > Jr)- Call a tensor t in some tensor
product space made up of factors F or F* (the total number of factors F being
equal to the total number of factors F*) a basic tensor of type (( , j) if t is the
tensor product in any given order of the vectors v / 1 ? . . . , v/r and v/* , ...,y/*. Letn*(/)
denote the cardinality of the set {/?EE [1, r] ip—k}. For a basic tensor t of type
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(L> 7) define

From an informal point of view, n (0 is the number of factors v, in f that "cancel"
against a factor v/* . Recall the intertwiner ¥^r : (F® F* ) ®r -> F®r ® (F* ) ®r defined
in (6.20). Let £ be a basic tensor in (F®F*)®r. Since WT is a composition of
intertwiners ̂  (see (6.20)) it follows by inspection of (6.19) that Wr(t) is a linear
combination of basic tensors tr in V®r® (F*)®" with n (O =/i (0-

(2) A basic tensor t^. (F® F*) ®r is called typical if it is a product of tensors in
F®F* of type v/®v,* (l<i<n-/), v^v,*, v^v* (!</</). We call a typical
tensor re (F® F*) 0r fc-typical if the number of factors of type v/<8>v,* (i <= [1, /] U
[/', n ]) is equal to fc. If f is a fc -typical tensor then WT(£) is a linear combination of
elements v/®v/ where I, JC [1, n] are such that |/| = |/| =r and |/nj| >r—k.
In fact, this follows from (1) and the definition of Wr, since n(f)>r—k.

(3) It is an immediate consequence of the definition of the coactions on Ar
q(y)

and^i;(F*) and of (4.11) that

for/, /C[l, n] with |/| = |/|=r.
(4) Let t be a fc-typical tensor and t' an m-typical tensor. Let // G i^ (T

(/£ [1, r]) be any weight, and suppose that the coefficient of z^ in the expansion
of 9(Wr(t\ $XO) IT with respect to the basis {ZA} AeP of A (T), is non-zero. Then
k>i and m>i. This is a straightforward consequence of (2) and (3).

(5) There is a unique expansion (wCT)0r=Sfc=oSr fcc f fc? fe where tk runs over all
/c-typical tensors in (F^F*)®'. The non-zero c,fc are linear combinations of
monomials (q°y with i>k. Similarly, there is a unique expansion (wO^^S/Uo
^t'kdt'ktk where tk runs over all fc-typical tensors in (F(8) F*)®r . The non-zero d^
are linear combinations of monomials (q*y with i >/c. Hence,

with cf fc ?'m = cf fc df'm a linear combination of monomials G?a) l (qTy with z > k and j > m .
Combined with (4) this yields the desired lower bounds on the partial degrees of
the monomials (qay(qry occurring in af(#°, #0- An explicit expression for ar

r(q
a,

(?T) can be given using Proposition 6.11. The last statement of the proposition
follows then immediately. D

As a corollary we obtain the following crucial lemma.

Lemma 8.3. Let — °° < r < oo. The limits
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lim qraer
a> \ lim q2roe?> ° ( 1 < r < /)

QT^. CXJ (J-* 00

exist in Aq(U}. In other words, the coefficients of qrae?' T respectively q2rae?'° in the
expansion with respect to the monomial basis ofAq(U} tend to finite values in the limit

Proof. Fix \<r<l and let — °o<a, r<°o. From Lemma 8.2 it is readily
deduced that

with bri (0</<r) some polynomial in two variables and br
r a non-zero constant

polynomial (the important fact here is that b\ is a polynomial and not a Laurent
polynomial) . Hence

Since <pf' r -> <p°°' r and ^a' a -> ^°°' °° when a -> oo? the lemma follows. D

In view of Lemma 8.3 we may set for 1 <r <l and — °° < r< <x>,

e?>T:= lim ^(a+T-1)(-l)rer
a'T, e?'™'^ lim gr(2a-0(-l)r^'a. (8.4)

0-* oo C7~> °°

It is clear from the definitions that e™' Te jf00' T (1 <r </, - °o < r< oo). Observe
that the elements (— \}re?'T are mapped onto e r(— x)^C[x±1]^r under the re-
striction mapping |T.

