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Theory of Prehomogeneous Vector
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This paper is a supplement of [Gl]. In [Gl, §§2 and 3], we have mainly
studied Z>-modules Df* generated by a complex power of a regular function,
especially a relative invariant of a prehomogeneous vector space. Here we
modify the argument so that we can include a more general Z)-modules such
as D(f"u), where u is a section of a regular holonomic D-module. The main
results are (6.20)-(6.22). In (6.20), we determine the Fourier transform of
D(f"u), assuming that / is a relative invariant of a prehomogeneous vector
space, and that Du is an integrable connection of rank one satisfying certain
additional assumptions. As its corollary, we get (6.21) and (6.22). The latter
will be used in a study of character sums associated to prehomogeneous vector
spaces over a finite field.

Convention and Notation. We denote by Z the rational integer ring, and
by C the complex number field. As for ^-modules, we shall work in the
algebraic category unless otherwise stated. We define the de Rham functor
DR( —) so that DR(@X) = CX, where Gx is the structure sheaf. For a morphism
F:X-+ Y between varieties, and for an $y-module M, F* denotes the usual
0-module pull-back; F*Jt = 0X®F-^Y F'^Jt. We shall refer to [Gl, (a,b,c)]
etc. simply as (a,b,c) etc.

§5. D-Modules

The content of this section is a supplement of §2.
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5.1. Notation. Let X be a non-singular irreducible algebraic variety over the
complex number field C, 0 = Ox the sheaf of regular functions, and Q) = ®x the
sheaf of algebraic differential operators. If X is an affine variety, we put
C[X]:=r(X9Qx) and D = Dx:=r(X9&x). More generally, for a C[^]-module
we denote the corresponding quasi-coherent sheaf on X by the corresponding

script letter, and vice versa. For any C-algebra A, we put Q)A = @X,A '•= @x®c^,
and DA=DX A:=DX®CA. In particular, when A is the polynomial ring C|Y],
we often write 2{s] = Sx{_s] and D[s]=Dx[s] for ®C[5] and Z)cw, respectively.
We need the C-algebra C[s9f] given in (2.3.5), namely, the C-algebra defined
by the relation ts = (s+l)t. Put &[s,f] = &x[s9f]:=®x®cC[s,f] and D[s9f]

5.2. ^-Modules 2x[_s](f*u\ V] and ^x(/
aw| V). We fix 0^/er(Jf,0x). Let

^0:=A"\/~ *(()), ¥ be a Zariski open subset of X09 Jt a coherent ^-module,
and u = (ul9---9up) a ^-tuple of elements of T(V9Jt). Consider the left

J of S&x{_s]p consisting of (Pi(s)9~'9PlJ(s))e&x[s]p such that
)ui = Q holds in C[s]®cJt whenever meZ is sufficiently

large. Put J\f := @x[_s]pIJ. Denote by (f^ \ V the element ((0, • • -0, 1,0, - • -,0)
mod,/), where 1 appears at the f-th place. Then ^ = Sf=1®Jf[j]((/

sM)I.| V).

Put /*M|K:=((/sii)i|K,-s(/fii)p|K). We write ^r = Sx[s](fau\V). For a
complex number a, put J^ (a) := ̂ /(j - a)^, and/aw | K= ((fxu)1 \ F, - • -,(/»p | F)
:=(/sw| Fmod^-a)^). Then J^) = ̂ x(f

(xu\ V} = T<p
i=l@x((f*u)i\V}. If AT is

an affine variety, we define Z>x M(/sw | F) and Dx(f*u \ V) in the same way. If
V=XQ, we sometimes write fsu and /aw for /sw| X0 a.ndf*u\X0. It is easy
to see that

(5.2.1) f is not a zero divisor of @x\_s](fsu\ V)

and

(5.2.2) ^xM(/sw| F) is C[s]-flat (i.e., C[s\-torsion free}.

5.3. 6-Function of 2x[s](fsu \ F). Assume that @vu is holonomic and the
inclusion mapping jv: V -* X0 is an affine morphism. Then there exists a
non-zero polynomial b(s)eC[s] such that

v) c ®xmfs+ lu i n
(Proof. Since F(A'0)(/V)*^0==r(^-^09I'i and since OV)*-^ 's a holonomic
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^Xo-module, we may assume X0=V from the beginning. Then the proof goes
in the same way as [Ka2, Theorem 2.7].) Let b(s,Jf") be the monic polynomial
of minimal degree satisfying (5.3.1). Put

for j = 0,l,2,---} and

for 7 =1,2,---}.

