
Publ RIMS, Kyoto Univ.
33 (1997), 223-240

Short Time Asymptotic Behaviour and
Large Deviation for Brownian Motion

on Some Affine Nested Fractals
Dedicated to Professor Shinzo Watanabe on his 60th birthday

By

Takashi KUMAGAI*

Abstract

We study so called Varadhan type short time asymptotic estimates of heat kernels and
Shilder type large deviation for Brownian motion on some affme nested fractals introduced in
[7]. As a corollary to our approach, we obtain sharper estimates of heat kernels for a class
of one dimensional diffusion processes studied in [8].

§1. Introduction

In [21], S. Watanabe surveys on short time asymptotic behaviour and on
large deviations for one dimensional diffusion processes. Let X(t) be a one
dimensional diffusion process on an interval (a, b) ( — oo<#<£<oo) so that
the Euclidean coordinate is the canonical scale (i.e. X(t} in the Euclidean
coordinate is a local martingale). Then, this process is determined by its speed
measure dm(x) and the Feller's boundary condition. Under this situation
(assuming the support of dm be (a, b}), there is a heat kernel pt(x, y) w.r.t. dm
such that

lim 2* log />, V*, y*=(a, b\

fjvyi
where — i — is a Radon-Nikodym derivative of the absolute continuous part of

dm w.r.t. Lebesgue measure dx (this result is originally due to [14]) . This
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type of short time asymptotic estimate is sometimes called Varadhan type
estimate in honour of his celebrated work [19]. His philosophy is that taking
this kind of limit, the intrinsic metric appears. In this case, the intrinsic metric

. This result is deeply connected to the follow-

ing large deviation. Let Pi be the law for Xx(et) where Xx is the process
starting from x. For fixed T>09 set C*([0, T]-^E) = {</)^C([Q, T]->£):
(f>(0)=x} with uniformly continuous topology where E = [a, b] and x^(a, b).
Define an /-function as

T f^ —IT/ ~j^((t)(t^\(t)'(tWdt if (f> is absolute continuous,

I oo otherwise.

Then, for each AcC*([0, T]->£),

— inf Ix((/>)<lim inf e log P£
x(A)<lim sup € log Pe

x(A)< — inf

We call this estimate Shilder type large deviation as this was firstly obtained
by him on the Wiener measure ([18]).

S. Watanabe ([21]) further mentions that these estimates give no informa-
tion (just — logpt(x, y} = o(l/t) as £—»0) when dm is singular and introduces
one special example due to T. Fujita ([8]) for which dm is singular but detailed
estimates can be obtained. Let a = Q, b = l, dm(x) = dFP(x) where the continu-
ous function FP:[Q, 1]-*[0, 1] (Q<p<l) is defined as follows :

F M _ j (l-^)FX2^) ii
r P\JCJ

(
TJ-^

i.e. ,p (x)

! a.e. J, is called de Rham function. Now, fix 0 < p< 1 for which log(^/2)/log

/ \ s / -i \ s

—^)/2)€Q and set 5>0 so that ( 9 )1+S + ( — y ^ - ) S = l- Setting jj =

\_s_

-)1+s, the following holds.

Theorem 1.1. There exists a heat kernel pt(x, y) w.r.t. dm and a positive
continuous slowly varying function L(t) (i.e. lim^o L(ct}/L(t) = I for all c>
0) such that the following estimates hold.

, 1).
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2) For ACC*([0, *MO, 1]),

- inf 7x(0)£lim inf esL(e) log Pj(A)<lim sup esL(e)log
0eIntA e— >0 e— >0

<- inf /*(<£),

£s defined by

'"" COntinUOUS9

otherwise.

