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Generalization and Exact Deformations
of Quantum Groups
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Christian FR0NSDAL*

Abstract

A large family of "standard" coboundary Hopf algebras is investigated. The existence of a
universal R-matrix is demonstrated for the case when the parameters are in general
position. Algebraic surfaces in parameter space are characterized by the appearance of certain
ideals; in this case the universal R-matrix exists on the associated algebraic quotient. In special
cases the quotient is a "standard" quantum group; all familiar quantum groups including twisted
ones are obtained in this way. In other special cases one finds new types of coboundary bi-algebras.

The "standard" universal R-matrix is shown to be the unique solution of a very simple, linear
recursion relation. The classical limit is obtained in the case of quantized Kac-Moody algebras
of finite and affine type.

Returning to the general case, we study deformations of the standard R-matrix and the
associated Hopf algebras. A preliminary investigation of the first order deformations uncovers
a class of deformations that incompasses the quantization of all Kac-Moody algebras of finite
and affine type. The corresponding exact deformations are described as generalized twists,
Rl = (Ft)~lRF, where R is the standard R-matrix and the cocycle F (a power series in the
deformation parameter c) is the solution of a linear recursion relation of the same type as that
which determines R. Included here is the universal R-matrix for the elliptic quantum groups
associated with sl(n), a big surprise!

Specializing again, to the case of quantized Kac-Moody algebras, and taking the classical
limit of these esoteric quantum groups, one re-discovers all the trigonometric and elliptic r-matrices
of Belavin and Drinfeld. The formulas obtained here are easier to use than the original ones,
and the structure of the space of classical r-matrices is more transparent. The r-matrices obtained
here are more general in that they are defined on the full Kac-Moody algebras, the central
extensions of the loop groups.

TABLE

§1. Introduction
§2. Standard Universal R-matrices
§3. Differential Algebras
§4. Differential Complexes

Communicated by T. Miwa, February 6, 1996. Revised May 15, 1996.
1991 Mathematics Subject Classification(s): Primary, 16W30, Secondary, 14A22 and 14M12.

* Department of Physics and Astronomy, University of California, Los Angeles CA 90095-1547,
U.S.A.



92 CHRISTIAN FRONSDAL

§5. Integrability of Eq. (2.14)
§6. Completion of the Proof of Theorem 2
§7. Obstructions and Generalized Serre Relations
§8. The Standard Classical r-matrix for Simple Lie Algebras
§9. The Standard Classical r-matrix for Untwisted Loop Algebras
§10. The Standard Classical r-matrix for Twisted Loop Algebras
§11. Including the Central Extension

DEFORMATIONS

§12. First order Deformations
§13. First order Deformations of Type ea®e_p and the Classical Limit
§14. Hopf Structure
§15. Exact Deformations of Standard, Generalized Quantum Groups
§16. Esoteric r-matrices
§18. Universal Elliptic R-and r-matrices

Ackno wledgemen ts
References

§1. Introduction.

Quantum groups sprouted in that fertile soil where mathematics overlaps
with physics. The mathematics of quantum groups is exciting, and the
applications to physical modelling are legion. It is the more surprising that
some aspects of the structure of quantum groups remain to be explored; this
is especially true of those aspects that bear upon the problem of
classification. The quantum groups that have so far found employment in
physics are very special (characterized by a single "deformation" parameter
q). It is true that these applications are susceptible to some generalization,
by the process of "Cartan twisting"; by this we mean the type of twisting that was
used by Reshetikhin [R] to construct the multiparameter quantum groups, in
which a quantum R-matrix R is replaced by R = (Ft)~1RF, with F in the
Cartan subalgebra. Unfortunately it is easy to receive the impression that
twisting is a gauge transformation that relates equivalent structures. The fact
that Cartan-twisted or multiparameter quantum groups differ qualitatively
among themselves becomes evident when one investigates their rigidity to
deformation. Deformation theory is a means of attacking the classification
problem; at the same time it offers a wider horizon against which to view the
whole subject. The new quantum groups discovered this way (the deformations
of the twisted ones) are dramatically different; the physical applications should
be of a novel kind.

Let g be a simple Lie algebra over C A structure of coboundary Lie
bialgebra on g is determined by a "classical" r-matrix; an element reg®g that



GENERALIZATION OF QUANTUM GROUPS 93

satisfies the classical Yang-Baxter relation

[ri2,ri3 + r23]-h[ri3,r23]=0, (1.1)

as well as the symmetry condition

K, (1.2)

where K is the Killing form of g. The classification of r-matrices of simple
complex Lie algebras (finite and affine) was accomplished by Belavin and
Drinfeld [BD].

It is widely believed that there corresponds, to each such r-matrix, via a
process of "quantization," a unique quantum group [D2]. Somewhat more
precisely, one expects that there exists a Hopf algebra deformation t/(g) of
t/(g), and an element Re £/(g)®£/(g)? such that &R = R&', where A is the
coproduct of t/(g) and A' is the opposite coproduct, satisfying the (quantum)
Yang-Baxter relation

= ^23^13^12; (1.3)

such that r can be recovered by an expansion of R with respect to a parameter
~h:

R=l+nr + o(ft2). (1.4)

Till now, this program had been realized for r-matrices of a class that we call
"standard".

Definition 1.1. Let g be a simple, complex Lie algebra, g° a Cartan
subalgebra and A+ a set of positive roots. A (constant) standard r-matrix for
g has the expression

(1.5)

Here r0eg°®g° is restricted by (1.2). An affine r-matrix (non-constant, with
spectral parameter) is of standard type if it commutes with the Cartan
subalgebra.

The (universal) R-matrix that corresponds to a standard r-matrix is
known. Explicit formulas are of two types: in terms of Serre generators, or
in terms Lie generators. An explicit formula in terms of Lie generators has
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been given for the simplest choice of r0 in [KR]. An expression for R in terms
of Drinfeld-Serre generators [Dl][FR][LS][Ro][T] seems more fundamental
(especially so in the affine case),

* = *°(l+£*-.8<?a+...). (1.6)
a

Here {H^e^e-^} are Chevalley-Drinfeld generators associated with a Cartan
subalgebra and simple roots, R° involves only the Ha's. An R-matrix of this
form will be called standard; a precise definition (in a more general context)
will be given in Section 2, Definition 2.2. The relationship between (1.5) and
(1.6) is examined in Sections 8 and 16. An explicit formula for the coefficients
in (1.6) is in (5.9).

The R-matrices associated with the multiparameter quantum groups
discovered by Reshetikhin [R] and others [Sc][Su] are thus all included
in the rubrique "standard". The principal characteristic of a standard R-matrix
is that it "commutes with Cartan":

Until now, non-standard R-matrices were known only in the fundamental
representation [CG][FG1].

The aim of this work is to use deformation theory to discover the so far
unknown quantum groups that are alleged to be associated with non-standard
r-matrices. This seems a reasonable approach because (i) non-standard
r-matrices can be viewed, and effectively calculated [F], as deformations of
standard r-matrices and (ii) the largest family of non-standard quantum groups
known so far was found by applying deformation theory to certain standard
R-matrices in the fundamental representation [FG2].

Progress achieved in the present paper is due, in the first place, to the
idea of focusing on the representation (1.6) of the standard universal R-matrix,
and in the second place to the discovery of a differential complex associated
with the Yang-Baxter relation: the study of (1.6) turned out to be unexpectedly
rewarding.

The existence of a universal R-matrix in the form (1.6), for quantized Lie
algebras and for Kac-Moody algebras, was known [D1][FR][T]. But it turns
out that the representation (1.6) for an R-matrix that satisfies the Yang-Baxter
equation makes sense in a context that is much wider than quantized Kac-Moody
algebras. We present a proof of the existence of an R-matrix of the form
(1.6) that covers a wider category of bialgebras. The proof is constructive
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and provides usefull insight into the structure of these bialgebras (actually
Hopf algebras). It exploits a direct connection between the Yang-Baxter
equation and a certain differential complex, and it reduces the calculation of
R to the solution of a linear recursion relation.

We introduce (Definition 2.1) an algebra jtf with generators {H^e^e-^}
that satisfy certain relations, including the following (see also Eq. (1.7b) below):

[//„,//,] = 0, [/ffl,e±a]=±tfa(oc)e±a, #fl(a)eC (1.7a)

We define a standard R-matrix on jtf - Definition 2.2 - as a formal series of
the form

k=

with parameters <pfl6eC, fixed, and determine the coefficients t{$eC so that
the Yang-Baxter relation (1.3) is satisfied. One finds that this requires additional
relations, namely

with (p(x,-) = (pabHa(oc)Hb, (p(-9ot) = (pabHaHb(x). These relations are therefore
included in the definition of the algebra s/. Generically, with the parameters
in general position, no further relations are required.

The generators Ha of d generate an Abelian subalgebra j/° that may
be called the Cartan subalgebra. A key point is to refrain from introducing,
a priori^ any (generalized) Serre relations among the Chevalley-Drinfeld
generators ea , or among the e-* . The algebras of ultimate interest are obtained
subsequently, by identifying an appropriate ideal / c: jtf that intersects j/°
trivially, and passing to the quotient j/' = j//7. This is the strategy of
Chevalley [C], fully exploited in the theory of Kac-Moody algebras [K][Mo];
here it is applied to "generalized quantum groups."

This point of view allows a significant generalization. We study free
differential algebras in general, then attempt to classify the ideals. To each
ideal there corresponds a quotient algebra on which a coboundary Hopf
algebra (with its standard R-matrix) can be constructed. Quantized Kac-
Moody algebras, characterized by Serre-Drinfeld ideals, form a special case.

The first result is Theorem 2. It asserts that the Yang-Baxter relation
for the standard R-matrix on j/ is equivalent to a simple, linear recursion
relation for the coefficients t($ . This result is of great help in the subsequent
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calculations.
The integrability of this recursion relation, Eq. (2.14), is related to the

first cohomology group on quantum planes. Generically, all one-forms are
exact, whence the second result that, when the parameters of si are in general
position, there exists a unique set of coefficients t(°$ such that the standard
R-matrix satisfies the Yang-Baxter relation.

Obstructions to the solution of the recursion relation (2.14), and thus to
the Yang-Baxter relation on j/, exist on certain hyper-surfaces in the space
of parameters of j/, they are detected by the presence of "constants". A Serre
relation is a special type of constant. Constants are studied in a
general context in §§3 and 4; their complete classification is an open, but probably
not unsolvable problem. Its solution would shed light on the structure of
ideals in quantized Kac-Moody algebras and reduce the theorem of Gabber
and Kac [GK] to a corollary. The relevance of this discussion to the
Yang-Baxter relation is demonstrated in §5, and the proof of Theorem 2 is
completed in §6.

