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Standard Monomial Theory for

Bott-Samelson Varieties of GL (n)
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Abstract

We construct an explicit basis for the coordinate ring of the Bott-Samelson variety Z{

associated to G=GL(n) and an arbitrary sequence of simple reflections i. Our basis is parametrized

by certain standard tableaux and generalizes the Standard Monomial basis for Schubert varieties.

In this paper, we prove the results announced in [LkMg] for the case of
Type An-i (the groups GL (n) and SL ( n ) ) . That is we construct an explicit
basis for certain "generalized Demazure modules", natural finite-dimensional
representations of the group B of upper triangular matrices. These modules can
be constructed in an elementary way as flagged Schur modules [Mgl, Mg2, RSI,
RS2]. They include as special cases almost all natural examples of jB-modules,
and their characters include most of the known generalizations of Schur
polynomials. We view these representations geometrically via Borel~Weil theory
as the space of global sections of a line bundle over a Bott-Samelson variety.
Thus, our theory also describes the coordinate ring of this variety.

Notations: G — GL(n, IF) or SL(n, F), where IF is an algebraically closed
field of arbitrary characteristic; B is the Borel subgroup consisting of upper
triangular matrices; T is the maximal torus consisting of diagonal matrices; W is
the symmetric group Sn generated by the adjacent transpositions (simple
reflections) s, = (i, i + 1); Pt ^ B is the minimal parabolic subgroup of G
associated to st, namely P1={(xlJ) ^G xtj — 0 if i>/ and ( i , j ] =£ (i + 1, i)}.
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For any word 1— (ti,...,t/), with letters 1 <t/ <w — 1, the Bott-Samelson
variety is the quotient space

where Bl acts by

(pi,

It was originally used[BS, Dljto desingularize the Schubert variety XW=B ° wB
CG/B, where w = sZ l°°°Sz r The desingularization is given by the multiplication
map Z\—*XW^G/B, (pi,...J>i) ^>pimmmpi a B, and Z| has the structure of an iterated
fiber bundle with fiber IP1 in each iteration, so we may loosely think of Z\ as a
"factoring" of the Schubert variety into a twisted product of projective lines.

Denote Gr(t) =Gr(i, Wn) the Grassmannian of i-dimensional subspaces of
linear n~space, and

def
Gr(i)=Gr(ii) X — xGr(i/) .

We can realize Z\ as a variety of configurations of subspaces of IFn (a kind of
multiple Schubert variety) via the embedding by successive multiplications
[Mg2]:

fi: Zi -> Gr(i)

where Od ]F1c ••- c ]fn is the standard flag fixed by B. Although we will not
need it here, we note that p. (Zi) = Zt can be described explicitly in terms of
incidence relations: that is, a configuration of subspaces (Fi,...,K/) ^Gr(i) lies
in fj. (Zi) exactly if certain inclusions Vt C Vj are satisfied, as specified by the
combinatorics of wiring diagrams. See [Mg2] .

Now, each Grassmannian has a minimal-degree ample line bundle (the
Plucker bundle) 6(1), and for any sequence m= (wi,...,w/), m;-^Z+, there is an
effective line bundle on Gr (1) given by tensoring the m/th powers of the Plucker
bundles on the factors of Gr(i) : G(m) = ^(l)^1® — 0^(1)®"'. Denote its
restriction to Z\ by £m~ fi*6(m). We shall be concerned with the J5~module

which includes as special cases dual Schur modules (Weyl modules) [FH, F],
Demazure modules [Dl, LkSh2, LcSbl], skew Schur modules [FH, F], the
Schubert modules of Kraskiewicz and Pragacz [KP] , and the generalized Schur
modules of percent-avoiding diagrams [RS2]. Thus, the characters of these
modules include Schur, key, skew Schur, and Schubert polynomials. See [Mg2] .
In particular, we obtain a new proof of the classical Standard Monomial Theory
for Demazure modules of type A.
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An example will give the flavor of our results. Let G = GL(3), 1 = (1,2,1),
m= (1 , 1 , 1) . We may write

Gr( i )=Gr(l) XGr(2) XGr( l )
Zi={(Vi, V2t Vi

Then #°(Zi, £m) is spanned by all products of the form

Aabcd=Aa(x}Abc(y)Ad(z),

where 1 <a, 5, c, <i<3 and Aa, Abc, Ad mean minors on the corresponding rows
of the homogeneous coordinates on Gr (!) :

(r, y, z) = \x2 X i/a j/22 xU2 eGr(i).