We are motivated by the results and consider the problem on fractals. The
fractals we consider is a subclass of affine nested fractals, a class of finitely
ramified fractals studied in [7] . Typical examples, which we express the results
here in the introduction, are shown in Figure 1.1 (Sierpinski gasket) and Figure
1.2. The based fractals E are constructed by an iterative procedure from the
figures. We give conductance on each triangles : for Figure 1.1, the conductance
on each triangle is 5/3, while for Figure 1.2, pi on small triangles and p2 on the
large triangle where the ratio of plf p2>l are arbitrarily chosen. By another
iterative procedure, we can construct a Dirichlet form on the fractal. The based
measure is a Bernoulli measure such that the mass on each triangle is 1/3 for
Figure 1.1, while for Figure 1.2, //i on small triangles and jj,2 on the large triangle
where ^lf ^2>0, 9//i + ^2 = L Then, one can obtain a heat kernel pt(x, y) of
the corresponding diffusion with apriori estimate (Theorem 2.6). Our results are
concerning the Varadhan type estimate and the Schilder type large deviation for
the process. Let d(x, y) be a shortest path metric constructed in Section 2 and
dw be a so called random walk dimension which expresses the average diffusing
speed of particles (i.e. Ex[d(x, X(t})]/tlldw is bounded from above and below
for all 0<£<°o). Then our main theorem is the following.

Figure 1.1 Figure 1.2
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Theorem 1.2.
a) For the case of Figure 1.1 with pz = 5/3, ^i = l/3 (l<z<3), there exists a
non-constant positive continuous function F(t) such that the following holds
for all £>0, x, y^E. (The right hand side is 0 when d(%,y) = Q.)

(1) ~lim((2/5)^)3T log

b) For the case of Figure 1.2, // - f^W^/v^Q* then the following holds.
log(p2/^2)

1) -lim^o tll(dw-1}losPt(x, y)=d(x, y}^ Vx, y^E.
2) For AdCx([0, T]-^E\

- inf Ix( 0) < lim inf e^i log P*(A) < lim sup e^r log Pe
x(A)

<— inf Ix(</>),

where Ix is defined by

T /^\_/ f\4rd(x, (f)(t}} dw~ldt if d(x, 4>(t}} is absolute continuous,
lx\9)~Y^

I oo otherwise.

As a corollary to Theorem 1.2 a), we see that Varadhan type estimate does
not hold for the Sierpinski gasket (Corollary 4.1).
Using the idea of the proof, we can show that L(t} in Theorem 1.1 can be chosen
as a constant (Theorem 4.2).

In Section 2 we briefly explain the class of fractals we treat and explain how
to construct the Dirichlet forms and the shortest path metrics. Section 3 is for
the estimates of hitting times which is a key part of the proof of our results. We
give the proof of Theorem 1.2 in Section 4.

The author thanks Dr. B. M. Hambly for fruitful discussions while he was
visiting United Kingdom.

§2. A Class of Affine Nested Fractals and Their Dirichlet Forms

In [7], we defined a class of finitely ramified fractals called affme nested
fractals and constructed Dirichlet forms for the fractals. Here we treat a subclass
of the fractal and briefly summarize the construction.

Let #>!, then an ^-similitude is a map W I R^—^R^ such that

(2) W(x} = a~l U(x) + a,

where U is a unitary, linear map and a€=ilR,D. We will consider a finite family
of ^-similitudes by {?P"JJLi. Without loss of generality, we assume Wi(x) = a\lx.
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By Hutchinson [11], there exists unique non void compact set E such that E =
nf=i *Fi(E) and this is a self-similar fractal. As each Wi is a contraction, it has
a unique fixed point. Let F be the set of fixed points of the S^-'s, l<i<N. A
point x^F is called an essential fixed point if there exist z, /^{l, • • • , N}, i=f=
j and y^F such that Wi(x) = Wj(y). We write F(0) for the set of essential fixed
points. For AcRD, define Wilt...,in(A)= ?rz i°---° Win(A). We will call the set
?Pii,.",6.(F(0)) an w-cell and ¥h,..,in(E) an ^-complex. Set

F(w)- U Vn,...,tn(F
w), F(00)=\JF(n}.

i'i,-,tn=l «=0

Taking closure, £ can be recovered : £=C/(F(oo))-
We can now define an affine nested fractal as follows.