Recall that the elements er (1 <r </) are algebraically independent generators
of the algebra C [x] s (cf. §3) . Again, we obtain an algebra isomorphism P -> P of
CWS onto C[^], where

Pfe (x), ... , *,(*)) :=P(x), (PeC W6). (8.5)

Theorem 8A Ler -oo<r<oo. r/ze elements e?'T (l<r<7) mutually
commute and are algebraically independent generators of the algebra Jf °°' T. ^nj;
zonal (oo, T;} -spherical function ^°°'T(/l)£jf °°>r(A) (A£P/) is egwa/ ro a non-zero
scalar multiple of

°° ' r - 2("-2/) 1 2T+2(n~2° - 2

P/(. ;a9b,c,d; q, t) is the multivariable big q-Jacobi polynomial of degree
(cf §3).
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Proof. The elements e?'r (l<r</) mutually commute for a finite by Cor-
ollary 7.3. By the definition of the elements ey°'T (8.4), it follows that the ey°'r

(l<r</) also commute. Hence the element Q(eT'T, ..., ePO^^00'" for a
polynomial Q^C[j>] is well defined.

For o finite and A £P/, a zonal (a, r) -spherical function <pa> T(A) e^f a> T(A) is
given by

^^(^-(-^-O^'^Cef'^...,^^!^;^,^) (8.6)

withP*(.) the Koornwinder polynomial of degree // (cf. Theorem 7.5). Using the
elementary properties of the Koornwinder polynomials given in Lemma 3.1, this
zonal (a, r) -spherical function can be rewritten as

where se:=q/e(cd^,fr
£:= (-O~r«ra'T, e—tf'7"01'20, and

with parameters a, 6, c, G? given by

fli=l, b:=q^-21\ c:=l, d:=?2T+2("-2/). (8.7)

Observe thatSg^g1"0"7, hence by the definition (8.4) of er°°'
 T, lim£ lo/^er00' T for all

r. Combined with the limit transition from Koornwinder polynomials to multi-
variable big ^-Jacobi polynomials (3.19), we get that <p°°'r(/l) :=lima-*oo^CT>T(A)
exists as limit inAq(U)9 and that

V"- TU) =/>/, (gr- T, -. , «,"• r ; 1, <72("-20 , 1, ?
fc+^-« ; 9

2, 9
2) (8.8)

with P/ (.) the multivariable big g-Jacobi polynomial of degree //. It is clear that
<^00 'T(A)£^f00 'T(/l), but it may be zero since the algebraic independence of the
elements ey°'T (r£= [1, /]) has not yet been established. To prove that #>°°'T(/l) is
non-zero, we compute the quadratic norm ||<pCT>T(/l)||2 with respect to the inner
product <<p, 0>:==/z(0*^), where h is the normalized Haar functional. Since all
highest weights AGP/ are self-dual (i.e. K(A) is isomorphic to its dual repre-
sentation), and since the two-sided coideal la is r-invariant, we have (<pa' T(/0) * =
cpa' T(A). Then it follows from the definition (8.6) of (pa' T(A), CoroUary 8.1 and the
definition (3.21) of NK, that

s^NKW ; Ij iCfi) ; q\ &• (8.9)
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The limit e j 0 (equivalently, a— > °°) in (8.9) can now be computed in the left-
hand side and in the right-hand side (cf. Proposition 3.2). It follows that

Since ^(A*) is strictly positive, it follows that the quadratic norm ll^00'7^.)!!2 is
non-zero, hence <p°°' T(A) ^0 for all A (EP/. Hence the elements <p°°> T(A) (E Jf °°' T(A)
are zonal (oo9 r) -spherical functions for all ASP/.

