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§1. Introduction

We are concerned with a free boundary problem for the two-dimensional
and irrotational flow of incompressible ideal fluid around an obstacle. We
assume that the domain occupied by the fluid is surrounded by two closed
Jordan curves. The inner curve is the boundary of the obstacle, while the
outer curve is a free boundary. We take the gravitation due to the obstacle
into account. Physically, this obstacle represents the earth and the fluid
represents the ocean or the atmosphere. This type of problem was already
considered by Okamoto [3], [4], [5], [6]. He studied stationary solutions
as a bifurcation problem and the stability of trivial stationary solutions. Up
to the present day, however, there is no existence theorem of the corresponding
Cauchy problem.

On the other hand, Nalimov [2] investigated the Cauchy problem for
surface waves of different type from the above one. In his formulation, the
domain occupied by the fluid has infinite extent and depth. He showed that
the problem is well-posed in suitable Sobolev spaces of finite smoothness
under the restriction that the initial data are close to the equilibrium rest
state. Then, Yosihara [7] extended the Nalimov's result to the case of presence
of an almost flat bottom. It is worth while mentioning that they used the
Lagrangian coordinates to reduce the problem to an equivalent one on the
free surface. Moreover, there was a cancellation in quasi-linearization of the
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reduced system of non-linear equations. This cancellation was essential to
show the well-posedness of the Cauchy problem.

In the present paper, on the basis of their analysis we shall investigate
the well-posedness of the Cauchy problem for our case. In section 2
we formulate the problem, transform it into an equivalent one by using the
Lagrangian coordinates and give the statements of main theorems. In section
3 some notations, definitions and preliminary lemmas are presented. In section
4 we give the explicit form of the operator K, which appears in the transformed
problem. In section 5 the properties of K are investigated. To this end, we
study a certain class of integral operators. In section 6 the transformed
problem is reduced to a quasi-linear system. In this reduction a cancellation
appears as in [2], [7]. In sections 7 and 8, we give the proofs of the main
theorems.

§2. Formulation and Results

We assume that the domain Of occupied by the fluid at time r>0, the
free surface Tt and the rigid boundary E of an obstacle are of the following forms

Of = {z = re* ; r0(l + b(6)) < r < r ,(l + y(r, 0)), 0 < 0 < 2n},

Yt = {z = reie;r = r1(l+y(t,6)), Q<0<2n},

I, = {z = re* ; r = r0(l + b(9)\ 0 < 0 < 2n},

where r0 and r1 are positive constants satisfying the relation r0<r1 and b is
a given function, while y is the unknown. Here and in what follows, the
two-dimensional Euclidean space R2 is identified with the complex plane C
in the usual manner, and this identification is used not only for the spatial
variables but also for unknown vectors. The motion of the fluid is described
by the velocity v = ( v l 9 v 2 ) and the pressure p satisfying the equations

(2.1) p + (vV)v + Vp = pgV in
dt

(2-2) =0, - i = 0 in Q,, t>0,
ozl oz2 ozl oz2

where V = (d/dzl , 3/<3z2), v • V = vl(d/dzl) + v2(d/dz2), pis a constant density, g is a
gravitational constant and it is assumed that the center of gravity is located at
the origin. The dynamical and kinematical boundary conditions on the free
surface Tt are given by
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(2.3) P=Po on

and

(2.4) + V'Vr1(l+y)-r) = 0 on

respectively, where p0 is an external pressure assumed to be constant. The
boundary condition on the rigid boundary £ is given by

(2.5) vnb = Q on £, f>0,

where nb is the unit outward normal vector to H. Finally, we impose the
initial conditions

(2.6) ?(0,0) = 7o(0), v(0,z) = v0(z).

The initial velocity v0 is assumed to satisfy the compatibility conditions (2.2)
and (2.5).

We transform the above system of equations using the Lagrangian
coordinates. Let

(2.7) Ff : z = r t(l + X2(t9 0))ei(e + Xl(t>9)\ 0<

be the parameter-representation of the free surface such that

(2.8) -(^(1 +X2(t,0))ei(e+Xi(t>9») = v(t,r1(l
dt

Then X= (Xl , X2) satisfy the following system of equations:

(2.9) (1 + X2)(l + XieW + X2)Xltt + 2XitX2t)

+ X2e(X2tt-(l+X2)Xlt + K(l+X2)-
2) = Q for

(2.10) X2t = K(l+X2)Xlt for r>0,

(2.11) X=U9 Xlt=V at f = 0,

where K=g/r\ and K=K(X,b,f$) is a linear operator depending on X, b and
P = rl/r0. These are derived as follows. Differentiating (2.8) with respect to
t and using (2.1) we see that
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(X2tt-(l

On the other hand, differentiating (2.3) with respect to the tangential direction
9 we get

Eliminating Vp\Tt from these two relations, we obtain (2.9). (2.2) and (2.5)
imply that the normal and the tangential components of the velocity v on the
free surface are not independent. (2.10) represents this relation, which is
explained in section 4 in full detail. Finally, the initial data U and F are
calculated from y0 and v0 by utilizing (2.8).

The following is one of our main results in the present paper (The function
spaces used there are described in section 3).

Theorem 1. For any jS>l and ?c>0, there exists a small positive constant
6 l = d l ( P , K ) depending only on $ and K such that if s>4+l/2 and

(2.12) UeHs+l>2, V,bEH\ \\U\\3<dly ||F||2<<515 \\b\\3^6l9

then problem (2.9)-(2.11) has a unique solution X on some time interval [0, T]
satisfying

4

(2.13) XE p| CJ'([0,r];//s+1/2-'72).
j = i

Moreover, let X(n\ « = 1,2, ... be the solutions of (2.9)-(2.11) with initial data
(U(n\V(n)) satisfying (2.12) and (U(n\ F(M))-»(t7, F) in Hs+1/2xHs as n -» oo.

4

Then it holds that X(n} -> X in f) CJ'([0, T} ;HS+ if2~Jf2) as n -» oo.

