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The Mumford-Tate Conjecture
for Drinfeld-Modules

By

Richard PINK*

Abstract

Consider the Galois representation on the Tate module of a Drinfeld module over a finitely
generated field in generic characteristic. The main object of this paper is to determine the image
of Galois in this representation, up to commensurability. We also determine the Dirichlet density
of the set of places of prescribed reduction type, such as places of ordinary reduction.

§0. Introduction

Let F be a finitely generated field of transcendence degree 1 over a finite
field of characteristic p. Fix a place oo of F, and let A be the ring of elements
of F which are regular outside oo. Consider a finitely generated extension K
of F and a Drinfeld module <p : A -> EndK(Ga) of rank n > 1 (cf. Drinfeld [10]). In
other words K is a finitely generated field of transcendece degree > 1 over
Fp , and cp has "generic characteristic". Let Ksep a K denote a separable,
respectively algebraic closure of K. Let FA denote the completion of F at a
place L If A ^ oo we have a continuous representation

which describes the Galois action on the /l-adic Tate module of cp. The main
goal of this article is to give a qualitative characterization of the image of
pA. Here the term "qualitative" refers to properties that are shared by all
open subgroups, i.e. to those properties that do not change under replacing
K by a finite extension. Our method actually applies to any given finite
number of places simultaneously and shows that the image of Galois is as
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big as possible.

Theorem 0.1. Suppose that End^(cp) = A. Then for any finite set A of
places A ^ oo of F the image of the homomorphism

AeA

is open.

More generally, the endomorphism ring EndK(cp) acts on the Tate module
and commutes with the A-adic representation. In other words, the image of
Galois lies in the centralizer CentGLn(FA)(EndK((p)). After replacing K by a finite
extension we may assume that all endomorphisms of q> over an algebraic closure
of K are already defined over K.

Theorem 0.2. Suppose that End^cp) = EndK((p). Then for any finite set A
of places A, + oo of F the image of the homomorphism

Gal(K^/K) -+ n CentGLn(FA)(End^))
AeA

is open.

It would be interesting to extend these results to the set of all finite places
of F, i.e. to determine the image of Galois in the adelic representation. But
this will require additional techniques of a different nature. The author hopes
to come back to this problem in the future.

Places of Prescribed Reduction Type. The proof of Theorems 0.1-2 is
modeled largely on Serre's analysis of the /-adic representations arising from
abelian varieties (see [26], [28], [29], [30], resp. Chi [4]). One crucial
ingredient is the study of Frobenius elements associated to the reductions of
(p over finite fields, and in particular of their Newton polygons. The problem
is thus connected with the question of how often a given Newton polygon
occurs. In the analogous case of low dimensional abelian varieties, for
instance for elliptic curves without potential complex multiplication, it is known
that the set of primes of ordinary reduction has Dirichlet density 1 (cf. Serre
[26], Ogus [24] Prop. 2.7). The following result is an analogue of that
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fact. Let X be an integral scheme of finite type over Fp whose function field is K.

Theorem 0.3. Let A be the finite quotient of Ga\(Ksep/K) which acts
faithfully on End^cp). Let pe be the degree of the totally inseparable part of

(p) over A.

(a) For any closed point xeX where (p has good reduction the height of this
reduction is divisible by pe.
(b) For any integer l>\ the set of closed points xeX at which <p has good
reduction of height pel has Dirichlet density

card{(5eA|ord(e5) = /}

card(A)

In particular, note the following special case of Theorem 0.3.

Corollary 0.4. Suppose that En&%((p) = A. Then the set of closed points
xeX where cp has good ordinary reduction has Dirichlet density 1.

If a Newton polygon is not forbidden by part (a) of Theorem 0.3, but its
occurrences have Dirichlet density 0, it is natural to ask whether there are
nevertheless infinitely many reductions with this Newton polygon and how
sparsely they are distributed. The methods of this article do not illuminate
this problem. (However, for some recent results in this direction see Brown [3],
David [5].)

Motivation. The title of this article calls for a few explanations. It is
based on the principle that Drinfeld modules play the same role for function
fields that abelian varieties play for number fields. Consider an abelian variety
A of dimension d over a number field K. Embed K into the complex numbers
and consider the singular homology group V := H \(A(C),Q). This is a g-vector
space of dimension 2d possessing a natural Hodge structure of type
{(0, — !),(— 1,0)}. That is, its Hodge filtration is a descending filtration of
Kc:= F®QCby C-vector spaces Fil''Kc satisfying Fil~1Kc = Fil°Fc©Fil°Kc= Vc

and Fi^Fc^O. For any d>0 the tensor space Td'd:= V®d®(Vv)®d also
inherits a Hodge structure, i.e. a filtration Fil" T^d with certain properties. The
elements of Td'dn¥il°Tcd are called Hodge cycles of the original Hodge
structure. Choosing an identification V1^ Q2d the Hodge group (or Mumford-
Tate group) is defined as the subgroup G a GL2dQ fixing all Hodge cycles
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for all d. On the other hand the rational /-adic Tate module of A is naturally
isomorphic to V®QQl and carries a continuous action of G&\(K/K). The
image of this representation is a compact subgroup Yl a GL2d(Qi), and the
Mumford-Tate conjecture states that some open subgroup of F, is open in
G(Qt). In fact, this assertion is a consequence of certain general (unproved)
principles for motives and motivic Galois groups, which will not be explained
here. Certain parts of the Mumford-Tate conjecture have been proved: among
others see Deligne et al. [8], Serre [26], [28], [29], [30], resp. Chi [4]. Note
that the Mumford-Tate conjecture can be read in two ways. We shall take
the point of view that it essentially determines the image of Galois when the
Hodge group is known.

Let us work out the analogies in the Drinfeld module case. Let cp etc. be
as above. Let C^ denote the completion of the algebraic closure of F^ and
extend the embedding F c: C^ to K <^ C^. Then cp possesses an "analytic
uniformization" by a projective y4-submodule M c Cro of finite type and rank
n (see, e.g., Drinfeld [10] §3). Put V\=M®AF and let Fil°FCoo denote the
kernel of the canonical homomorphism VCoo := K®FC00 -> C^, v®xt-* vx. This
is a C^-subspace of codimension 1, which contains no non-zero element of
K®FF00. (For the relation with de Rham cohomology see Gekeler [14].) Set
¥i\~^VCao'=VCix and Fil*VCao:= 0. By general principles (cf. Anderson [1]) a
Drinfeld module can be viewed as a "pure motive of rank n and weight 1 /«",
so we interpret this filtration as a pure Hodge structure of weight 1 /n on V.

To this object there should be associated a "Hodge group" G, which is
an algebraic subgroup of GLn F once a basis of V has been chosen. It is
tempting to define it as the stabilizer of all "Hodge cycles", in the same way
as above. Whatever the correct definition may be, it is natural to expect

Guess 0.50 G = CentGW(Endx(<p)).