The study of the obstructions is taken up again in §7. The third main
result is Theorem 7: the obstructions (that is, the constants) generate an ideal
/ c jaf, and a unique standard R-matrix, satisfying Yang-Baxter, exists on si IL

Next, we specialize to quantized Kac-Moody algebras and calculate the
classical limit, that is, the classical r-matrix associated with the standard
R-matrix. The result was of course known, but without a precise determination
of R it is not possible to evaluate the limit directly. A further complication
is that all the coefficients become singular. But the recursion relation (2.14)
guarantees the existence of the limit and provides an efficient method for
evaluating it. See §§9, 10 and 16, 17.

Quantized Kac-Moody algebras are characterized by the property that,
for each pair (a,/?), there is a positive integer k — k*$ such that the following
relation holds

+ (k-l)9(a,a)_j n

In this case the ideal / is generated by the Serre relations

with coefficients
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(
We suppose Card TV and Card M finite and interpret A = 1 — k as the generalized
Cartan matrix of a Kac-Moody algebra.

The classical r-matrix associated with R is defined after rescaling of the
generators as the coefficient of ft in the expansion R=l+~hr + oth2); it satisfies
the classical Yang-Baxter relation. (Note that r + r'^0; the antisymmetric part
of r satisfies the modified classical Yang-Baxter relation). We calculate this
classical r-matrix, dealing separately with the following cases: Kac-Moody
algebras of finite type in §8; unextended loop algebras (untwisted and twisted)
in §§9 and 10; the full Kac-Moody algebras in §11.

DEFORMATIONS

The rest of the paper is a study of the deformations of the standard
R-matrix, satisfying the Yang-Baxter relation, but in the wider context of the
bialgebras jf and «s/' = «a/// described above. We set

and suppose that Rv is driven by a term of the type

(1.10)

Such deformations exist under certain conditions on the parameters; then S
and S" and the remaining terms in R£ (a formal power series in e with constant
term R) are determined by the Yang-Baxter relation.

We begin by calculating a class of first order deformations of the standard
R-matrix on &/ / / for any ideal of obstructions / c: $0. This is our fourth
result, Theorem 13.1. The main difficulty is that the problem is not well
posed, for we have been unable to discover a category that is both natural
and convenient in which to calculate all deformations. We limit our study
to a class of deformations. The good news is Theorem 13.2: when we specialize
to the case of simple quantum groups, then we obtain quantizations of all
simple Lie bialgebras of Belavin and Drinfeld, so far to first order in the
deformation parameter.

In §14 we define the coproduct, counit and antipode that turn all these
algebras into Hopf algebras. This completes the investigation of first order
deformations. The results provide inspiration for construction of exact
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deformations.
An exact formula (to all orders in e) in closed form for R^ is obtained

for the case of elementary deformations, when Rl is a single term of the type
(1.10). In the general case of compound deformations, when (1.10) is replaced
by a sum of terms of the same type, we obtain exact deformations in the form
of a generalized twist. (§15.)

Let R be the R-matrix of a coboundary Hopf algebra sd', and FE$/'® #/',
invertible.
Then

R:=(FtriRF (1.11)

satisfies the Yang-Baxter relation if F satisfies the cocycle condition [G]

((1® A2i)F)Fi2 = ((A13® l)F)F3i . (1.12)

(See Theorem 15.1 for the complete statement.) Though it is not quite germaine
to our discussion, it may be worth while to point out that, if R is unitary,
then so is R; the formula (1.11) therefore yields a family of (mostly) new unitary
R-matrices.

Applying this to our context, we find that the relation (1.12) is equivalent
to a simple, linear recursion relation that can be reduced to the same form
as the recursion relation that determines the coefficients in the expansion of
R. It has a unique solution that can be expressed directly in terms of these
coefficients. Just as in the standard case, this leads to a simple equation for
the classical r-matrix, from which the latter is determined to all orders.

In §16 we specialize to the case of deformed quantized, affine Kac-Moody
algebras and take the classical limit, to recover the esoteric, affine r-matrices
of the simple Lie algebras, with their central extensions. The result agrees
with that of Belavin and Drinfeld, except that they did not include the central
extension. The formulas obtained in this paper are more transparent and
simpler to use.

Finally, in §17, we deal with a very special case, to discover that the
elliptic r-matrices of sl(N) also arise as the classical limit of certain deformed
quantum groups. The universal elliptic R-matrix is expressed as an infinite
product. It is shown, in the particular case of the elliptic R-matrix for sl(2) in
the fundamental representation, that this infinite product is both convergent
and of practical utility; it reduces to the representation of elliptic functions in
terms of infinite products, and the result is in perfect agreement with Baxter [B].
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§2. Standard Universal R-matrices.

The universal R-matrix of a standard or twisted quantum group has the
form

R = exp((pabHa®Hb)

(2.1)

The Ha are generators of the Cartan subalgebra, the ex are generators associated
with simple roots, <pab, tx, /«/?, 40, ••• are in the field; the unwritten terms are
monomials in the ex and e-^.

More generally, consider the expression (2.1) in the more general case
when Ha, e±a generate an associative algebra with the following relations.

Definition 2.1. Let M, N be two countable sets, <p, \jj two maps,

(p:MxM-*C, a,

il/:MxN-+C a,

Let stf or <stf((p,\l/) be the universal, associative, unital algebra over C with
generators {//JaeM, {e+a}aeAT, and relations

i, (2.3)

lex,e-p-] = dt(e^-e-^), (2.4)

with (p(a,') = (pabHa(a)Hb, cp(- ,a) = q>abHaHb(a) and ^-

The last condition on the parameters is included in order to avoid having to
make some rather trivial exceptions.

The free subalgebra generated by {ej a e Af (resp. {e-a}a e N) will be denoted
j/+ (resp. j/~); these subalgebras are Z-graded, the generators having grade
1 . The subalgebra generated by {Ha}a e M is denoted j/°. If necessary we may
assume that M is finite.

Definition 2.2. A standard R-matrix is a formal series of the form

# = exp(cpflb//fl®//b)(l+^ (2.5)

In this formula, and in others to follow, summation over repeated indices is
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implied.

For fixed (a) = a 1 , - - - ,a f c the sum over (a') runs over the permutations of
(a). The coefficients t($ are in C.

The special property associated with the qualification "standard" is that
"R commutes with Cartan"; indeed [/*, Ha®l + l®/fj = 0, aeM.

We shall determine under what conditions on the parameters (pab, Ha(f$)
of j/, and for what values of the coefficients t{^\ the R-matrix (2.5) satisfies
the Yang-Baxter relation

ra:=#12*13#23-*23*13*12=0. (2.6)

This expression is a formal series in which each term has the form
\//l®\l/2®\l/3e£/®£/®j/. We assign a double grading as follows. First
extend the grading of ,o/+ to the subalgebra of «c/ that is generated by
{Ha}aeM and {eJaeAT, by assigning grade zero to Ha, and similarly for
stf~'. Then \//l and \//3 (but not \j/2) belong to graded subalgebras of &/. If
^! and \l/3 have grades / and n, respectively, then define

grade(i^1(g)^2®^3) = (/,«). (2.7)

To give a precise meaning to (2.6) we first declare that we mean for this
relation to hold for each grade (/,«) separately. This is not enough, for the
number of terms contributing to each grade is infinite in general. The
appearance of exponentials in the Ha can be dealt with in the same way as in
the case of simple quantum groups [TV]. If the sets M, N are infinite, then
all results are basis dependent. Eq. (2.6) means that YB, projected on any
finite subalgebra of j/, vanishes on each grade; the statement thus involves
only finite sums. The analysis of (2.6) will be organized by ascending
grades.

Remarks, (i) It is an immediate consequence of (2.6), in grade (1.1), that

[eve-^Sfo^-e-*'-*). (2.8)

This relation was therefore included in the definition of the algebra <£/. (ii)
No relations of the Serre type have been imposed; in fact no relations whatever
on the subalgebras j/+ and «s/~~, they are freely generated by the e^ and by the
e-«, respectively. The contextual meaning of such relations, including relations
of the Serre type, will be discussed in Sections 3-5 and especially in Section 7.

Before stating the main result, it will be convenient to show the direct
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evaluation of YB up to grade (2.2). We expand

(2.9)

sums over 0, ft, / implied. Then

e-,Ri®Ri = Rie-at®<PMRi. (2.10)

Grade (1,1). The contributions to RiiRisRis are of two kinds:

Cancellation in YB is equivalent to Eq. (2.4).

Grade (1,2). The contributions to /?i2^ia^23 are

Cancellation in YB requires that

(2.11)

These conditions are necessary and sufficient that the standard R-matrix satisfy
(2.6) up to grade (2,2).

The obstructions to the existence of coefficients t[$ such that YB = Q up to

grade (2,2) are therefore as follows:

1 +£-*<«,«)-() for some

1+e- *<«.«- »0.«) = 0 for some pair a/j8. (2>12)

They are typical of obstructions encountered at all grades.
Let

W.-ai:=^"^e«i "•<?«{. (2.13)

Theorem 2. The standard R-matrix (2.5), 0« jtf, satisfies the Yang-Baxter

relation (2.6) if and only if the coefficients /j«j) satisfy the following recursion
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relation

[^....fte-J^^-^fe....,-/.!....,.^^-^^ (2.14)

Proof. (First part.) We shall prove that (2.14) is necessary the "only if
part. Then we shall study the integrability of (2.14). Later, in §6, we shall
complete the proof of Theorem 2. Insert (2.5) into (2.6) and use (2.10). The
contribution to YB in grade (l,n) is

in which P is the sum over m, from 0 to min(/,«), of the following elements of $0,

where a = y l + • - • + ym and i = oc1-i ----- h am . The Yang-Baxter relation is
satisfied in grade (/,«) if and only if this expression, summed over m, vanishes
for every index set aj , --- ,^ and 7i, •••,?,,. This is so because <$/+ and «s/~
are freely generated. We have used the definition (2.13) and

^-y»:=r|i:::^-yi...e-y,. (2.16)

The lowest grades in which */ = (*«!-..«,) appears are (/,0) and (O,/). In these
cases m=0 and (2.15) vanishes identically. At grade (/,!) one finds (summing
m = 0,l), the linear recursion relation

ithe-^=e^^dllti-l-tl-1dlle~^\ (2.17)

the full expression for which is Eq. (2.14). This equation is therefore
necessary. That it is also sufficient will be proved in §6.