For example, ^2132 — X2 (y 111/32 ~~ y 3 1^/12) £2- The sequence of indices T — abed
indexing a spanning vector Aabcd is called a tableau. Theorems 1 and 2 below

allow us to select a basis of H° (Zj, ^Pm) from the spanning set, corresponding to
the set of standard tableaux:

r^3~(l m) = {1 121, 2121, 2122, 1131, 2131, 2231, 2232,
1122, 1132, 2132, 1133, 2133, 2233)

Since each Aabcd is an eigenvector of the diagonal matrices, this allows us to

compute the character of the B-module H°(Z\, £m) .
In the general case, we give two descriptions of the standard tableaux J (i,

m). The first (§1.2) is in the spirit of the monotone lifting property of classical
Standard Monomial Theory [LkSdl, LkSd2] (which in turn generalizes Young's
increasing-in-rows-and-columns definition). The second (§1.4) is in terms of
the refined Demazure character formula and crystal lowering operators of
Lascoux and Schutzenberger [LcSbl] and Littelmann [Ltl, Lt2, Lt3] . This
description is more suited to computations, and it gives an efficient algorithm
for generating the standard tableaux. The above list of 13 tableaux, for example,
can be computed by hand in less than a minute.

The paper is organized as follows. In Section 1 we define the standard
tableaux and state the main theorems. In Section 2 we prove the equivalence of
our two definitions of standard tableaux by an elementary argument. In Section
3 we show that our standard monomials form a basis: first we show
independence, then use the Demazure character formula to argue that our
modules have the same dimension as the number of standard tableaux. Essential
to the proof are the vanishing theorems of Mathieu and Kumar for Bott-
Samelson varieties [Mtl, Mt2, Ku] .

Reiner and Shimozono [RS2] give another combinatorial interpretation of
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our tableaux. There are also intriguing connections between our basis and that
of Brian Taylor [T] for a special case of our modules.

1.1.
We will use integer sequences to index several types of objects. Hence we

will call an integer sequence a "word", a "tableau", etc., depending on what it
indexes in a given context

A word is a sequence i — (ii,...,i/) with t"/ €= {l,...,n — 1}, and I is reduced if
stl

f"stl=w^W is a minimal-length decomposition of w into simple reflections.
A tableau is a sequence r= (ri,...,r#) with r,^{l, 2,...,n}. For r— (r\ ..... TN) , r'

~ Ol,...,?V) , we define the concatenation

Let 0 denote the empty tableau and define 0 *r=r* 0 — r for any tableau r.
A column of size i is a tableau £= (n ..... rj with 1 <m <••• <n <w. The

symmetric group W acts on columns as follows: for a permutation w on w letters
and a column £ = (ri,...,rj, the column w • £ is the increasing rearrangement of
(w;(ri) ..... w ( r t ) ) . The fundamental weight columns are the initial sequences:

The Bruhat order on columns is defined by elementwise comparison: /c= (ri,...,r«)
</c' = (ri,...,n), if and only if ri<ri?...,r*<?v

For a word i — (fi ..... ii) , and a sequence m= (mi,...,w/) with w/^S+ , we
define a tableau of shape (i, m) to be a concatenation of MI columns of size fi, m2
columns of size i^ etc:

where /sr/tm is a column of size ik for each fe, w. (if mfc = 0, there are wo columns
in the corresponding position of r.)

Remarks, (a) This terminology is suggested by the classical notion of a
column-strict Young tableau with mi columns of size i\ followed by w2 columns
of size 12, etc., transcribed in terms of its column reading word. For example,
take i— (3,2,3) , m= (0,2,1), which corresponds to the Young diagram at left
below. Note that wi = 0 means there are zero columns of size i\ = 3 on the left
end of our diagram.

x x x 3 1 1

^=x x x T= 4 3 2

x 3
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The filling at right is transcribed in our notation as r=34 * 13 * 123. One can
define a generalized Young diagram corresponding to any reduced (i, m) . (See
[Mg2, Mg3, RS2] .)
(b) In the model of Littelmann, bases are parametrized by piecewise~linear
paths in the weight lattice 7Ln mod TL (!,...,!) of G. Our tableaux encode such
paths if we consider a column (ri,...,n) as denoting a weight re — eri^ ----- f~£r, of
the ith fundamental representation of G, so that a tableau is a sequence of
weights TTi * 7T2°". The associated path goes in linear steps from 0 to TTi to 7Ti +
7i2 etc.