Namely, for any l^ao the rational /l-adic Tate module of q> is canonically
isomorphic to V®FFX. Thus the image of Galois can be compared with G
and, assuming Guess 0.5, Theorem 0.2 states that the image of Galois is open
in the Hodge group, just as in the abelian variety case. To remain in keeping
with general principles, Guess 0.5 should be proved by purely algebraic means,
using only the information on the Hodge filtration that was stated above. Also,
one should give a conceptual proof within the framework of a general theory
of such Hodge structures. Since all this would go beyond the scope of this
paper, we refrain from discussing these matters further.
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Outline of the Article. The proof of Theorem 0.2 follows roughly the
lines laid out by the above motivational remarks. The general case can be
reduced to that of Theorem 0.1, so we may assume Entity) = A. Let
GA ci GLn FA denote the Zariski closure of the image of pA. By recent results
of Taguchi, respectively Tamagawa, comprising in particular the Tate conjecture
for Drinfeld modules, the tautological representation of Gl is absolutely
irreducible. Using this information, the existence of places of ordinary
reduction, and some arguments from the representation theory of linear algebraic
groups we can then deduce G^ = GLnF^.

Next, the question of openness has two parts, corresponding to the
det

factorization 1 -> SL,, ->GLW -> Gm -> 1. The image of Galois under the

determinant map is characterized by results of Hayes concerning the abelian
class field theory of F. For the semisimple part we are led to the purely
group theoretical problem of studying Zariski dense compact subgroups of SLM

and PGLM over the completion of F at one or a finite number of places. If
we had F= Q it would be well-known and easy to show that such a subgroup
is open. But here the function field case is significantly more involved. A
detailed analysis of such subgroups has —in greater generality — been carried
out by this author in the separate article [25]. The main result of that paper,
combined with some additional arithmetic information about cp, implies the
desired openness.

An effort has been made to present uniform proofs for all fields K that
are finitely generated over F. It is hoped that the reader will find some
advantages in this principle. In fact, the arguments hardly simplify when K
is assumed to be finite over F. Only in Theorem 1.4 (Taguchi's semisimplicity
theorem) it was necessary to obtain the general result by reduction to this case.

The rest of this article is structured as follows. In §1 we fix notations
and collect all known facts on Drinfeld modules that will be needed. §2
contains the proof of Theorems 0.1-2, modulo results from the appendices. In
§3 we prove Theorem 0.3. There are also two appendices which are independent
of the rest of the article. Appendix A contains some results from the
representation theory of linear algebraic groups which are used in §2. Finally,
Appendix B discusses the concept of Dirichlet density for schemes of arbitrary
dimension, for which no suitable reference was found.

Last, but not least, the author wishes to express his gratitude to the
institutions and their members that made this work possible. The essential
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arguments were found during a stay at the Research Institute for Mathematical
Sciences at Kyoto University in Spring 1994, that was supported partly by
the Japan Association for Mathematical Science. The author extends special
thanks to Takayuki Oda for inviting him to Japan and to Akio Tamagawa
for giving the stimulus for this work and for many valuable discussions. Thanks
are also due to the referee for pointing out a number of minor mistates.

§1. Ingredients from the Arithmetic of Drinfeld Modules

Throughout the article the notations and assumptions of the introduction
remain in order. For the fundamentals on Drinfeld modules we refer to
Drinfeld's original article [10], to Deligne-Husemoller [9], Goss [16] and [17],
or Hayes [19].

The endomorphism ring* For any extension field K' of K the endomorphism
ring EndK((p) consists of the elements of EndK,(Ga) which commute with (p(A). It
is known that EndK.(q>) has no zero-divisors and is projective of finite type as
module over A. Since we are in generic characteristic, it is also commutative
and of ,4-rank at most n (see [10] §2 C). In particular, this implies that all
endomorphisms over K are defined already over a fixed finite extension of K.

Let us abbreviate A:=End^((p) and F':=Quot(Af). Identifying A with
its image in A', the homomorphism cp:A -> EndK(Ga) extends to a (tautological)
homomorphism <p': A' -> Endg[Ga). This is again a Drinfeld module, except that
A' may be a non-maximal order in F'. There are two ways of dealing with
that phenomenon. Following Hayes [18] we could work with non-maximal
orders throughout the article, with essentially no changes. Alternatively, we
can modify cp by a suitable isogeny. Let A' be the normalization of A' in
F1. By [18] Prop. 3.2 we have:

Proposition 1.1. There is a Drinfeld module \l/': A' -* End^(Ga) such that
il/'\Ai is isogenous to (p\ i.e. there exists a non-zero feEndK(Ga) such that
f o (p'(x) = i//'(x) o / for all xeA'. Moreover, i//' can be chosen such that the
restriction \j/' \ A is defined over K.

Specialization. Since A is a finitely generated ring, the coefficients of all
elements in cp(A) c= EndK(Ga) lie in a finitely generated subring R c= K. After
enlarging R we may suppose that ^=Quot(jR). Moreover, after inverting
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finitely many elements the highest coefficients become units in R. Then
Jf:=Spec(.R) is a model of K of finite type over Spec(Fp), and by construction
cp defines a family of Drinfeld modules of rank n over X. In particular, for
any point x e X we obtain a Drinfeld module cpx : A -» Endkx(Ga) of rank n
defined over the residue field kx.

Let d:EndR(Ga)-* R denote the derivative at the origin of Ga, i.e. the
action on the Lie algebra of Ga. Then d ° ( p \ A -» R corresponds to a natural
morphism ^^Spec^l^CXfoo}, where C is the smooth projective curve with
function field F. The image point of x e X is denoted Ax . We say that cpx

has generic or special characteristic according to whether Ax is the generic or
a closed point of C. For instance, cp itself has generic characteristic. If lx

is a closed point of C, we identify it with the associated valuation on F.

The Tate-module. Consider any place X ^= oo of F and let pA c ^4 denote the
corresponding maximal ideal. Let &^ep denote a separable closure of the residue
field kx. For any integer />0 the elements of k s

x
p annihilated by all the

endomorphisms in <P(PA) f°rm an ^/p^-module ker((p(pI
A)|ksep) which is free of

rank <n. Thus, the rational Tate module

V,(<px):=HomA^F,9 (J kerMp'A)|fcsep))
;>o

is an FA-vector space of dimension <n. The dimension is equal to n if and
only if Aj£A,x. If cpx has special characteristic, the dimension of FAx(<px) is
denoted by nx. The deficiency n — nx is then >1 and called the height of
cpx. If heigh t(<px)= 1, then cpx is called ordinary and <p is said to have ordinary
reduction at x.