§3. Differential Algebras

Let B be the unital C-algebra freely generated by {{J ieJV, countable.
Suppose given a map

(3.1)

Introduce the natural grading on B, B = ®Bn, and a set of differential operators

dt'.B^Bn-i, ieN, (3.2)
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defined by

d&=6l + Wjdt. (3.3)

We study the problem of integrating sets of equations of the type:

dtX=Yi9 XeB, Y^B, ieN. (3.4)

The collection {Yt} ieN can be interpreted as the components of a B- valued
one-form Y9 on the space {cldi9 c

leC, ieN}. A constant in Bn is an element
XeBH9 such that 3^=0, VieJV.

Proposition 3.1. (a) The following statements are equivalent, (i) Eq. (3.4)
is (uniquely) integrable for every one-form Y with components in Bn-i. (ii)
There are no constants in Bn. (b) When the parameters qlj are in general
position, then there are no constants in Bn, n>\.

Proof. Let

X^X^&.-teB^

then dtX=0 means that, for each index set,

Now fix the unordered index set {il9 •••,!„}. If the values are distinct then we
have a set of n\ equations for n\ coefficients; in general the number of equations
is always equal to the number of unknowns. Solutions exist if and only if
the determinant of the matrix of coefficients vanishes. This determinant is an
algebraic function of the qij, and not identically zero (since it is equal to 1
when all the #'s vanish), therefore solutions of (3.5), other than X=Q9 exist
only on an algebraic subvariety of parameter space.

The calculation of all these determinants will be reported elsewhere. For

n = 2 the result is

. (3.6)

For /i = 3,
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(3.7)

<T12:=ql2q2i.

It is natural to pass from B to the quotient by the ideal generated by the
constants. In B2 the constants are

tit2-921t2ti, when <r12 = l, (3.8)

f^i , when qll = -l. (3.9)

If q'l = — I, ieN and ay=l, z//, then the quotient is a ^-Grassmann algebra
or quantum antiplane. The constants in B3 are

)2=0, (3.10)

£i£i£2-(921)2«2fifi > l+?n=0, (3.11)

if cr12 = l, there are two constants

#U£l£l£2-(l + 0UKlf 2^ 1 +(^21)2^2^1^1 5 (3.13)

[Ki^2]«">£3]«"€», [fl,6]f:=a6-?fta, (3.14)

and finally if cr12cr13(j23 = l there is one,

2^21^s^2^i) + cyclic. (3.15)

Annulment of (3.8), (3.12) and (3.13) are ^-deformed Serre relations [Dl]. The
last item, Eq. (3.15), may be something new; it should be interesting to study
the quotient of the algebra B with 3 generators by the ideal generated by this
constant.

A constant that involves only one variable, £t say, exists if and only if
q11 /1 is a root of unity,

£1 constant iff (qll)n = l, n = 293,--, #/l.

It is easy to determine all constants of the g-Serre type; that is, all those
that involve two generators and one of them linearly,
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C:= £ Qm(^i)m^2(^i)k~m = ^- (3.16)

With q = qil,

+<f-1. (3.17)

Setting 5 tC=0 gives, for q"^l, neZ,

(3.18)
/q

while 32C=0 is equivalent to

(3.19)

When fc = 2, compare Z)112 in Eq. (3.7). If k is the smallest integer such that
a relation like (3.16) holds, then

l-?fc-V2=0. (3.20)

Here are some partial results for B4 and B5. Di234 is the product of
12 factors of the form 1— atj9 4 factors of the form 1 — GijGuGmn , 2 identical
factors of the form 1 — 012 --034', each group accounts for 24 orders in the
#'s. D 12345 is the product of 60 factors of the first type, 20 factors of the
second type, 10 factors of the third type and 6 identical factors of the form
1— (product of all ten o^/, //y); each group accounts for 120 orders in the
q*s. Finally the following is true.

Proposition 3.2. If all (finite) products of the form Hij(qij)nij
9 where nij

are nonnegative integers, differ from unity, then the determinant of the matrix
of coefficients in (3.5) is different from zero.

§4. Differential Complexes

In the generic case, when there are no constants in Bn, the equation
dtX=Yi9 Y^Bn-i, ieN, is always solvable, for any one-form Y. All
one-forms are exact, to be closed has no meaning and the differential complex
is highly trivial.

The existence of a constant CeBn implies that there are one-forms valued
in Bn-i that are not exact. To each 1 -dimensional space of constants in Bn

there is a one-dimensional space of non-exact one-forms, valued in Bn-\,
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defined modulo exact one-forms and obtainable as a limit of dtX as X -* C,
after factoring out a constant. Thus,

X=^2-q
2^ (4.1)

becomes a constant as cr12 -> 1, and a representative of the associated class of
non-exact one-forms is given by

' j=J| (4.2)

Definition 4.1. An elementary constant is a linear combination of
re-orderings (permutations of the order of the factors) of a fixed monomial.

A constant CeBn also implies a concept of closed one-forms.

Proposition 4. If CeBn,

C^C-'S^...^, (4.3)

is a constant, then the differential operator

*(C'):=C"'-'»5i1-5t1 (4.4)

vanishes on B.

Proof. A constant in Bn is a sum of elementary constants; it is enough
to prove the proposition for the case that C is an elementary constant. This
implies that there are non-zero f{ e C, ieN, such that the following operator
identity

dtC-ftCd^O, ieN, (4.5)

holds on B. Let B* be the unital, associative algebra freely generated by {dt}

ieN, and let ®:B->B* be the unique isomorphism of algebras such that

*(£i) = df. Let BB*(q) be the unital, associative algebra generated by {££,3J
ieN, with relations (3.3); then O extends to a unique isomorphism

In particular, €>'(^-) = 5f and €>'(5^)= — (^")~1^, zeJV. Now Eq. (4.5) means
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that di°C=Cfi°di, where a°b denotes the product in BB*(q). Applying <£'
one gets

implying that 9(C)X=Q, XeB.

Definition 4.2. Let C be an elementary constant in Bn, n>2. A Bf
one-form Y, valued in B, will be said to be C-closed if

dcY^C^di^.-d^Y^O. (4.6)

Examples. In B2 the constants are of type C=^i^1 or C' = ̂ i^2~^2l^2^i •
Now Y is C-closed if dY:=8l Y1=Q and C-closed if d'Y:=d1Y2-q

2id2Yl = 0.
The first case is characteristic of Grassmann algebras and the other of quantum
planes. Let ^ be the collection

iJeN, i*j], (4.7)

and suppose all of them constant. (In other words, qijqji = l, i^j.) Then we
say that a one-form Y is ^-closed if Y is Cij-closed for all i^j:

/// (4.8)

In this case the closure of a Bf one-form is expressed in terms of the Bf two-form

Z = dY, Zi^dtYj-qVdjYt, (4.9)

and this naturally leads to familiar ^r-deformed de Rham complexes, with trivial-
cohomology. (Non-trivial cohomology depends on completion of the algebra.)

It would be interesting to develop the analogue of this construction, the
^-deformed de Rham complex, in the more general case when ^ is an arbitrary
collection of constants. As a highly non-trivial example consider the
following. Replace the constants Q/ in (4.7), they are Serre relations of order
one, with Serre relations of order two:

Cy = 9%«,-(l WJ)^ + <7%<^. (4-10)

This implies that qn = qjj=l/aij
9 i^j. Then Definition 4.2 says that

F=(F1,F2J"0 is a closed one-form if

Yt = 0. (4. 1 1)
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Every exact one-form is closed by Proposition 4; the converse statement is
less obvious. And then there is this problem: what is the integrability
condition for the following set of equations

In other words, what two-forms are "closed"?

§5. Integrability of Eq. (2.14)

It was seen, in Section 2, that a necessary condition for the standard
R-matrix (2.5) to satisfy the Yang-Baxter relation (2.6) is that the coefficients
t{$ satisfy the recursion relation (2.14),

t<x.i---a.i ^ tan-'-di £<xi ' ' ' £<xf •

— » 4 —
Define* two differential operators, d-y and 3-y, on ,^+, by

[X,e-y']=e(p(y''$-yX-Xd-ye-(p(->?\ (5.2)

^ej/+; note that d-y operates from the right. Similarly,

[*., 7] = Yd^-e-rt-'tf.Y (5.3)

defines two differential operators on s/~. These definitions are equivalent to
the rules

Eq. (5.1) is equivalent to
— »
u — ytctf.tzi =

Proposition 5.1. Suppose that the parameters <p(a,j?) are /« general position,
so that there are no constants in ,G/+(<£/~) with respect to the differential

— » <— — ». <—

operators 8-y or d-y (dy or dy). Then either one of the two equations in (5.5)
determines £ai...ai recursively and uniquely (the same in each case) from tK = ex.

* This is where we need the last condition in Definition 2.1.
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Proof. From (5.4) we deduce that

. (5.6)

By Propositions, the first of (5.5) determines *i = fai...ai uniquely from
tlx = elx. The other recursion relation also has a unique solution, t\ say. We
must show that tt = t'l9 />!. Since parentheses are superfluous,

Suppose tk = tk for fc=l, • • • , /—! ; then the right-hand sides are both equal to
<5J1f /_2<5£. Then the left-hand sides are also equal and, since there are no
constants, tl = t\ . Since t1=t\ (tx = t'x = ea), the proposition follows by induction.

We also encounter the relation

[^fyi--y«] = fyi"-y"-iaj^

/ V l ' - V n . — fVl — y n f f ...p P-'/
1 • *n-rnC-Vi -?n"

Just as (5.1) is equivalent to (5.5), this relation is the same as

An adaptation of the proof of Proposition 5.1 shows that either one of these
two relations determines the same set fa i j . . . f f l t r i . Finally, we verify that this unique
solution of (5.8) coincides with the solution of (5.1).

Proposition 5.2. Fix an unordered set {MI -•,<*„} and let S be the matrix
(with entries in C) defined by the natural pairing between the algebras generated
by the ea's and the d.^s, respectively,

where (a), (/?) run over the ordered sets that coincide as unordered set with
{a !,-•-, an} . Similarly,

Then (a) 5=5" and (b) the matrix t = t$ is given by

St = tS'=L (5.9)
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— »
Proof, (a) By inspection: Moving the operator d_ftl to the right till it

encounters and annihilates efti produces a factor Ilaexp( — (p(j81?a)), where the
product runs over those ea's that stand to the left of e f t l . The same factor
is produced by moving e^^ to the left in the expression for S'. (b) Iteration
of the first of Eq.s (5.5) yields St=l and iteration of the second of (5.8) gives
tS'=l. This shows, in particular, that (5.5) and (5.8) are solvable under the
same conditions; namely, if and only if the matrix S is invertible.

§6. Completion of the Proof of Theorem 2

Suppose that the relations (2.14) are satisfied for />!. Now fix /, «,
al5 •••,«! and y1, •••,/; we must prove that the expression (2.15), summed over
m from 0 to min(/,«), vanishes.