Definition 2.1. The set E is an affine nested fractal if {?Pi, • • - , WN]
satisfy :
(Al) (connectivity) For any \-cells C and Cf, there is a sequence {d:i=0,
-~, n] (weN) of l-cells such that C0=C,Cn=C' and C,--inC,-=#=0, /=!, — ,
w-
(A2) (symmetry) If x, y^F(0) then reflection in the hyperplane Hxy={z:\z
— x\ = \z — y\} maps Fw to itself.
(A3) (nesting) If {z'i, • • • , /„}, {jlt • • - , ;'„} a/*e distinct sequences then

(A4) (o»pe« 5e? condition) There is a non-empty, bounded open set V such
that the Wt(V] are disjoint and \J

Our first further assumption is the following.
(A5) Wi(E)r\ ¥j(E) (iJ=j) is at most one point for l<i, j<N.
(A6) For all x, y, z^F(0) which are distinct, \x — y\ = \x — z .

Remark. 1) In [7], we thought we could deduce (A5) from (A1)-(A4)
(Proposition 2.2), but the proof needed more assumption so that we add it as an
assumption here (we do not know whether (A5) always holds for affine nested
fractals or not).
2) (A6) implies that F(0) is a /^-dimensional tetrahedron.

We next define a size equivalence class. The sets ¥*(£) and ¥j(E) are the
same size if they can be mapped to each other by the composition of the
reflection maps which appear in (A2). Let the number of 1 -complexes with
different size be ko- We can order the l-cells by their size and put a weight on
each size : r =( r\, • • • , rfeo), r z->0 (l<i<ko). (WeuseT when we distinguish
cells by their size.) We call (x, y)^F(1)XF(1) (x=t=y) size i and write Size(x, y)
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— i if x, y are Jp
(1)-neighbours and the size of the 1 -complex containing both x

and y is i (by (A5), there is a unique 1-complex containing both x and y). Let
the size of the 1-complex which contains an element of Jp

(0) be r\. Also, let n
= rSiZe(wi(E)) where Size(Wi(E}) is the size of Wt(E) (l<i<N).

Now, we put conductance n on Wi(E} and consider F(1) as a network.
Then, for each /e/(F(1))=={/-'F(1)— >R}, the energy of this network is

where Jxy = l/ rsize(*,y) if #» ̂  are F(1)-neighbours and JXy = 0 otherwise. We can
then induce a network on F(0) by solving a variational problem ([1] e.t.c.) :

Proposition 2.2» There exists unique /1>0 such that

inf{<ri(/,/):/U«.. = *}=4r 2 ( f ( x ) - f ( y ) ) 2 for all vel(Fm).
Z/t x,3>eF<o>

Set pz=A/Ti. We assume the following throughout this paper.
(Bl) For all l<i<N, pt>l.

Remark that (Bl) always holds if we take r i= r j for all l<i<j<ko- Let
IJL be a Bernoulli measure on E such that ^(¥i(E)) = ̂ z>0 (2f=i/^ = l)-

We can now define the Dirichlet form for the affine nested fractal. Let /,
^ = {f:F(^-* R} and define

(3) e*(f,g)=- 2

where phi-kn
=Pk^--phn- This is a energy of the network on F(n} with

conductance phl-kn on Wki-kn(E). By Proposition 2.2,

<?»(/|F», /|F»)^<?»+i(/U«-»., /|F-..) for all /e/(F(oo))-

For /e/(F(00)X define 3r={/:sup« <?„(/, /)<oo) and (?(/,/)=lim
7Z-*oo

5n(/, /)• Then, from [10], [16] and for the more general class of P.C.F.
self-similar sets in [12], we have the following.