Remark 2.1. Once the solution X of problem (2.9)-(2.11) has been
determined, we can easily obtain the solution of problem (2.1)-(2.6) in the
following way. In view of (2.7), y is obtained by the implicit function
theorem. We solve the boundary value problem (2.2) with the boundary
conditions (2.5) and v\rt = (r1(l+X2)Q

i(e+Xl))t. Although these boundary
conditions are overdetermined, the problem can be solvable because of
(2.10). Then p is determined by (2.1) and (2.3) due to (2.9).
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Next, we restrict ourselves to the case b = Q, that is, the rigid boundary
£ is just a circle with a radius r0. In this case, problem (2.1)-(2.5) has a
circulating stationary solution of the form

(2.14)

= 0, v(z)=-ria\- i— )log|z|,
<3z2 <9

2

z| rj 2 \\z\2 r\y

1 1

where a is a real parameter, which denotes the speed of the flow on the free
surface. In our Lagrangian coordinates, the above solution corresponds to
X=(at,Q) with <x. = a/rl. Now, we proceed to investigate the well-posedness
for the Cauchy problem (2.1)-(2.6) around the stationary solution (2.14). To
this end, we replace Xl by X^+ut in (2.9) and (2.10). Then, we obtain

(2.15)

2) = Q for

(2.16) X2t = K(l+X2)(x + Xlt) for f>0,

where K=K(X,0,^) is the same operator as in (2.10) with b = 0.
Before stating our results concerning the initial value problem for (2.15)

and (2.16), we consider the linearized equations:

(2.17) X

(2.18)

(for (2.18), see section 4). These imply the equation

(2.19)

This equation for X2 can be easily analyzed and we see that the initial value
problem for (2.19) is well-posed in the class X2e^]2

=0C
j(l^T^;Hs+il2-j'2) if

K > a2, and that the problem is ill-posed if a2 > K. Since parameters a and K
represent the speed of the flow and the strength of the gravity, respectively,
these facts express in a physical point of view that if the gravity is stronger
than the flow, then the problem is well-posed. On the contrary, if the flow
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is stronger than the gravity, then the problem becomes ill-posed. For the
non-linear problem, the same statements are valid and we obtain the following
results.

Theorem 2. Suppose that /?>!, a, JceR1 and K>%2. There exists a small

positive constant d2 = d2(P,a,K) depending only on /?, a and K such that if
2 and

then problem (2.15), (2.16) and (2.11) has a unique solution X on some time

interval [0,2"] satisfying (2.13). Moreover, the continuous dependence of
solutions on the initial data is also valid in the same sense as in Theorem 1.

Theorem 3. Suppose that /?>!, a, TceR1 and tx2>K. Then, problem
(2.15), (2.16) and (2.1 1) is not well-posed. More precisely, the following statement
is not true'. There exist a large number N and a positive constant T such that
for any number n>N, problem (2.15), (2.16) and (2.11) with initial data

(2.20) (7=0, K=e-

has a unique solution X=X(n} satisfying

(2.21) Jf(n)->0 in Cl([Q9r\'9H*+i/2) as n -» oo.

Remark 2.2. The initial data in (2.20) are smooth functions and converge
to zero in the Sobolev space of any order. Hence, Theorem 3 implies that
the well-posedness for the Cauchy problem (2.15), (2.16) and (2.11) does not
hold in the case a2 > K even if we assume that the initial data are sufficiently small
in suitable Sobolev spaces.

Remark 2.3. The assumptions that the initial data are small in Theorems
1 and 2 can not be removed in general, because the solution of (2.15) and
(2.16) with a = a1+a2 and (2.11) is also the solution of (2.15) and (2.16) with
a = «! and (2.11) with K replaced by F+a2, and we have Theorem 3.

§3. Preliminaries

For a real number s we denote by H s the usual Sobolev space of 27c-periodic
functions on R1 equipped with the norm
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II/L= 2* £ (i+i/iin// ,
\ n= -oo /

where/, is the n-th Fourier coefficient of/

- inO Jf\ M f\ I i i ^at/, n = u, x i, ni A—

For an integer y>0 and 0< T< oo we say that/e CJ([0, T~\\X) if/is a function
of C7-class on the closed interval [0, F] with the value in a Banach space X.
A pseudo-differential operator F(Z)), D= — id/86, with a symbol P(n) is defined by

M= — OO

We define the pseudo-differential operator ^0 and the symbol sgnrc by

,P2D— 1 Jw/N if« 7^0,

respectively. For operators ^4 and B, the commutator of ^1 and B is denoted
by [A,B]=AB — BA. Throughout this paper, the symbol C denotes various
positive constants, which are different in different lines and C=C(a,b,...)
means that C depends on «,£,.... For any OeR1, we define the translation
operator Te by (Tef)(<p)=f(9 + cp).

Lemma 3.1. For 0<r<l , there exists a constant Cr>0 depending only
on r such that for any f e Hr

c~l X M2UI2<
n= - oo JO «/0

Moreover, ||/||5+r is equivalent to the norm

a 2* \\T f - f \ \ 2 V/2

o j^ZTps*) '

where s is an arbitrary real number and /£//s+r.

Proof. Using Parseval's formula, we see that
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C2lt \ein9 — 1 12

j^-ijiL
Jo le — AI

Since 20/7c<sin0<0 for 0<0<7r/2, it holds for any integer «^0 that

r«/ 0

(2\n\\2r

01 + 2" 2(1-r)U

and

£/:

These imply the first assertion. For the second one, it is sufficient to note that

\\Tef-f\\l = 2n f (l + N)2UI2|e"-l|2,
H= — 00

because of the above estimates. The proof is complete.

Lemma 3.2. Let f$>\ and s>Q. For any /e//° we have

\\(isgn D + K0)fl<C\\f\\0, ||

where C=C(P,s)>Q.

Proof. In view of the inequalities

"l and
2 n _ i \ 2

1+ -i
.P2n-l

we obtain the desired estimates. The proof is complete.

Lemma 3.3. Letr,t>Qande>Q. ForaeH1"^' andfeHlt2+e~',wehave

For the proof of this lemma, we refer to Lemma 1 in [2] or Lemma 2.14
in [7].

When we investigate the properties of K, it is convenient to use the operator
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classes L(r,s\t) and LQ(r,s\t) which were introduced by Yosihara [7]:

Definition 3.1. Suppose that 0<r<s and Q<t<s. For an operator
M=M(P) depending on P = (PX , ...,Pfe), we write M(P ; P(/)) e L(r, s ; 0 (/is the
subset of { 1, . . ., k}9 P(J) = (Ph , . . ., PJ) if /= {j\ , . . . J ,} and P(J) = 0 if / is empty)
if the following condition is fulfilled: There exists e > 0 such that if P, P° e Hs

satisfy ||P(/)||f, ||P%/)lir<£ and ||P||S, ||P°||s<c for some c>0, then
||M(P)/||S<C||/L and ||M(P)/-M(P0)/L<C||P-P0||S||/L for/e//", where
the constant C does not depend on P and P° but on c.

