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1-Cocycles for Rotationally Invariant

Measures

By

Hiroaki SHIMOMURA*

Abstract

Let H be a separable Hilbert space over R (dim (H) is finite or infinite) , Ha be the algebraic

dual space of H, %$ be the cylindrical d-algebra on Ha and n be a rotationally invariant probability

measure on (Ha, SB). Further let 6=6(x, U) be a 1-cocycle defined on Or, [/) e/faxo(#), where

0 (//) is the rotation group on H. That is,

(c.l) for any fixed U^O(H), 6(x, U) is a ^-measurable function of x,

(c.2) |0 Or, C/) | = 1. and

(c.3) for v[/i, v[/2eO(tf), 0(r. UjOCUix, U2}=6(x, UiU2) for 0-a.e. *.

where '£/ is the algebraic transpose of [/. Moreover it is said to be continuous, if the following

condition holds for 6.

(c.4) 6(x, U)— »1 in fi, if U —* Id in the strong operator topology.

Our main result is as follows.

Assume that dim(//) =£3. Then for any continuous 1-cocycle 0, there exists a SS-measurable

function 0 with modulus 1 such that for any fixed U^O(H), 6(x, U) =(/>(tUx)/<f>(x) for fjt-a.e.x.

§1. Introduction

Let j« be a rotationally quasi-invariant probability measure on the dual
measurable space (Ha, 83) . i.e., IJL is absolutely continuous with respect to ftu for

each U^O(H), where ^c/= (^QtU) is the image measure of ^ by the map *U~l.

Then a canonical representation (Ru, L% (Ha) ) of 0 (H) arises such as

where ^ is a 1-cocycle defined on //ff X 0 (H ) . Another representation with 1-
cocycles appears in the following situation which is analogous to the
representations of commutation relations in quantum mechanics.
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Suppose that V(h) and T(U) (h e H, U^O(H)) are given as unitary
representations on a Hilbert space X and that they satisfy the following two
conditions.

(c.5) V is cyclic and V(h) is continuous on every finite dimensional
subspace of H.

(c.6) For *h^H, yU^O(H), T (U) V (h) = V (Uh) T (U) .
(it may be appropriate to say that this pair of representations is a

representation of semi-direct product of H and 0 (H) .)

(1) Then the representations are realized on L%(Ha) as the following
manner with a rotationally quasi-invariant probability measure (j. on (Ha, SB)
and a 1-cocycle 6.

(1.1)

(1.2)

where {/i, x) is the duality bracket for h ^ H and x ^ #0. Moreover T is
continuous, if and only if so is 6.

In fact, take a cyclic vector e^ffl with norm 1 and form a function (V(ti)e,
e)% of h^H. It is positive definite and continuous in the sense stated in (c.5). In
virtue of Bochner's theorem we have a probability measure (j. on (Ha, 33) such
that

(1.3) (V(h)e,e)= f exp (i (h, x) ) fjL (dx) .
J H<*

Hence a map

W : fj V (hi) e e X " - > a y exp (i (hj, x)') e L" (H0) ,
y=i j=i

is well defined (a;- are scalars), it is extended as a unitary operator on the
whole space, and

(1.4) V(h): = WV(h) W~1:f(x)

(L 5)

where pu: = f ( l f ) (l). It follows from (1.5) that

f exp (i (h, x» A£ (dx) = f exp (i <C7lif x> ) Ip^ (x) |2/^ (dx) ,
e/ jEffl •/ H°

and therefore

Thus fi is 0(H) -quasi-invariant, and a 6 defined by
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(1.6)

is a 1-cocycle. It is easy to see that 6 is continuous if and only if T is
continuous, (l . 5) is now written as

(1.7)

and the work of realization is complete.
We claim further the following statements without proofs.
(2) For the above pair of representations, (V, T] is irreducible if and only

if the corresponding fj. is 0 (ft) -ergodic.
Here the ergodicity for 0(H) means that IL (B) = 1 or 0 provided that fjL^UBQ
B}=0 for all U^O(H).

(3) (V, T) is equivalent to (Vf, T') if and only if fJL — /JL and 6 and ff are
mutually equivalent, where the equivalence for 1-cocycles means that

d(x, U)=<j)(tUx)/<f>(x)*6'(x, U]

holds for fjL~a.e.x with some ^-measurable function 0 with modulus 1. Such a
1-cocycle 0('[7 • )/0( ° ) is called a l~coboundary and it will be denoted by 6$.

By the above, the pair of such representations (V, T) is completely
determined by rotationally quasi-invariant measures // and 1-cocycles 6. We
wish to describe their structures. Now the following facts are already obtained.