Theorem 2.3B 1) Any function in J can be extended uniquely to a
continuous function on E (thus we can consider ^ dC(E) = {f:f is a continu-
ous function on E}). Further, (<S , J} is a local regular Dirichlet form on
L?(E, IJL) which has the following properties.

(4) (?(/, g) = Pi<S(fo Wt, go ¥>} for all f,
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(5) sug|/U)|^c2.i-<?i(/, /) for all

where c2.i>0 and <?,(-, •)=*(',

2) £0 admits a positive symmetric continuous reproducing kernel gp(', •)
which are uniformly bounded and equi-uniform continuous w.r.t. /?>0 on E-
The corresponding diffusion is point recurrent.

Note that the based metric in the statement 2) will be introduced later. Let
TI = PI/ p-i- Ti is a time scale for the process on Wi(E} (i.e. the average time for
a particle to cross Wt(E) is rz

rl times the average time to cross E).
We next introduce an intrinsic metric for the Dirichlet forms which we call

a shortest path metric. For x, y^F(m\ let

(6) 7Tm(x, y) = {7tm'-TCm is an w-walk in E from x to y which does not
contain multiple points).

Here Xm = {pk, Pk+i}k=i is called an w-walk if /eN, pk^F(m) for
pk and pk^ join in the same w-cell for !<&</-!. For 7cm = {pk, />
Xm(x, y), we say the length of nm is / and denote it by \xm =/. For
y), let v(;r) be an ^-dimensional vector such that (V(TT))A is the number of
&-size steps in the path TC (I<k<ko). We assume the following.
(A7) For x, y^F(0\ x=t=y, there exists a path 7f^7Ti(x, y) such that (v(^"))fe>
(v(«))* (1<^<^0) for all Tre^.

In the following, we fix the shortest F(1)-path from 0 to #0eF(0)\{0} (XQ is
arbitrarily fixed) and denote it x = {(pi, pl+i)}lk=i- Set />0 so that 2!flir/^>A+i

= 1. Now we define the distance on F(m} as follows :

1*1
dF™(x, y)= min 2 rPk

7
tPk+1.

n^nm(x, y\ x={(pk, p^iW-i k = l

Here Tp,q=Til...im if the m-complex containing both p and q is ^...

Lemma 2.4. ([7]) 1) <&•«»,(#, y) = dF^^(xt y) if
2) For any choice of p, q^E, define d(p, q) by

d(p, q)=\imd(pn, Qn\
n-*<x>

where pn, qn^F(oo} and pn-^p,qn-^q as ^-^oo. Then d is well defined and
d is a metric on E.

For the diffusion X(t) corresponding to the Dirichlet form E, let

Wn = inf { t > 0 : X( t ) e F( n\{X($)}}.

Setting 0(s) = £°[exp( — sWo)]5 we have the following.
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Proposition 2.5. 1) There exist positive constants 02.2, €2.3 such that

(7) C2.2<0(s)/n&i£^exp^

2) There exist positive constants c2A> €2.5, €2.5, €2.7 such that

(8) c2.4 exp( - c2.5Slldw) < #(s) < c2.6 exp( - c2.7s
l/dw) for all s > 0,

where dw = l/7-

Proof. By the symmetry and strong Markov property,

(9) #(s) = 2 /^[^]-n!fIi^*[exp(-5Wi)|X(Wi)=^+i].
4?AS

On the other hand, it is easy to prove that, if T& $+1=r , then

for some C2.s, C2.9>0. (Much stronger fact will be proved in Lemma 3.1.) Now,
using the assumption (A7), we can factorize the right hand side of (9) and obtain
1). 2) is proved in [7] Proposition 5.2 (we did not mention lower bound there,
but that can be proved in the same way as [15] Proposition 3.2). •

For the heat kernel, we have the following estimates essentially proved in
[7]. Remark that changing the based Bernoulli measure corresponds to a
singular time change for the process and changing the measure also changes the
metric.