We write M(P;P(J))eL0(r,s;t) if M(P ;/>(/)) e L(r, 5 ; r) and ||M(/>)/||s
<C||P||s|/||r for

The following is a slight improvement of Lemma 4.22 in [7].

Lemma 3.4. Suppose that Q<r<s and Q<t<s<sl. Then
1) L(r,s',i) and L0(r,sii) are algebras,
2) L0(r, s ; r) /5 a two-sided L(r, s ; t)-module,
3) //* m w smooth in a neighbourhood of OeR f t, then the operator M

defined by M(P\P)u = m(P)u belongs to L(s, s ; f) for l/2<t<s,
4) If M(P',P)eL0(q9q'9t) for any qe[s9Sl] and TeM(P) = M(TeP)Te for

then Mi(P;P) = (l +M)'1 <= L(q, q ; s) for any qe^s^.

§4. Representation of K

Throughout this section the time £(>0) is arbitrarily fixed, so that we
simplify Q, , X(t, 6) as O, X(9\ etc. Assume that the velocity v is of C1 -class in the
domain O, continuous up to the boundary 5Q = FuZ and satisfies (2.2), and
that X is a 27r-periodic C1 -function on R1. These assumptions are always
satisfied if we deal with the function spaces (2.13). Recall that the free surface
F and the rigid boundary Z are parameterized as

lS:*K0) = r0(l

Put

W(0)=g(0)eie, W(r} - i W(e) = W.
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Then F is holomorphic in fi, since (2.2) asserts that F satisfies the
Cauchy-Riemann equations. It follows from (2.8) that

(4.1) V^ = r,X2t,

The boundary condition (2.5) on Z can be rewritten in the form

(4.2) W™ =

Taking z0 = z(9)eT, applying the Cauchy integral formula to F in the domain
Q(r)={z;|z — z0 |>r}nQ and letting r-» +0, we obtain

n I f f[z) J -TCI" , 1 f
0 = — A -±Ldz = — F(z0) + — p.v.

2nijdn(r)z—z0 2m 2m Jr

Transforming the coordinates yields that

(4.3)

1

2mJ£z-z0

TCI o

The integral kernels can be rewritten in the form

1 dz(cp) ie1* 8
- + — -log

dw(cp)

Substituting these, /=Fe~£(0+Xl) and g=We~w into (4.3) and making use
of the integration by parts, we can get

(4.4)
i l'2* ieie
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-If'e-
rcJo

-"log

Define the projection P0 by

1 f2*
P0f=— f(0)d0 (=/0 the 0-th Fourier coefficient).

2rcJ0

It is not difficult to see that

(4.5) Ip.v. f -J^f(9)d(p=(!*efiD-iP0)f9
n J0 e —e

ze* r, usgnDa' ' f-\-i(w I " 1 — a~1P0)/' if 0<a<l ,
—-—^/(^W<P = v

Therefore, by (4.4) we have

(4.6) I

where

(4.7)

aj((p,0) are real-valued functions,

piX1(«.)_ iA

(I

dcp
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dcp

0/<p,0) are real-valued functions,

(«) .)

x.0,/''

Similarly, taking w0 = w(0)ell and proceeding in the same way as above, we
obtain

(4.9) (1 - P0) W= /(zsgn /)) PT- jS/»0 F+ ( 1 - /(z'sgn />))/? " |D| + ! F

where

(4.10)

(Ajfffl=- faff) f(v)d<?, j= 13, ..., 18,

Oj{(p,9) are real-valued functions,

—p—e

xloEl ^^~*2W))C ' —p yru{u))t \i "*iW) \
& \ irn rt — 1 f'fl 11 7 I '
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(Ajf)(e)=- I "j(<P> 0):^d<p, j= 19,..., 22,
n Jo d<P

dj((p,9) are real-valued functions,

(4.11)

(I
g

It follows from the equation (4.6) applied the projection P0 that

This together with (4.9) implies that

(4. 12) W= i(isgn D) W+ (1 - i(isga D))p~W + [ V

{(-Al5+A20)-i(Al6+Al9)

The real part of (4.6) and the imaginary part of (4.12) become

(1 +/>0)F(r)= -(/s

and

p - \D\ + i(/sgn D) yv



538 TATSUO IGUCHI

respectively. Eliminating W(r) and W(B) from these two relations and (4.2),
we obtain V(r) = KV(e) with

(4.13) K=K0 + K19

where

/ i

(4.14)

*(A14 + A18+A21+(P/2)P0(A2-A6-A9))},

-Ai5+A20-(^/2)P0(A3-A1+Al2),

Thus we get (2.10) because of (4.1).
As for (2.16), it is sufficient to note the above arguments and that in such

a case, the free surface F and the rigid boundary Z are parameterized as

0<0<27T,

0<0<27L

Remark 4.1. In the case b = Q, applying the above arguments to the
velocity v(z) of the stationary solution (2.14), we obtain

(K(l+X2)-
l)(9) = Q for Q<9<2n.

§5. Properties of K

In order to investigate the operator K defined by (4.13), it is sufficient to
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consider the integral operators of the forms

and

where u = (ul9..., %), f = (vl,..., VN), aj, &7- ,uk,vk are complex valued functions,
Fis holomorphic in a neighbourhood of {zeCN;|z|<l/2} and /? is a positive
constant with jS/1. In the study of these integral operators, of course, it is
always assumed that

u(0)-u(cp
16 pup — 9c — c z.

<- and <- for 0,<peRl.

To begin with, we construct estimates for some integrals. For simplicity,
we introduce the notation

a(e)-a(cf>)

Lemma 5.1. Let kbe a non-negative integer, seR1, 8>0 a«<^ A the integral
operator of the form

\ K k

f(cp)dcp.
r2«//d\k \ PKifd\k \

=\ T- W, cp) f(9)d<p or (Af)(6) =\ (( — ) a(9, <p)
Jo \\3^/ / Jo \\30/ /

M/||s<C||fl||s+fc|l/||1/2+£.