1.2. Liftable-standard tableaux. Let us once and for all arbitrarily
fix a word

I— (ti . . . . . i / ) ,

reduced or non-reduced. From now on we will assume the presence of this
chosen ambient word. For k^Zf, we will frequently use the notation

as well- as [/?, /]={fe, H-l,...,/}.
A subword of i is a subsequence i'= (iyi, iy-2 ..... iJr) for some indices 1 </!<•••

<jr<l. We say the set /— {/i,...,/r} — W is the subword index of i', and we write
i' = i ( j ) . Note that we consider subwords i(/i), i(/2) to be different whenever
/i^/z, so that there is a total of 2l distinct subwords. Abusing notation, we will
frequently identify an indexing set/^ [/] with the corresponding subword i(/)
of our fixed ambient word i, and we will call / itself a subword. The
intersection, union, and complement of two subwords are defined in the obvious
way in terms of their indexing sets. For k<l, the interval [/?] ̂  [/] indexes an
initial subword of i.

Given any subword /^ [/] , define w ( f ) , the permutation generated by /, as
the partial product of St^t^'-s,, containing only those factors which appear in/

Again, the subword / is reduced if the above is a minimal-length decomposition
of w ( j ) into s,'s. Also define the column generated by } up to position k to be

Now, consider a decreasing nest of subwords of i,

[/] 2/n 2 - 2/lMl 3/21 2 - 3/;

We say it is a reduced nest if
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Jkm H [k] is a reduced word for all k, m.

We say that a tableau r of shape (i, m) is generated by the reduced nest of
subwords (or that the reduced nest is a lifting of the tableau) if each column
Kkm of r=/Cn * ••• * /r/m/ is generated by the subword Jkm up to the position k:

Definition. A tableau r of shape (i, m) is liftable-standard (or just
standard) if there exists a reduced nest of subwords of I which generates r. The
set of all standard tableaux of shape (i, m) is denoted y(i, m).

A tableau r is called standard with respect to a subword J^ [l] if all of the
subwords Jkm in the lifting are subwords of/: /^/ii=>-"l2//w/. The set of such'
tableaux is denoted y(j, m).
While useful to deduce general properties of standard tableaux, this definition
is quite difficult to work with in specific cases. We will give a description of
y (i, M) allowing efficient computations in Section 1.4.

i. (a) Let i= (1,2,1) =121, m= (1,1,1) as in the introduction.
A typical subword index isj= {1,3}, associated to the subword !(/) — (ii, is) —
(1,1). In order to emphasize that the position of the letters is essential to
distinguish subwords, we will write o in place of a letter of I which is missing
in !(/). That is, i(/) =tiOis = lol. For /i={l}, /2={3), we have i ( / i )= loo=£
i(/2) ^ool, and for the empty word we have i ( 0 ) = ooo.

The nest of sets Ju = {1,2} 2/21 = {1,2} 3/3i = {2} indexes the nest of
subwords 12 012 12 0 = 2 0 2 0 , which generates the standard tableau r = siO>i*
sis2a>2 * 52coi = 2 # 23 # 1. Another lifting for this tableau is 12121213 o o o.
(b) Consider a GL(n) Demazure module VW(A) for a permutation w^W and a
partition 2= Qi> 22^ "'^ 2n^ 0). (The character of VW(A) is called a key

polynomial^) Then H(Z\, £m) is isomorphic to the dual module V$(X) if (i, m)
are taken as follows.

Let s^'^^ — w be a reduced decomposition. Further suppose that if the last
occurence of each letter k=l,...,n — I in i is at position /*, so that ijk

 = k, then j\
</2<°°° <jn-i- Now take m= (wi,...,tw/) with m^ — X^ — Ak+i and Mj = 0 therwise.
That is, mjk is the number of columns of size k in the Young diagram of L

It is easily seen that a classical Young tableau is semi-standard exactly if
its column reading word is liftable-standard with respect to the above (i m)
for VWo (2), where WQ is the longest permutation. The liftable-standard tableaux
for the (I, m), corresponding to a general Vw (2) are exactly the standard
tableaux on the Schubert variety Xw in classical Standard Monomial Theory
[LkSdl, LkSd2j.

For example, the pair i= (3,2,3) , m= (0,2,1) of the previous section give
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the Demazure module VS3s2s3 (3,3,1). The filling pictured is a semi-standard
Young tableau in the classical sense and is standard on Xs3szs3. Its column word
r= 34 *13* 123 has several liftings, such as 32o 3 o2o 2 o ooand 323^ o23
3003.
(c) For any permutation w €= W we have a kind of generalized Young diagram
called a Rothe diagram. In [Mg2] we explain how to relate this to a pair (i, m)
so that //° (i, m), is the dual Schubert module of Kraskiewicz and Pragacz [KP],
whose character is a Schubert polynomial. In this case our standard tableaux
are essentially identical to the non-commutative Schubert polynomials of
Lascoux and Schutzenberger [LcSb2].