Theorem 2.6. There exists a jointly continuous transition density pt(x, y)
for the semigroup on L2(J5, /j.) which satisfies the following.

(10) min ps(x, x)>0 for all x<=E,
Q^s<l

(11) pt(x, y)<C2.wr1exv(-C2.n¥(d(x, y), 0)

for all Q<t<l, x, y<^E, where W(z, t} = (zdwrl}ll(dw~l} and c2.io, c2fn>0.

Proof. (10) can be proved in the same way as [2] Lemma 7.1. The
diagonal estimate of (11) comes from the facts that gp is uniformly bounded,
pt(x, x) is non-increasing w.r.t. t and the expression gft(x, x) = f"exp( — flt)pt(x,
x)dt. The proof of the off-diagonal estimate is the same as Theorem 5.7 in [7].
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Remark. 1) In [7], we consider unbounded affine nested fractals and their
Dirichlet forms. Let E<n>=a?E and E = \Jn=iE<n\ E is the unbounded affine
nested fractal. Also, let /I be the Bernoulli measure on E such that

for all

n times

Then, by the similar way, we can construct a local regular Dirichlet form on
L2(£, /I). The main theorem in [7] was about the Aronson type estimates for
the transition density fit(x, y) of the form with respect to a special measure.
Here we briefly state the result. Let S be the unique constant which satisfies
2?=i|07s = l- Then, for the Bernoulli measure jl satisfying jLtt = pJs for l<i<N,
there exist positive constants 02.12, €2.13, C2.u, €2.15 such that

x, y), t))

y\ 0)

for all 0< £<oo, x, y^E. Our question is whether more precise estimates will
be possible in very short time.
2) The results introduced in this section, except Proposition 2.5 1), is valid
without assuming (A6), (A7). Also, remark that the fractals in Figure 1.1 and
Figure 1.2 satisfy (Al) — (A7).

In the following of this paper, we assume (Al) ~ (A7) and (Bl).

§3. Estimates of Hitting Times

In this section, we will have sharp estimates of hitting times. First, we
define a collection of words, AiClJm^iU, ""> N}m, by

Here rz-0=maxz- zv and we set ra)i-a>i-i = l when / = !. This set was
introduced in [13] and similar set was considered in [7]. Define fj(An} =
UcoeAnya)(F(0}). We call ylw-cells, yU-complexes in the same way as we did for
F(n). Then the time scale of yl^-complexes differs at most rz-0- For ff(An)-
neighbours p, <?, set -cp^=i^...m if p, q^W^.^L(F(Q)}.

Lemma 3.1. There exist cs.i, Cs.2>0 such that

for all s>0, p, q^H(An) which are H(Ar>}-neighbours.
Here WAn=mf{t>Q:X(t)eH(An\{X(0)}}.
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Proof . First, remark that from (A6), we have

(12)

for an arbitrary ^0^F(0)\{0}. Now pick up all /U-cells which intersects p and
extend each cells (except the cell containing q) a{ times ( / i s the smallest integer
satisfying TI> rz-0). Let W be the first hitting time to the boundaries (except p)
of these extended cells. (Giving conductance and measure similarly to that in
Section 2, one can construct Dirichlet forms on this space.) In the same way,
shrink each cells (except the cell containing q) a\l times and let W_ be the first
hitting time to the boundaries (except p) (see Figure 3.1). By the construction,
the average speeds of particles crossing in the extended (shrunk) complexes are
bigger (smaller) than that in the complex containing p and q. Also, as the
number of complexes containing p is bounded from above by some positive
constant (independent of the choice of p), E°[exp(-STp,1qWo)\X(Wo)=Xo]/
Ep[exp ( — sWAn)\X(WAn)

 = y] is uniformly bounded from above and below by
some positive constants. Therefore we can show

(13) C
<csAEp[exp (-sW)\X(W) =

Now

1 Pp(X(W)=g)
C3.3

where the first inequality is from {X(WAn) = q}^{X(W) = q} and the second is
from (12) and (13). As Pp(X(W) = q}/ Pp(X(WAn} = q} is uniformly bounded
from above, we obtain the second inequality. The first inequality can be
obtained in the same way. •

Figure 3.1
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For the proof of the next key lemma, we use the following version of the
well-known renewal theorem. This version of the renewal theorem is used in
[13] to show the asymptotic behaviour of eigenvalues of Laplacians on P.C.F.
self-similar fractals.