(4) Any rotationally quasi-invariant measure fj. is equivalent to some
rotationally invariant measure. (See, [6] .)

(5) Any rotationally invariant measure ^ is a superposition of jc (c
 e [0,

°°)), where jc (c>0) is the uniform measure on the sphere of radious c in the
finite dimensional case and is the standard Gaussian measure with mean 0 and
variance c2 in the infinite dimensional case, and 70 is the Dirac measure at the
origin. (See, [5, 8] .)

Thus a factor from measures is completely determined and the ambiguity
left for us is a factor from 1-cocycles. It is desirable to classify them with some
method. Fortunately we found that they are characterized as 1-coboundaries.
(Thus, the equivalence of these representations are reduced to the equivalence
of corresponding measures.) This is a main purpose of the present paper.

Here we have something to say about the finite dimensional case in which
there are similar arguments with our results by some authors, for example [2] .
However they are slightly different from our ones in several points such as
cocycle conditions, measurable assumptions, etc. So we will state them in our
style for distinction as well as for completeness.

The proofs for the finite dimensional case and for the infinite dimensional
case are carried out in Section 2 and in Section 3, respectively. They are
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completely independent of each other and each of them is deduced from the
characteristic properties of finite and infinite dimensional spaces, respectively.

Besides, in each of the sections we pick up only representations of the type

(Rn, Ll (Ha) ) and study their mutual equivalence.

§2o Finite Dimensional Case

2olo l-coeycles on §0(m)0 Let EM be the n-dimensional Euclidean space,
33 (Ew) be the natural Borel field on Rn, [i be a rotationally invariant probability
measure on (Rw, 35 (Ew)), and 0 be a 1-cocycle. i.e.,

(n), 6(x, U) is a 9? (Rw) -measurable function of x with modulus 1 and

(2.1) v[/i, v[/2esoW, 06r, U^6(Uilx, U2}=6(x, UiU2)

for //-a.e. x.

Theorem 2.1. Assume that ni=3. Then the following statements for 6 are all
equivalent.

(1) 6 is a continuous 1-cocycle.
(2) There exists a jointly measurable function & ( x, if) defined on W1 X

S0(n) such that vU^SO(n), & (x, U)=0(x, U) for p.~a.e.x.
(3) 6 is a \~coboundary.

Proof. It is obvious that (3) implies (1) and (2). Conversely, under the
assumption (l), we have a stochastic version £(x, if) such that C(x, if) is a
jointly measurable function of (x, U) with modulus 1 which satisfies for
y-a.e.C/, 0(x, if) =^(x, if) for fj.-a.ejc, where v is the normalized Haar measure
on 50 (n) . Here we will divide this proof " (l) , (2) => (3) " into two steps.

(I) The case of ^({0})=0.
At this time, for the proof it is enough to admit the following lemma.

Lemma 2.20 Assume that n=£3, ^({0}) =0 and that a jointly measurable
function £ (x, if) with modulus 1 satisfies

f f f IC(x, C/iKCt/f1*, 1/2) -CO*, UiU2)\v(dx)v(dUjv(dUj=0.
J R"J SO(n)J S0(n)

Then there exists a Borel function (f) (x} defined on W1 with modulus 1 such that
v[/eso(n), C(r, U)=(f>(tUx)/(f>(x)

for iJra.e. x.

Proof. Let 7 be the uniform probability measure on Sn~l, and m(E): =
I \\x\\^E) for all £e33(R+), where || • || is the norm on RM. Then 'we have



I-COCYCLE FOR ROTATIONALLY INVARIANT MEASURE 971

for all B^^S (Ew) . It follows from the assumption that for m X j-a.e. (c, co)

(2.2) C (cc*>, Ui) C (cUT'a), U2} = C (ca), C/it/2)

for yX y-a.e. (f/i, £/2). From now on we will write C*(co, U) instead of C,(ca), if) .

