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Analytic Discs Attached to
Manifolds with Boundary
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§1. Introduction

Let X be a complex manifold of dimension n, M+ a closed half-space
with boundary M, A an analytic disc of X "attached" to M+, tangent to M
at some point z0 of dA n M, and intersecting M+ in any neighbourhood of
z0. Then holomorphic functions extend from M+ to a full neighborhood of
z0. This theorem refines the results of [1] where the boundary dA (instead
of the whole A) was supposed to intersect M+ . The argument of the proof
consists in constructing a (closed) manifold with boundary W, contained in
the envelop of holomorphy of M+ and such that A c W but A <£ d W. In
this situation it is easy to find a new small disc A i c A with 8A l <£ dW. We
are therefore in a situation similar to [1], and get the conclusion by exhibiting
a disc transversal to d W at z0.

Extension of holomorphic functions by the aid of tangent discs attached
to M and of "defect 0" is a particular case of a general theorem of "wedge
extendibility" of CR-functions by A. Tumanov; the new part of our theorem
is that no assumptions on "defect" are made.

This paper is tightly inspired to the results and the techniques by A.
Tumanov [7]. We also owe to A. Tumanov a great help during private
communications.

§2.

Let X be a complex manifold of dimension n, M a. real submanifold of
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X, M+ one of the two closed half-spaces with boundary M, A=A(i\ teA an
analytic disc of X, zQ = A(l) a point of dAnM, {B} the system of spheres of
center z0 . Let C*'a be the functions whose derivatives up to the order k are
a-Lipschitz continuous. We assume M to be C2>a and A to be C1'* up to the
boundary and small. We recall the result by [1].

Theorem A8 ([1, Theorem 1]) Assume

(i) d,A(l)eT^M9

(ii) 3AciM + ,

(iii) there exists z1edA with z1eM + .

Then for any B ID A there is B' c= B such that holomorphic functions extend
from M+ to B'.

It is essential in the previous statement that z1edA (in addition to
z1eM+). As for the case z1EmtA, we can reduce to the former case when
we strengthen (ii) to "A c: M+". In this case extension from BnM+ to a
suitable B' holds provided that B contains zl ([1, Corollary 4]).

What happens when z1^dA and A <£ M+l Holomorphic extension seems
not to take place. However it holds when a sequence converging to z0 of such
points zl^dA does exist.

Theorem 1. Let M be C3'a, and assume that dA is a C2'a curve with
A(l) = z0. Suppose
(i)

(ii)

(iii)

Then if B ID A there exists B' such that any holomorphic function extends from
BnM+ to B'.

Proof. When dA <£ M, the statement is the same as in Theorem A. For
completeness, we shall treat it at the end of the proof. Assume therefore
dA cM.

(a) Construction of a manifold with boundary W such that W=> A, We
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assume M is described by y^h&^z'l z'eC1'1 = rf0M, A(0,0) = 0, 5A(0,0) = 0.
Set v2 = idrA(l) (eF^M), choose i;1e7T

ZoM transversal to T£QM, e.g. vl=el,
and write:

Let w' = z'oA take v^eC1"2, 5 6 1? and consider the equation

(1) U(T) = - T,(h(u(i\ M/(T) + (0, <)) 4- j T 6 5A

in the unknown w. Note that for s = Q, vt>o = 0, the "^i -component" M of A
satisfies (1). We need the following technical tool.

Lemma 2. Let h be Cfe'a. Then for any w' in C fc~1 'a small, there is an
unique solution to (1) u(x) = us ,W-(T), tedA, w/z/c/z belongs to C f t ~" 1 < a | T 5 S j M ,» .

Proof. For j<k-l, let

F: CJ'a(5A, I?) x C"~2 x ̂  -> CJ'a(<3A, «)

Let v = h(u, vi/ + (0, WQ)) in 3A, and define

A^s = (w + n;,w/ + (0,Wo)) in 3A.

We have:

Z)w-s extends holomorphically to A with Dw,, s(l) = s

if and only if

F=0.

If /z is Cfe>a, then F is C1 (as application between functional spaces)
and we have

w,.hw'o 4- d#.hw") - s.

We have

Thus the equation F=0 has solution w in CJ'a(3A, 1?) (and this depends c f c~1~ J > a
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on data w, x, £ and on wj, J. (Cf. [5])). Q.E.D.

In particular, since h is C3'a and A is C2>a up to the boundary, then
setting w' = z'<>A, (1) has an unique solution

With v=Tl(u) + h(s,w0), define D = DW,,S as in the proof of Lemma 2.
Clearly for s = Q and WQ = Q, D equals the initial disc A. Note also that
for any s and WQ, D is attached to M.