Theorem 3.2 (The Renewal Theorem). Let v be a Borel probability measure
r°°on [0, oo) such that / xv(dx)<o°. Let weL^R) be such that u(x)-^0 as

Jo

x\— »oo. Suppose that z is a bounded measurable function which satisfies the
renewal equation

(14) z(x) = u(x) + z(x-t)v(dt\ for
Jo

and such that z(x)— -»0 as JK— > — oo. Then
1) Non-Lattice Case : If the support of v does not lie in any discrete subgroup
of R, then the limit z(oQ) = Umx^«> z(x) exists and

a00 \-l /"OO

xv(dx)} j_ u(x)dx.

2) Lattice Case : If the support of v lies in some discrete subgroup of R, then
if T is the greatest common divisor of the support of v, the limit G(t) =

n-*™ z(t + nT) exists for every t and

G(t)=(
\JO

2 u(t+jT\

Lemma 3.3. Let L(s}=~s~1/dw log <p(s).
1) Non-Lattice Case : If the group 2J=iZlog Tk is a dense subgroup of R,
then the limit lims-,«> L(s) exists and it is positive.
^) Lattice Case : If 2J=iZ log Tk is a discrete subgroup of R, let log h be its
positive generator. Then the limit ^(s^limn-oo L(s*hn} exists and it is positive.

Proof. Let

_ )

where n={(p% pl+i)}^k=i is tne shortest F(1)-path introduced in Section 2 and #A
= r&fi+i' % tne truncation, we see u(x) = Q for all x<—N when A/" is large
enough. Also, by (7) and Lemma 3.1, we see

for all

so that u(xY-+Q as x— >oo. By these facts, MeL^R)- Set
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k=\

By the truncation, z(x)— *0 as %— > — oo and by (8), z(x) is bounded, v is a
/"oo

probability measure such that / xv(dx) = *2ia~klldw log ak<°° and they satisfy
Jo k

(14). Thus by the renewal theorem mentioned above, we obtain the results.
Note that the positivity of the limits comes from (8). •

The next lemma relates hitting times to distances.

Lemma 3.4. For the case of the Sierpinski gasket with pz— 5/3, /^ = l/3
(l<z<3) or for the non-lattice case, the following holds.

lim T , ~,\ldw log £*[exp( - sry)] = d(x, y) Vx, y^E,
s-*«> JL,\S}S

where Ty=inf{t>Q:X(t)=y}> This convergence is compact uniform w.r.t. d.

Proof. Non-lattice case : First, let us consider the case x, y^F(co). In this
case, we can choose m (depending on x and y) such that x, y&H(Am). Taking
a shortest //"Um)-path TT={XO, • • - , xn] connecting X(=XQ) and y(=xn), we see
d(Xj 3^) = 2?=o^(^z, Xi+i) by the geodesic property of this metric. On the other
hand,

, y)

, ,
x, y) is minimal

for some gn bounded from above and below (TCHM(X, y) is defined in the same
way as (6)). The third equation is a factorization of the second by each minimal
path (remark that n is one of the minimal paths). Using Lemma 3.1, we have

Taking log and divided by log^(s), we have

! y, lQg </>(s/TXt,XM) log

log #(5) log #(s) log
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^ log C3.7 i yilog <f>(s/TXi,Xi+i) I log hn(s)
' ^ 1^^- ^A/r,S 'log (j)(s) log 0(5) log