Primarily we are interested in the Tate modules of q>, but they are related
to those of the reductions (px9 as follows. For any />0 the combined kernel
ker((p(py|Ga R) is a finite flat commutative group scheme over X. Thus the
elements of Ksep annihilated by <p(pl

A) already lie in the integral closure /£sep c ^ep

of R. Any lift of the point x to a homomorphism ^sep -> A:^ep thus induces a
natural restriction map

which is surjective. For dimension reasons it is an isomorphism whenever

X .
By construction the Tate module FA(<pJ carries a natural continuous action
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of the Galois group Gal(/^.ep//:x). Also, by definition the above restriction map is
equivariant under the decomposition group of x inside Gal(^sep/^)« Note
that the intertia group always acts trivially on the right hand side. Thus in
the case A//tx we deduce that the representation of Gal(K*ep/K) on FA(cp) is
unramified at x and the action of the decomposition group is determined
already by the arithmetic of <px.

In the following we choose a basis of V^>\ so that the Galois action
corresponds to a continuous homomorphism

' Drlnfeld modules over finite fields* Let us apply the preceding remarks
to a closed point xeX. For A^/LX the action of the decomposition group is
determined by the image of the Frobenius element FrobxeGal(J£"sep/^). We
shall use the following fundamental facts.

Theorem 1.2. (cf. [15] Thm. 3.2.3 (b).) The characteristic polynomial of
pA(Frobx) has coefficients in A and is independent of A, as long as A / A X 9 oo.

Let a1? ...,ari be the eigenvalues of pA(Frobx) in an algebraic closure F of
F. Consider an arbitrary place Aj of F and an extension ll to F. We
normalize the valuation ord^ in such a way that a uniformizer at Aj in F
has valuation 1. The following can be said about the valuations of the at . Let
FAl denote the residue field at Aj .

Theorem 1.3. (cf. Drinfeld [11] Prop. 2.1 or [15] Thm. 3.2.3 c-d.)
(a) We have ordj^aj = 0 for all \<i<n and /L^^, oo.
(b) For all l<i<n we have

(c) We have

= 0 for precisely nx of the a t-, and

> 0 for the remaining n — nx of the a(-.

The global Galois representation. In the rest of this section we list three
crucial known facts which give lower bounds on the image of the Galois
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representation px.

Theorem 1.4. Vx(cp) is a semisimple FA[Gal(^ep I K)~]-module.

Proof. This was proved by Taguchi ([31] Th.0.1) in the case that K is
a finite extension of F. We deduce from this the general case, as follows. First
note that the semisimplicity of the action of a subgroup A c: GLM(FA) depends
only on the subalgebra FAA c MnXn(FA). Let FA:=pA(Gal(#sep/#)).

Lemma 1.5. There exists an open normal subgroup Tl c FA such that for
any subgroup A c FA with AF1 = FA we have FAA = FAFA.

Proof. Select elements yt e FA which form a basis of FAFA . If each of
these is allowed to move in a small neighborhood, they still remain linearly
independent. Thus there exists an open normal subgroup Tl c FA such that
the elements ytyiti form a basis of FAFA for any choice of yl f e Fj . If AFt = FA ,
we can choose the yu so that y^^eA. The assertion follows. D

Choose a subgroup Tl c FA as in Lemma 1.5 and let K be the corresponding
finite Galois extension of K. Let X be the normalization of X in K, and
denote the morphism X -> A" by TL

Lemma 1.6. There exists a point xeX so that
(a) kx is a finite extension of F, and
(b) n~l(x) cz JiT w irreducible.

Proof. This is an easy consequence of the fact that F is Hilbertian (cf.
[13] Cor.12.8). As an alternative we give a direct proof using standard
Bertini type arguments. Let Fq c K and F^ c K denote the respective fields
of constants. Choose an infinite field Fq <= k c F^ with knF^ = Fq, and put
fc:=k- F~^k®FqF~. After shrinking X we may choose a dominant quasi-finite
morphism/ : X -> ̂ ^ q where d:= dim(^). Consider the commutative diagram

* /
X -* X -* Ad

Fq

t T t
* /

F k -Fq

J
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Note that XxF~ K is geometrically irreducible over fc, and the morphism g is
dominant and quasi-finite. Thus by repeatedly applying Jouanolou's version
[21] Th. 6.3 of Bertini's theorem we find that g~ *(£) is geometrically irreducible
of dimension 1 for every sufficiently generic affine line L c= A\ .

Since k is infinite, we may suppose that L is already defined over fc, i.e.
that L = Lxk ic for a line L c Ad

k. Then the diagram

~» ~ n f

AL Xj7~ /C ^ vi Xjp K. * y¥ X|? /C ^ y4^

j J j
?-'(£) - ./-'m - i

is cartesian. Let xeX be the image of the generic point of f~l(L). Then
the irreducibility of g~1(L) implies that of n~l(x\ whence condition (b).

In order to satisfy condition (a) let us suppose that the first coordinate
of /factors through the morphism X-* C\{oo}. Consider the commutative
diagram

For generic L the morphism L -»A\ is non-constant. It follows that the
morphism f~\L)-> C is non-constant, which implies condition (a). D

To prove Theorem 1.4 we choose x as in Lemma 1.6 and let AA be the image
of Gal(fc"p/fcx) in its representation on V^((px). Since cpx does not have
characteristic A, this Tate module can be identified with V^(q>\ which makes
AA a subgroup of FA. Condition 1.6 (b) now means that AAF1 = rA. Thus
from Lemma 1.5 we deduce FAAA = FAFA. On the other hand, by Lemma 1.6
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(a) and the theorem of Taguchi ([31] Th. 0.1) the ring on the left hand side
acts semisimply. This proves Theorem 1.4. D

The next result characterizes the commutant of the image of Galois. The
definition of Tate modules shows that the endomorphism ring of cp acts on
the Tate module by a natural homomorphism

EndK(cp)®AF,

This action commutes with the action of

Theorem 1.7. (The "Tate conjecture": see Taguchi [32], resp. Tamagawa
[33].) The natural map

is an isomorphism.

The last ingredient is the characterization of the determinant of the Galois
representation.

Theorem 1.8. Let A{? denote the adeles of F outside the place oo. Then the
image of the composite homomorphism

> GLn(A
f
F)

is open.