Now take any e^Sn~l and fix it. Then by Fubini's theorem we have for m~a.e.c,

(2 . 3) G (Ue, Ui) G (I/T1!/*, 1/2) = Cc (to,

for v X yX y-a.e. ([/, f/i, C/2). Let us exchange the variable U2 to Uo'- = U~lUiU2.
Then it follows from (2.3) that

(2 . 4) Q (Ue, Ui) = Cc (^, C/f/o) /Cc (f/T1^, U^UUo)

for m X y X v X y-a.e. (c, [/, C/i, C/o) • In particular, some Uo exists such that the
above equality holds for m X »x y-a.e. (c, U, Ui) . We fix it. Put

ac (if) is a jointly measurable function of (c, U) which satisfies

(2 . 5) Cc (ta, f/i) = ac (U^U) loc (U)

for m X y X i^-a.e. (c, [/, C/i) . Consider the isotoropy subgroup Ge at e,
S0(n) | ̂ ^=^} and take any g from Ge. Then we have for w-a.e.c,

<Jc (UilUg) /oc (Ug) = (7C (U^U} lac (U)

for yX y-a.e. ([/, f/i) . It follows that for m~a.e. c,

<Tc(Ug)/ae(U)= f oc(UllUg}/oc(UilU
J SO(n)

for fji-a.e.U. The measurable function fcc(#) satisfies

\ = l,kc(g1g2)=kc(g1)kc(g2)

for all #, flfi, #2 e Ge. Namely, fec is a measurable character on Gg, so it is
continuous, and in virtue of the classical results for n>4 kc is equal to the
identity for w~a.e.c. Consequently we have for w-a.e.c

(2.6) VgGG«ac(Ug)=ae(u)

for y~a.e.£7. Again Fubini's theorem implies, for m~a.e.c, for i^-a.e.[/, Gc(Ug} =
oc (if) for i^g-a.e. <7, where ve is the normalized Haar measure on Ge. Thus we
have for m~a.e.c

(2.7) ac(lO= f ac(Ug)v.(dg)=: $(c, V]
J Ge

for y~a.e.[/. 0 is a jointly measurable function of (c, if) and it is a function of
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(c, Ue) .

Now take a Borel section M : Sn~1^SO (n) of the map M : U^SO(n)

Sn~\ That is, MM = l on Sn~\ Let us put

for (c, CD) GR+X5W~1 . Then 0' is jointly measurable and satisfies for m~a.e.c,

(2.8) ac(U)=(p'(c, Ue)

for y-a.e.f/. In this way, we have for wa.e.c,

Cfclfe, U1)=(f)'(c, UllUe)/(/)'(c, Ue)

for yX y-a.e. ([/, f/i). Finally we put

^w^'dwuwi-1*).
Then 0 is a Borel function and we have

for //x y-a.e. (x, [/) . The rest of the proof is a standard argument Let

G:={t/eSO(n)|CCz:, C7) = $ (U~lx) / (f> (x) for ^-a.e.x}.

Then G is a measurable subgroup and y(G) =1 by what we have proceeded.
Thereby G = 50 (n). D

Hence (2) implies (3). As for the implication " (1)=^ (3) ", note that for

y-a.e.[/, /R»l^(x, 17) —<p(U~1x)/(f>(x)\fi(dx) =0, and use the continuity of 6.

(II) General case
We write down ft = af0 + fift , with a, j8>0, a + ^8 = 1, where 70 is the Dirac
measure at 0 and //({O}) =0. By the property (2.1),

0(0, t/i)0(0, Uj=

for all Ui, U2^SO(n). Moreover if (1) in Theorem 2.1 holds, then 0(0, U) is a
continuous function of U^SO(n) and if (2) in Theorem 2.1 holds, ^(0, U) is a
measurable homomorphism, so it is continuous. Hence for n>4 we have

0(0, U)=l and ^(0, U)=l

under the assumption (l) and (2) respectively. On the other hand, it follows
from the result of (l) that there exists a Borel function (pf (x) such that

(n), 0(x, U)=$'(

for //-a.e.x. So a Borel function defined by
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00r): = 0'0r), if x=£0, and 0(0) : = 1

satisfies

(n), 0(x, U) =0(LT1x)/0(r)

for /*~a.e. x. There is nothing to prove in case of n = l. The case of n = 2 is easy.
D

Remark 2.1. If the cocycle condition (c.3) holds for every x^S""1 and U
^SO(n} without exceptional points, and 0(x, U) is a measurable function of U

for each fixed x ^ S""1, then it follows easily that there exists a measurable

function C on S""1 such that 0(x, U} = ¥(^ for *z^S"~l and for V[ /<E

S0(n) in the case of n^S. (cf. Proposition 1.2 in [2]).

For the proof take a Borel cross section N from Sn~l to S0(n) such that

M(x)e*=x, where £0= (0, 0,...,0, 1) e^*"1, and put A (U) : = M (Ue0) ~
1U. Further

putting x(v)'* = 0(*0, V} for V7es0(n-l) and C (x): = 0fe0, ^(x)'1), we can
easily checked that

0(x, t/) = ^>/ x ' x k U t r M f C r ) ) ) - 1 .CW A

Since % is a measurable character of SO (n — 1) and n>4, so X — 1 and the
conclusion follows.