1.3. Standard basis.
In the Introduction we defined the Bott-Samelson variety Z\, the embedding

H : Zr-»Gr (!), and the line bundle ^m-^*0 (m).
Let

/TH ••• xu

x=i : \ : l€=Gr(i)

\Xni '" X,

be the homogeneous coordinates on the Grassmannian, so that x represents the
subspace spanned by the column vectors of the matrix. Then any column fc= (n
<-"<rl) is associated to a Plucker coordinate, the minor on rows ri,...,r, of x:

(t), 0(1)

\Xrtl

Furthermore, the set of all tableaux of shape (I, m) parametrize a spanning set
of H°(Gr (i), ^(m)) consisting of monomials in the Plucker coordinates. That is,
for r=£n* •••*£/«,, let

3 = 1 m=l

where x(i} denotes the homogeneous coordinates on the jth factor of Gr (i). We
let -40 = 1. Denote the restriction of the section AT to Zi £ Gr (i) by the same
symbol AT. Under this restriction the Plucker monomials still form a spanning

set of #°(Zi, ym) by the following "Borel-Weil-Bott" theorem:

Proposition (Mathieu [Mtl, Mt2], Kumar [Ku]).
(i) The map
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is a surjective homomorphism of B-modules.
(ii) /f (Zt, &m) =Q for alli>0.

If a tableau r is standard, we call AT a standard monomial.

Theorem 1. The standard monomials of shape (I, in) form a basis of the
space of sections of £m over Z\\

rejd in)

The proof will be given in Section 3.
Writing a diagonal matrix as diag (xi,...^c«) ^ T, we obtain the coordinate

ring IF [T] = 3F [x?1,..., xj1] (modulo the relation XI*";TW— 1 in case G=SL(n)).
By the (dual) character of a B-module M, we mean

char* M=tr (diag (n,...^n) |Af*) e IF [T] .

(We take duals in order to get polynomials as characters.) Now, given any
tableau T— (ri....,rjv) , we define its weight monomial

Then char*1i?AT=xT, and we obtain:

char*fl°(Zi.

Define Demazure's isobaric divided difference operator

A f=^1" *£i+lsi
l' X,—Xt+l

Example. Let/(xlf x2, x3) =x\x\x^ so that

— x3 (xfx|r2)_
X2 X3

—xf x2 X3(x2+x3).
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Let o)t
= xiX2'"xt^F[T], the ith fundamental weight of GL (n).

Proposition (Demazure's formula [D2, Mtl, Ku]).

char* H° (Zi, X J =Ah (a)f^Ai2 (<-•• A „«') -)).

Now we define analogs of the Demazure operations acting on tableaux
instead of on characters. This will allow us to "lift" the Demazure formula from
characters to tableaux, thus reconciling the two character formulas above. It
also gives an efficient algorithm for generating the standard monomial basis.

We will need the root operators on tableaux first defined by Lascoux and
Schutzenberger [LcSbl], and later generalized by Littelmann [Ltl, Lt2, Lt3].
For i^ {l,...,w —1}, the lowering operator f, takes a tableau T— (n, r2,...) either to a
formal null symbol O, or to a new tableau r' — (rj, r'2,...) by changing a single
entry r3—i to r> = i + l and leaving the other entries alone (r>=r ;), according to
the following rule.

First, we ignore all the entries of r except those equal to i or f H ~ l ; if an i is
followed by an i + 1 (not counting any ignored entries in between), then
henceforth we ignore that pair of entries; we look again for an i followed (up to
ignored entries) by an i + 1, and henceforth ignore this pair; and iterate until
we ignore everything but a subsequence of the form i + 1, i + 1 i + 1. i, i i. If
there are no i entries in this subsequence, then /, (r) = O, the null symbol. If
there are some i entries, then the leftmost is changed to i + 1.

This is identical to Littelmann's minimum-point definition [Ltl, Lt2] if we
think of tableaux as paths in the weight lattice.

Example. We apply /2 to the tableau

r=l 2 2 1 3 2 1 4 2 2 3 3
. 2 2 . 3 2 . . 2 2 3 3
. 2 . . . 2 . . 2 . . 3
. 2 ... 2

/2(r)=l 3 2 1 3 2 1 4 2 2 3 3
(/2J2(r)=l 3 2 1 3 3 1 4 2 2 3 3
(/2)

3(r)=0

We also have the raising operator defined by et (T) = (/,) ~l (r) if this exists, e% (T)
= O otherwise. One can describe the action of et identically to that of ft except
that et changes the rightmost nonignored i + 1 into i.

Now define the plactic Demazure operator At taking a tableau r to a set of
tableaux:
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To apply At to a set of tableaux ?f, apply it to each element and take the union:

At (?)= LU<(r).
T&F

We will also need a tableau analog of multiplying by a monomial in the x/s.

For a column /r, define ic*m = K^ ••• * ic(m factors). Then the multiplication by

the monomial o)f in the character formula will correspond to concatenating with

the tableau a)fm= (1, 2f...,if...,l, 2,...,i).
Now we can build up the set of standard tableaux using the above

operations.