The content of (5.4)-(5.6) seems to be standard (cf. [Gi]) and the proof is
omitted. (The detail will be included in the proceeding of the conference on
prehomogeneous vector spaces held in Kyoto in April, 1996, which will appear
in RIMS Kokyuroku.)

Lemma 5.4. Let V be a Zariski open subset of X0 = X\f~l(G) such that
inclusion mapping jv : V — » X0 is an affine morphism, let j'.X0-*X denote the
inclusion mapping, and assume that ^vu = Itf=l^vui is a regular holonomic
Q)v-module. Then

(1) @x(f*u\ V] is a regular holonomic Qix-module,
(2) DR(^X(/'M | F)) = RjJ)R(@Xo(f«u \V))if*eA _(®xM(/'H I F)), and
(3) DR(^x(/> | V)) =jP>R(9xJiru 1 V)) i f x e A +(@xlsjfsu \ F)).

Remark 5.4.1. In the above theorem, the regularity assumption for Q)vu
can not be removed even for (2) or (3).

5.5. ^-Modules (/a,^% and (f*,Jl\. Let M be a regular holomonic
SXo-module. If M is generated by global sections u = (u1,---,up) (wfer(Jf0, J^)),
then we can define ^x(/a") as in (5.2). Let u = (ui,--- s i^) be another global
generator system of the ^Xo-module M. Then for raeZ,

ifm»0

by (5.4). Hence the natural isomorphism ^x0(/
a+mw)-®x0(/

a+m!0 ( -^x0/
a

®G Jf) uniquely extends to ^x(/a+mw)^^(/a+m£) if w»0 or m«0. By
XQ

the same reason, ^Ar(/
a+mw) is independent of a special choice of weZ as far

as m»0 or m«0.
Generally, let X=(JiUi be a finite open covering, ̂ ^(U^JCf1 (^ feZ>0)

a finite generator system of Jt\Ui9 and consider ^c/,(/a+mw(l)) (m»0 or
m«0). By what we have seen above, these 3)v ̂ modules patch together. In
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other words, there uniquely exist regular holonomic ^-modules
= (f*>-W*,x and (F,Jt\ = (f\M\x such that

(5.5.1) ^ ( / - V *1 ~ i if m»0.

Then

(5.5.2) DRx((/
a,^) = Rj*(Cf-*®DRXo(Jt)), and

(5.5.3) DRjft/*,.*),) =y,(C/-a® DRToMO).

The functorial properties of (/",./*% and (/a,^)i follow from (5.5.2) and (5.5.3).

Lemma 5.6. (1) If M is a regular holonomic 2 Xo-module, then
)H{ = ch(/a,^)! and it is independent of aeC. (2) If further Ji is

locally @Xo-free of rank r, then

(Here ch denotes characteristic cycle) (3) If further ^ = £}Xou_9 then

C/! (2.4.6) for the right hand side.

5o7o A trick to study ^[/[-modules. In order to study ^[j] -modules, the
following trick is useful. Let K be an algebraic closure of C(s\ where s is an
indeterminate over C.

5.7.1. For any subfield k of C whose cardinality is countable, there is an
isomorphism K -> C which preserves every element of k invariant.

This simple remark enables us to apply the results obtained so far to ^K-modules.
(Here and below, we put £FK:=^®CK and ^K:=/)®CK. More generally, we
indicate ®CK by the suffix K.)

Lemma 5.8. Let M be a quasi-coherent QiXQ-module, ui

i4:=(ul9'"9up)9 ff an indeterminate over K, and Jf \=@x^o}(fau). Then we can
naturally identify JY l(o-s)J^ = ^x

Proof. For the sake of simplicity, we assume that p=l (u=\u\ and X
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is an affine variety. Then we have a natural surjection

q>:^ = (K® <®)\a](f*u) 3 £ : = I

It suffices to show that ker cp a (a —s)jV. If cp(^) = 0, then the second term of

J

vanishes, and hence £e(<r —

This lemma enables us to apply the results concerning ^(/aw) (aeC) to

^X,K(/SW) := ®«M(T«)/(ff ~ *)®*.KM(T K) = ̂ x W(/sw)® c[s]K. For exam-
ple, we get the following lemma from (5.4).