By (4.5), the former integral operator can be rewritten in the form

(AfW = ( - I)k7de - w{la, isgn DJiD)kf(0) - ia(6)P0(iD)kf+ iP0a(iD)kf}.

Since P0a(iD)kf=P0((iD)ka)f, the required estimate follows from Lemma 3.3

and the trivial estimate H/'o^lls— ll^owi;llo^ l l w l l o l l ^ l l o - For the latter one, the
evaluation can be reduced to the former case, because we have

— a(9, <p)=-— a(0, cp) + ̂ (6, <p) - ia(6, q>).
oO ocp
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The proof is complete.

Lemma 5.2. Let k be a non-negative integer, !</?<oo, 0< r< l and
8>0. Then we have

(5.3) sup
e \Jo 30'— ^

(5.4)

sup
0 01

d_

86,

k 1/2

e, the integrals with respect to cp should be replaced by the essential supremum
in the case p = co.

Proof. By the Fourier expansion of a and Minkowski's inequality, we have

C2n

(5.5)
Jo

< I k
w= — oo

dq>] .

Since

y ei(»-i-j)e+w for

(5.6) 0 for n =

it holds for n > 1 that

Here, we see that

n-l n-l
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where dko is Kronecker's symbol. Therefore

f*27E

0

n- 1

86
dtp

p V/P
+8ko(2n)ll>.

J = l \ J O

In the same way as in the proof of Lemma 3.1, we obtain

p V/P
(5.7)

f o r y > l . On the other hand, it is clear that

"Z ((n-ff-(n-j-\)k)<k2\n-\)k.j='
Hence we get

a 2"

o

/p

<

for « > 1. We can show that the above estimate is also valid for n < 0. This fact
and (5.5) lead us to (5.3).

As for (5.4), we have

(5.9) dcp

< Z M
n= — oo \J 0

We consider the case that n>\ and ^>1. By (5.6), we have
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2n H-l

£ (ei(n~i -^- l)(n-1 -y)*e'''
j=0

Here, it holds that

7 = 1

gO> _ 1- -

This together with (5.7) shows that

"'1"1'^
7 = 1

On the other hand, by (5.8) it is clear that In(0i ,62)<C\n\k+1-ilp. Thus,
using the similar calculation in the proof of Lemma 3.1, we see that

l/2

2«-it/n \ l /2

l/2

pn N l / 2

+ (n-j-m I + |e^-ir2^2
/O Jln-n/n /

<C\n\k+r+l~llp.

Similarly, we can show that the above estimate is also valid for «<0. This
fact and (5.9) show that (5.4) holds for /?>!. The proof in the case p = l
is almost the same. The proof is complete.

Lemma 5.3. Let k be a non-negative integer, 2<q<oo and0<r< 1. Then

we have



IRROTATIONAL FLOW IN A CIRCULAR DOMAIN 543

(5.10)

(5.11)

o \Jo
3(0, <p)

q \2/q \ l / 2

dcpj dO\ <C\\a\\k+l_l/q,

\ o

k

-?-) (a(0i+e2,9)-a(0l,q>)}
q \2lq \ l /2

Proof. By the Fourier expansion of a and (5.6), we have

j=0 \n = j+l

- 1 / 7

+ E E ajftn-l-jjfe**-1-*^_rf I £_J WV \ >/ //
J = — 00 \H = — 00

This and the Sobolev imbedding Hil2~llq c; L€ imply that

'2n

dq>
2/«

+ c x (i
j= -oo

Integrating this with respect to 0 and using Parseval's formula, we obtain

4 \2/flnrJo \Jo

oo n— 1 — 1 —

E I + Z I
,n = 1 / = 0 n = — oo /' = «,

<C In

By virtue of Lemma 3.1, we can show (5.11) in the same way as above. The
proof is finished.

Lemma 5.4. Let j and k be non-negative integers, Q<s<l/2, £>0 and
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1(0) =
3Va(0,9) dcp.

Then we have ||/||0<C||a||^1/2+s+£||61|fc+1_s.

Proof. Putp=l/(l-s) and q=l/s. Then it holds that l<p<2<q<oo
and l/p + l/q=l. Hence, by Holder's inequality, (5.3) and (5.10), we obtain

I I 2 ' I I u \ - ^ \ i l l 1 ^
l lo^sup^ f l ^ / i / _ . v _ , 7 , / ..^ t , i , ,(ro \Jo

This shows the required estimate. The proof is complete.

Lemma 5.5. Let j and k be non-negative integers, 0<j<l/2, 0<r<l , e>
0 and

-r)(fl(01+02,(p)-fl(01,(p))
dt/!

—80
d(p.

77ze« we /zave

v l / 2n f2

J O

Proof. By virtue of (5.4) and (5.11), the above estimate can be proved
in the same way as the previous lemma. The proof is finished.

Lemma 5.6. Let kbea non-negative integer, 0<r< l , e>0 and A the integral
operator of the form

M/im-j.iy*'7
where F and u are of the same as in (5.1). Then we have \\Af\\r<

Proof. To begin with, we consider the case r = 0.
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It follows from Lemma 5.1 that \\A1f\\0<C\\a\\k\\f\\1/2+E. Since

we can rewrite ^42
 as

^ ) ^ ^o "

where

For fc = 0, we have

j= i

Using (5.3) with k=p = l and 8 = 1/2, well-known estimate \f(<p)\<C\\f\\i/2+e

and Schwarz's inequality, we get

2 \ l /2

This together with (5.10) with k=l and q = 2 implies that M2/||0
<C|HoN|2||/||1/2+e. For k>l, we differentiate the identity a(0)-a(cp)
= a(0,(p)(ew — ei<p) fc-times with respect to 0 and get

d
80
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where a(k\0) = (d/dff)ka(6). Therefore, it holds that

Z fe
j=i

By the same evaluation as above and Lemma 5.4 withy = /, k= 1 and s = e=l/4,

we obtain M 2/ II o ̂  ^11 fl IU Ml 2 II / II i /2 + £ • Hence, the required estimate is proved
in the case r = 0. Furthermore, we can show it for 0<r<l in the same way
as above, because we have Lemmas 3.1, 5.5 and (5.4). The proof is finished.

Lemma 5.7. Let k be a non-negative integer ̂  0<r<l, e>0 and A the
integral operator of the form

(Af)(9)=

where F and u are of the same as in (5.1). Then we have

JM2+,-HIM

Proof. This integral operator is the same type as in Lemma 5.6 with F(z)
replaced by zl • • • zMF(zM+i , . . ., ZM+N). By noting this fact and that A depends
linearly on each &,-, y'=l, ...,M, the required estimate follows from Lemma
5.6. The proof is complete.