Theorem 20 The set of lif table-standard tableaux is generated by the-
Demazure and concatenation operations:

ST (i. m) =A, «"' * A2 «
m2 * -A, (a»*»0 -)).

The proof is given in Section 2.

Example. Let 1 = 121, m = (1,1,1), so that 5" (I, m) = Ai (1 * 42 (12 #
yli (1))). To generate the standard tableaux, we start with the empty tableau 0,
and proceed from the right end of the above Demazure formula:

1* AI 12* A2

{ 0 }->{l}-»{!, 2}-»{121,122}-*
i* AI

{121,131,122,132,133}-»{1121,1131,1122,1132,1133}-*
{1121,2121,2122,1131,2131,2231,2232,1122,1132,2132,1133,2133,2233}

The last set is ST(l m).
To test whether a given tableau is standard, say T = 2123, we invert the

above operations: at the feth step we raise the tableau as far as possible using

/7/, then strip off the initial word cotk, then go on to the next step. That is,
h d*)'1

r-2123-^1123 -> 123

This algorithm will terminate in the empty tableau 0 exactly if the original T is
standard. But in this case we end with a tableau r' = 3 for which we can invert
neither /,3=/i nor (a)l3 #) = (1 #), so the original r is not standard. This
process is closely related to the keys of Lascoux and Schutzenberger [LcSbl,
LcSb2].
The root operators fl and et also define a crystal graph structure on ^ (I, m),
which suggests that our standard basis will deform to a crystal basis inside the
quantum function ring of B.
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2. Proof of Theorem 2

For a subword /<= [/], the set of conslructible tableaux is

, m) = 4fr (a)?

where 5A = 1 if fee/, <5* = 0 if fe*/ We defined ST(jt m) in §1.2. (By convention,
for m= (0,...,0) we set #(/, m) =ST(J, m) — {0}, containing only the empty
tableau.)

We will show that

for all subwords / £ [/] . We proceed by a series of elementary lemmas
establishing identical recursions for the two sides.

2.1. Recursion for ST (/, m) .

Definition-Lemma 1. #/— M is any subword and f. J"£=J are maximal-

length reduced subwords of J, then w ( f ) = w ( f ) . We denote wmax(j] = w ( f ) for
any maximal reduced

Proof, By the subword definition of Bruhat order, the lemma is equivalent
to saying that S(J) = (w(f) |/^/} is an interval in the Bruhat order: S(f) =
k. ^maxl for some wmax e W. By induction, we suppose this is true for / and
show it holds for/0~{;o) U/, where j"0<j for all ye/. Let wj=wmax(j) . If sjowj>
Wf, then S(/0) = fc, sjo w}]. If sjo wf<wf, then [e, sjQ wf] Q [gf ^J, and S(/0) =
5" (/) , by the Zigzag Lemma [Hu §5.9].

Note that if/ is reduced then wma^(j] =w(J).
Given / c/c [/] f we say / is tess f/ian / tw^ respect to column k if the

maximal feth column generated by / is smaller in Bruhat order than the maximal
feth column generated by /:

* /ci/and/'</ o
[fe]) • <Ufr

Now, let e(fe) = (0.....1 ..... 0), a sequence of length I with a 1 in the feth place.
Then for m= (0,...,0, mA , . . . ,w/) f we have m~ e(fe) — (0,..., 0, mk — 1 ..... m/) .

Lemma 2. For m= (0.....0, w^ ..... w/) with m f e> 0, /d [/], a>trf /cmax —
[k] ) 8 tt)«t, ^^ /lave a disjoint union



240 STANDARD MONOMIAL THEORY

\ J S T ( f , m ) .

Proof, (a) First, it is evident that & (f , m) £^(/, m) for any /£/.
(b) Also, /Cmax * #"(/, m- e(fe)) £^(/, m) as follows. If r = Ci * ^2 # — ̂
linebreak ^(/, m— e(&)), by definition there exists a lifting /i2/22" °with /i^
/ and /i n [&] reduced.

Now let 7— M be a maximal reduced sub word of / f l [&]. By the Definition-
Lemma,

so we may take reduced words 7*— 7 with w(jj) =w(jjC\ [k]) and/i^/2^01". Set
JJ=/ ,n[H-l f / ] .Then

/U [k+1, /]27iU/i2/2UjJ2-

is a lifting of /cm

(c) Finally, suppose r=£0 * £1 # £2"- ^^(7, m), with lifting /03/i3/2 3 • • • .
Then we must have exactly one of the following. Either fCo = /cmax and /i^/23eo>

is a lifting of iti^K2^"°, so that r^/c^5"(/, m — e ( f e ) ) . Or KQ^Km^ meaning

x V / n [fe] ) ° CW f J k ,

and hence

Therefore/0</and

3. Let m= (0,..., 0, mfc ..... m/ ) . ///, /^ [/] arg subwords with /fl
1, Z] =/ n [fe + lf /] an^ t^max (/n [fe]) =u;max (/ fl [>]), fen 2T(/, m) =

W.m).