Lemma 5.9. If ^XoM ^ a regular holonomic Q) ̂ -module, then

Here we may replace (JK) ^ with either of (/K), or (/K), # . /« particular, if @xjd_
is a simple @Xo-module., then @x,K(fsu) *s a simple @XK-module.

5.10. Various ^-functions. Let X be a connected non-singular variety over
C, 0^/er(*,6V), and X0:=X\f~l(0). For xeX, put Ax:=0XmX9 >?, :=(?!%,
and let Jx be the completion of ^x by the maximal ideal. Let M be a
holonomic ^Xo-module, u^T{X^Ji} (l</<^), and M = (M I , - - - ,MP ) . Let R be
one of the rings Ax, Ax or ^(x. Let Bx(s,u), Bx(s,u) or 5X(^,M) be the (monic)
minimal polynomial of

for the respective R, which we shall call the b-function. (If we admit the
^-function to be zero, we do not need to assume the holonomicity of Ji^ Let
B(s,u) be the minimal polynomial of
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which is also called the b-function. In the remainder of this section, we study
a relation among these ^-functions as a preliminary for (6.17). It is easy to
see that

(5.10.1) B(s,u) is the least common multiple of {Bx(s,u)\xeX}. (Cf. (2.5.2).)

5.11. fr-Functtons and group actions. Let y be an automorphism of X such that

(5.11.1) f(yx) = lf(x) with some A e C x .

Then y induces an automorphism of XQ. Let J{ = @XQU_ (u = (ul9'--,up)) be a
^Xo-module such that

(5.1 1.2) there exists a 2 x ̂ isomorphism cp = (py :y*J? -> Ji such that

i). (Here y*if,=

Put vi:=(p(y*ui) and v = (v^t. Then it is easy to see that

(5.11.3) 0*[>](/sw) = 9x\s\(f$ * ®x

as 2x{_s^f\ -modules, where t is the operator ji->5+l (cf. (5.1)), and hence

(5.11.4) Bx(s,u) = Bx

Now assume that a group F acts on X. By (5.11.4), we get the following two
assertions.

5. 11. 5e If every element yeF induces an automorphism of X satisfying (5.11.1)
and (5.11.2), and if x0EX is contained in the Zariski closure of a T-orbit Txl9

then Bxi(s,u) divides Bxo(s,u). (Cf. (2.5.3).)

5.11.6. Keep the assumption of (5.11.5), and further assume that x0eX is
contained in the Zariski closure of every T-orbit, then B(s,u) = Bxo(s,u).

Lemma 5.12. For any

Proof. It suffices to prove that B:=BX divides B:=BX. (Cf. (2.5.4).) Put
A\=C[X~\ and ^0:=C[Jf0]. For the sake of simplicity, we assume that u
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consists of only one section u' €Y(X&Jt). Since the problem is local, we may
assume X to be affine Put M:=DXou', and let u be the image of u' in
AX®AM. Let (x1,"-9xn) be a local coordinate system at x, di'=d/dxi9

a^Sl'-df and |a| = I^ for a = (a,,...5an)G(Z>0)w. Let

(5.12.1) P(fs+iu) = B-fsu

with P e ̂ M ® A/>j . Take & , • • -, QN e ̂ M ®^ so that S^ J>] ® x/>jjfi,
is equal to the annihilator ann(w; ^M®^^) of u in ^JXJOyiAro- Since
^xM ^s faithfully ^x[5]-flat, we may regard u as an element of ^xM®^x[S]
(/4x[^](x)^M)= ̂ ^[jJO^M (cf. [B, Chapter 1, §3, Proposition 9]), and then we
have

® A^x0)Qt = ann(w ; Ax\s] ® ADXo).
i

Let

with /eZ> 0 and ^ie^xM®^x- (The left hand side is a product of operators.)
Let

k := max{ord P, ord Ri9 ord Q{ \ 1 < / < TV},

Z 4^? and
|a |<fc

= Z ^^ (

where fla6y3x[j], ca/3ev4x[j], ^a6Jx[j] and e^eA^s}. Then (5.12.2) can be
expressed as

(5.12.3) /-*+i z Xf^-&=r z i^^
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with Xai = a(3L and YioL = di(X. Thus/*** x (5.12.3) gives a system of linear equations
for unknown variables Xa and Yi(X with ^[/[-coefficients, and has a solution
in Ax[s]. Since Ax[s] is faithfully ^x[^]-flat, (5.12.3) has a solution in Ax[s].
(Cf. [B, Chapter 1, §3, Proposition 13].) Hence we can find PtAx[_s]®ADx

satisfying (5.12.1). Hence B divides B. D

The following two lemmas are not used in the present note, but will become
necessary in a forthcoming paper.