Proof. If n=l , then cp can be defined already over a finite extension of
F. Thus in this case the openness follows, essentially, from the abelian class
field theory of F: see Hayes [19] Thm. 12.3 and Thm. 16.2 or [18] Thm. 9.2.
(The result goes back to Drinfeld [10] §8 Thm.l, cf. also Goss [17] §7.7). For
arbitrary n one can construct a "determinant" Drinfeld module \I/:A-* EndK(Ga)
of rank 1 whose Tate modules are isomorphic to the highest exterior powers
of the Tate modules of <p. In other words, for every A / oo one can define
an isomorphism V^(\l/)^/\n

F^V^p) which is Gal(^sep/X)-equivariant (see

Anderson [1], or Goss [16] Ex. 2.6.3). Thus the assertion reduces to the case
n=l. D
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§2. Openness of the Image of Galois

The aim of this section is to prove Theorems 0.1 and 0.2 of the
introduction. We first assume that Endx(<p) = >4; this assumption will remain
in force until we turn to Theorem 0.2 at the end of the section. For any
place A + oo of F we abbreviate

Let (JA c: GL,, FA denote the Zariski closure of FA. Later on we shall see that
GA = GL r iFA, but for the moment we do not even know whether GA is
connected. Let GA denote its identity component. Then GA(FA)nFA is the
image of Gal(Ksep / Kf) for some finite extension K' of K in Ksep. By Theorems
1.4 and 1.7 applied to K' in place of K we know that Gal(^sep/JO acts
absolutely irreducibly on the Tate module. It follows that the tautological
representation of GA is also absolutely irreducible. In particular, this implies
that GA is a reductive group (cf. Fact A.I of the Appendix A).

For any closed point x e X we define

ax := tr(pA(Frobx)) • tr(pA(Frobx)~ *).

By Theorem 1.2 this is an element of F which depends only on x, as long as
A T ^ A X , oo. As x varies, these elements capture enough arithmetic information
for all our purposes. First, by an adaptation of the argument in [24] Prop.
2.7 we obtain the following sufficient criterion for ordinary reduction.

Lemma 2.1. Assume

(b) ax is not a constant function in F, if n>2.

Then cp has ordinary reduction at x.

Proof. In the case n — 1 there is nothing to prove, so we assume n > 2. If
a l 5 - - - , a M eF are the eigenvalues of pA(Frobx), we have

Now Theorem 1.3 has the following consequences. First the term 0^/0,- is a unit
at all places of F not dividing Ax. Therefore ax is integral at these places. Next
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we have

0 forA^A.,00,
ord-
or l -l_kJ Fp-\l\_FJFp-\ for A! = 00,

where A l is an arbitrary place of F. Since 11"=! at is an element of F, the
product formula implies

.1 = 1

By assumption (a) this value is equal to 1. Suppose now that height
((px) = n — nx>\. Then Theorem 1.3 (c) implies that 0 < ordAx(at) < 1 for all
L It follows that ordjx(af/0y)> —1 and hence ordAx(«J> — 1. Since ax is an
element of F, its valuation is an integer, so ax is integral at Ax. Thus we
have shown that ax is integral at all places of F, contradicting assumption (b).

D

Lemma 2.2. The set of closed points xeX satisfying condition (b) of
Lemma 2.1 has Dirichlet density >0.

Proof. Fix a place A ^ oo of F, and recall that the given representation of GA

is absolutely irreducible. We may assume that n>2. Then Proposition A.2
of the Appendix A implies that the morphism

is non-constant. Since the constant field of F is finite, we deduce that the
elements geGA for which trfej-trfe"1) lies in this constant field form a Zariski
closed proper subset. Let us call it ZA. By the definition of 6^ as Zariski
closure of FA, the intersection ZA(FA) n FA is a proper closed subset of FA. With
the Cebotarev density theorem (see Theorem B.9 of the Appendix B) we
conclude that the set of closed points xeX with pA(Frobx)^ZA has Dirichlet
density >0, as desired.

By Proposition B.8 of the Appendix B, applied to Y=C, the set of
closed points xeX satisfying condition (a) of Lemma 2.1 has Dirichlet density
1. Combining this with Lemmas 2.1-2 we obtain a first approximation to
Theorem 0.3.
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Corollary 2.3. The set of closed points xeX where cp has ordinary reduction
has Dirichlet density >0.

The set of ax also enjoys the following property, which will be needed below.

Proposition 2.4, Consider any Zariski open dense sebset U cz X. If n>2,
then F is the field generated by the elements ax for all closed points xeU.

Proof. Let E c F be the subfield generated by the ax in question. By
Lemma 2.2, combined with Proposition B.7 (f) of the Appendix B, some such
ax is non-constant. Thus E has transcendence degree 1 over Fp, and therefore
[F/F] is finite. For any closed point x e 17 let nx denote the place of E below
A.x. Let D be the smooth projective curve with function field E, and apply
Proposition B.8 of the Appendix B to the composite morphism U -» C -» D. We
find that the set of XE U for which [&X/FMJ = 1 has Dirichlet density 1. Using
Lemma 2.2 again we may choose x e U such that ax is non-constant and
[k,/F,J = L

As in the proof of Lemma 2.1 we see that, as an element of F, the function
ax has a unique pole at Ax and this pole is simple. But ax is contained in E, so
there it must have a simple pole at ^x, and Ax is unramified over jjix. The
choice of x implies that [FJLx/Fllx'] = 1, so the local degree [F^/jE^J is equal
to 1. On the other hand, going back to F we find that ax has a pole at
every place dividing JJLX . Thus lx is the only place of F above ^x. It follows
that the global degree [F/F] is equal to the local degree, i.e. =1, as
desired. D

Next we relate the valuations of the Frobenius eigenvalues to information
about the algebraic groups GA. Consider a closed point x e X and choose an
element txeGLn(F) whose characteristic polynomial coincides with that of
pA(Frobx). As the characteristic of F is non-zero, some positive power of tx is
semisimple and lies in a unique conjugacy class. Let Tx ci GLn F be the Zariski
closure of the subgroup generated by tx. By construction the identity
component of Tx is a torus, called Frobenius torus (following Serre, cf. [28], [4]).

Lemma 2e5«, Ifcp has ordinary reduction at x, then Tx possesses a cocharacter
over F which in the given representation has weight 1 with multiplicity 1, and
weight 0 with multiplicity n—l.
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Proof. The character group X*(Tx):=Hom(TxxF F9Gm) is related to the
cocharacter group by a canonical isomorphism YJiTx):=Hom(Gm, TxxF F)
^Hom(Ar*(J'JC),Z). Thus, with Jx as in Theorem 1.3, the linear form

defines an element of YJJT^®Q. By Theorem 1.3 (c) its weights in the given
representaion are 0 with multiplicity nx = n — 1, and some positive value with
multiplicity 1. After rescaling this element so that the positive weight is 1,
all its weights are integral, so we obtain an element of Y^(TX) with the desired
properties. D

Now we have collected enough information about GA to be able to prove

Proposition 2.6. For any A 7^00 we have GA = GLB>F;L.