We begin by calculating the sum over m = 0,l (step 1); then we postulate
a formula for the partial sum over ra = 0, • • - ,& (step k). We prove the formula
by induction in k, and finally show that the sum vanishes when fc = min(/,«).

The term m = 0 in (2.15) is

As in the preceding section we often write tt, tn for /ai...ai, tyi'"yn. We shall
gradually make the formulas more schematic so as to bring out their
structure. By (2.14)

e-ri...(<*«^ (6.2)
1=1

The term m = 1 is

This agrees with (6.2) except for the position of ^ _ 1 ? and the sign. Thus,
adding the contributions ra = 0,l we obtain
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This completes step 1; all terms involving tt have disappeared and ti-i appears
only in commutators that allow us to use (2.14) again.

We claim that after carrying out step k, which includes summing over
ra = 0, ••-,£, one obtains the following expression

f ...(Se*)k-s:.lti-k,e-y-].~(Se-*)s..., k<mm(l,n\ (6.4)
s^"b

and zero, k = min(l,ri). Here the dots stand for products of the e-7i, interrupted
k—s times by a factor of the type Sl{^ylt'\ once by [,] and s times by a factor
like 8l\e-*M\ as in (6.3).

To verify this claim we carry out the next step. We first evaluate the
commutators and examine the cancellations that take place between successive
terms in the sum (6.4):

The first term in the first line combines with the second term in the second line to

Successive terms in (6.4) all combine in this way, to reproduce the same
expression with k replaced by fc+1, except for the fact that there is no term
in the sequence that precedes and collaborates with the first term and no term
that succeeds and collaborates with the last term. It remains, therefore, to
be proved that the summand ra = fc+l in (2.15) precisely supplies the two
missing terms.

By (5.8),

f f r - * r i . ^

Hence, if txi...xi is the differential operator

fai'-aj I= fai'-'aiC'af * • ' C/al 5

then
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and the first of the two terms in (2.15) is

By iteration of these steps one finally ends up, when m=fc+!5 with precisely
the missing terms; actually one of the missing terms, we leave it to the reader
to carry out the calculation for the other one. This done, the proof of Theorem
2 is complete.

Corollary 6- With the parameters in general position, there exists a
unique standard R-matrix on j/ that satisfies the Yang-Baxter relation.

§7o Obstructions and Generalized Serre Relations

We have been concerned with the construction of a standard R-matrix,
Definition (2.2), that satisfies the Yang-Baxter relation, Eq.(2.6), on an algebra
j/, Definition (2.1). The relations of ja/ involve parameters; when these
parameters are in general position then the recursion relation (2.14) has a
unique solution that provides the unique standard R-matrix on sf that satisfies
the Yang-Baxter relation. At certain hypersurfaces in parameter space we
have encountered obstructions, characterized by the vanishing of one or more
of the determinants that we have studied in §3. At these points there appear
elements in j/+ that are constants with respect to differential operators d-x

and d-«, and elements in sf~ that are constans with respect to da and
da. Then there is no solution of (2.14) and no standard R-matrix on sf that
satisfies Yang-Baxter.

We shall show that all these obstructions can be overcome by the
introduction of additional relations in the definition of stf or, what is the same,
by replacing j/ by a quotient <*///, where / is the ideal generated by the
constants. The next three propositions relate the null-spaces of the four
differential operators to each other.
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Proposition 7.1. The space of constants with respect to d-y in jtf» has
the same dimension as the space of constants with respect to d-y. If there are
no constants in j/i~ for /=! , • • • ,«— 1, then the two spaces coincide.

Proof. An easy consequence of Eq. (5.6).
Let Cejtfn be a constant with respect to d-7, yeN, and assume,

provisionally, that there are no constants in $#\ , !</<«. Without essential
loss of generality we take C to be a linear combination

where the summation runs over the permutations of a fixed set {y1 •••?„}, hence
over a finite set. Let d be the operator that takes Xe^n to the one-form
Y valued in ,</n

+-i with components 8-yX,yeN. This operator is represented
by a direct sum of finite square matrices, also denoted d. The constant C is
a null-vector for d. The transposed matrix also has a null-vector; it exists
by virtue of the fact that dX is C-closed: (t)efinition 4.2):

HCyi'"y"^-yi-"^-7n-^

= rf«#i^

The obstruction to solving Eq. (5.5) is that the right-hand side is not in the
null-space of the transpose of d\ it is not C-closed. Indeed, since there are
no constants in stf? , l<n,

Recall that the R-matrix is expressed in terms of e-^-'-e-^t^...^. The
obstruction to Yang-Baxter is thus

Proposition 7.2. The element C' estfn is a constant.

—» <—
Proof. One verifies directly that <9-vC=0, yeN, is equivalent to C'5y = 0,

yeN.

Thus, if the first obstruction to the Yang-Baxter relation is encountered
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at the evaluation of tai...ain9 then this obstruction can be avoided by replacing
.a/ by the quotient £//!„, where /„ is the ideal generated by the constants in
.a/* . Once this has been done, we study the obstructions at the next
level. Since the constants at level n have been removed there are none in
s0 r J<n9 and substantially the same analysis applies to constants in ja/*+ 1 . To
formulate the final result we need:

Proposition 7.3. The ideal I+ c j/"1" generated by the constants of d-y,

coincides with that generated by the constants of d-y. The same statement

holds true in j/~, mutatis mutandi.

When the parameters are in general position there are no constants, and
Theorem 2 with Proposition 5 assures us that there is a unique standard
R-matrix in ja/®«c/ that satisfies the Yang-Baxter relation (2.6). We are now
in a position to allow for the appearance of constants.

Remark. There are no constants in s/t ; the generators Ha9 e±« of si
are also generators of «a/' = ja///.

Theorem 7. Let I <=: j/ be the ideal generated by the constants in j/ +

and the constants in j/~, and let $#' be the quotient sf / 1. Interpret the

standard, universal R-matrix (2.5) as an element of £#'®<stf'. The Yang-Baxter
relation for the standard R-matrix on j&' is equivalent to the recursion relation

r* :=$?£-«! •••e-ai®e«i •••£«{,

and to either one of the following

(7.2)

(7.3)

(7.4)

These relations are integrable (with tl=e-<x®e(X) and yield a unique standard
R-matrix on j / f .
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§8. The Standard Classical r-matrix for Simple Lie Algebras

We shall now specialize, by stages, until we arrive at simple quantum
groups, where a limiting process relates the standard R-matrix to a classical
r-matrix.

Suppose that

Card(AO:=/<oo. (8.1)

Suppose next that the ideal 7 (generated by the constants of j/) is generated
by a complete set of Serre relations; that is, for each pair o^/JeN, a^j?, there
is a smallest positive integer kap such that there is a relation in j& / 1 of the form

= 0, (8.2)

with coefficients 2(mf/?) in the field. The left side, as an element of j/+, is a
constant, and the penultimate paragraph of Section 3 applies. In particular,
the relation (3.20) becomes

and the coefficients are

g£ = (_yV"*a-V*m~1)/2(*) 9 q:=e«(**\ (8.4)
\Wl/q

We specialize further by supposing that the exponent in (8.3) vanish,

a), a*0. (8.5)

The form ( • , • ) defined by

(a,jS) = ^>(a,j8) + (p(j8,a) (8.6)

will be called the restricted Killing form, and the /-by-/ matrix with components

-. - r - .
(a, a)

will be called the generalized Cartan matrix; note that it is symmetrizable.
Finally, a suitable restriction on Card(M) brings us to quantized Kac-Moody
algebras.

Let j/ci be the algebra obtained from j/' when the relations (2.4) are
replaced by
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If j/d is a Kac-Moody algebra of finite type, resp. affine type, then we may
say that j/' is a quantized Kac-Moody algebra of finite type, resp. affine
type. But because jf' cannot be recovered from stf'd an autonomous definition is
preferable.

Definition 8* Let jf' be as above; that is, the quotient of an algebra s£
as per Definition 2.1, with parameters satisfying (8.3), by the ideal generated
by the Serre relations (8.2). We shall say that at' is a quantized Kac-Moody
algebra of finite type if (i) Card M= Card N=l<vo, and (ii) the (symmetrizable)
generalized Cartan matrix

(8.9)

is positive definite with ,4a/je{0, — I,--}, a^jS. We shall say that s/' is a
quantized Kac-Moody algebra of affine type if (i) CardM=2 + Card7V<oo,
and (ii) the generalized Cartan matrix is positive semi-definite with
A/?e{0, — .!,•••}, a 7^j3, and all its principal minors are positive definite.

The remainder of this section deals with Kac-Moody algebras of finite type.
The semi-classical limit of R is defined by replacing

ex-+Kex, e-z—tKe-a, KK =7z,

and developing the exponentials to first order in 7z. Then Eq. (2.4) becomes

0«>*-/d = <M<P(«> • ) 4- <?( ' ,«))
x „ , , (8.11)

=:<5a/^(a)<?(a>a)-

It follows from (8.11) and (2.3) that

(8.12)

The definition (8.7) of the generalized Cartan matrix implies that Aa =
that Azp E {0, — 1, — 2, • • •}, a 7^ j8, and that ^«/? / 0 implies Ap* ̂  0. Special cases
are affine Lie algebras and simple Lie algebras. The latter are characterized
by two additional properties of (A^): indecomposability and det(,4)>0. We
now assume that both hold, and that {//(«), oeeTV} generates j/°.
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The (classical) r-matrix r associated with the standard R-matrix (2.5) is
defined by

R=l+1lr + o(n2). (8.13)

Two terms in r are obvious: r = <p-h£e-a®ea + ?, with the sum extending over
simple roots. Evaluating the remaining terms is more difficult, because a) we
do not have a sufficiently explicit expression for the coefficients t$ and b) because
all these coefficients are singular in the classical limit. Both these difficulties
are avoided by the recursion relation (7.1), as we shall see later. The result,
which was known by indirect means, with a particular normalization of the
non-simple roots, is that

(8.14)

where A+ is the set of positive roots. (Definition 9.) This is what we call the
standard r-matrix for a simple Lie algebra. It satisfies the classical
Yang-Baxter relation

0 (8.15)

and

r + rf = K, (8.16)

the Killing form of g. In the list of (constant) r-matrices obtained by Belavin
and Drinfeld [BD], (8.14) is the simplest. The quantum groups to which these
r-matrices are associated are the twisted quantum groups of Reshetikhin and
others [R][Sc][Su].

