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Quantum Current Operators-I
Zeros and Poles of Quantum Current

Operators and the Condition of
Quantum Integrability
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Abstract

For the current realization of the affine quantum groups, a simple comultiplication for the
quantum current operators was given by Drinfeld. With this comultiplication, we study the
zeros and poles of the quantum current operators and present a condition of integrability on
the quantum current operators of Ug(§>l(2)), which is a deformation of the corresponding
condition for §/(2). We also present the results about the zeros and poles of the quantum
current operators of Uq(%l(n)).

§1. Introduction

For any integrable highest weight module of §/(2) of level k, the current
operators e(z) and f ( z ) satisfy the following relations,:

which we call the condition of integrability [LP] .
Quantum group was discovered by Drinfeld [Drl] and Jimbo [Jl] as a new

structure in both mathematics and physics. The definition of a quantum group
is given by the basic generators and the relations based on the data coming from
the corresponding Cartan matrix. However for the case of quantum affine
algebras, Drinfeld presented a different formulation of affine quantum groups
with generators in the form of current operators [Dr2] , which, for the case of
Uq(£l(2)\ give us the quantized current operators corresponding to e(z) and
f ( z ) of §/(2). One natural problem is to find out if it is possible to find a
condition of integrability for the quantum current operators, which is a defor-
mation of the classical condition of integrability above. The non-commutativity
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of those quantum current operators makes the problem much more difficult than
the classical case. To solve this problem, we need to use a new comultiplication
given by Drinfeld, which we call Drinfeld comultiplication.

For the new formulation of affine quantum group, Drinfeld proposed
another comultiplication formula [DF], [Dl] based on such a formulation.
The fundamental feature of this comultiplication is its simplicity, while the
comultiplication formula induced from the usual comultiplication can not be
written in a closed form with those current operators. With this comultiplica-
tion, we are able to study the zeros and poles of quantum current operators for
integrable modules. Our main results are Theorem 7 and 8 which state that on
any level k integrable module of £/<?(§/(2)) the matrix coefficients of
x+(zi)x+(z2) x+(zk+i) have zero at Z2/Zi=Z3/Z2=...=Zk+i/zk = q2, and those
of x~(zi)x~(zz) x~(zk+i) have zero at Zi/Z2=Z2/Z3 = ...=Zk/Zk+i = q2, where
x+(z) and x~(z) are the quantized current operators of Uq(%l(2}} corresponding
to e(z) and f ( z ) of §/(2), respectively. We first study the case of the fundamen-
tal representations of level 1 for £/9(§/(2)). Frenkel and Jing used bosonized
vertex operators to construct explicit realizations of those representations. It is
clear that all the integrable modules can be derived from certain tensors of
fundamental representations. Therefore, with the Drinfeld comultiplication, we
can derive the poles and zeros of the quantum currents, which naturally leads to
a condition of integrability for the quantum currents of f/9(§7(2)). At the end,
we present the corresponding results for Uq(%l(n)}.

§2.

For the case of affine quantum groups, Drinfeld gave a realization of those
algebras in terms of operators in the form of current [Dr2]. We will first present
such a realization for the case of Uq(%l(n)}.

Let A = (aij} be the Cartan matrix of type An-\.

Definition 1. The algebra Uq(&l(n)) is an associative algebra with unit 1
and the generators : <pt( — m), fa(iri), x f ( l ) , for /=*", • • • , n — 1, / € Z and m&
Z^0 and a central element c. Let z be a formal variable and x f ( z ) = ^li^z
xf(Z)z~L, <pi(z) = Ttm^-z>Q<Pi(m)z-m and ^i(z) = ̂ m^^i(m)z~m. In terms of
the formal variables, the defining relations are
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]=-z

<:f(z2)xj1(w)-(q + q I)xf(zi)xr(w)xr(z2)+x:r(w)x?(zi)xf(z2)
—>Z2\—0, for a ij = — 1

where

8(z)= 2**, gv(z)= ^^al about z=0
& e Z Z q

In [Dr3], Drinfeld only gave the formulation of the algebra. If we extend
the usual comultiplication to those current operators, the result would be a very
complicated formula which can not be written in a closed form with only those
current operators. However, Drinfeld also gave the Hopf algebra structure for
such a formulation in an unpublished note.

Theorem 2. The algebra Uq(%l(n)} has a Hopf algebra structure, which
is given by the following formulae.
Coproduct A

) = 1 0 x7(z) + xT(zqC2} ® M

where c\ means the action of the center on the first component and €2 means
the action of the center on the second component.
Counit e

Antipode a

(o) «(<7c)=<rc,
(1) a(x7(z)}= -

(2) a(x7(z))= —
(3) fl(^))=^(
(4) fl(^U))=^
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We will give the following example to explain the comultiplication.

xt(zQCl) = 2 *-(ll^'V(^+Wc'V(/i)®*<+(/2).
h e-Z;>o, h ez^o

It is clear that the comultiplication structure requires certain completion on
the tensor space. For certain representations, such as the 2-dimensional repre-
sentations of Uq(%l(2}} at a special value, this comultiplication may not be
well-defined. Nevertheless, this comultiplication is well-defined if one of the
factor is a highest weight representation, because the action of the operator as a
coefficient of zm of the currents operators on any element of such a module are
zero if m is small enough. The explicit proof for the theorem above for the case
of t/g(§/(2)) is given in [Dl].

We will start with the Frenkel-Jing construction of level 1 representation of
Uq(%l(2}} on the Fock space.