Proof. It is enough to prove GA = GLnjF A . Recall that the tautological
representation of this group is absolutely irreducible. By Corollary 2.3 we
may choose a closed point xeX with AX^A, such that (p has ordinary reduction
at x. Then the semisimple parts of tx and pA(Frobx) are conjugate in
GLW(FA). Therefore, the group TxxF FA is conjugate to an algebraic
subgroup of GA . It follows that GA possesses a cocharacter over FA with the
same weights as in Lemma 2.5. Since any cocharacter factors through the
identity component, the same follows for the group GA . The assertion now
follows from Proposition A.3 of the Appendix A. D

After these preparations we are ready to prove Theorem 0.1. Let us
abbreviate FA:=©AeAFA. Let FA denote the image of Gap:sep/^) in
GLH(FA) = nAeAGLn(FA), and FA the closure of its commutator subgroup. By
Theorem 1.8 it suffices to show that FA is open in SLn(FA). We may assume
that n>2 since otherwise there is nothing to prove.

By Proposition 2.6 we know already that the image of FA in PGLM(FA) is
Zariski dense for each AeA. We also need to know that the coefficients of
FA in the adjoint representation of PGLn FA cannot be made to lie in a proper
subring of FA . This is achieved by the following lemma. Let (9 d FA be the
closure of the subring generated by 1 and by tr(AdPGLri(rA)).

Lemma 2.7. FA is the total ring of quotients of 0.
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Proof. Let U c X be the Zariski open subset consisting of all points x
with AX<£A. Then for any xe U and any Ae A we have trfAdpoL^p^FrobJ))
= ax— 1. It follows that 0X, diagonally embedded in FA, lies in 0. Now
Proposition 2.4 implies that F, also diagonally embedded, is contained in the
total ring of quotients of 0. As F is dense in FA , the assertion follows. Q

The rest of the argument is pure group theory, though quite involved. The
general problem is to show that compact subgroups of semisimple groups over
local fields are in some sense essentially algebraic. This was achieved by the
author in a separate article. The following special case is enough for our
present purposes.

Theorem 2.8. (Combine [25] Main Theorem 0.2 with Prop. 0.4 (c).) For
any i in a finite index set I let F{ be a local field, and put FI=@ieIFi. Let n>2
and consider a compact subgroup T c GLn(FI) = TlieIGLn(Fi) whose image in each
PGLn(Ff) is Zariski dense. Let 0 c Fj be the closure of the subring generated by
1 and by tr(AdPGLn(r)), and assume that F7 is the total ring of quotients of
0. Then the closure of the commutator subgroup of T is open in

With Lemma 2.7 and Theorem 2.8, the proof of Theorem 0.1 is complete.

D

Now we turn to Theorem 0.2, which is, in fact, easily deduced from
Theorem 0.1. As in §1 we put A :=EnA^((p) and F' := Quot(yf ), and let A' be
the normalization of A' in F'. Since every isogeny induces an isomorphism
on Tate modules, we may replace cp by the isogenous Drinfeld module of
Proposition 1.1. Thus we may assume that A' = A'. By the assumption in
Theorem 0.2 we have EndK(cp) = A'. Let cp' :A' -» End^(CFfl) be the tautological
extension of <p. This is a Drinfeld module of rank «', where n = mnkA(A')-ri.
For any place /l/oo of F the definition of Tate modules gives a natural
isomorphism

which commutes with the actions of both A and Gal(^sep/^0- Now let A'
be the set of places of F' lying over some X E A. Then the above isomorphism
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and the Galois representations associated to cp and <p' induce a commutative

diagram

Thus Theorem 0.2 is reduced to Theorem 0.1 for the lower homomorphism.

D

§3. Occurrences of a Given Newton Polygon

The aim of this section is to determine the Dirichlet density of the set of
closed points in X where the reduction of cp has a given Newton polygon, i.e.
has prescribed height. The result has been summarized in Theorem 0.3. As
before we put v4':=End^((p) and F' := Quot(>4'), and let A' be the normalization
of A' in F'. After replacing cp by the isogenous Drinfeld module of Proposition

1.1 we may assume A — A'.
Let K' c: K be the finite extension of K generated by the coefficients of all

endomorphisms in Endj^cp). The Tate conjecture (Theorem 1.7) implies that all
endomorphisms over K are defined already over Ksep. Thus K' is separable
and Galois over K. By construction the Galois group &:=Gal(K'/K) acts
also on F', and by the Tate conjecture this action is faithful. Let
cp' : A' -» EndK,(Ga) be the tautological extension of cp. This is a Drinfeld module
of rank ri, where n = [F' /F~] • ri. We have the following commutative diagram:

*K'

(3.1)
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Here the homomorphism d:EndK,(Ga) -> K' denotes the derivative at 0, i.e. the
action on the Lie algebra of Ga . The whole diagram is compatible with the
obvious actions of A. In particular the inclusion F' c; K' is A-equivariant, so
we have K' = F'K. One should be aware that F'/F might be inseparable
although, as we have seen, the extension K'/K is always separable.

Now let X be any model of K of finite type over Spec F^ . We may suppose
that cp has good reduction everywhere on X. Let X' be the normalization of X
in K'. Then q>' has good reduction everywhere on X'. Consider a closed point
x' E X' with image x e X, and let Xx, denote the place of F' below x'. The height of
the reductions cpx and <p'x> are related as follows.

Lemma 3.2. We have

heightfog = iF',,JF,J • height^;,).

Proof. By the definition of Tate modules we have an isomorphism

S 0 ViWJ.

Thus we can calculate

height((?>x) = n - dimF^( V ,x(cp J)

= I [FMFd '(n'-
A'|Ax

= \F'vJF£ • (ri - di

as desired. D

Let pe denote the degree of the totally inseparable part of the extension
F' /P. Then the first factor in Lemma 3.2 is always divisible bype. This already
proves part (a) of Theorem 0.3. For part (b) we may replace X by an arbitrary
Zariski dense open subset, since by Proposition B.7 (f) of the Appendix B this
does not change Dirichlet densities. For instance, we may suppose that X is
normal. As cp' has good reduction at any point of X'9 the inclusion A' c; K'
corresponds to a morphism A"-»Spec>4'. Let A'* denote the subring of
A-invariants in A', then we have in fact a commutative diagram
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X' -> Spec ,4'

I I
(3.3) X -» Spec^'A

i
Spec A.

By construction the upper two vertical morphisms are Galois coverings with
Galois group A. Thus after shrinking X and X' we may assume that X' is etale
over X and that the upper rectangle in Diagram (3.3) is cartesian. Now we
can analyze more closely the first factor in Lemma 3.2.

Lemma 3.4. We have

/>'•[*»•/* J

with equality for x in a set of points of Dirichlet density 1.

Proof. As Diagram (3.3) is cartesian, we have kx,=Fx>x,kx. This shows
that [kx,/kx~] divides [F^/F^J, with equality if [kx/F^J = l. Note that by
Proposition B.8 of the Appendix B, applied to Y= C, this last condition holds
on a set of points x of Dirichlet density 1 . On the other hand the ramification
degree of F'^x, over FAx is always divisible by pe, with equality outside a Zariski
closed proper subset of X. The assertion follows. D

To bound the second factor in Lemma 3.2 we follow the same procedure
as in §2. For the present purposes it is enough to work with the element

where p^> denotes the Galois representation associated to the Drinfeld module
cp' for any sufficiently general place /!/ of F'.