However the above situation is different from the assumption of Theorem
2.1 in various points such as the cocycle conditions, measurabilities and
supports of measures.

Remark 2.2. For w = 3, this assertion does not hold in general as is seen by
Proposition 1.7 in [2]. The typical counter example is, using the above notation,

where % is any non trivial continuous character on SO (2) . These 6X are all
continuous.

2.20 l-cocycles on O(m)B Next we consider actions of 0(n). Take a
Borel function Q(c) defined on [0, °°) such that Q2(c) =1, and define a function

(2.9)

It is a continuous 1 -cocycle on 0(n) as is easily seen.
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Theorem 2B30 Let fj.be a rotationally invariant measure on (W1, $8 (W1) ) and
6 be a \~cocycle on 0(n). Then the following s are equivalent.

(1) 6 is continuous.
(2) There exists a Borel function (f) (x) with modulus 1 and a such Q as above

which satisfy

), 6(x, U)=dQ(x, f /)-0,(r f [/)

for jJi-a.e. x.

Proof. It is obvious " (2) => (l) ". We prove the converse relation. To begin
with, let us restrict 6 to SO (n) . Then some function 0 exists such that

v[/eESO(n), 0(r, U)=(f>(U-1x)/(f>(x)

for ££~a.e.x. This equality is true even in the exceptional case for n = 3, because
the proof of Lemma 2.2 works validly in this case, though we omit the detail of
it. Next take any TQ^0(n)\SO(n) and fix it. We have for any U^SO(n),

6(x, T0U)=6(x, To)6(Tolx, U)

= 6 (x, To) 0 ((T0[/) ~
lx) 0 (To ̂  -

Thus,

(2.10) 0(r. T0U)=ri(x)<f>((T0U)-1i

for 0-a.ej:, where r](x)- = 6(x, T0) 0 W 0 (To xx). It follows that for all C/i,
50 W

, U2T0)=rj(x)(p((U1T0)-
1x)(t>(x)

• 5 ((E/iTo) -1*) 0 ((f/2T0) -1 (t/iTo) -\r) 0 (([/!

and

6 (x [7 T C7 T )

Compairing the right hand side of the above two equalities, we get for all
soM,

(2.11) i

for /^-a.e. x, and therefore for //-a.e

(2 . 12) 7? (x) = f J? (To ^"x) v(dU).
J S0(n)

So 17 (x) depends on only the norm of x. Namely, if] (x) = Q (|| x||) for some
measurable function Q defined on [0, °o). It follows from (2.15) that Q2(||x||)



I-COCYCLE FOR ROTATION ALLY INVARIANT MEASURE 975

= 1 for jj.~a.e.x. Consequently, we have for any

6(x,T0U)=Q(\\x\\)(f>((ToU)-1x)<f>(x)

for iJ.~a.ejc, and the proof is now complete. EH

Remark 2.3. As for the uniqueness of 0 and Q in Theorem 2.1 and
Theorem 2.3, 0 is determined up to a norm-dependent function with modulus 1
and Q is determined uniquely.

2.30 Equivalence of representations. Let us consider the following
representation of SO (n) or O (n) ,

R° (U) : /Or) €EL* (Ew) ̂ 6(x, U)f(U~lx} eLj (W] .

In case of SO (n) (n =£ 3) , R6 is equivalent to R1 (9=1) , by what we have

considered and in case of 0(n), Re is equivalent to R°Q ='• RQ by virtue of
Theorem 2 . 3. We state below a study of the mutual equivalence of RQ.

Theorem 2.4, Put F: = { c> 0 | Q (c) = 1} and F': = { c> 0 | Q' (c) = 1} .
Then in order that

it is necessary and sufficient that

(1) dim(L2
w(r))-dim(a(rO) and dim (L2

W (rc) ) =dim(U(F'c)),
i/m({0}) =0 o r i f m ( { Q } ) >0 and Q(0) =Q'(0), and that

(2) dim (Li (D ) =dim (Li (F') ) -dim (Li (Fc) ) -dim (Li (F'c) ) - oot

ifm({Q})>Qand

Proo/. (Necessity) Let A be an intertwining unitary operator from (RQ,

L2
U (R

n) ) to (RQ', L2
U (Rn) ) . Restricting the representations to SO (n) , we see that

V/€ELI(R*), A (/ftT1-)) (r) = U/) (rr^).