Lemma 5.13. Let

be an exact sequence of coherent @Xo-modules. Take xeX. Put b(s):=Bx(s,u),
b'(s):=Bx(s,ur) and b"(s):=Bx(s^'). Then b(s) divides U?=_mb'(s + i)b"(s + i) if

Proof. Consider Dx,x[s,f] -modules N\=9XtX[_s~](fsu), N' := ̂ sJCM(/V ),
and N":=DXtX[s] (/V'). First let us consider the case where ®xjJ' = 0. Since

l]=N'[t~1^ and since N and N' are finitely generated ^x,*M -modules,
NcirlN' for Jk,/»0. Then

b'(s -h k)b'(s + k-l}'-b'(s- l)t ~ 1N'

tk + 1N' c tN.

Hence b(s) divides b'(s+k)b'(s + k — i)-~b'(s-l).
Next consider the case where u" is the image of M, and N' c N. Then

P /^
we get morphisms Q-+ N' -» N^>N" ->Q, where B is the inclusion mapping,

CB = 0 and C is surjective. Moreover, this sequence becomes exact after the
localization by t~l. Hence b"(s)N c: tN+(N'[rl~]nN), and consequently
b"(s)N c tN+ t~kN' for fc»0. Then

kb'(s

tN+tN' = t
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Hence b(s) divides b'(s)-b'(s-k)b"(s).
In the general case, put N'\=tmN' and b'(s):=Bx(s,fmu'). Then B'(s)N'

c /#', and N' = tmN' c N. Hence b'(s + m)N' = b'(s + m)tmN' = tmb'(s)N'
dtm+lN' = tN', i.e.,

(5.13.1) B'(s) divides &'

Let w" be the image of w in ^x0w", and put B"(s) = Bx(s,ffr). By the first and
the second steps, we can see that, if &,/»0, then

(5.13.2) B"(s) divides b"(s+k)--b"(s-l\ and

(5.13.3) 6(5) divides S'(s)--bf(s-k)b"(s).

By (5.13.1H5-13.3), we get the result. D

Lemma 5.14. Let ®Xou be a regular holonomic <3>Xo-module such that
DRXo(^;r0w) is locally constant and has a finite monodromy. Then for any xeX,
the zeros of Bx(s,u) are rational numbers.

Proof. As in [Kal], we may assume/'1^) to be normal crossing. By
(5.10.1) and (5.12), we may assume that X=Cn, f(x) = xe

1
1--xe

n
n (et.eZ>0),

DR(^Xow) is locally constant and has a finite monodromy. By (5.13), we may
assume that DR(^Xow) is locally constant sheaf of rank one. By (5.13) again,
we may assume that ^XoU. = ^x0(x

(li-"X^n) (at-eC) and w = xi1--- jcj l , taking up
possibly a different generator system. Because of the finiteness of the
monodromy, o^eQ. Hence we get the result. D

5.15. Microlocal condition. Let n: T*X-+ X be the projection, Ji a
regular holonomic ^Xo-module, ueT(X^^\ and p0 e ch(^(/aw)). Assume
that ge^yjre(po) is invertible in $po ( = {microdifferential operators at /?0}), and
that Q(fs+1u) = b0(s)(fsu) with 60(j)eC[j]. Then bQ(s) is a non-zero constant
multiple of Bxo(s,u). (Cf. (2.5.7).)

§6. D-Modules and Prehomogeneous Vector Spaces

The content of this section is a supplement of §1 and §3. The main
results are (6.20)-(6.22). To fix notation, first we review the content of § 1 and
§3, with some supplement. Next we give an essential part of the proof of
(6.20). Since the proof of (6.20) has a large overlap with that of (3.11), we
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have omitted the part which is essentially the same as (3.11).

6.1. Prehomogeneous vector space,, Let G be a connected reductive group
over C, p : G -> GL( V) a linear representation such that O0 = G • v0 is open in
V for some y0 e V. (The (/-action is defined by g • v := p(g)v (g e G, t; e F).) Such
(G,p, F) is called a prehomogeneous vector space. We denote by the same
letter p the Lie algebra homomorphism g:=Lie(G)-» gl(F) induced by

6.28 Relative Invariant. Let 0eHom(G,Cx) and 0//EC[F] such that
f(gv) = (f)(g)f(v) (geG, veV). Such / is called a relative invariant with the
character 0.