Lemma 5.8. Let s>2, e>0 and A be the integral operator defined by (5.1)
with M=l. Then we have \\Af\\,<>C\\avU\ + ||M||s)

[s]+1||/||1/2+£5 where [j] is
the integer part of s.

Proof. Put w = |>] and r = s-\js]. Then, it holds that m>2, 0<r<l
and s = m + r. By Lemma 5.6, we have M/||r
Therefore, it is sufficient to evaluate \\(d/dO)mAf\\r.

(d\m p'/YsY1
I — 04/)(0)= I — «i(0,<p)\dOJ Jo \\80J
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M f 2«// £ \m \ SF+ Z - axe, (?) k (0, ?) — we,
J = l J o \\00/ / OZj

where the symbol 2 in >43/ means the summation over all ((T,a,A,^) satisfying

fc = l

From Lemmas 5.6 and 5.7, it follows that M!/!!,. <C||fl1||m+r(l + ||w||2+r)
and that M2/l<C||w||m+Jfl1||2+r(l + IMI 2 + r ) l l / l l i /2 + £ , respectively. Noting
that

'g\k
sup
9,<p

which comes from (5.3) with p = oo and e=l/2, we proceed to evaluate

In the case X<m — 2, we have

/ P \<T

|HW

In the case K—m — 1, if m>3, then |^J = 1 and

lal-1

If m = 2 and cr = |^A| = l, then the above estimate is still valid. If m = 2, cr
and |^|=2, then

\I\<C\\ai\ —M(0,<p)iae v ^ i
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By these estimates, (5.10) with q = 2 and Lemma 5.4 with 5 = 8=1/4, we obtain
ll^3/llo^C||fl1|L(l + ||ii||Jm||/||1/2+e. Moreover, we can show that \\A3f\\r

<C||01||w+r(l + IMIm+r)m + 1 11/11 1/2 +fi in the same way as above, because we have
(5.4), (5.11), Lemmas 3.1 and 5.5. The proof is complete.

Lemma 5.9. Let s > 2, e > 0 and A = A(a, u) be the integral operator defined
by (5.1). Then we have

Q\\Af\\s< c( f] \\aj\\\l + |M|S)
[S]+ 1 H/ll 1/2+£

V/=i /

and

\\A(a\ul)f-A(a\u2)f\\s

\\al\\M + lk2UM(l + \\ul\\,+ ||i/2

Proof. By Lemma 5.8 and the arguments in the proof of Lemma 5.7,
we obtain the first estimate. In order to show the second one, we write

A(a\ ul)f-A(a2, u2)f= P B(t)fdt,
Jo

where B(t) is almost the same type as A and ||^(0/L can b£ estimated by
the right hand side of the required second inequality uniformly in Je[0, 1],
because of Lemma 5.8. The proof is complete.

Next, we consider the integral operator defined by (5.2). The estimation
for it is straightforward and easier than the previous one. This is the reason
why we state the following lemma without proof.

Lemma 5.10. Let s>l and A = A(a,b,u,v) be the integral operator defined
by (5.2). Then we have

<c(fl(ll^+^^^^
Vj=i /

and

\\A(al,bl,ul,vl)f-A(a2,b2,u2,v2)fl
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2 1 2 W + 1

Now, we are ready to investigate the operator K1 defined by (4.13).

Lemma 5.11. For the operator K± defined by (4.13), we have

fK,(X9 b',X,b)E L0(2, s; 3) for s> 3,

[K^X, b, b'; X, b, b') E L0(2, s; 2) for s> 2.

Moreover, it holds that T0Ki(X,b) = Kl(T0X,T0b)T0 for fleR1.

Proof By virtue of Lemmas 5.9 and 5.10, for the operators A-rj— 1, ...,22,
we have A 1(Xi; 0) e L0(l, s; 0) for s > 2, etc., and T0A ̂ XJ = A ̂ X^ for 9 ER1,
etc. Therefore, for j= 3 and 4 we obtain

, b',X,b)E L0(2, j ; 2) /or j > 3,

Bj(X, b, b' ; JT, 6, 6') e L0(2, j ; 2) for s>2

and TeBj{X,b) = Bj{TeX,Teb)Te. These facts and Lemma 3.4 imply that

Hence, forj"=l and 2 we get

f */*, 6 ; X, b) e L0(2, si 3) /or j > 3,

\B j(X9 b, b' ; X9 b, b') e L0(2, s ; 2) /or j > 2

and TeBj(X,b) = Bj(TeX,Teb)Te. Using these facts and Lemma 3.4 again, we
see that

Consequently, we obtain the desired results. The proof is complete.

We introduce the following notations which are the same as those in
[7]. Assuming that X depends also on t, we define

inductively by
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^M. o .o—^i> -^1.0,1 — rr^j-^i.o.i-i i ( — 1,2,3,...,
LOO J

and replace df dq
eX by X™. Since [/?, ST] = [£, S] r+ S[/?, J], [/?, ( 1 - T) ~ 1 ]

r)-1 and

d d \a(0)-a((p) a'(0)-a'((p) .a(6)-

d d

we see that the operators Kl kl are the similar type as K1 . Therefore, we obtain
the following lemma.

Lemma 5.12. For non-negative integers k and /, we have

K, t/u(Jf °°, . . ., Xk\ b,...,dl
e
+1bi X00, bjb1) e L0(2, s ; 2) /or j > 2.

§ 60 Quasi-Iinearizattoii

Assuming that X satisfies (2.9) and (2.10), and putting

(6.1) Y=Xtt9 Z = Xe, W=(X,Y9Z), W' = (X9Yi\

we derive a quasi-linear system of equations for W. It follows from (2.10)
that

(6.2) %X2t = K(l+ X2)d
k
tXlt + Fko(X, . . ., dk

t

(6.3) Bkdl
0X2t = K

where fc = 0,l,2,..., /= 1,2,3,..., and Fkl = idkdl
e,K(l+X2)]Xit. Although Fkl

depends also on b and it's derivatives, we do not indicate them. Similar
simplification of notations will be used in the following without any
comment. By (6.2) with k = 2, we have

(6.4) Y2t = K
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Differentiating (2.9) with respect to t, we obtain

(6.5) (1 + X2W +X2)Yl + 2XltX2t)Zlt + (Y2-(l + X2)X
2
t + K(\ + X2)~

2)Z2t

lt + 4(\ +X2)X2tYl + 2XltX
2, + 2(\ + X2)XltY2)

+ Z2(Y2t-X2tX
2,-2(l+X2)XltY,~2KX2t(l+X2r

3) = 0.