Thus Af is rotationally invariant, if so is /, and hence a unitary operator A on

Lm[0, °°) induced from A satisfies

(2.13) A(Q-f)=Q'-Af

for all/eL^[0, oo). It follows that

(2.14) A°Pr=Pr°A,

where Pr is the projection from L^[0, °°) to Li (7"). So we have
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dim (Li (O ) = dim (Li (F ') ) and dim (Li (F c) ) = dim (Li (F ") ) .

Here let us consider the second case : m ({0}) >0 and Q(0) =£Q'(0), and

suppose that dim (Li CO ) or dim (Li (Fc) ) would be finite, say dim (Li CD )
<°°. 0 belongs to only one of For Ff, so we assume that

By the way, the representation (R7, L? OS*"1) ) ,

o>) ([/eO(n)) f

has irreducible decompositions (Rr, Xi) with mulutiplicity 1:

L2
r(S

n~1} =

where Xo = {const.fun.} , Xi = {(h, a))}h^mn,°'° and so on. In general Xi are

obtained by orthogonalizing polynomials of degree I on Sn~* succesively. (See,
[9] .) Now according to the following two decompositions,

i (r\{0» ®L^ (S*-1) ©Li (

LJ (Rw) =Li (rO (8>L? (5M-X) ©Lj ({0» ©Li (r 'c\{0» ®L2
r (

we consider an element k ( c ) h e ( a ) ) ei4(r')®^i, where he(a))'.= (e, o>), and
^Ew is any fixed vector. Then some calculations derive that for fjL-a.e.x

(x) *Q => Q(|W|) =+1.

and hence for any /eLiCT) (gJL^S""1) A-l(k®he] (x)f(x) =Q for /^-a.e.
This shows that

It follows from considerations for irreducible components that

A-1 (L2
m Cr ') (g)^) cu, (r\(o» ®*i,

and therefore there exists a one to one operator U from LiCT") to Li(JT\{0})

such that A~l = [7® Id. So we should have dim (Li CO) = dim (Li(r') <dim

(Li(F\{0}), which contradicts to the assumption.
(Sufficiency)
(l) The case of m ({0}) = 0. From the assumption there exists a unitary

operator A on Li[0, °°) such that

for all/^L^IO, oo). Since L^(RW) is regarded as U,(0, ̂ ^LKS*"1), so



I-COCYCLE FOR ROTATION ALLY INVARIANT MEASURE 977

is a desired one of intertwining unitary operators.
(II) The case of m ({0}) >0 and 0(0) = Q'(0). If the common value of Q is 1,

then we have

dim(Li(r\{0}))=dim(LS i(r /\{0})), and dim (Li (rc) ) = dim(L2
m(F'c)).

Set m+=m R+ and take a unitary operator A on L^+(R+) such that

A(Q -7)=Q' -Af

for all/eLL(R+). Then in this case regarding L5(R") as LS({0»0LL(R+)®

L^S*""1), we define A on L2, (Rw) such that

A : r 0/(c)<? (a;)

This is a desired one of intertwining unitary operators. The case of Q(0) =
Q' (0) = — 1 is treated similarly.

(Ill) The case of w({0}) >0 and 0(0) =£Q'(0). Without loss of generality,

we may assume that 0(0) =1, Q'(0) =-1. Put <5(x) -=m ({0}) "I/2X{0}(l|x||), (in
general, XE stands for the indicator function of the set E) , and take c.o.n.s's :

*!,..., «„,... on L2,(r\{0», ri,..., «;,... on Li(r'). /i,.., /»,... on Li (rc) , /i,..., /„,... on

Lm(F'c\{0}) , respectively. We define a unitary operator AQ as follows.

Ao is defined on

LJ ({o}) 014 (r\{oi) ®^o
and maps the space to

L2
m (r 0 <8>#o0LS ( (o) ) 0L2, (r /c\ {0} ) (8>^0,

and it gives an intertwining operator from RQ to RQ'. Now let us take any unitary

operator A\ on L^ (0, °°) which gives one to one correspondence between

L5,(r\{0» and L2
m(rf) and between I4(rc) and L5,(r/c\{0}), and define Al

on L2
m(0, oo)(g)^ such that

Then A:=y4o0Ai is a desired one of intertwining unitary operators,
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Corollary 2.5. (RQ, L*(RM)) - (R1, L*(Rn)) if and only if Q(c) =1 for
m~a.e.c.

§30 Infinite Dimensional Case

3oL Continuous l-cocycles for Q(H)0 In this section we assume that

Let ft be a rotationally invariant probability measure on (Ha, 33) and 6 be a
continuous l~cocycle. i.e.,

(3.1) \d(x, U}\ = 1.