Lemma 3.5. Assume

(a) [kx> ̂ 1=1, and

(b) bx' is not a constant function in F'.

Then heigh t(q>'x) = 1 .
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Proof. The proof is essentially that of Lemma 2.1, with cp replaced by
cp'. By the same arguments as in 2.1 we find that bx> is integral at all places
of F' other than Xx, , and its valuation at Xx, is > — 1 if (p'x, is not ordinary. In
that case bx> must be constant, contradicting assumption (b). Q

Lemma 3*6. The set of closed points xeX for which condition (a) of
Lemma 3.5 holds has Dirichlet density 1.

Proof. Since Diagram (3.3) is cartesian, we have [kx,/Fx.xt'] \ [&X/FA J for
all x. By Proposition B.8 the latter index is 1 for a set of x of density 1.

D

Lemma 3.7e The set of closed points xe X for which condition (b) of
Lemma 3.5 holds has Dirichlet density 1.

Proof. We restrict attention to those x for which Frob^ maps to the
conjugacy class of a fixed element 5 e A. The choice of x' determines the image of
Frobx in its conjugacy class, so we may assume that Frobx maps to <5 itself. Let
/ denote the order of 6.

Next fix a place A ̂  oo of F which is maximally split in F'. In other words, if
F denotes the maximal totally inseparable extension of F inside F', then the
unique place I of F above A splits completely in F'. Recall that
PA(<P)= ©A'|A^A'(^')- Removing from X the fiber above A, the conditions on
x imply that Frobx maps each V^(q>') to V^6(q)').

Let us fix a place l'\L Then the Tate modules V^6i((pr) for /mod/ are
Fj- vector spaces of dimension n' which are cyclically permuted by Frobx . Let
us choose bases for these Tate modules, not depending on x (but, of course,
on d and A'). Then for each /mod/ the map

induced by Frobx is given by a matrix gt e GLM.(Fj). The assumptions on x imply
that Frobx> = Frob^ , hence Frobx, acts on Vx,(<p') through the product

gi - 1 ' ' ' 8 i£o • K follows that

On the other hand Theorem 0.1 applied to cp' and the set of places
\':={X* \imodl} asserts that Gal(A"scp/^') acts on the above Tate modules
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through an open subgroup

rA, c= n GM^i).
imodl

Under the current assumptions on x the tuple (go,gi, • • - ,g z _ 1 ) associated to
Frobx runs through a certain coset H^ under TA..

Let m denote the maximal ideal of the valuation ring in Fj, and for every
j > 0 let KJ be the finite separable extension of K' corresponding to the subgroup

{y e FA, | y = id mod m-7}.

Let Xj be the normalization of X in KJ . Since the fiber above A, was removed
from X, the theory of moduli of Drinfeld modules with level structure implies
that Xj is etale over X. We want to apply the Cebotarev density theorem to
this covering. Let F' be the field of constants in F'. Then the condition
bx, eF'4-nV depends only on the behavior of x in KJ. It suffices to prove
that the proportion of those xeX which satisfy this condition goes to 0 as
j->oo. This follows from Cebotarev (see Theorem B.9 of the Appendix B)
and the following sublemma.

Sublemma 3.8. The volume of the subset

with respect to any given Haar measure on IlimodlGLnl(F^) goes to zero asj -> oo.

Proof. The isomorphism

n
imodl imodl

maps Haar measure to Haar measure and HA, to a compact subset H' which
is invariant under some other open subgroup Y' c TlimodlGLn,(Fj). It suffices
to prove that the volume of the subset

goes to zero asy -> oo. The condition on h0 shows that this volume is a constant
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times card(F')~J for all y'»0. This proves Sublemma 3.8 and thus Lemma
3.7. D

Proof of Theorem 0.3. Part (a) was proved already after Lemma 3.2. For
part (b) note that Lemmas 3.2-7 imply height((px)=pe'[kx,/kx~] for all x in a
set of points of Dirichlet density 1. Moreover, ikx>/kx~] is just the order of
the image of Frobx in A. The Dirichlet density of the set of x with fixed
[kx'/kx~] is given by the Cebotarev density theorem (Theorem B.9 of the
Appendix B), yielding the desired formula of 0.3 (b). D

Appendix A* Ingredients from the Theory of Algebraic Groups

In this appendix we consider a connected linear algebraic group G c: GLM L

where L is a field and n a positive integer, both arbitrary. We assume that
G acts absolutely irreducibly on the vector space ¥:=Ln. If L denotes an
algebraic closure of L, this means that G XL L acts irreducibly on V®LL = Ln.

Fact A.I. G is reductive.

Proof. We must show that G x LL is reductive. Without loss of generality
we may assume that L = L. Let U denote the unipotent radical (i.e. the
largest connected unipotent normal subgroup) of G. By the theorem of
Lie-Kolchin (cf. Humphreys [20] §17.6) the subspace of ^/-invariants in V is
non-zero. By construction it is also G-stable, so by irreducibility it must be
the whole space. Thus U acts trivially on V, hence U itself is trivial. This
means that G is reductive ([20] §19.5). D

Proposition A.2, Let A1
L denote the affine line as algebraic variety over

L. Suppose that n>2. Then the morphism f\G-*Al
L, gi—^tr^-t^g"1) is

non-constant.

Proof. After base extension we may assume that L is algebraically
closed. Choose a maximal torus and a Borel subgroup T a B c= G. Since V
is an irreducible representation, it has a unique highest weight A, which is
dominant and occurs with multiplicity 1 ([20] §31.3). Since dimL(F)>l, we
must have A^O. Let A* be the highest weight of the dual representation
V*. Then the weight /l* + /l occurs with multiplicity 1 in the representation
F*®LF. For any character x of T let m^eZ denote the multiplicity of 7 as
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a weight on V*®LV. Then we have/ 1 r = Zxmx • %. By the linear independence
of characters such a function is constant if and only if for every % ^0 the coefficient
mx maps to 0 in L. Since A* + A^O and m A t + A =l , this function is
non-constant. Therefore the original function / is non-constant D

Proposition A.3. Suppose that there exists a cocharacter ju : Gm^ -» G x LL
which on V®LL has weight 1 with multiplicity 1, and weight 0 wz'rTz multiplicity
n-l. Then G = GLnX.