It follows from (6.3) with k=0 and 1=1 that

(6.6) Z2t = -isgnD(l + X2)Zlt + (isgnD + K)(} + X2)(iD)Xl, + Fol(X,Z,Xlt).

Eliminating Z2, from (6.5) and (6.6), and substituting /2 for Y2t, we see that

Zlt = - {(1 + X2)
2 Yl + 2(1 + X2)XltX2t

x ((isgn D + K)(l + XJ(iD)Xlt + F01(X, Z, Xlt))

+ Z2(f2(W, W't)-X2tX
2,-2(l +X2)XltY1 -2KX2t(\ +X2)~

3)

+X2)X2,Y1 +2XltX
2, + 2(l +X2)XltY2)}

This and (6.6) imply that

Z2(= -isgnD(l+X2)f3(lV, W;

By virtue of (6.2) with k = 3 and (6.3) with £ = /=!, it holds that

(^>Ar,, r, Yt),

Differentiating (2.9) two times with respect to t and putting these into the result,
we obtain

((1 + ZjXl + X2)
2 + Z2K(1 + X2)) Yln

+ {(l+X2)
2Y1+2(l+X2)XltX2t

+ ( Y2 - (1 + X2)X
2, + K(\ + X2)-

2)K(l + X2)} Y1
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+ 6X2
2, Yl + 6XltX2t Yl + 2(1 + X2)XltY2,}

1(((1 + X2)
2 Ylt + 4(1+ X2)X2t Yl + 2XitX

2
t + 2(1 + X2)Xlt Y2)

+ Z2{F30(X,Xt, Y, Yt)-2(\+X2)(XltYlt + Y})-4X2,Xl,Y1

+ 2Z2t(Y2t-X2tX
2,-2(l+X2)XltY1 -2KX2t(\

It is easy to see that

= ((1 +Z1)
2(1 +X2)

2 + Z2r1(l +X2)-
2((l +Zt)(l +X2)

2-Z2K(l +X

where

-] + [_K,(l + X2)Z2-]K+Z2(l +X2)(l +K2)}(l+X2)

and that

x{(l+X2)
2Y1+2(l+X2)XltX2t

+ (Y2-(l+X2)X
2, + K(l+X2)-

2)K(\+X2)}

= (1 + A-2)
2{(1 + Z,)((l + X2)

2 F! + 2(1 + X2)XltX2t)

+ Z2( Y2-(\+ X2)X
2

t + K(l + X2)-
2)}

-(1 +*2)
2{(1 +Z,)(1 +^2)(F2-(1 +X2)X

2
t + K(\ + X2)~

2)

-Z2((l+X2)Yl+2XltX2t)}isgnD + P2 ,

where

p2=(i +z,)(i +A-2)2(r2-(i +x2)x
2
t+K(i +x2r

2)LK,x2-]
-Z2lK,(l+X2)

2((l +X2)Yl +2X11X2t)']
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- Z2((l + X2) Y1 + 2XltX2t)}(K+ isgn D)

-z2[K,(i +x2)(Y2-(i +XM+K(\ + x2)-
2)-\K(\+x2)

-Z2(l +A-2)(72-(l + X2)X
2
t + K(l + *2)-

2)(tf2 + l)(l + X2).

Therefore, we obtain

((1 + Z1)(1 +*2)
2r1 +2(1 + X2)XltX2t)

+ z2( Y2 - (i + x2)x
2

t + K(i + x2) -
 2)

- Z2((l + X2) Y, + 2XltX^D\ Y,}

{((l+Z1)
2(l+X2)

2 + Z2rl(l+X2

+ Pl((l+X2)
2Yl+2(l+X2)XltX2t

+ ( Y2 - (1 + T2);r
2
( + K(l + X2) -

 2)K(\

+ 6Xi,X2tYi+2(l+X2)XltY2t)

+2z1(((i +^r2)271(+4(i +x2)x2,Yl +2x2
tx

2
t+2(\

+ Z2(F30(X, Xt , Y, Yt) -2(1+ X2)(Xlt F1( + 72) - 4X2tXlt Y,

- Y2X
2
t + 6KA'2(l+A'2)-4-2K;yi(l +^2)-3)

+ 2Z2(( Y2t - X2,X
2, -2(1+ X2)Xlt Y, - 2KX2t(l + X2)~

3)
2 2

where Y2t, Z1( and Z2( were replaced by/2,/3 and/4, respectively. It is a
remarkable fact that the coefficient of Ylg in the above equation is identically
zero because of (2.9). This is the cancellation stated in the introduction and
it makes our problem to be well-posed. Consequently, the required quasi-linear
system for W has the form

(6 7) n ' i t t ^ U W , W{\
Y2t =/2( W, W(\ Zlt =/3( W, W(\ Z2( =/4( W, W(\
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where

a( W, X,) = ((1 + Ztf(\ + X2)
2 + Z2)- '

x {(1 + Z,)(l + X2)( Y2 - (1 + X2)Xft + *(1 + X2) ~
 2)

-Z2((l+X2)Y1+2XltX2t)}.

Remark 6.1. It holds that

pr,((\ + Z,)2(l + X2)
2 + Zf)1'2* ^, *t) = -«r • yp|r, ,

where nf is the unit outward normal vector to the free surface Tt.

Remark 6.2. For the non-linear equations (2.15) and (2.16), we can also
derive a similar quasi-linear system of equations in the same way as above.

We proceed to investigate the properties of the functions a and
/=(/,, ...,/4). Define the operators P3 and P4 by

= {(1 + *2)
2 Y, + 2(1 + X2)XltX2t

-(F2-(l +X2)X
2, + K(l +A-2)-

2)/sgn£)(l

= {(1

Lemma 6.1. Let s>2. Then for operators Pj, j=l,...,4, we have

(P,(X, Z, b, b' • X, Z, b, b'\ P2( W, Xt ,b,b'; X, b, b') e L(2, s ; 2),

\P3(X, X, , Y; X, X, , Y), P4(X, Z, b, b' ; X, Z, b, b') e L(s, s ; 2).