(3.2) vUi,vU2^0(H),d(x,Ui)6('Uix,U2)=d (x, UiU2) ,

for ^-a.e. x,

(3.3) f \l-6(x, U)\fi(dx)^0, i f t /^Id ,
J> ffa

in the strong topology.

Theorem 3«L Any continuous l~cocycle 6 is a I-coboundary. Namely, there
exists a 93 -measurable function (f) with modulus 1 such that

), 0(x, U)=(f>(tUx)/<f)(x)

for /jt.-a.e. x.

Proof. We shall divide the proof into 4-steps.
(l) First we prove the following lemma.

Lemma 3*2. Let h\,°-°, hn,"° be a c.o.n.s. in H. Take any Un^0 (H) such
that Un(§p{hi,'",hn}) -L Sp Oii,°°°,/iw} for each n. Then if there exists some (p ^

L%(Ha) such that (6(x, Un} <p(tUnx}}n has a non zero weak limit point, then some

^-measurable non zero function <p^L%(Ha) exists such that T (U) <p = (j) for all
0 (H) , where T ([/) 0 (x)'- = 0(x, U) (f) ^

Proof. To begin with, we claim that (p can be taken as a bounded function,
say (p. In fact, for e- = H|/2, where w is the non zero weak limit point of {6(x,

Un^V^Unx)}^ there exists a step function 0 such that \\<p — (/)\\<€. So there

exists a weak limit point of (6(x, Un) 0Cf/»r)}w in the e-neighbourhood of w. If

necessary, taking a subsequence we may assume that 6(x, Un) 0('[/Mx)— *0(x)
in the weak topology. Nothing that for any U^0(k) := {U^O (H) \U = ld on Sp

{hi,---, hk}-1}, U^UUn—^ld in the strong topology, we have

f \6(x, UUn) -0(x,Un)\2v(dx}=f
J Ha J H<*
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= f |0 Or. Un-
lUUn) -l\2(i(dx)-+0, («-»«).

J H"

Further,

f |0(Ux)-0(U'[/x)|^) = f |0(r) -0(U'l/U-
a/ /JO •/ //fl

Therefore using M: = supx|0 (x) |, we get

f 1 0 Or. I/,) 0 Cite) - 0 (r. f/) 0 Cl/x. l/«) 0 Cl/.'l/x) \2H (dx)
J HO

< 2M2 f 1 6 (x, U.) ~ d (x, UUn) \ZUL (dx)
J H»

It follows that by the well known property of weak convergence,
v[/^0(fe), 0(rf U)<p(tUx)=(f>(x)

for /jt-a.e.x. Since Oo(H):= U"=iO(fe) is dense in 0(H), so we have for all

(3.4) d(x,U)4>('Ux)=<f>(x).

for ^-a.e. x. D

(II) Take any e^R such that 0<e<l. Then by the continuity of 6, there
exists some d^N such that

f |l-0(r,
J^a

for all U^O(H) such that Uhj = hj (1 <;" <d). Here we take 14 for each n such
that

and Vnhj = hj (j

Since ||0( • , Vn) — 1||2^£, so any weak limit point 2 of (6( • , Vn)}n is non zero.
Put

0(d)J-:={[/eo(ff)|C/^- = ̂  for l<;<d).

Then VnlUVn converges strongly to Id for all U^O(d)L no0(H), so repeating a
similar argument in (l) we have 0(x, ifiA^Ux) =^(x) for ^-a.e.x. As 0(d) xn
00(//) is dense in O(d)-1, so we get

(3.5) vC/eo(d)\ e(rf U)X('Ux) =A (x)

for //-a.e. x.
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(ill) Take any n^N and set Un for each n as follows.

Moreover we take an isometric operator 5 on H such that Shj = hd+j 0 :~ 1,°").
Then we have

(3.6) VnS = SUn (n = l,-)-

Now we extend T( ° } for an isometric operator R. Take a sequence {Rn}n

such that lim« Rn
=R in the strong topology. Then

f \0(x,Rn)-6(x,Rm)\2^(dx)= f \l-
J H<* <J H<*

= /* \l-0(x,Rn-
lRm)\2ei(dx).

J H<*

Since flJT1!?*— >Id (n, w— »°°), so {0( • , /?n)}nciLS(/PI) forms a Cauchy sequence.
We denote the limit by 6(x, R) . Of course 0(x, R) does not depend on a
particular choice of [Rn}n- Further it is easy to see that

(3.7) f \f('Rnx)~f(lRx)\2^(dx}^0 (n-oo)
J Ha

for all/^lJC^f*), because ^ is ^-invariant. We define T(J?) as follows.

for al l /^U(// a) . T(R) is an isometric operator on Ll(Ha) and Tfe) con-
verges strongly to T(R). It follows that for all U

T (UR) = limT (URn) = limT ([/) T (/?„) = T ([/) T (J?) ,« «
T (I? [/)= limT (!?„[/) = limT (/?„) T ([/) = T (R) T ([/).