§9. The Standard Classical r-matrix for Untwisted Loop Algebras

A quantized affine Kac-Moody algebra can be described as follows. Let
dt' be as above, with parameters satisfying (1.8) and Serre relations (1.9), with
root generators {e+a}a = (),•••,/ and Cartan generators Hl9-"9Hl9 c, d, such that
the subset that consists of {e±«}a^0 and Hl9--9Hl generates a subalgebra
j/' that is a quantized Kac-Moody algebra of finite type. Let 0 refer to sil'
and cp to ,*/', and suppose that
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with some ueC. Suppose that c is central and that the extra root defined
by [Ha,eo]=Ha(Q)eQ is such as to make the generalized Cartan matrix of j/'
positive semi-definite with all its principal minors positive. Then j/' is a
quantized aifine Kac-Moody algebra.

Consider a quantized affine Kac-Moody algebra <*/', with generators
e±o,--,e±i and //13 ••-,#,, c, d. Renormalize as in (8.10) and pass to the
classical limit.

Definition 9. Positive root vectors are elements in stf'ci defined
recursively, (a) The generators e^ are positive root vectors, (b) If E{ and Ej

are positive root vectors and [/^E^^O, then {EhEj\ is a positive root
vector, (c) All positive root vectors are obtained in this way from the
generators. Negative root vectors are in j/cf and are defined analogously.

Let {/sjf=l, •••,«,+ be the positive root vectors, labelled in such a
way that

[*a,£+]=0 = [>-a,£_], (9.1)

and

[£„£_] 6 j/3 • jf'er , [£-i,£+] e j*3 ' stf'ct . (9.2)

Then we may refer to E+ as a highest root vector.
Suppose that the extra root /ffl(0) = ///£"_), and pass to the associated

untwisted loop algebra C^/l"1]®^/ by substituting

$-+q>, e0:=lE_, e-0:=l~lE+. (9.3)

(Replacing 9 by <p amounts to taking the quotient by the ideal generated by
the central element c.)

After the renormalization (8.10) tn is of order ft and the classical r-matrix
is defined by (8.13),

(9.4)

The Yang-Baxter relation for R is equivalent to the recursion relation (7.1),

itn^®e-^=(e-y®e^'%-i-tn-i(e-y®e-^^ n>L (9.5)

To lowest order in ~h this becomes
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(9'6)

which is the same as

ll®e-i + e-,®l9r-<p] + [ti9l®e-j]=Q9 y = 0,..-,/, (9.7)

with ti=Ee-a®eai9 or

This result is just the classical limit of the relation &(e-y)R = RAf(e-y), which
explains why it determines r.

We normalize the root vectors so that the Casimir element takes the form

. (9.8)

Then

le-y9E-i] = cE-j implies that lEhe-y] = cEi9 y^O, (9.9)

[e-Q9E-i] = cEj implies that [E-he-o]=cEh y^O, (9.10)

It may be seen from the structure of tn that it is a polynomial of order n in
A/ jU. The recursion relation shows that the classical limit is in £0'ci®£0'ci . The
classical r-matrix can therefore be expressed as a formal power series in x = A / ^

(9.11)

Now it is easy to work out the implications of Eq. (9.7), namely, first taking y ^0,

(9.12)

The prime on E' means that the summation is over roots that are
not simple. Cancellation in the last two lines imply, in view of (9.9) and
since the adjoint action is irreducible, that/J=/, gj=g, i =!,••-,/. Cancellation
in the two first lines now tells us that il/cccp + cp*, hence \l/ is symmetric, and it
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follows that g=/— 1. This gives us

C9 (9.13)

which is actually obvious: The two first terms is a special solution and the
last term is the only thing that commutes with A0(e_y)= l®e_y-l-e_y® 1. Next,
Eq. (9.7) with y = 0,

(9.14)

This yields g=x/and the result is that

(9.15)
l—x

which agrees with the simplest r-matrix in [BD], but in the notation of [J].

§100 The Standard Classical r-matrtx for Twisted Loop Algebras

The construction of a twisted affine Kac-Moody algebra [K] involves two
simple Lie algebras, g and a subalgebra g0, such that g admits a diagram
automorphism of order k = 2 or 3 to which is associated a Lie algebra
automorphism \i that centralizes g0 . The eigenvalues of \JL are of the form
Co7, 7 = 0, !,••-, and g = Sjlo9j3 where g^ is the sum of the eigenspaces with
eigenvalues o)jmodk. The restriction of the adjoint action of g to g0 acts
irreducibly on each g;-.

Now let {//a,e±a}a = !,•••,« be a Chevalley basis for g0, and let E+ be a
highest weight vector (for the action of g0) in QI . Then {ej, E_ generate g, and

[«„£+] = 0 = [«_„£_]. (10.1)

The twisted loop algebra £ = C[A,jp®g is generated by {e±a}9 a = 0,---,w,
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with

*0 = A£L, e-0 = jE+. (10.2)

This algebra is of the type j/d , so our standard R-matrix applies. We define
r in terms of the expansion of R in powers of ^ and work out the implications
of the relations (9.7).

Let {Et} be a Weyl basis for g0 and normalize so that the Casimir element
for that algebra is

CQ = q) + ̂ t^E-i®Ei^Ei®E-i. (10.3)

Then a special solution of (9.7) with y^O is given by the first two terms in
(9.13) and the general solution is

where C, is the projection of the Casimir element C of g on g,-, on the first
factor. Now (9.7), with y=0:

-

This vanishes iff

That is,

Finally, the unique solution is
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0 k
1 —X Q

again in agreement with [BD], in the notation of [J].

Remark. Choose a basis of weight vectors in gt , then

C1 =E_

(10.5)

with unit coefficients for the contributions with highest weight. This follows
from the normalization in (10.3) and fact that 1®E++E+®1 commutes with

§11. Including the Central Extension

The untwisted case. The extension is recovered by omitting the replace-
ment of cp by (p in (9.3). We can still represent the r-matrix as a power
series in ;t = A///, but it is no longer true, as it was in the case of the loop
group, that [e0,e_0] = [£_,£+]. Instead,

^-^+] + c. (11.1)

More generally, for polynomials /,geC[/l,{], and x,ye3/'cl,

c<x,j;>Res(/'g), (1 1.2)

where the form <,> is the invariant form on s#'cl normalized as follows: If
the Casimir element is CiSxt®Xj9 then (xi9xjy = (C~1)ij', Res(/) is the constant
term in Xf.

Remark. This normalization implies that

[/C12,sC23] =/£[C12)C23] + c2C13Res(/'g). (11.3)

This change leaves (9.12) and (9.13) unaffected, while (9.14) becomes
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The modification in the second term (<p replaced by <p) is exactly compensated
by a new contribution from the linear A-term in g. (There is no linear ^-term
in /). The conclusion is that the new r-matrix is

-C. (11.4)

The twisted case. It is easy to verify, with the help of the remark at
the end of Section 3, that the restitution <p-+<p can be made without affecting
the cancellations; so the result is that

It is amusing to verify directly that the classical Yang Baxter relation for

implies the same relation for r. The inclusion of the extra term in 9 means that

]. (11.6)

The evaluation of YB(r) now has to take into account the new term (involving
c) in Eq.(11.2). Actually, only [ri 2,7*23] is affected, and with the aid of Eq.(11.3)
one finds that the new contribution is

which exactly cancels the other term. In the twisted case one must use the
following generalization of Eq.(11.3):

(11.7)

DEFORMATIONS

§12. First Order Deformations

Quantum groups can be understood as deformations of the Hopf structure
associated with Lie algebras or Kac-Moody algebras. The point of view that
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emphasizes the direct connection between quantum groups and Lie groups,
as well as the deep roots of quantum groups in deformation theory and in
the theory of *-products, has been shown to lead to profound insight into their
general structure [BFGP][BP][EK]. Here we use deformation theory with
a different purpose. The initial structure is the bialgebra associated with a
standard R-matrix, with a fixed set of parameters. The deformed structure is
a bialgebra equipped with an R-matrix that is non-standard and that does
not commute with the Cartan sub-algebra. We emphasize that the context
is more general than quantized Kac-Moody algebras.

This work was initiated with the aim of calculating the universal R-matrices
associated with simple Lie algebras, as deformations of the standard universal
R-matrix. We shall establish a direct correspondence between the classical
r-matrices of Belavin and Drinfeld on the one hand, and the deformations of
the standard, universal R-matrix for simple quantum groups on the other. In
preparation for this we have explored the meaning of the Yang-Baxter relation
in a much more general context, and we shall endeavor to maintain this
generality in our approach to deformations. But, as for the types of
deformations, we shall limit our study in a way that seems natural in the
context of quantum groups.

A deformation of the standard R-matrix is a formal series

Ri = R + eR,+€2R2+'". (12.1)

Here R is a standard R-matrix on jaf'= j/// with any choice of parameters
and the ideal / determined by them. The coefficients t($ of R are determined
by the Yang-Baxter relation, and we attempt to find Ri9R2,-" so that Rt

will satisfy the same relation to each order in e. To make this program
precise, we must specify the nature of the leading term; the remainder should
then be more or less unique.

Recall that R "commutes with Cartan." An element gej/®j/ is said
to have weight w if

tHa®l + l®Ha,Q] = waQ, w.eC, a eM. (12.2)

Thus R has weight zero. The image of Q by the projection .a/® J2/ -> .a/'® sf'
has the same weight. We shall suppose that Rl is homogeneous (has weight),
but this restriction is inessential and will be relaxed later.

Recall further that R is driven by the linear term; by virtue of the
Yang-Baxter relation, R is completely determined by the term e-x®ex. It is
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natural to study deformations that are driven by a similar term, with fixed,
non-zero weight:

Rl=S(e±a®e±p)+.~, (12.3)

with cr, p fixed and the factor S is in j/°. (The unwritten terms are of higher
order, in a sense that we shall make precise in a moment.) Such deformations
may be called "non-singular", to contrast them to singular deformations for
which the term of order c is either absent or else of a form that sets it appart
from the driving term in the undeformed R-matrix. We do not claim
that this exhausts the possibilities. In fact, we know of a "singular" deformation
that is driven by an Rl of higher order in the generators [FG2]. It is highly
special and occurs only when some of the parameters are roots of unity. But
we believe that the deformations studied here have the best chance of possessing
a cohomological interpretation.

We shall now make precise the concept of "higher order".

Proposition 12. The algebra jtff = jtf / 7 is Z-graded, with grade e±x = ±1,
grade Ha = Q. An alternative grading is obtained by reversing the sign.

Proof. This is a consequence of the fact that the generators of / are
homogeneous; j/' inherits the grading of jtf.

The standard R-matrix is a formal series %k\l/k®&k, i/^ejaT. We use
the grading of Proposition 12 in the second space, the alternative grading in
the first space; then grade I/OF =k and R is a formal sum of terms with grade
(k,k\ fc = 0,l,2,---. This grading is an extension of that used previously, made
necessary by the appearance of ea in the first space and e-p in the second.