Proof. From Lemma 5.11, it follows that

e4(Ar,Z,6,6';Jr,6,6'):=(l + Z1Xl+Ar2)2-l-|-Z2A(Ar,6,6';Jr,6,6T

eL0(q,q;2) for q>2.

Using this fact, the relations

P* = (1 + Q4)~ \ TgQ4(X, Z, b) = Q4(TgX, TgZ, Tgb)Tg ,

and Lemma 3.4, we see that P4(X, Z, b, b' ; X, Z, b, b') e L(s, s ; 2). Since
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Yl+2(l+X2)XitX2t

by the same consideration as above, we obtain P3(X, Xt, Y\X,Xt, Y)eL(s,s\2).

By Lemmas 3.2, 3.3 and 5.11, it is not difficult to see that

Q2(X, b, bf ; X, b, b) := 1 + (K(X9 b, b ; X, b, b'))2 e L(2, s ; 2).

These facts, together with Lemmas 3.2, 5.11 and the above result for P4, show
that P^(X,Z,b,b'\X,Z,b,b'\ P2(W,Xt,b,b';X,b,b')eL(2,s;2). The proof is
complete.

Making use of Lemmas 3.2, 5.12 and 6.1, we can easily obtain

Lemma 6.2. For any [$>l and K> 0, there exists a small positive constant

80 = e0(j8, K) depending only on j8 and K such that if

C, C>0,

then a(W,Xt)-Kj(W, W't)eHs and

2~lK<a(w,xt}<2K, |

Moreover, for IV° and Wf satisfying (6.8) it holds that

\\f(w, wn-f(w°, w?')l<c(\\ w- w»\\s+ 1| wt-w?'\\s\

where C=C(j8, K,5,

Next, assuming that X satisfies (2.9)-(2.11) we determine the initial values
W=W\t=Q and W{=W(\t^ from the initial data U and K It is clear that
X=U,Z=U09 Xit= ¥ and X2t = K(U)(l + U2)V. By virtue of (6.2) with k=l,
we have

(6.9) Y2
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Substituting this into (2.9), we see that

Yl = - {(1 + 2,X1 + X2)
2 + Z2K(X)(\ + X2)}

+ Z2(FW(X, J()-(l + X2)X
2, + K(l + X2)-

2)}.

This and (6.9) imply that F2 = tf(J)(l + J^Fj+F^J,.?,). Eliminating Y2t

from (6.4) and (6.5), we obtain

Yit=-{(\+Zl)(l+X2)
2+Z2K(X)(l+X2)}-1

x {(59ri(X(l + X2)
2 F, + 2(1 + X2)XltX2t)

+ (8eX2t){ Y2 - (1 + X2)X
2
t + K(\ + X2) -

 2)

+ (1 + 2^(4(1 + X2)X2t Y, + 2lltX
2, + 2(1 + X2)Xlt 72)

+ Z2(F20(X, X,,7)- X2,X
2
t - 2(1 + X2)Xtt Ft - 2KX2t(\ + X2r

3)}.

For W and W{ defined above, we get the following lemma as a consequence
of Lemmas 5.12 and 6.1.

Lemma 6.3. For any /?> 1, there exists a small positive constant et =£i(j8)
depending only on /? such that if

(610)
l | t / l l 3 , l | 6 | l 3 ^ e i , l | t / l l , + l|K||I+||6||,^c, c>0,

then

where C=C(/3,K,s,c)>Q. Moreover, if we assume, in place <?/(6.10), that

U,beH3, VeH2, ||t/||3, ||ft||3<El , ||F||2<c, oO,

then

where C=C(j?,/c,c)>0.
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§7. Proof of Theorems 1 and 2

The proof of Theorem 2 is carried out in the same way as that of Theorem
1. Therefore, in this section we only give the proof of Theorem 1.

Assuming that the condition (2.12) is fulfilled, we define W and W{ from
(7, V and b according to the previous section. If we chose 6 suitably small,
then the quasi-linear system (6.7) under the initial conditions W\t^Q=W and
W't\t=Q=W't has a unique solution W=(X,Y9Z) satisfying

[YleCJ(lQ9T]'9H'-u2-Jl2)9 j =0,1, 2,

for some time interval [0, T], because of Lemmas 6.2 and 6.3. The proof of
this fact is standard (for example, see [7, section 6]), so that we omit it. We
proceed to show that ^is the desired solution. By the definition of Y, equation

(7.2) (1 4- X2)(l + Z^l + X2) Y, + 2XltX2t)

holds for ^ = 0. The equations for Z and X in (6.7) imply that the time
derivative for the left hand side of (7.2) is identically zero for 0 < t < T. Therefore,
(7.2) is also valid for 0< t < J, and it is sufficient to show that Z = Xe and (2.10),
because we have Y=Xtt. The equation for Y2 in (6.7) can be rewritten in
the form (X2t -K(l + X2)Xlt\t = 0, and it is clear that d{(X2t -K(l + X2)Xlt)\t=0 = 0
for y = 0, 1. Hence, (2.10) is shown. Differentiating (2.10), we have

(7.3) , Yt\

, Xe ,

Differentiating (7.2) with respect to t, we see that (6.5) is valid. The equation
for Z1 in (6.7) can be rewritten as the equation (6.5) with Z2t replaced by

Subtracting such an equation from the equation (6.5) itself, we obtain

(7.4) Z2t-
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This and the last equation in (7.3) yield that

(7.5) (Z2-X29\ = ~isgnD(l +X2)(Zl-Xi

If we subtract the equation obtained by differentiating (7.2) two times with
respect to t from a similar equation derived from the equation for Yl in (6.7)
by taking (7.2) into account and use the second equation in (7.3), then

(Z, - Xie)tt((l + X2)
2 Yv + 2(1 + X2)XltX2t)

Differentiating (7.4) with respect to t and putting the result into the above
equation to eliminate Z2tt, we see that

(7.6) (Z, - Xie)n = {(1 + X2)
2 Yl + 2(1 + X2)XltX2t

On the other hand, by the definition of Ylt9 the equation (6.5) holds at t = Q,
if Zlt, Z2t and Y2t are replaced by Xlt99 X2t0 and K(l+X2)Yit + F20(X,Xt, Y\
respectively. Subtracting such an equation from the equation (6.5) itself and
using the first equation in (7.3), we get

(Z, - Xw\((\ + X2)
2 Yl 4- 2(1 + X2)XltX2t)

-2) = Q at t = Q.