M «

In particular, we have from (3.6)

T(Vn)T(S}=T(S)T(Un).

Taking the adjoints and noting that Unl — Un, Vn1 = Vn,

(3.8) T(S)*T(VH)=T(Un)T(S)*.

Therefore for all/, g^L2
M(H°)

(3.9) (T(Vn)f, T(S)T(S)*^>2=<T(I/B)T(S)*/, T(S)*^>2.

By the way, T(S)T(S)* is the projection from LgCfl8) to Im(T(S)) and

Im(T(S)) — (0(x, S)/d(x)|/rf is a square summable 9Sd~measurable function},

where the Borel field 9S^ is a minimal cr-algebra with which all the functions x
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~, n,-") are measurable.

Under the 'above preparation, we claim that there exists some cp ̂  L^ (Ha}
which has a non zero weak limit point for {T(Un} <p] n. Suppose that it would be

false. Then for any (p^L%(Ha), {T(Un)(p}n should converge weakly to zero. We
take q (((hi, x) , • • • , (hd, x)) 2 (x) as / (x) , where q is any bounded measurable
function on Rd and X is a non zero measurable function satisfying (3.5), and
put (p : = T (5) */• Further we take any g (x) : = 6 (x, S)fd (x) from Im (T (S) ) .
Then

(3.10) <f,g)2

(3.11) =<T(C/ l l)T(S)*/ f T(S)*flf>2 .

Thus letting n tend to °°, we have

< / , 0 > 2 = 0

from the assumption of reductio ad absurdum. It follows directly that

q((hl,x),-,(hd,x))X(x)d(x,S)fd(x)tJL (dx) = 0,

and this shows X(x)0(x, S) — 0 for ££~a.e. x, because q((hi,x),"m,(hd,x))fd(x)
spans a dense linear subspace. Since \0(x, 5)1 = 1 for ^~a.e.x, so X(x) =0 for
f£-a.e.x which contradicts to the choice of /L

(IV) Set

0:={0eLM#a)l0^0, V[/<EO(#), T (17) 0 = 0}.

By virtue of the results in (I) and (III) , 0 is not empty. Further we note that if

0e0, then v[/eo(#), |0('[/x)H0 Or) I for /^-a.e.x. So 0 defined by

0(x): = 0(x)/|0(x)|, if 0(x)^0, and: = 0, otherwise,

again belongs to 0. Let us put for each 0^0,

(3.12) S0: = (re#fl| 0(X)^Q}, and a: =

Then we have fjt^US^Q S<p) =Q for any U^O(H). We claim that there exists o>
e (p such that a=// (S1 J .

In fact, take a sequence {0M}wd(f> such that [*($$„) T a. If necessary, taking

0M in place of (f>n, we may assume that |0n (x) |<1. Then, for an a) ^
defined by

CD(X): = (f>n (x) , if x e S0»\ U 7=i S#,f and : = 0, otherwise,

we get
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f 1 6 (x, U) a> ('Ux) - a) Or) | V (dx) < V f 1 6 (x, U) $„ (<Ux) - <f>n (x) \2(i (dx) = 0
J H<* LJJ S$a

n=l

for all U<EO(H). Thus a)^0 and fi(Sj = a.
Next we claim that a = 1. If a would be less than 1, then 6 is also a

continuous 1-cocycle for a new rotationally invariant probability measure v
defined by

v (B) :=ii (Sti ~ln (B H Sc
w) for all B <E &

So applying the above arguments to v, we have a non zero function p ^ Ll (Ha}
such that

(3.13) *U^O(H), 8(x, U)p(tUx)=p(x)

for y-a.e-r. Put

0o (x) '• = (!) (x) , if x ^ So), '• — p (x) , if x ^ SP\SQ>, and : = 0, otherwise.

Then it is easy to see that 0oe $ and ^(SV0) =JM (Sj +^ (Sp\So,) >^ (So») . By
the above, o)(x) ̂ 0 for ^-a.e. x. Thus we have

0Gr, [7)=0('[/x)/0(x)

for jj.-a.ejc, where 0 is defined by (j)(x)\ = \ a ) ( x ) \ / 0 ) ( x ) . [U

Theorem 3«,3e (Uniqueness) For ^-measurable function 0, 0' with modulus
1, the followings are equivalent.