Proo/. If /Ci^/c2"o^5 r(/, m) has a liftmg/i2/2-- with/i^/, then

so by the subword definition of Bruhat order we can find reduced words with

with u>(7,) =10 (/yn M). Setting 7}=7/U (/, n [fe + 1, /]) for all; gives a lifting /i
^/2 ^ • • • for ATI # /C2 * • • • which shows it to lie in 5" (/, m) .

Reversing the roles of / and / we obtain the reverse inclusion, which
completes the proof.
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2.2. Head string property.

Definition. For i^ {l,...,n — 1), the i-string through r is defined as

def

S, (r) = {-, eh, e,T, r,/,r./?r....}-{O}.

We say a set of tableaux 5" has the head-string property if for any i and any r^
y, we have either:
(i) Si(r) ^^(the entire i-string of r lies in 5r); or
(ii) St (r) fl 5"= ir) and */r=O (only the head of the string lies in 5").
A key step in our proof of Theorems 1 and 2 will be to show that the set of
standard tableaux has this property.

We will use the following properties special to groups of type A: for any i
and any column it,

etic=O or/ f/c=O and e//c=/?/c=O.

Lemma 4. For K a column, T a tableau, and a>0, we have

ftf) * (/TV) if ftie*O, eiT=Q

K* (ffTf) otherwise,

K* (efr] if(ftic = O and et

• (etfc) * (ef IT) otherwise.

Here we use the convention that

Proo/. This follows from the well-known (and easily checked) formulas
[Lt2]

^)*r i f 3 n > 0 ,

(/<r) otherwise.

otherwise,

together with/?/c = O.

2.3B Recursion for % (/, m) .

Theorem 2*.
(i) As iw Lemma 2, |gf m = (0,...,0, mfc,...,m/) if;it/i w^>0 , /^ [/] , awrf /cmax

 =

W) ' tw l f t. Tfigw- we have the disjoint union

, m - e ( k ) ) U
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(ii) #(/, m)=ST(j, m).
(w) #(/, m) /ias £/i£ head- string property.

Proof. We proceed by induction on |/| (the order of/) and on \m\=mi +
+ mi (the number of columns in a tableau) . The initial cases / = 0 or m
(0.....0) are trivial. Now assume (i) - (iii) for all C(/, m') with |/|<|/| or |
< m|. We will prove (i)- (iii) for f (/, m).
(i) If /fl [k] = 0, the righthand side of the equation (i) reduces to O)/ f t*#(/ f

— 6 ( f c ) ) i and the claim is clear.
Otherwise, let/i be the smallest element of /f l [fc], and write

Then #(/, m) =At
(@(j, m), so that every tableau in #(/, m) may be written as'

K*T=ft(i£*T) for ff#fe#(7 m). In fact, we have r«Ef (/, m— e( fe ) ) . which
follows easily by induction and Lemma 4.

By induction, we have the disjoint union

(a) First, it is evident that # (/, m) ̂ f (/, m) whenever /2/.
(b) We show f (/, m) 3^max^^(/, m-e(k)) as follows.'

For r^f (/, m-6( fe ) ) , we can write r=/?f for T^%(J, m-e(fe) ). In fact, by

raising f with e/ and increasing a, we may assume that e^T—®. (We know £?f^

7 m — 6 (^)) U (O) by the head-string property (iii).)
In case /cmax — £max, we have/? ^max — O, and

In case /cmax>^max. we have fCmax=ftKmax, and

Ar n M x*r=/c m a x*( /?^=/r 1 (€nax*f)eA«( j ;m)=«( / f m).

This completes the 3 direction of formula (i) .
(c) Now we show the ^ direction of formula (i). We suppose f c # T ^ < 8 ( J , m)
with /c</cmax, and proceed to show K^r^(8(Jf, m) as in the Theorem. Let us

write c^r=/f( /c^f) with f^f (j t m~ e ( f e ) ) .