Putting (7.5) into this relation, we obtain (Z1—Xl9)t\t = 0 = Q. It is clear that
Z-Xe\t=0 = Q. These facts together with (7.5) and (7.6) imply that Z=Xe.
Hence, it has shown that X is a solution of (2.9H2.H). Note that

Xln= YE C^([0, T} iH'-ll2-*2)9 y = 0, 1,2,

X^YJeC^niH*-*'2-*2), 7 = 0,1,2,

These relations yield that X satisfies (2.13). The uniqueness of the solution
comes from that of the corresponding initial value problem for the quasi-linear
system (6.7). Finally, the continuous dependence of solutions on the initial
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data can be proved by almost the same way as in [1, section 5], so that we

omit it. The proof is complete.

§8. Proof of Theorem 3

Assuming that A' satisfies (2.15), (2.16) and (2.11) with C/=0, we derive an
equation of an evolution type for X. Differentiating (2.16) with respect to t,

we obtain

Putting this into (2.15), we see that

(8.1) Xltt + 2xX2t-(a
2-K)X2(>

= {(1 + X19)(\ + X2)
2 + X2eK(\ + X2)} - l

x {((1 + A-19)(l + X2)
2 - 1 + X2gK(l + X2j)(2«X2t - (a2 - K)X2e)

) - l)X2t - 2(1 + X2)(l + Xig)XltX2t

On the other hand, according to Remark 4.1 we can rewrite (2.16) as

(8.2) X2t = K((\ + X2)(a + Xlt)-a) + aK(l +X2)~
1X2 .

The equation (8.2) differentiated with respect to t and (8.1) yield that

X2tt-(a
2-K)K0X2g

= K(l + X2)g,(X, Xt) - KX2(2aX2t - (a2 - K)X2e)

Differentiating (8.2) with respect to 0 and using the relation X2g = (<x2 — K)~l(Xltt

+ 2aX2t-g3(X,Xt)),we get
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where

Hence,

(8.3)

o

Putting (8.2) and (8.3) into (8.1), we obtain

ff

Xln-(a
2-K)K0Xie=-2xK0V+gi(X,Xt)+ h,(X

Jo

where

gi(X, Xt) = g3(Jr, Xt) + (a2 - K)(K0X2Xle + K,(l + X2)Xie)

- 2xK0{KQX2Xit + ̂ ((1 + X2)(* + Xit) - a)

Therefore, the desired evolution equation for X has the form

(8.4) Xtt-(a
2-K)K0Xg=W+g(X,Xt) +

o

with initial conditions

(8.5) A=o=o, xt\t=o=(r>K<>n

where W=(-2xK0V,Q), g = ( g l 9 g 2 ) and ^ = (^,0).
As a result of Lemmas 5.12 and 6.1, we can prove

Lemma 8.1. For any j8>l, there exists a small positive constant £2 = £2(j8)
depending only on f$ such that if

s2, \\Xt\\2<c, c>0,

then
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where C=O(/?,a,K;,c)>0.

In view of (8.4) and Lemma 3.2, it is natural to consider the equation

(8.6) utt-co\D\u=f,

where CD is a positive constant. Fix an arbitrary number n and define
projections P(1) and P(2) by

£ u«?im* for »(#) = Z "me""9,
|m| >n m = — oo

Using these projections, we decompose a solution u of (8.6) as

(8.7) u = u(1) + u(2\ uU) = P(j)u, y=l,2.

Then, it is easy to see that

for any A>0 and ^eR1, and that

u% - (D\D\u(j} = P(j)f, 7=1,2.

In the following, we fix a real number p such that l<p<2. Since

2

where (•, • )2 is the inner product in H2, we have

^^^^
2 m

^
2 a^

These inequalities, the identity

^\W±J^\it"\\l=^
at 2 at



562 TATSUO IGUCHI

and Young's inequality imply that

~~ -m^+J^\D\u(i)\\p
2-p\\f\\p

29at

-
at

Similarly, we obtain

y(k2)l!2+ll>
at

Using these estimates, we show the following

Lemma 8.2, Let e2 be the constant in Lemma 8.1 and M,T>Q. There
exists a large number Nl=N1(f},a,K9M,T) such that if n>Nl9 XeC*([Q9 T}\
H4+l12) satisfies (2.15), (2.16), (2.11) and

for

and the initial data in (2.11) satisfy U=0 and P(i)V=V, then the estimate

2~4 2 \2

holds for 0<t<T.

Proof. We decompose X into X(1) and X(2} according to the decomposition
(8.7). Since X satisfies (8.4), by the preceding arguments we see that

(8.8) |̂|*?
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(8.9) -W»-J(*2-K
at

«2 - K)(*O + /sgn £>)(

-1 WA'.jgii
Jo

(8.10) ^,

+ \\(X
2-K)(K0 + isgnD)(iD)X^\\2+\\g(X,Xt)\\2+ \ \\h(X,X,)\\z^-

Define E±(t) by

Then, it follows from (8.8)-(8.10) that

d .(8.11)

l \\h(X,
o

+ ll^<2) II 2+11^,^)112+ \\h(X,Xt}\\,
/ o

By Lemma 3.2, we have



564 TATSUO IGUCHI

(8.12) \\(K0 + isgn D)(iD)Xw\\'2 + \\(K0 + isgn D)(iD)X™\\2 < CE+(t)

with a constant C independent of «. By Lemma 8.1 and the interpolation
inequality \\u\\ 3<\\u\\l^l

l
2
2_p)\\u\\p

2
l2

l/2, we get

(8.13)

Putting ;; = 4/3 and combining (8.11)-(8.13), we see that

a -K)n-CE+(t)-C

where C is independent of n. Therefore, by Gronwall's inequality there exists
a large number N0 such that if n>N0, then

V 2

Hence, we obtain the desired estimate. The proof is complete.

Now, we can easily prove Theorem 3. In fact, if we assume that the
statement in Theorem 3 is true and apply the estimate in Lemma 8.2 to X(n\
then for Je(0, T\ it holds that

0|^-)(Oll2^Jlle-"1/4 + ̂ ||2expQV(a2-ic>iA

This contradicts (2.21). Theorem 3 is proved.
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