Proof. (A more general treatment of such situations is in Serre [27] §3,
the assumption of characteristic zero being unnecessary. For convenience we
give a full proof here.) Again we may assume that L is algebraically closed. Since
deto/i is non-trivial, it suffices to prove that the derived group Gder is equal to
SLML. This is obvious when n=l, so let us assume n>2. First we show
that Gder is simple. If this is not the case, then V is (x) -decomposable under
G. That is, there exists an isomorphism K^(Lni)(g)L(L"2) with «15 n2>\ such
that G is contained in GLM1 L -GL W 2 L c GLw L . We can write jii^/^®^ for
suitable cocharacters /^ : Gm>L -> GLMi L . If ̂  is scalar for some z, the multiplicity
of each weight of ^ on V is divisible by n{ . If, on the other hand, both ^
are non-scalar, one easily shows that \JL possesses at least three distinct weights
on V. In both cases we obtain a contradiction to our assumption on \JL. Thus
Gder is simple.

Next note that the weights of f.i on gln L are ± 1 and 0. Thus the weights
on LieGder are also among these values. Choose a maximal torus and a Borel
subgroup such that fJ-(GmL) c: T c B c G, and let W denote the Weyl group
of G with respect to T. By Bourbaki [2] chap. 8 §7.3 the highest weight X
of V is minuscule. It follows that all the weights of T in V are conjugate to
A under W. (The proof is the same as in characteristic zero: all weights are
contained in the "/^-saturation of A" of loc. cit.) Since A has multiplicity 1,
so do all the weights. Let us put Tin diagonal form. We may suppose that

*

*

Since the weights are pairwise distinct and permuted transitively by W, the
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permutation representation W-*Sn is transitive. Thus the ^-conjugates of
/j(Gm<L) altogether generate the torus G£<L. It follows that T=G^L.

Now we know that Gder is a simple semisimple subgroup of SLM L of equal
rank. Therefore its root system is an irreducible closed root subsystem of
An_ l of equal rank. It is easy to show that the only such subsystem is An_ ± itself
(cf. Dynkin [12] Table 9). We conclude that G = GLW)L, as desired. Q

Appendix B. DirichSet Density in Dimension > 1

For lack of a suitable reference, this appendix describes a formalism of
Dirichlet density for schemes of arbitrary dimension and establishes some of
its main properties. If we are given a field K which is finitely generated over
its prime field, we must choose a model of finite type over Spec Z in order to
make sense of the statements below. However, Proposition B.7 (f) will show
that the concept depends essentially only on K. The assertions will be stated
regardless of the characteristic of K. But as the positive characteristic case
is all that is needed in this article, any special arguments for the characteristic
zero case will only be sketched. Everything here follows well-known arguments,
as for instance those giving the equidistribution theorem of Deligne [7] Th.
3.5.1 (see also Katz [22] Th. 3.6).

In the following all schemes will be of finite type over Spec Z. The set of
closed points of such a scheme X is denoted \X\. The residue field at xe|.F| is
denoted kx and its cardinality qx. The following statement gives estimates
for the number of closed points with a given residue field.

Proposition B.I. Let f:X-» Y be a morphism of schemes of finite type
over SpecZ.
(a) Suppose that all fibers of f have dimension <S. Then there exists a constant

C>0 such that for all ye\Y\ and all n>\ we have

card<xe\X\ f(x)=y and [kx/ky~]=n> < $'C-qn
y
d.

(b) Suppose that f is surjective and all fibres are geometrically irreducible of
dimension 5 >0. Then there exists a constant C' >0 such that for all y e | Y\
and all n>\ we have

te\X\ f(x)=y and [kx/ky] =
I

Proof. Let X denote the fiber of / above y and k("} an extension
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of ky degree n. By Grothendieck's Lefschetz trace formula (see [6] Rapport
Th. 3.2) we have

28

and by a theorem of Deligne (the "Weil conjecture", see [7] Th.
3.3.1) the eigenvalues of Froby on Hl

c(Xyxkyky,Q^ are algebraic numbers of
complex absolute value <ql

y
2. Moreover, by constructibility and proper

base change (see Deligne [6] Arcata) the total number of eigenvalues is bounded
independently of y. This implies that

for all y and n, with a fixed constant C>0. Since any point xejAI
with f(x)=y and [kx/ky]=n corresponds to precisely n primitive points in
Xy(k

(y})9 this implies assertion (a). To prove (b) we first estimate the number
of non-primitive points in Xy(k

(
y
n)).

Lemma B.3. In the situation of Proposition B.I (b) let Xy(k
(^)impr'im c Xy(k™)

denote the subset of those points which are defined over some proper subfield
of kf\ Then for all y e | Y\ and all n>\ we have

card(Xy(k^)imprim) < 2C- qf2.

Proof. Using (B.2) we calculate

* Z c~<
1 <m<n/2

= c-

<2C-q'y
8/2,

as desired. D

In the situation of B.I (b) we also know that H2d(Xy x kyky, Qt) has dimension
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1 and the eigenvalue of Froby is equal to qd
y. Therefore we have

car<\(Y (lr^\\ > nnd — C• nn^b~i>^a,lvJ.^yi yv^-y /j^Lify —^ ify .

Combining this with Lemma B.3 we deduce

f(x)=y and [k,/kj = nl > f (card(^(A:<'"))-2C-^/2)

as desired. Q

Now fix an integral scheme X of finite type over SpecZ and of
dimension d>Q. For any subset Sc\X\ and a complex parameter s
we define

(B-4)
xeS

Proposition B.5»

(a) This series converges absolutely and locally uniformly for Re(^)>J. Thus
it defines a holomorphic function in this region.

(b) We have

limF]xl(s)=cc,
S N d

where the limit is taken with s approaching d along the real line
from the positive direction.

Proof. Let K be the function field of X, and assume first that
char(^)>0. Let Fq be its field of constants, of cardinality q. Note
that for both assertions we may replace X by a Zariski dense open
subscheme (using noetherian induction for (a)). Thus we may suppose that
X is a geometrically irreducible scheme over 7:= Spec F „. Then we have

n > l
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Taking absolute values and using Proposition B.I (a) we see that
this series is dominated by

Clearly this is locally uniformly bounded for Re(,y)>rf, proving (a). For (b)
we take seR and calculate, using Proposition B.I (b):

This implies assertion (b).
The case char(^) = 0 is treated in essentially the same fashion,

with Y=SpecFq replaced by the spectrum of the integral closure of Z in
K. One first carries out the above calculation for the fibers over all y e \ Y\,
and then estimates the remaining sum over y as in the number field case.

D

Definition B.6. If the limit

exists, we say that S has a (Dirichlef) density and nx(S) is called
the (Dirichlet) density of S (in X).

The following facts are straightforward to verify.

Proposition B.7.

(a) If S has a density, then 0</zx(S)<l.

(b) The set \X\ has density 1.