We have that

verifies

and therefore the range of Z) is a manifold S of class C1>a with boundary
8S=D(Cn'2x8ATxRs) in a neighborhood of z0 = /)0>0(l). Note that dS
is generic and 5S c M. Note also that ^4 c 5. Define

It is clear that any holomorphic function extends from M+ to WvM + . In
a neighborhood Bl of z0 = 0, possibly smaller than B, we can describe W by:

(2) ji=s(*i5

and

(3)

(b) Perturbation of W and of A such that cU £ W. We perturb g for
£2>e to a new function g>g such that {^i<g} c: WuM+ and such that the
initial disc A = (u + iv,w) verifies in a point i^eA:

(4) ^(TI)

We also suppose zl=A(il) close to z0. Let us still write g instead of g and
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denote by 5 and W the manifolds with boundary defined by (2) and (3) for
this new g. Thus (4) is equivalent to

Take A c A such that iled^ and 5A = <3A at 1. Set A=Ao® where <£ is an

analytic diffeomorphism A -> A. Let us write (2) as

with £19 £2<Q. I*1 these coordinates 5 is defined by d=0 and dS by
£ 1 =f 2 = 0. Note that 8A = dA at z0 and that 8A c 55; it follows that C1=0,
C2=0 at r = l. We shall now use only the new disc A, and call again A.

(c) Construction of a transversal disc. Let CI(T), C2(
T) be defined by (5)

over A t . Consider the system:

f Ml - - 7\(g(if ^T), ii2(t) + iC2(r), W"(T)) + (1 - i/JdW), T - ^

ln2(T)=-r1(C2(T)), i = ew.

There exists an unique solution (ul9u2) = (u^9u2r) in C1 > a |0 . Moreover if we
set vl = Tl(u1)9 v2 = Tl(u2)9 and

we have that

(7) d,An is C1!,-

In fact dnu2n = ®, whereas drjuin is a solution of:

Since dg and Ci are C2'a, then 5^M1?? is C1>a(3A,/t); in particular, with t = eie
9

dodjjU^ exists and is continuous.
As for dednvln, we begin by remarking that

It follows that



692 Luc A BARACCO AND GIUSEPPE ZAMPIERI

S,vlri = dxig(ult1,w)driuri-^ belongs to C

We derive with respect to 9 and obtain:

(ulfj, w)driun - 0

It is easy to check that all the terms on the right have at least class C°; thus
also dednvin is C°. Finally Cauchy-Riemann equations yield:

de(uln + ivln) = ieied,(uln -f ivir)

and we are done. It follows from (7):

(8)

Set r=yl— g. We prove now that

(9)

In fact one finds a real function A on d A such that A<9r o A extends holomorphically
to A and notice that then:

is a holomorphic function. The real part cp of this holomorphic function verifies
< p | a A = — £ A whence: <p|M>0, cp(l) = 03 (p(Tl)>Q. (Here it is such that
A(il) = zl.) Then Hopf Lemma implies (9). Plugging together (8) and (9) we get

(10) <Re<dr, 3^X1) < 0.

(d) Construction of a dihedron. We denote again by £1, (2 > M;" ^e
components of this new disc ^4^ and solve the equations:

Let A = A,iW.. be defined by (11). Note that
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dA c W and dA c S at z0
(12)

(A is transversal to M (for s, w" small).

Define

(13) Sr
1 = {^4s<w.).(T);TeA,5f and w/oeJ? x C"~2}.

We have

generic
(14)

(8S1 = dS at z0 (hence

where the latter of (14) follows from the former of (12). By using 5j and M
one gets a dihedron V with non-proper tangent cone, such that any /
holomorphic on M + nB, for B =5 A, is extended to V at z0.

(e) Conclusion of the proof in the case dA c M. The dihedron F has
generic edge dS1. We approximate V by an increasing sequence Fv of
domains with C2 boundary such that

Fvci F, dF^aSj Vv.

It is obvious that for large v, Fv has at least one Levi-pseudoconcavity.
Then germs of holomorphic functions extends from Fv to a full neighborhood
of z0 (according to a famous theorem by Hans Lewy).

(f) The case dA <£ M (cf. [1]). In this case the proof is simpler. Let
M be defined by yl=h(x9z

r) (z'=(z2,z3, • •• ) ) with A(0) = 0, 5A(0) = 0, write
A=(u + iv,w'), and put C i = ^ —(A°^4) . Solve

(15) un= - T^u^l W'(T) + (1 - i/XCiM).

This produces a family of discs An = (utJ + ivr],w
f) (vtJ = Tl(un)) which verify by

the same argument as above:

9lt<droA, dTAn> | t = 1 <0

for any sufficiently small rj. Let d, w' still denote the components of An and
solve

(16)
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By taking the union of the discs As^.(c) one gets a manifold Sl such that
dSl c= M+ and Sl nM is a generic manifold. We thus get a dihedron V with
edge SinM and such that functions extend from M* nB to V at z0

(5 z> >4). The conclusion is the same as above. Q.E.D.
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