With the inclusion of (12.3) the grades descend to (—!, — !). Finally, the
unwritten terms in (12.3) is a series by ascending grades. The fact that the
grades are bounded below is fundamental. We claim that Ri9 a formal series
in e, each term a formal series in ascending grades, if it satisfies the Yang-Baxter
relation, is completely determined by the choice of the two generators e±a and
e±p in (12.3).

We shall see that the standard R-matrix on <*/', with the parameters of stf' in
general position, is rigid with respect to deformations of the type (12.3). We
begin our investigation by establishing some conditions on the parameters that
are necessary for the existence of a deformation. We shall study each of the
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four possibilities envisaged by (12.3) separately. We organize the contributions
to

in the same way as the contributions to YB. A term \j/ \®\j/ 2®0 '3 is said to
have grade (/,«) if \j/3 has grade n and \j/l has alternative grade /. We limit
ourselves to terms linear in e and end this section by disposing of three of
the four possibilities in (12.3).

Deformations of Types e-ff®ep, e0®ep and e-0®e-p. Suppose first that the
driving term in Ri is

S(e-a®ep\ Ses/°®3/°.

We examine the contributions to YBt of order e.
The lowest grades are (1,0) and (0,1), with contributions

respectively. These vanish if and only if

e<p(ff,-)-(p(p,-)__ j _£<?(-, er)-<p(-,p) (12.4)

In grade (1,1) we encounter additional restrictions,

e<p(p, •) + (?(-, a) = J (12.5)

Conditions (12.4}~(12.5) are necessary. It follows that

) QC € JV.

These are conditions that are familiar from our investigation of constants, see
Eq.(3.8). The relations that are thus implied are

epex - e*^exep = 0 = effex - e«*'*eaeff , Va 6 N.

This constitutes a high degree of commutativity in j/f and takes us far away
from our main interest in simple quantum groups. We therefore end our
investigation of the type e-a®ep at this point.

Similar results are obtained for deformations of type e-ff®e-p and
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§13. First Order Deformations of Type ea®e-p and the Classical Limit

We come to the last case envisaged in §12. Eq. (12.3), when the driving
term in Rl has the form

S(ea®e-p\ 56^°®^°. (13.1)

This term has grade (—!, — !); it is the only term in Rl with this grade, the
lowest. The factor S, and all other terms in Rl , are completely determined
by the Yang-Baxter relation YBt = Q to first order in £. Besides (13.1) there is in
jRt one other term with only two roots, of the form

S'(e-p®ea\ 5"6^°®^°; (13.2)

it has grade (1, 1).

Theorem 13.1. Let R be the standard R-matrix described in Theorem
7. Suppose that R + eRl is a first order deformation, satisfying the Yang- Baxter
relation to first order in e. Suppose also that the term of lowest grade in R^ has
the form (13.1); then the parameters satisfy

£<?>(•, P)+<P(<T.-)_ i (133)

Conversely, when the parameters are in general position on this surface, then
there exists a unique first order deformation such that the term of lowest grade

has the form (13.1), namely

Rl =R(Kea®Ke-p)-(Ke-p®Kea)R, (13.4)

with K:=e*(''p).

Proof. An easy calculation in the lowest grades shows that (13.3) is
necessary and that S=K®K9 up to a numerical factor that we fix once and for all.

Let M, i'=l,2, be the two summands in (13.4). The term of order e in
YB£ is the sum of the following six quantities:

(13.5)

1=1,2.
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Step 1. We begin with the term that contains the lowest grade, (1,1):

^3=*'[-a]*'[-/GA^

[-c$®[(xl:=e-xi>'-e-alt($ea>1'-'exi.

A sum over indices and numbers of indices (/ a's, ra j9's and n y's) is
understood, and ---- stands for the reflected term. Using the fact that R
satisfies YB = 0 we can convert (13.6) to

^i3 = /^-a]*t-/0&,®^
(13.7)

where H — stands for a similar expression that contains a factor [eff,[ — a]]
in the first space. We have used (13.3) and continue to use this relation
without comment.

Step 2. Evaluate the commutators in (13.7) using (5.1) and (5.7). The result

^ls = Jl'[-a]#[-/0^^

(13.8)

is a sum of four similar expressions. Note that the evaluation of the
commutators involves a shift in the summation indices /, m, n. The generators
eff, e-p, in spaces 1, 3 in (13.7), are now in spaces 1 and 2, and the lowest
grades in (13.8) are (-1,0) and (0,-1).

Step 3. Now write down the full expression for A{2 + A23 ; it also contains
four similar terms. Two of them cancel two of the terms in (13.8), by virtue
of the relation YB = Q.

Step 4. Combine the remaining two terms from (13.8) with the remaining
two terms from A{2+A23 and verify that

- „[ -

(13.9)

where H — stands for a term that contains a factor [[/?], e-/J in the third
space.

Step 5. Evaluate the commutators (second shift of summation indices)
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= R'l - «]

The lowest grades are now (1,0) and (0,1). The generator eff has completed
its journey towards the east and is found in the third space; the generator
e-p, travelling westward, is in space two.

Step 6. Two of the four terms in (13.10) are:

Now add Al2 + A2i to (13.10) to get

23+Ah+A2
23

(13.12)
2,

where X^ and Y2 are obtained from Xl and Y2 by adding A2^ and A\2.

Step 7. Use the relation 7J5=0 to modify the expressions for A\ and
Y2'9 then notice that the four terms in (13.12) can be combined to two,

= *'J^-a]#t-W®*^^

(13.13)

where the other term has a factor [[ — y],eff] in the second space.

Step 8. Evaluate the commutators (third shift of summation indices),

= RiKl-a3e-PRil-ft®RjKlo3K-lRkl-y]®KeaRjWRkW + ---

(13.14)

This expression has four terms; the lowest grade is (1.1). The generators eff,
e-p have reached their final destination, ea is in space three and e-p is in
space one. What remains can be compared with the last of the six contributions
to YBi9 namely A\-*>.

Step 9, 10. Two of the four terms in (13.14) cancel each other because
YB = Q and the remaining two terms add up to —A 13.

This completes the verification of the claim that (13.4) defines a first order
deformation of R. To complete the proof of Theorem 13.1 we must show
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that this expression (13.4) is unique. This was done by complete mathematical
induction. We omit the details but point out that the key to the induction
process is visible in Steps 2, 5 and 8, where the summation indices are
shifted. Theorem 13.1 is proved.

Let 9 be the collection of pairs (a,p)eN®N such that (13.3) holds; each
distinct pair defines a first order deformation R + eR[*p of R. Because these
deformations are only first order they generate a linear space

*i= I C..PW, (13.15)
<T,pe0>

with coefficients in C. The dimension of this space of first order deformations
is zero for parameters in general position. It remains zero, generically, when
the parameters are such that the ideal / generated by the constants is non-zero
and R is defined on ,<///. The exceptional points in the space of parameters, at
which there are pairs (o,p) satisfying (13.3), are bifurcation points in the space of
generalized quantum groups.

To any first order deformation of R, there corresponds a first order
deformation of r,

(13.16)

Eqs. (13.4) and (13.15) give us

'1= I C,.,(e,A*-,), (13.17)
fffpetf*

where 9 is the set of pairs with the property

<p(p,-) + <p(-,a):=Q. (13.18)

The original work of Belavin and Drinfeld culminates in a list of constant
r-matrices that is complete up to equivalence. Their results have recently been
re-derived in terms of deformation theory and the associated cohomology.

Proposition 13. [F] Let r be the standard r-matrix (8. 14) for a simple Lie
algebra g. The space of essential, first order deformations of r, satisfying (8.15)

and (8.16), is

(13.19)
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The exact deformations are of finite order and coincide with the r-matrices of

The second, Cartan term is not "essential" in the present context; it
represents the freedom to vary the parameters. We conclude that

Theorem 13.2. The first order deformations of the standard R-matrix

described in Theorem 13.1, upon specialization to a simple quantum group, are
in one-to-one correspondence, via (13.16), with the first order essential deformations

of the associated standard r-matrix, modulo variations of the parameters.

One concludes that the class of deformations investigated in Section 13
is wide enough to encompass the quantization of all simple Lie bialgebras. We
shall see that the affine Kac-Moody algebras are provided for also.

§14. Hopf Structure

It is of some interest to verify that the standard R-matrix, satisfying the
Yang-Baxter relation, actually intertwines the coproduct of a Hopf algebra
with its opposite.

Proposition 14.1. (a) There exists a unique homomorphism A:^->J/®
ja/, such that

fl, aeM,

, (14.1)

A(6?-a) = e~'P(''a)®e-a + e-a®l, a € N.

(b) If I c jtf is the ideal generated by the constants in $0* and j/~, and
j/' = j//7, then A induces a unique homomorphism stf' ->• j/'®j/' that will also
be denoted A, so that (14.1) holds with Ha and e±a being interpreted as generators

of d I L
(c) Let A' be the opposite coproduct on J//7, and R the standard R-matrix

on J//7 (satisfying Yang-Baxter), then A/? = 7?A'.
(d) The algebra <$# becomes a Hopf algebra when endowed with the counit $
and the antipode S. The former is the unique homomorphism stf — > Csuch that
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*(<?±.) = 0, xeN. (14.2)

The antipode is the unique anti-automorphism $:<$/—>&/ such that

5(1)= 1, S(Ha)=-Ha, aeM,

S(ea)=-eae-*(*>'\ S(* -«)=-<*<••«>*-., oceN. (14.3)

(e) The counit $ and the antipode S of $f induce analogous structures on
j/'-st /I such that (14.3) holds on j/'.

Proof, (a) The verification amounts to checking that A(J/) has the
relations of j/, in particular,

(b) The ideal / is generated by elements xe<s$* and yej/~ such that
[e-a,x] = 0 = [ea,j], ae N. Since A : j/ -» j/® j/ is a homomorphism, A induces
a homomorphism j2///-»(j/®j/)/A(J). We must show that A(J) c= /®j/
4-efi/®/. Since / is generated by elementary constants, it is enough to show
that, for an elementary constant C, A(C) c /®j/ + j/®/. Let Ce^+ be an
elementary constant; then [e-a,C]=0 and thus [A(e-«),A(C)]=0, aeA^. If C
is of order n in the generators, (14.1) shows that

where Pk and Pk are homogeneous of order k in the £a's. Because C is an
elementary constant -Definition 4.1 -there is no constant among the Pk

9 Pk9

n=\,---,n-\\ then [A(e-a),A(C)]=0 implies that AC=1®C+C®P0 which
indeed belongs to /®j/ + j/®/; consequently A provides a map <$///-» s/ /I

/7.
(c) We use the abbreviation -compare (13.6), Definition 2.2 and Eq. (2.9)-

Terms 2 and 3 combine to Ri{_e^t{ft')~\®R^_eaL''}^ and the recursion relations (7.2)
implies that the sum of all four terms equals zero. Actually this recursion
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relation, when summed over n, is nothing more than the statement
A(ep)R — RA'(ep) = Q. It should be pointed out that the co-product was not
known a priori', the Yang-Baxter relation gave us the recursion relation and
this amounts to a determination of the co-product.