Taking s—^°°,

log __
" L(S) *<.*™-i, i+i

as lirris-oo L(s) exists. On the other hand, by Lemma 3.3, we can take £2.5 — €2.7
— >0 in (8) as s— >oo. By simple estimates using this fact, we have log hn(s)/log
<f>(s) — >0 as s— »oo. As 0(5) — >0, log C3.6(3.?)/log 0(s) — »0- Thus,

-log
log

Now, for Xj y^E, take sequences xn, yn^F(oo) so that xn-+x9 yn-^y- We
have already proved

— STyn)] ,/ \
-

l o g ( 5 )

Noting £Xn[exp( — 5ryB)]=^Un, yn)/gs(xn, xn) and equi-uniform continu-
ity of the reproducing kernel (Theorem 2.3 2)), we obtain (15) for x, y&E.
Using the equi-uniform continuity of the reproducing kernel again, it is easy to
show that this convergence is compact uniform.

Sierpinski gasket with p,- = 5/3, /A- = 1/3 : In this case, Wo is a limit random
variable of a supercritical branching process divided by its mean and

(16)

(see [3] Section 2). Using this fact, arguments are simpler. For the case x, y
eF(oo), choose n so that x, y^H(Am} ( = F(m} in this case), let a shortest F(m}-
path be T?={XO, • • - , xn} connecting x (=Xo) and y (=xn}- Then,

where W°=Wm=W>/5m, W' = ixti{t>Wi-1:X(t)s=F(m\{X(Wi-1]}}. The left
equation is bounded from below by (l/4:)n(f)(s/5m)n and the right equation

equals (f)(s/5m)n. Further, by (16), log 0(5/5*)=- ̂ -log #(5) + O(l). Thus, we

have

limlog^[exp(-5ry)]=^/r^ ( }>
s->oo log <f>(s) v » J'/

For the general ^:, y^E, we have the result by the same proof as that of
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non-lattice case. H

§4 Proof of Theorem 1.2

We first treat the Sierpinski gasket with p,- = 5/3, juf- = l/3 (l<z<3).

Proof of Theorem 1.2 a). For #=3;, the result is obvious from Theorem

2.6. So we assume jr^y. First, by Lemma 3.3, we see k(s)=limn^ao L(s°5n)>

0. As we remarked, Wo is a limit random variable of a supercritical branching

process divided by its mean in this case. Further, It is shown in [3] Section 3

that this k(s) is not a constant (see also [4]). Now, for fixed x, y^E, set k (s)

= — d(x, y)slldwk(s). By a simple calculation using (16), we see that k(s) is

convex and real analytic on R+ (in fact, these are properties of the so called

Bdttcher function composed with a Laplace transform of a limit random

variable of some branching process (see [5])). Taking a subsequence in Lemma

3.4,

lim 5-"'*" log Ex[exv(-5nsry)] = k(s\
n-oo

Let an = 5nldw, Yn=—5nTy. Using a variant of the Gartner-Ellis theorem
introduced in Section 2 of [5], we have for each £<0

-lim — logP(Yn>ant)=k*(t),
TZ-OO CLn

where £"*(£)=sups{fc — W(s)} (remark that F(s)<0). By simple calculations,
we obtain

,log

where F(y)=yll(dw~1} sups{k(s)slldw-ys}. It is easy to check that F(y) >0 for
all y^R+. Also, we can easily check that F is constant if k is. Thus, by a
one-to-one correspondence of Legendre transform, we see F is not constant as

k is not. Noting that pt(x,y) = I pt-8(y, y)Px(ry^ds) and A^min pt-s(y, y]
JQ Q<.s<.t

>0 (Theorem 2.6), we see that pt(x, y)>APx(ry<t), and hence, setting gn(z,
i

(17) -lim^upff-H zYw~l log P"(ry<(-g-j ^j> — limsup gn(z, x, y)-
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Now, let Dn(y) = {C: C is an ^-complex which contains y}, Dl
n(y}=Dn(y)

U{C: C is an ^-complex which is connected to Dn(y)}- As x=£y, x^Dn(y) for
large n. Denote b? (l<i<to(3 to)) the boundary of Dn(y). Then, by Theorem

2.6, Mn= max pt-8(b?, y)<°° for t^l. Hence,

Pt(x,

Thus,

« 2 \n \dw-i i 2\n \
-p-} z) w log P*(z>< (-=-) ^ ) < — lim inf ^(2, ^, 3^).