Consider an algebra generated by {<Zk\k^.Z\{Q}} satisfying:

[dk, ai\ —

We call it the Heisenberg algebra.
Let Q=Za be the root lattice of §/(2). Let us define a group algebra

C(#)[,P], where P is the weight lattice of S/(2). Let A\ be the fundamental
weight of g/(2) and 2Ai = a. Let A0=Q.

Set

This gives the Fock space.
The action of operators #&, da, ea (l<j<N) is given by

for

Theorem 3. The following action on 3 i of t/9(§/(2)) gives a level I
highest weight representation with the i-th fundamental weight as highest
weight.

<p(z)
k>0

k>0

This implies that on J i
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x+(z)x+(w):, (1)

x~(z)x-(w):, (2)

1 TB72~

]_—-2 ^
Z

(3)

o5l2z as'2z
1 ::r~ x x , v 1 ^r . . . .

W * / \ —/ \ _ tt/ —/ \ // \ I A \

1 Z ' -(____?__

Lemma 4. Set F= @ 1=0,1^ i. Any level m integrable module is a sub-
module of ®mF.

It is clear, for the case of §7(2), we have that the correlation functions of
e(z)e(w} and f ( z ) f ( w } have no poles, which are always polynomials of z, z~l,
w, w~l. By the correlation functions of an operator, we mean all the matrix
coefficients of the operator. For the quantum case, the correlation functions
might have poles. However, the position of poles are restricted. We have

Proposition 5. For any level k>l integrable module of t/9(§7(2)), the
correlation functions of x+(z)x+(w) has at most poles at w/z=q~2.

For the proof, set

From the comultiplication formula, we know that on ®kF we have

k-a

Let 0<a<b<k. The product X2(k\z)X£(k\w) has a pole at z = q2w
because it contains x+(zqa~l)<p(wqa~112). The other terms do not have any poles.
Thus, with the lemma above, we complete the proof.

Similarly, we can show that

Proposition 6. For any level k>l integrable module of [79(§7(2))5 the
correlation functions of x~(z)x'(w) has at most poles at zq2 = w.
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Now we state our main result.

Theorem 7. For any level k^l integrable module of Uq($l(2)\ the
correlation functions of x+(zi)x4'(z2)'~x+(zk)x+(zk+i) is zero if Z2/z\ = Zz/Z2 =
•~=zk+i/Zk = q2.

We will prove that the correlation functions of

+i) (5)

is zero if z2/Zi=Z3/Z2= ~'=zk+i/Zk = q2.
Suppose that am<am+i for some m. Then, the am-ih tensor component of

(5) contains x+(zmqam~1)v>(zm+iqam~l/2\ From (3) we see that this product has a
zero at zm + i = q2zm. Similarly, if am = am + i the product
x+(zmqam~l)x+(zm+iqam~1) has a zero at Zm+i = q2zm. Proposition 5 shows that
no poles from other terms cancel these zeros at zm+i = q2zm. Therefore, we
conclude that (5) is zero if Zz/Zi = Zs/Z2= •~=Zm+i/zm = q2, unless am>am+i for
alll<m<k. However, because I<am^k, the last case never occurs. Thus we
finish the proof.

Similarly we have

Theorem 8. For any level k^l integrable module of C/9(§/(2)), the
correlation functions of x~(zi)x~(z2)m~x~(zk)x~(zk+i) is zero if Zi/Zz=Z2/Z3=

For the case of Uq(%l(n}}, we have the following results, which can be
proved as the case of Uq(%l(2}}.

Proposition 9. For any level k>l integrable module of Uq(il(n}}, the
correlation functions of xt(z)Xi(w} has at most poles at zq~2=w ; and the
correlation functions of xt±i(z)xT(w) has at most poles at zq = w. the correla-
tion functions of x7(z)xT(w) has at most poles at zq2=w\ the correlation
functions of xT±i(z)xT(w) has at most poles at zq~l = w.

The proof for this, we need to use Frenkel-Jing construction to construct
the level 1 representations. We will omit it here, which can be found in [FJ] .
However we will list the following formulas, which are the key point of the
proof.

On the level 1 representation in [F J] , we have :
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1 W 1

1 __ -^ 1

q3/2w

If

M; -i w -1

fa(z)x7(w)= ^3/2^ : xj(
~~z :

If fl«=0,

Theorem 10. For a«y level k^l integrable module of Uq(£l(n)\ the
correlation functions of Xai(zi)xa2(z2)'~Xak(zk)xak+i(zk+i) is zero if

(a) ai — an-i=Q or ±1,
(b) zai/zai+1 = q for di — ai+i = ± 1,
(c) zaj zai+i = q~2 for ai — ai+i = Q,
(d) ZaJ Zaj^ q~l for ai — aj=±l and i<j,
(e) ZaJza^q2 for at=aj and i<j \

the correlation functions of Xai(zi)xa2(z2)'~Xak(zk)Xak+i(zk+i) is zero if
(a) 0f — 0,--n = 0 or ±1,
(b) zai/Zai+1 = Q~1 for ai~ ai+i= ± 1,
(c) Zajzai+l = q2 for ai — ai+i=Q and
(d) ZaJzaj^q for ai — aj=±l and i

for ai = aj and i

In the classical case, the condition of integrability is used [FS] to build
semi-infinite construction of the corresponding integrable representations, we
expect that we can use the quantum condition of integrability to derive similar
constructions, which may even help us to resolve certain difficulty in the
classical case.
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