(d) The existence and uniqueness of the homomorphism $ and the
anti-homomorphism S are obvious. We have to show that <? satisfies the
axioms

which is straightforward, and that

m(id x S)A = e = m(S x id).

Here m indicates multiplication, j/® jtf -» jtf. For example,

m(id x S)A(*J = S(ea) + ejT ^ = 0.

(e) Obvious, since <f(/)=0 and S(I) = I by Proposition 7.2. Proposition
14.1 is proved.

We turn to the case of the deformed R-matrix of Section 13, all statements
should be understood to hold to first order in the deformation parameter e. The

maps A, g and S are as before and the deformed maps are A £=A-f-eA 1 ,

Proposition 14.2. (a) There is a unique homomorphism

such that

(14.4)

(b) The projection of Ae to $/' -> j/'® j/' w we// defined, (c) L^r At fee ̂ /i^
opposite coproduct on «c/'=«c///, a«J Rt = R -\-eRi the R-matrix of Theorem

13.1, f/zew A£JR£ = JR£A£ (to first order in e). (d) I%e deformed counit and antipode
of stf are given by &± =0

(e) Tfe c^iiniY ^£ and the antipode SL induce analogous structures on j/ /I.

Proof, (a) By the Jacobi identity, (b) Obvious, for Aj(C) = [A(C),

Ke-p®Keff]El®£/ + s#<S)f> (c) Completely straightforward, (d) We have
($ x W)A1(x) = 0, whence S'l=Q, while

m( id x S^(Ha) + m(id x S)A ̂ flj = 0
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since

m(idx S

m(idx S)Al(Ha) = m(i

= -(Ha(v)-Ha(p))Ke-peff=-tHa,Ke-peff-]

and

m(id x S-OAfo) + m(id x S)A ̂  = Q

since

m(id x SJAfe,) = S&J + ejS^'i)

These last two results require some work.
(e) This is clear, since ff1=Q and S^fyel. The proposition is proved.

§15. Exact Deformations of Standard, Generalized Quantum Groups

We return to the first order deformations described in Theorem 13.1. A
deformation of this type, involving a single pair (p,a) for which (13.3) holds,
is called an elementary deformation. We shall see that, to each elementary,
first order deformation, there is an exact deformation (to all orders in e), that
can be expressed in closed form. To first order in e, the problem being then
linear, one obtains a more general space of deformations by adding the
contributions of several such pairs,

(15.1)

Here the sum is over a subset [T] of the pairs (cr,p); aef i , pef 2, where f 1,2
are subsets of the set of positive generators, and

)= lf (<7,p)6[Y|. (15.2)

Not all such compounded, first order deformations lift to exact deformations.
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The deformed co-product was also calculated to first order in e, and the
results suggest an approach to the exact deformations. The formula (13.4)
for Rl9 as well as the expression (14.4) for the first order deformation of the
coproduct, both suggest that the deformation be formulated as a twist [D3],
but of a type much more general than that proposed by Reshetikhin
[R]. Additional support for this is found in the fact that the exact, elementary
deformations mentioned above and given below (see "Examples") are also of
this type. For the following result j/' is any coboundary Hopf algebra.

Theorem 15.1. Let R be the R-matrix, A the coproduct, of a coboundary
Hopf algebra <$/' ', and Fej/'®^', invertible, such that

((1® A2i)F)Fi2 = ((A13® 1)F)F31 . (15.3)

Then

lRF (15.4)

(a) satisfies the Yang-Baxter relation and (b) defines a Hopf algebra j? with the
same product and with co-product

X = (Fl)"1AFf. (15.5)

Proof, (a) We substitute (15.4) into the expression ^12^13^23. Then
use (15.3) to express FiaCFai)"1 in terms of the co-products, and the intertwining
property of R (AR = RA') to shift the latter to the ends. The rest is obvious.
(b) It is clear that A is an algebra homomorphism. We shall show that the
twisted coproduct defined by A is co-associative:

Comparing the factors at either end one finds that they agree by virtue of
(15.3). The result follows, in view of the co-associativity of A. The theorem is
proved.*

* The connection between Eq.(15.3) and co-associativity was pointed out to me by Masaki
Kashiwara. The relation makes F a cocycle in the sense of Gerstenhaber [G],
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We return to our subject, with R again denoting the standard R-matrix
of the algebra j/' = ja///. We show first that interesting solutions of (15.3)
exist. Then we do some preliminary calculations that help us make a general
ansatz for Fin the form of a double expansion, F= lLenmF™ , and finally we derive
a recursion relation for F™ that will allow us to calculate the classical limit.

Examples. An exact deformation of R, with the first order term Rl as
in (15.1) but with the sum reduced to a single term, is given by

F=ejif •*'-', (15.6)

with

/,:=*-«*••>*„, f-P:=e-Pe^\ (15.7)

The q-exponential is as follows: q = e(p(a'p\ eq
A:=I,An /[n\~]q

in]q = (qn-l)/(q-l). Note that, if AB = qBA, then e$e% = e(
q
A + B\ Proposition

15.1 shows that an elementary twist F, of the simple form (15.6), can be
combined in a naive way with another elementary twist F, of the same type

but with (a,p) replaced by (v',p'\ only if A(/<r'), A(/P') reduce to A(/<0, A(p');
that is, only when the four generators quommute* among themselves.

Notation. From now on it will be convenient to use the generators
/±« defined in (15.7). The standard co-product then takes the form

with

The general case of compound deformations is much more complicated.
The calculations are manageable only so long as F can be constructed from
elements of the type fa®f-P only, with the factors in this order. A general
result is Theorem 15.2 below. We need some preparation.

Proposition 15.1. Let R£ be an exact deformation of the type

* Two elements x, y of an algebra quommute if there is q in the field such that xy—qyx =
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v(p:)f ... f **/• . . . . / • . (15.8)

where + • • • stands for terms with less than n factors. Let Ft , F2 be the
subalgebras of jtf'+ generated by f1; f2. Then we have: (a) There is an
isomorphism i : Ft -> F2 , such that the set [T] is the restriction of the graph
oft to f l f F2 ,

[T] = { f f ,p | f f6 f 1 , p = T<Tef2}. (15.9)

(b) The elements FB satisfy the recursion relations

[FH,/-,®l]=K*W-p)fi.-i-tf.-i(A,®/-p), (ff,p)6[T], (15.10)

as well as

[l®/p,FJ=ft-it^®^-(/.®^p)ft-i. (15.11)

(c) These recursion relations have the unique solution

f&M-W, (pi,-,pi) = T(rt,-,rt), (15.12)

where the coefficients on the right are the same as in Eq.(2.5), except that cp is
replaced by cp*.

Proof. We begin by offering some justification for the assumptions. In
view of the form of Rl it is expected that Rn is a sum of products of factors
of three types:

e-a®ea, /-p®/ff, fff®f-p, ref1!, pef 2 , (15.13)

with coefficients in j/'®j/'. In Rn, we isolate the terms with the highest
number of factors of the third type,

We shall show that Rn contains A^^O.
Let

YBt:=Rti2Rti3Rt23- ^23^13^ 126^'®^'®^'. (15.14)

All terms in YBi of order e", that have « factors of the third type in spaces
1, 2 are contained in
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Pn:= ^,,12^13^23—^23^13X112 • (15.15)

For these terms to cancel among themselves Xn must take the form

~f«n®f-P, •••/-,*). (15.16)

The sum is over all pairs (o",p)e[i] and all permutations (/?') of (p).
Next, the recursion relation (15.10) follows easily from the Yang-Baxter

relation (more precisely from an examination terms of low order in space 2),
and (15.11) from a similar calculation.

We have F0 = l and Ft = £/;$/-,. Taking « = 1 in (15.10) or (15.11)
one gets,

[f.if-^X^-e-*"-'*), (15.17)

which is confirmed by the definitions in (15.7) and the relation (2.4). When
(15.10) is reduced to a recursion relation for the coefficients, then it turns out
to agree (up to a sign and cp -> (p*) with the recursion relations (2.14) for the
coefficients t{$ . The integrability of these relations is precisely the statement
(a) of the theorem, as follows easily from the analysis of these recursion relations
in §5. Finally, when (a) holds, then the relation (15.11) is equivalent to
(15.10). The proposition is proved.

After these preliminary explorations we are able to formulate a general
result.

Theorem 15.2. Let Fl9 F2 be subalgebras of j^'+, generated by subsets
f\ , f 2 of the generators, and T : T1 -> F2 an algebra isomorphism. Let
FE £/'(&<$/' be a formal series of the form

F=l+ £ €»Fn9 Fn = Z F ® f f f l ~ . f f f n ® f - p l : - f - p n . (15.18)
n=l

The second sum is here over all (7,-efu p»e f 2 . (!) Note that Fn is a power
series in c. Suppose that F satisfies (15.3), and that

F0 = l, F1 = - £ £M~U®/-,), (15-19)
Tmff = p

then Fn satisfies

(l®Kpdp)Fn+ £ emV®L,Fn-]+ JT £--U®^)Fn-i=0. (15.20)
•£*"(?= P t

Vre
O^= 0
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With F0 and F{ thus fixed, F29F3, • • • are determined recursively and uniquely.
(The operator Kpdp is the derivation that replaces f-p by Kp.)

Notation. The sums in (15.19-20), and similar sums to follow, should be
understood to run over <ref l and over all values of the positive integer m
such that Tm<7 is defined; that is, all values of m such that xm~loetl.

Proof. The exact form (15.19) of F^ can be inferred directly from the
Yang-Baxter relation. That Eq. (15.3) implies (15.20) is a simple calculation;
one collects all terms that have exactly one generator in the second space. Let
us verify that the recursion relation is satisfied for n = 1 by (15.19). The second
term is

The commutator is

The double sum reduces to ^ma=pe
m~ifa®(Ka— Kp) and (15.20) reduces to an

identity. It remains to prove that (15.20) has a unique solution. Consider
first the case that f 1nf 2 is empty; then the second term in (15.20) vanishes
and the third term reduces to the term m=l. The recursion relation then
reduces to the same form as that which determines the coefficients of the
standard R-matrix, which is known to be integrable. (In this case Proposition
15.1 is the complete solution of the problem, for there are no terms "H — "
in (15.8).) In the general case, when F1nf2 can be nonempty, the second
term in (15.20) makes the solution more difficult, but the existence of a solution
can still be proved. To do this we expand Fn as a power series in e, with
constant term

Fn =

and determine the coefficients recursively. The problem is therefore always
the integrability of KpdpX= Y, p e F2 , with Ye stf' given, and this we know to
have a unique solution in j/', as already noted. The theorem is proved.