U / / \ 0 / / W-oo

Taking ^^oo, we have (18) with y instead of &?, as Px(rb?<t) converges
compact uniformly to Px(ry<t) for small t- We now obtain the result. •

Corollary 4.1. There is no function f:ExE—>1R+ which satisfies the
following for some bounded function G :

i
(19) -lim G(t)tdw~l logpt(x, y)=f(x, y) \/x, y^E.

t-+Q

Proof. Let us assume that (19) holds for some / and deduce contradiction.
For Xi y with d(x, y) = l5 we have from (1)

log£/ 2 VU, y) = l
(-^jz

where LUJ^FU)-1. Thus, if (19) holds, then lim,,-. G(H}"z}=f(x, y)L(z)
\\ o / /

so that

(20)

Then, G(z)/L(z)=f(x, y). As the left hand side of the equation does not
depend on x, y we can take

(21) G(z) = L(z) and f(x, y) = l for all x, y^E with d(x, y) = l-

Using (20) and (21), we can write (19) for general x, y^E as

(22) -lim L ( a ) « log Pf2Y (x, y)=f(x, y).
n->°° \\ 0 / / (yJ2

On the other hand, according to (1), the right hand side of (22) is



238 TAKASHI KUMAGAI

dw i \ /

d(x, y ) d w ~ l f F [ r/ Z—r) / F(z), which depends on z by a suitable choice of
\ a \x, y) II

d(x, y) as F is not a constant. This is a contradiction. •

We next treat the non-lattice case. In fact, Theorem 1.2 b) holds for the
class of affine nested fractals we treat with the condition that 2 J=iZ log Tk is a
dense subgroup of R. We will prove it in the following.

Proof of Theorem 1.2 b). By Lemma 3.3, lims^oo L(s) exists. From Lemma
3.4, using Brujin's exponential type Tauberian theorem (see, for example [6]),
we have

i_—;—
—lim

where 04.1 is some positive constant. By a suitable normalization of the metric
d, we can take C4.i = L We then obtain 1) by the same argument as in the last
part of the proof of Theorem 1.2 a). On the other hand, for Q<a</3<T, we
have by Holder's inequality

f\~d(x,
Ja I Cil at

d(x,

With a suitable parametrization, we can construct ^:[0, T]—*E for which
the equality holds. Thus

(23) inf

Using 1) and (23), 2) can be obtained by a standard argument due to
Varadhan ([20]). B

We note that Theorem 1.2 holds for the heat kernel fit(x, y) on the
unbounded fractal introduced in the remark in the end of Section 2. The proof
for the unbounded case is just easy modifications of the proof we did in this
paper. Finally, we show the following.

Theorem 4.2. In the Theorem 1.1, L(t) can be chosen as a constant.

Proof. According to Fujita ([8]), L(t} in Theorem 1.1 is obtained from
another slowly varying function L* via a Tauberian theorem. This L* is the

same function as L(s) in Lemma 3.3 if we set dw= - -, Zi=-q - , T2=—r- The
s 1—p p

apriori estimates (8) is obtained in (4.12) of [8] and (7) holds in this case as E
is an interval. Thus, by the same argument as in the proof of Lemma 3.3, we see
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oo L*(t}>0 exists so that L(t} can be chosen as a constant.
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Note added in proof : After the manuscript was submitted, the author was informed
from Professor Watanabe that there was a preprint on large deviations for one-
dimensional diffusion processes with self-similar speed measures ([9]).