In case ^max— ^max we have ^<cmax, so by (i) applied to

~ * ~ ~ ~, def ~
', m) for some/'</. We may assume /c = «rmax— wmax(j'r\ [k]) ° o>/ftf since

otherwise we would have /c*r in some smaller (S'^//, m) by induction.
_ ~

<^max, then by definition {/J U/ '</ , so /c * ref ({yj U/ ' , m) gives the

desired result. If /i^max — £max, then (since /c</srmax) we must have /? (^max * ?)
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(/??), and therefore ei¥=£O by Lemma 4. This means /?f^ #(/, m —
by head-string, and so

ic*T=ic'naai*(flT)€:<ig(ft m)

~ ~ k

by (i) applied to #(/, m) . Since /</, we have the desired result.
~k ~ ~

In case £max>£max, we have/</. If £max>£, then «max* f^$(7, m) for/
& ~ ~ * _
</, so that {/J U/</, and clearly /c^r^f^/i) U/, in), as desired. If /Cmax = /c,
we must have (since /c</cmax and /^max = «max) that/f (£max* f) =£max^ (/ ?f),

which means e,f=£O by Lemma 4. Thus, by head-string, we have/ff^^ (J m—
6 (k) ) , so that, as desired.

This completes the proof of (i) .
(ii) Follows immediately from the identical recursions for 5^(/, m) (Lemma 2)
and for $(/, m) (part ( i ) ) , by induction on |/| and |m|. The initial cases /= 0
and m= (0,...,0) are trivial
(iii) To show the head-string property for $ (/, m) , we need to prove: for all to,

, m) and^ 0 r^O =^> g for /ef?(/, m) and/for ef (/, m) U {O}.

Take r' = /c*r. If /c</cmax, then by (i) we have r'ei^/, m) with/</, and the
head-string property follows by induction.

Thus we may assume T/ = tcmax*T with r^^(/, m — e ( f e ) ) .
In case ^0/cmax = O, we have by hypothesis eio (/emax * r) ^ 0, so we must

have ^0(/cmax*r) = /cmax * (^,0r). Hence elQr=£Q, and by head-string eioT
, and

, m- € (fe) ) c# (/. m)

by ( i ) , as desired. Also by head-string //Or e W (/, m — 6(fe) ) U (O), and

6^)) U {0}<=<£(/, m) U {O}

as desired.
In case //0/cmax = O, if c,0 (/cmax * r) = A:max * (^2or) =£ O, we may argue as in

the previous case. Thus suppose eto(fcmax^ T) = (etoKmax) ^ r=^O, so that eiofcmax

3=0. Now let ^max = i^max(/n M), so that Kmax=wmax'O>tk Since ftQicmax = O and
e?0 ^max^O, we have s,0^:max = ^Zo/cmax</cmax, and so stowmax <wmax. Therefore we
may find a reduced word for wmax with first letter equal to to:

i= (ii,...,t'J) with w ( i ) =wmax and t'i=io-
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Let

i'= (ti,».,iJ, i't+i, tj+2,...) with (i't+i, tj+2,...) =i(/n [>+i, /]).
Using (ii) and Lemma 3, we have

#(/, m) =^(/, m) =#"(!', m) = #(i't m)

(Note that |f |<|/|, so (ii) holds for #(i'f in).) But #(i', m) =yliQ(—), so for
any r e #(i'f m), we have ^Or', /,0r' e #(f, m) U (O) = f (/, m) U (O) as
desired.

The proof of (iii) is finished, the induction proceeds, and the Theorem is
proved.

Given a subword index /^ [/] we may consider i(/) as a word in its own
right, corresponding to a Bott~Samelson variety Z,-(/) which embeds naturally
into Zi via

def

) =Z/=Qi X

where

.B if/*/

Let us index Schubert varieties Xx in a Grassmannian Gr (i) by columns K.
— 0'i,.../J. That is, let W be the subspace of Wn spanned by the coordinate

vectors er for r G K, and define Xx — B e FK £ Gr (i). (Under the isomorphism

Gr (i) =G/P for a suitable maximal parabolic P, we can write this as XK=B • mP
^ G/P, where fc = w ° a)t.) We have ^* £i ̂ \V if and only if K<K.' in Bruhat
order.

Lemma. For any J^ [/] , tfi? partial multiplication map

(pi, p2<-Pi) *~* Pi

has image equal to the Schubert variey of the column generated by J up to position k:

f. This follows from the formula:

StX ifstK:>fc

[K otherwise.
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We denote the restriction of the line bundle ^m from Z\ to Z/ by the same
symbol $?m. In order to prove Theorem 1, we will show the more general fact

that 2T(/, m) indexes a basis of If (Z/, £m) .

3.2. Linear independence.
For any sub words /i, /&••• — M, we may consider the union of the

corresponding Bott-Samelson varieties embedded in Gr(i):

The restriction of ff(m) again defines a line bundle £m on the union, and for

any tableau T the Plucker monomial AT restricts to an element of H° (Zjl U Z/2 U

Definition. A tableau T of shape (i, m) is standard on a union Z = ZjlV
Z/2U ••• if it is standard on at least one of the components Z/15 Z/2,... That is, the
set of standard tableaux on Z is

def

Proposition. For any subwords /i, /2,... ^ [/] , the standard monomials of
shape (i, m) on the union Z = Z/1UZ/2U "-are linearly independent.