The converse, that the solution of (15.20) with F0 = l and Fl given by
(15.19) satisfies (15.3) (and therefore gives a solution of the Yang-Baxter relation)
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was proved only in the special case that r1nf2 is empty. Further direct
computation supports the idea that Rt always has the form (F'J'^-RF*, with
F of the form assumed in (15.18). This is strong support for the belief that
the solution of the recursion relation (15.20), which was proved to exist always,
actually furnishes the solution to the problem of exact deformations in the
general case. The results stated in Theorems 13.1 and 13.2 may also be
considered as strong evidence. As we shall see, additional favorable evidence
comes from an examination of the classical limit. To prepare for this we need

Proposition 15.2. Let

F?= X tf®f*i~'f*n®f-wf-™> W = l (15.21)
p = Tm<r

in which the sum extends over c r f e f l 5 (cr') a permutation of (<r), and the
coefficients I {$ are the same as in (15.12). Then the unique solution of (15.20) is

Fn= £ en2 + 2n* + -'Tn\F
2

2--.=
£HJ — n

F=Z£"^ = Z^1 + 2w2+'"^1i^22--- = F1F2--, Fm = ̂ enmF^. (15.22)

For a proof, see below.

§16. Esoteric r-matrices

a) Quantized Kac-Moody algebra of finite type.

Proposition 16.1, If stf' is a quantized Kac-Moody algebra of finite type,
then Fj is a proper subset of the set of positive generators and Tm+1r lnF1 is
a proper subset of twf t nf l .

Proof. Suppose that the statement is false. Then there is/ f fef\ such
that tmfff G f j for all m, and consequently tkfa =fa for some k. But the condition
(15.2) on the parameters, in the classical limit, implies that

Summing over m = 0,1, • • - , & — 1 we obtain
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which contradicts the fact that the Killing form is non-degenerate.
In the classical limit

Ri=V+ftri + o(h2) r£ = r-f£H-0(£2). (16.1)

In the case of an exact elementary deformation Ri9 the associated exact
deformation re of r coincides with the first order,

r£ = r + 6r1. (16.2)

Consider the general case of an exact deformation of R of the form
postulated in Theorem 15.2. Define Xi by

(16.3)

so that

r^r + Xt-Xt. (16.4)

Notation. In this section the symbols Fi,2 stand for Lie algebras, the
classical limits of the algebras so designated until now.

From the fact that the coefficients in the expansion (15.21) of F are the
same as the coefficients in the expansion (2.5) of the standard R-matrix, and
the known classical limit of the standard R-matrix for a Kac-Moody algebra
of finite type, we get without calculation that

, (16.5)

in which n is the height of E{. The normalization is the same as in §§9-10;
more precisely it is fixed as follows, (a) The set {Ej includes the generators
of T! . (b) The statement (9.9).* Consequently,

r£ = r-X I enmE^E-j. (16.6)
m EseFi

Ej = -c™Ei

The sums are finite, by Proposition 16.1. A renormalization exists that reduces
the numerical coefficients to unity (e in C); the result is in complete agreement

* Condition (b) can be re-phrased as follows. Let F\ be the Lie algebra generated by {/_ff},
/ f fef! and F the Lie algebra generated by {f±a},fffef 1. Then TLEieriEi®E-i is the projection
on F^F" of a F-invariant element of F(x)F.
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with [BD].

b) Deformations in the affine case. Let s4' be a quantized Kac-Moody
algebra of affine type. Two cases should be distinguished. If the subsets f 1,2 of
positive roots do no include the imaginary root e0, then the formula (16.6)
applies without change, except that now r is one of the standard affine
r-matrices determined earlier, Eq.s (9.15), (10.5), (11.4) or (11.5). There is
nothing more to be said about this case and we turn our attention to the
other one.

What merits special attention is the possibility that the first order
deformation (15.1) may include one of the following

eQf\e-p = n(E_®e-p}-k(e-p®E_\ (16.7)

or

e f f / \ e - 0 = ̂ l(eff®E+)-ti-
i(E+®eff)9 (16.8)

with

,-) = 0, resp. cp(-,0) + (p((7,-)=0, (16.9)

which implies that p^O, resp. 0-^0. A simple renormalization, that connects
the principal picture to the homogeneous picture, brings (16.8) to the form

To deal with the general case of exact deformations it is useful to note
the following

Proposition 16.2. If stf' is a quantized Kac-Moody of affine type, then
either the statement about rt in Proposition 16.1 continues to hold, or stf' is
°f tyPe ^W- 1 , f i consists of all the positive generators, and i generates the
cyclic group of order N.

Proof. Suppose there is/ f fef L such that tNfff=fa for some N. Then the
Killing form is degenerate. But it is known [K] that any subalgebra of a
Kac-Moody algebra of affine type, obtained by removing one generator, is a
Kac-Moody algebra of finite type. It follows that f l contains all the positive
generators and exactly one T orbit. Then f l = F2 and T lifts to an isomorphism
of the Dynkin diagram, which implies the result.

In this section we exclude the exceptional case. This means that the classical
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limit of F! is a finite dimensional Lie algebra, so that (16.6) can be applied directly,
since the sum is finite.

Alternatively, the classical limit can be found with the help of the recursion
relation

(16.10)

or better, the equivalent relation

(16.11)

for Fr = d%+=hX!l + o(1l2). This implies that Xm = I>n=o,i,...emnXZl (a finite sum)
is the unique solution (of the form that appears in (16.5)) of

[l®/P + 6Vff®l^m]=^/ff(g)(9 + ̂ )(p), Tma = pef2. (16.12)

Example. Let stf'd be the untwisted, affine Kac-Moody algebra sl(N). A
set of positive Serre generators is provided by the unit matrices e^e^+i,
/=! , •• - , N— 1. Set eN = eQ = A,eNi- The "most esoteric" deformation (the one
with the largest I\) is defined as follows. Take Ft to be generated by et,

/= !,•••,#- 1, and le^et + i, i=l, •••,#-!. Then Xm = "Lne
nmX? with

and

X™=— Y , n m n , m ,
i + m + w < N i + m + n = N+l

™ ~ transpose J .

Taking N=3 one obtains

rt = r — eei2®e32 + c2ei3®A~lei2 + e2ei2®A."~1ei3 — transpose,

and the renormalization eij -> ~eij gives the final result

with <^ = (/l/ju)1/3. The un-deformed piece is
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cp being fixed by the relations (15.2). This is in agreement with [BD], after
transposition and setting £ = e"/3, 6=1.

§17. Universal Elliptic R and r-matrices

Here we consider the exceptional case (Proposition 16.2) in which T1

contains all the generators of j/'+, jtf' is of type A^}-i and tN=l* The
expression (15.19) for Fi can be justified as before and the sum is convergent
if we interpret e in C and stipulate that

namely

Fi=^N £ Z*"1—6 m=l< T 6r1

Most, but not all, of the infinite sums that arise can be made meaningful in
this way. In particular, (15.20) becomes

(l-eN)(l®Kpdp)Fn+
m= I m= 1

(17.2)

We verify directly that it holds for n = l. The second term is

T— ̂  £ £ e"+"/t-—p®(A,-.p-^ti-»p)
1 — € n= 1 m= 1

= 1— ̂  I eMf,-**P®(K*-Mo-Kp)(l-c
N).

1—6 M=l

The terms Kr M, Kp comes from the ends of the summation while all the other
terms cancel pairwise since Ka = K?ff.

The infinite product

F=F1F2"- (17.3)

cannot be given anything more than a formal significance in the structural
context but, as will be shown below, in a finite dimensional representation the

* The condition (15.2) can be satisfied on the loop algebra only, not on the full Kac-Moody
algebra.
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question of convergence (with e in C) is not difficult. We define Fm by the
(always uniquely integrable) relation (16.10),

(l®Kpdp)F
m = -6m(f*-

a

(17.4)

or its equivalent

(17.5)

with the same initial condition. We verify that, with this definition of Fm,
(17.3) satisfies (17.2) or

(l-eN)(l®Kpdp)F+ £ €"[1®/**1+ I en(fff®Kff)F=Q. (17.6)
rnff = p tn<7 = p

The range of the summation is n = l,2,---,N, veT^. One has

In the second line everything cancels except for the first and the last terms, leaving

The total contribution of the commutator in (17.6) is thus

Adding the first term in (17.6) leaves us with

-l6"+V-t-"-ip®*t-»,)F-€(l-€^
n n

which is cancelled by the last term.
In the classical limit Fm = I +"KXm + o(n2) and Xm satisfies (16.12). We

shall solve these relations in the case of the simplest affine Kac-Moody
algebra. Set
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L/i,/-i]=(^ + 9lXl)=:^ */i=/o, T/0=/i,

and

and impose (16.12). The result is, with jc =

1 00
jm _ L \* ( _ £2n\mY-n

^ 71 ?\ Z^ V t / -*- ,

o2m _ V1 (C2n— l \2m_,l — n n2m— 1
15 — h \t ) Ji •> E>

n= 1

C2m-l=

The deformed r-matrix is r^r + X—X*, with

oo r4n — 2

Setting l/n = e2niu one gets

The trigonometric r-matrix (9.15) is

Adding, one finds the series expansion of elliptic functions, and complete
agreement with the elliptic r-matrices of [BD]. To transform to their notation
replace

i (17.7)
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Finally, we shall show that the expression for the Universal Elliptic
R-matrix Ri = (Ft)~lRF, F=F1F2--- in terms of an infinite product is both
meaningful and useable, by projecting on a finite dimensional represention. We
limit ourselves to the fundamental representation of sl(2). After rescaling of the
generators as in (17.7), Fm and R6 take the form

Fm- I jR =r ~ 8 n, fm I » ^

The matrix elements are completely determined by the recursion relation (17.5);
namely for m = l,2,--, q2

 = e
< p ( l ' l ) = e2nip,

1 a2 (\ \ /T
/ 7 2 m - l _ i _ 4m-2 z.2m-1 __ i _ ,4m-21* ~ 2 m - l _ n //2m- 1 __ ,2m- II _ ] /
I* JL t , U A C , \s v/5 t* C I t^ I - v / ,

x x \q J x

4 ?2 ,2 , 4 1 2 2 A/1 \ ,2m n
« =1-6 —, 6 =1-6 -, C =6 ^/-l # , r f =0,

x x x\q J

and

dn(u — p) cn(u — p) sn(u — p)

A modular transformation brings this into perfect agreement with Baxter [B].
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