It remains to prove that the ey°'T (l<r</) are algebraically independent.
Consider the finite-dimensional subspaces

^fm'= © jr°'Ttt), (mez+).
Ae/y A^mcj/

The dimension of the linear subspace Jf m is equal to the number of positive integers
m = (mi, ..., mi)£=:Z+l with |m := S,m/<m, since SJr<GJ/ for all rG [0, /]. For
such a sequence of positive integers m, set QmCy) ^/P1 ••• J^1'- Since ey°>T^

and

we have Qm(eT'T, - . - , e/^'O^^m for all m with |m <m. Hence the algebraic
independence of ey°'T (l<r<7) will follow from the fact that the monomials
Q^(er)T, . . . ,er> T) ( |m |<m) span Jfm for allm^Z+.

Observe that Jfm is spanned by the zonal spherical functions ^°°'T(A) (A<
mGJ/). SinceP/GO O/eP^) is of the formm/uGc) + Zi/&p2 .z/<^^m^U) for certain
constants cv, it follows from the explicit expression (8.8) for ^°°'T(A) that each
#>°°'T(A) with A<mGT/ can be written as a linear combination of the monomials
Qm(eT' \ . . . , e/00- T) ( | m | <m) . Hence, the monomials Qm(eT' \ . • • , ef ' T) ( | m | <
m) span ^m . D

Theorem 8.5. The elements er°°' °° (l<r</) mutually commute and are
algebraically independent generators of the algebra Jf00'00. Any zonal spherical
function <p°°' °°(A) (AGP/) w egwa/ ro a non-zero scalar multiple of

w/zere P^(. ) w ?/ie multivariable little q-Jacobi polynomial of degree /z (c/ §3).

Proo/. By Theorem 7.5 and by symmetry properties of the Koorn winder
polynomials (cf. Lemma 3.1), a zonal (a, a) -spherical function <pa 'a(A)ejf ff>C7(A)
(AGP/) is explicitly given by
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where P*(.) is the Koornwinder polynomial of degree # (cf. §3) and £'*=q2a,
sE:=q/£,fr

£:=(-Se)-
rer

ff>°, and fL(e) := (e^g, -aq, ebq, -q) with a:-^2("-2/)

and fe:=l. Using (3.20) together with the observation that lime|o/r£=er°°' °°, the
proof is analogous to the proof of Theorem 8.4. D

Remark 8.6. Using the limits e^' °° =limT_* 00^' T (1 <r </), Theorem 8.5 can
also be proved by sending r-*> °° in the results of Theorem 8.4. On the level of
multivariable orthogonal polynomials this limit corresponds to the limit from
multivariable big g-Jacobi polynomials to multivariable little ^-Jacobi polynomials
proved in [SK, Thm. 5.1(3)].

Remark 8.7. As a corollary of Theorem 8.4 and Theorem 8.5, the restricted
Haar functional h : Jf ff>T-> C for a=°o, — OO<T;< oo respectively for O=T=°°
can be expressed in terms of the orthogonality measure of the multivariable big
respectively little g-Jacobi polynomials (cf. Corollary 8.1).

Remark 8.8. In the last two sections we have interpreted the Koornwinder
polynomial resp. the multivariable big and the multivariable little g-Jacobi
polynomial

l no—c+\ -a+r+2(n-2/) + l . _2 n» q > q > q > q
(8.10)

( — oo<cr, r<oo,// ̂ P/) as a zonal spherical function on some quantum analogue
of the complex Grassmannian. For each of these polynomials, the classical limit
q f 1 can be computed using results from [Djl, §4] for the Koornwinder
polynomials and using [SK, Thm. 5.1 (5) & (6)] for the multivariable big and little
g-Jacobi polynomials. The limits can be written in terms of the generalized Jacobi
polynomial P/( . ; n — 2/, 0 ; 1) or, equivalently, in terms of the EC type Heckman-
Opdam polynomial P/f°( . ; n — 2l, 1, 1/2). This agrees nicely with the classical
interpretation of the Heckman-Opdam polynomial P/0 ( . ; n — 21, 1, 1/2) as a zonal
spherical function on the complex Grassmannian U/K (see §2) .
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