Remark. A statement of this generality holds only for independence: the
standard monomials on a union Z do not in general span H°(Z, 3?m).

For example, let i= (1,2,1), m= (0 ,0 , l ) , / i= {l}./2={3}. Then J(/i, m)

= 2"(/2, m) = {1,2} , but dimH°(Zh U Z/2, #m) = 3. In fact, in this case the

restriction map #°(Gr(i), ff(m))-+H0(ZJl\JZjv S!m) is not surjective. This is
possible because 6 (m) is nonample.

Proof of Proposition. Let r(1) ..... rm be standard tableaux in HT(Z, m).
Consider a linear relation among the standard monomials 4rw on the variety Z

where ar^F. We will show

a^O for r=l,...,t
by induction on t (the length of the linear relation) and on m =wi~l ----- hm/
(the number of columns in a tableau) .

(a) Let us suppose m= (0,...,0, m^,...,w/) with m/^>0, and write T(r] = K(ki * ••• *

/c/%. Let /iV^ — ̂ /jg, be a lifting of r(r). By definition, each Iff is contained in
one of the subwords /i, /2,... defining Z, so the Bott-Samelson variety of the

subword In is contained in Z:
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Z/K>£Zfor all r.

(b) Now let K denote one of the Bruhat-minimal elements among the first

columns of r(1),...fr
(rt:

Order the terms of relation (*) so that, for some I<to^t, we have

K=iCkri for r<tG, st^-itK for r>tQ.

(c) We show that ar
= 0 for T<£Q. Let

Y= |J Z/r,cz.
r<fc»

Let us restrict the relation (*) from Z to F. By the Lemma of §3.1, we have
fjik(Y) — X x ^ G r d k ) . Furthermore, the first factor AK& (Z) of AT

(n is just the

Plucker coordinate of K%\ on Gr(i*). Since K^fciri for all r>£0, we have

so that ( * ) becomes

where r(r) = «ii} * ?(r) for some r(r) GSTtfft, m-€(k)). However by the same
Lemma, AK is not identically zero on any of the components Z/<? of Y. Hence AK

is not a zero-divisor in the coordinate ring of F, and we may factor it from the

equation to get a linear relation among standard monomials r*^ of shape (1, m~
€(k)) on Y. That is, r^e^y, m-e(fe)) , and

By induction on |m|, this relation must be identically zero: a r=0 for r <^0-
(d) Since £o^l, we have shown that a^^O for at least a single r. Therefore (#)
reduces to a relation with fewer than t terms, which must have ar

 = 0 for all r
by induction on t. The proof of the Proposition is finished.

3.3. Dimension counting,,
Recall that for T— (TI, r2,...) we define xT==xriXr2°°° ^IF[T]. For any set of

tableaux ST, let

For any subword /£ [/] and m=
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char*J(/, m) =A%((j^A

where dj = l if j^J and 5y = 0 ifj&J.

Proof. By Theorem 2+ of §2.3, we know that

ST(j9m) =A1} (fl>J5mi * ^1?2
2 (^f2

W2 * ' ' 'All (a>*m<) • • • ) ) ,

so we need to show that each operation At and (o>* * ) on tableaux has the
corresponding effect on characters.

For/e|j], let

mfl [/, j] = (0.....0, mj,...,mi), Sr, = ST(jr\ [/, l], mH [;f / ] ) .

Now,

[ife+1. /], mH [k, / ]) ,

so by §2.3 this set has the head-string property. That is, we may partition it
into i/rstrings

so that each S(r} is either a complete it-string or only the head of an it-string.
It is easily verified that

char*(A,4S<r))=A,(char*S ( r>).

so we have

= char*A t(S<1)US (Z )U-)
=A- t cha r* (S a ) US ( 2 ) U-- - )

=/!„«*

Thus we may build up 5"(i, m) and char*5"(i, m) in parallel steps, and the
Proposition follows.

Proof of Theorem 1. The Demazure character formula of §1.4 applies to the
subvarieties Zj to give

char*//0 (Z,, JSPJ =A% (atf^ «2- • -Al,' f<«) • • • } ) .

Hence by the above Proposition we have (after specializing the characters to
= -=x« = l):

# {4r re J (/, m) } = dim //° (Z/, 5?m) .
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But by the Proposition of §3.2, we know that the standard monomials (AT r^

y(J, m)} form a linearly independent subset of H°(Zf, jpm), Therefore they
form a basis.
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