/I \ /3 __ /I

(2) There exists some Borel function k (c) (c > 0) with modulus 1 such that
0 (x) = 0' (x) k(p(x)) for li-a.e.x, where p (x) is the average power,

, x fr- i / / 7 sp(x) = [limn— l(/ii, x,

Proof. (1)=>(2). Since

(3.14) fi=f
J [0,cx>)

where m (E):=/2 (x \ p (x) ^E), so for all

f 0('[/x) 0(x) /_. \ f f
I T7^ \—A' ( } I1 (ax) ~ I I V(cr)

where 7: —7i. It follows from the separability of 0(H) that there exists a m-null
set N such that for any ,
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(3.15) <£/eo(H). f
<JH

As 7 is rotationally ergodic (See, [10].), so (3. 15) implies that there exists
some constant k(c) such that <j>(cx) = $' (ex) k (c) for j-a.ejc. Of course k(c) is a
Borel function of c. In case of w({0})>0, we make up for the definition by
putting fe(0): = 0(0)/0'(0). Then it is easy to see that

for [1-a.e.x. The converse assertion directly follows from the above equation,
because we have for all U^O(H) , p (fUx) =p (x) for //-a.e«r. D

3.2o Standard representation of O (H) . Let fi be a rotationally invariant
probability measure, which is denoted by (3 . 14) . In this subsection we consider
the structure of the standard representation,

As we have already seen, general representations with 1-cocycles are all
equivalent to these Ru (U) . Put

(3.16) fr=m({Q}) and A/i:= (l-jS)"1 f Jcm(dc}.
J (O.oo)

Then for any f<EL2
u(H

a) we have

(3.17)

If /?=£(), the representation (Ru, L
2
u(H

a)) is equivalent to (ld0^p C0I4CJ71))
by a map:

So the problem is reduced to the case m ({0}) =0.

Theorem 3.4. Assume that fjt({Q}) = 0. Then the representation (Ru, L2
U

(Ha)} is equivalent to (ld®Rr, L2
m (R+) ®L? (/^) ) .

Proof. For aweC, kn^L2
m(0, oo),/weL?(^°) (n = lf— , JV), we have

fi<Pto)k,(pWfnfa)f41fa)l'to

n(f)k*(e)fn
•s K •/ tiu

n,n'=l
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r—^ x» /«

= ) , OlnOh' I I kn (c) krf (c}fn (x)fn' (x) J(dx)m (dc)
LJ J R+J Ha

n, n'=\
N

=J J 2ja^»(c)/»C
n=\

Thus a map

JV N

W: aA (c)/B (x) -» a«fen (/> (x)

is isometric and it is extended to the whole space as a unitary operator. It is
easily checked that W is an intertwining operator. D

By the way, the representation (Rr, L2(Ha)) has the following irreducible
decomposition with multiple integral 3Cn,

(3.18) L2(Ha) =#0

where each irreducible representation (Rr, Xn} appears only one time. (See,
[3,4].) It follows from Theorem 3.4 and from the preceding discussions before

it that for a general p., (Rr, tfn) (n>l} appears in (Ru, L2»(Ha}}, dim(L^(E+))

times and (Rr, tf0) appears dim (L2
m (E+) ) times or dim (L» (E+) ) + 1 times

according to m ({0}) =0 or m ({0}) >0.

Now if (RMt LJ (Ha) ) and (RU', Ifr (Ha) ) are equivalent, then the intertwining
operator maps rotationally invariant functions to rotationally invariant functions. It

follows that dim (L2
m [0, oo) ) =dim (L^ [0, oo) ) .

Conversely, if these two dimensions are equal, then the above two representations
are mutually equivalent as far as m ({0}) =m ({0}) =0 or m ({0}), m ({0}) >0. If one
of m({0}), m'({0}) is zero and the other one is positive, then the representations are

mutually equivalent if and only if dim (Lj, [0, oo)) =dim (L«' [0, oo)) = oo. We
settle these arguments as follows.

Theorem 3*5,, Let [JL, tf be rotationally invariant probability measures. Then

in oder that (Ru, L2
U (Ha)) is equivalent to (R^, L^ (Ha}} , it is necessary that

dim(Li[0, oo))-dim(L2
w40, oo)).

Further it is also sufficient under the following additional conditions.

(1) dim (U [0, oo))=oo> o r

(2) w ({0}) =m ({0» =0, or m ({0}) , m ({0}) >0 unless dim (L2
m [0, oo) ) =

°°.
(// one of them is zero and the other is positive, then the representations are non

equivalent^)
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