(c) If S is contained in a Zariski closed proper subset of X, then
S has density 0.
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(d) If Sl c: S c: 5*2 c= \X\ such that Hx($i) and t^xi^i) exist and are equal, then

lix(S) exists and is equal to ^x(^\} = ^lx(^^-

(e) For any subsets Sl9 S2 c \X\, if three of the following densities exist,

then so does the fourth and we have

M^i u S2) + AI^ n S2) = n^SJ + VX(S2).

(f) Let f:X-*Ybe a dominant morphism of integral schemes of finite type

over SpecZ. Suppose that dim( X) = dim( F) and that f is totally inseparable

at the generic point. Then any given subset S c: | X \ has a density if and only if

f(S) has a density, and then /xx(5) =

Proof. Assertions (a), (b), (d), and (e) are clear from the definition. The

statement (c) follows from Proposition B.5, because we obtain that Fs(s)

converges near s = d while F\x\(s) diverges. To prove (f) we choose a Zariski

dense open subset ¥<^Y such that U\-=f~l(V)-+V is finite and totally

inseparable at every point. Using assertions (c-e) we may replace X by U

and Y by V. Then / induces isomorphisms on the residue fields, hence we

have Fs(s) = Ff(S}(s) for any subset Sd\X\. Now the assertion (i) follows

immediately. D

The following proposition is a generalization of the fact that the set of

primes of absolute degree 1 in a number field has Dirichlet density

1 (with respect to that field!).

Proposition B.8. Let f:X-> Y be a morphism of schemes of finite type

over Spec Z. Suppose that X is integral and that f is non-constant. Then the set

{xe\X\

has Dirichlet density 1.

Proof. First we replace Y by the closure of the image of / Next we

abbreviate d:=dim(X) and e:=dim(Y), and choose a Zariski dense open subset

U c: X such that the fiber dimension of /1 v: U -» Y is everywhere equal to

d:=d—e. By Proposition B.7 we may replace X by U. Now put

S:=<xe\X\ Lkx/kf(x)]>2
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By Proposition B.5 (b) it suffices to show that Fs(s) converges absolutely and
uniformly near s = d. Taking absolute values and using Proposition B.I (a)
we see that this series is dominated by

xeS

= I
n>2

f(x)=y and [k,/ky1=n

^ I I <?;BRe<s)-i
ye\Y\ n>2

2(«5-Re(s))

< y c--^— ^ 1 _«5-Re(5)

By Proposition B.5 (a) this converges locally uniformly for ^G(S)^>o-^-^ = a — f.
Since / is non-constant, we have e>Q and hence uniform convergence near
s = d, as desired. D

Now we come to the Cebotarev density theorem. Consider a finite etale
Galois covering X -> X with Galois group G such that .? is irreducible. The
Frobenius substitution of any point xe|.?| over its image point x is a unique
element of G. The conjugacy class of this element depends only on x and is
denoted Frobx.

Theorem B.9. For every conjugacy class <& cz G the set

ixE\X\

has Dirichlet density

card(^)

card(G)'

Proof. From the representation theory of finite groups we know that
the vector space of central functions G -> C has (at least) two natural bases,
namely the characteristic functions of the conjugacy classes in G, respectively
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the irreducible characters of G. Let us denote the latter by < p f , with (p0=l
being the trivial character. If q><# is the characteristic function of a conjugacy
class ^, we have (p<# = lLia<gi(pi with

, . card(^)
<%,0 = W*» <Po) = - -77^7 •

card(G)

Now for any central function q> we consider the series

W= I

If S<g denotes the set in the theorem, we clearly have Fs (s) = F(p (s). On the
other hand we have F^(s) = F(p (s). Thus we must prove

F (s)

for every conjugacy class #. This is equivalent to the assertion

l ifl = 0,

P

for all i. This is obvious when i' = 0, so by Proposition B.5 (b) it suffices to
prove that F9(s) bounded near s = d for any non-trivial irreducible character
cp. In the following we fix such cp.

As in the proof of Proposition B.5 we first suppose that X is
a geometrically irreducible scheme over Y:= Spec Fq. Then we can rewrite

F<P(S)= Y. <l~ns' Z <p(Frobx).

I claim that this differs from

(B-10) I<T"si- I <p(FrobJ
n > 1 xe X(Fqn)

by a function which is bounded near s = d. Indeed, since any point .xe|Jf|
with [kx/Fq]=n corresponds to precisely n primitive points of X(Fqn), the
difference is equal to

L~t * n L~t
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By Lemma B.3 this is bounded by

X ?-"Re(s) • i- Const • qndl2 < Const • |log(l -0"2-ReW)|.
n > l

As rf>l, this is indeed bounded near s = d.
To evaluate formula (B.10) we use the Lefschetz trace formula

in etale cohomology. Choose a number field E c C such that the
irreducible representation p of G with cp = trop can be defined over
E. Choose a prime l\q and an embedding EC* Qt. Then p gives rise to a
representation of the etale fundamental group of X over Qt and thus
to a lisse ()rsheaf J^j. By construction we have tp(Frobx) = tr(Frobx | <Fl _) for

every point x of X over a finite field. The Lefschetz trace formula (see
[6] Rapport Th.3.2) thus asserts that

xeX(Fqn)

) = £ ( - l)'tr(Frob;|H,(jr

for every n>\. Moreover, since J*^ is pointwise pure of weight 0, we know
by Deligne [7] Th. 3.3.1 that the eigenvalues of Frob^ on H%XXifv3F^ are

algebraic numbers of complex absolute value <ql/2.
Let us first consider all the terms with i<2d. The corresponding part

of (B.10) is bounded by

£ q-"Re(s} • £• Const • qn(d~^ < Const • |log(l - ^'~i~Re(5))|,
n>l

which is clearly bounded near s = d. Next let F~ denote the constant
field of X and G" its Galois group over Fq. We have a natural surjection
G-»G" whose kernel comes from the geometric fundamental group
of X. Now H2d(Xx fjFq^d is zero unless ^l is geometrically trivial, i.e. unless

(p comes from some irreducible character q>" of G". Since G" is cyclic,
this must be an abelian character of degree 1. Therefore in that
case the dimension of H2d(XxfqFq,^^ is 1 and the eigenvalue of Frob€ is

equal to cp"(Frob€) • q
d. The remaining part of (B.10) is thus equal to

n>\

Here (p"(Frob-) is a root of unity, which is non-trivial since <p and hence
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<p" is a non-trivial character. Thus this term extends to a holo-morphic
function near s = d, as desired. This finishes the proof of Theorem
B.9 in the positive case.

The modifications for characteristic zero are the same as in the proof of
Proposition B.5. The main difference occurs at the very end of the proof,
where the remaining part of Fv(s) comes out to be essentially

where cp" is a (not necessarily abelian) Artin character. Estimating
this function amounts simply to the usual Cebotarev theorem in the number
field case (see e.g. Neukirch [23] Kap.VII Th.13.4), which finishes the proof.

D
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