6.3. Dual Let Fv be the dual space of F, and p v :G-»GL(F v ) be the
contragradient representation. Then (G,pv ,Fv) is also a prehomogeneous
vector space. There exists a relative invariant 0//v eC[Fv] whose character
is 0"1. Then dim F-dim Fv =\n and deg/=deg/v =\d. Let <i?,i;v>
= <t;v,t;> (ueF, t;v e Fv) be the natural pairing.

We fix / and /v as above in the remainder of this section.

6.4. Put O := V\f~ HO) and Q v := Fv \/v ~ l(0). There exists a unique G-orbit
0 1 = G • v l (resp. O ± = G • v ± ) which is closed in O (resp. O v ). Define morphisms
F:Q-> Fv and Fv :fiv -> F by F.-gradlog/ and Fv .-gradlog/v. Then
Fand Fv are G-equivariant, F(n) = F(O0) = F(Ol) = O? , and FV(OV) = FV(O0

V)
= F"/(O?)=Ol. Moreover F: Ol -> O? and Fv : Of -> Oj are isomorphisms
which are the inverse of each other. In particular, dim Oi=dim O^ =\m. Let

0j -^Q-^ F and 0^ ^»OV ^ Fv be the inclusion mappings.

6.5. (Cf. (1.18).) Let (rO^)1 be the conormal bundle of 0* i.e.,

(r01
v)1 = {( i ; , i? v )erxK v | f ; v 60 1

v , v±Tv*O? (c Fv)}.

Then the following diagram is commutative.
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where O(i;,i;v):=t; + /rv(t;v). The inverse morphism of CD is given by
*¥(v):=(v-F"F(v),P(v)) (ueO). Interchanging the roles of V and Kv, we get
<£v , Tv, and a similar diagram.

6.6. For a local coordinate system {zl9~-,zm} of Ol9 put

(6.6.1) a;2:=detf/F/A\
V \ \dzj dz

(Here d/dZi denotes the vector field defined by zt.) Then a)2 is independent
of the choice of the local coordinate, and gives rise to a global section of the
line bundle (/\mT*Ol)®

2 which is everywhere non-vanishing. Let n'.O^ -» Ol

be the two-fold covering of O^ determined by w^^/o)2. The ra-form CD on
Ol is defined only locally (with respect to the classical topology), but its
pull-back 7i*co=:d> is defined globally on Ol . Define o>v2 , cov, c5v, and
7i v : Oi -> Oi , replacing O± and / with O^ and /v. Consider the cartesian
squares

(6.6.2) «"| |" and

By (3.15), we get the cartesian squares

(6.6.3) «| 4 and *v| ^v|

°i ——^ ° Ot
v - ' > Qv

such that FO T: Ol -* (5jv is the isomorphism constructed in (3.15) (and similarly
for Fv °fv). We consider (5t (resp. d±) as a closed subvariety of O (resp.
Ov) by T(resp. Tv), and we write F (resp. Fv) for To F (resp. ToFv) if there is
no fear of confusion.
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6.7. Let S>fiU0 be a regular holonomic <^n-module such that L:=DR(S>au0)
is a locally constant sheaf of rank r. Let us apply the results of §5 to

By (5.4),

By (5.9),

(6-7.2)

where ^F,K(/S"O)==^FM(/SMO)®C[S]K
J
 anc* hence

(6.7.3) ^F,K(/SWO) w 0 simple <3tVK-module, if ^QuQ is a simple &Q-module.

(See (5.7) for K.) By (5.6),

(6.7.4) ch^K(/%) = r-ch^/a, and

(6.7.5) ch^K[*](/sw0) = r -

6.8e g-Action as differential operators,, If a g-action is given on a non-singular
variety over a field of characteristic zero, then each A e g gives a vector field on
X, which we regard as a differential operator of first order. Hence, for (a
local) section u of a ^-module and for A E g, we can consider Au. Let v be
a Lie algebra character of g. Then the definition of the relative invariance
of MV ( = a symbol) with respect to g

(6.8.1) -Auv = v(A)uv (AEQ)

can be regarded as a system of linear differential equations for uv . Denote the
corresponding ^x-module by @x

uv If X consists of a finite number of
G-orbits, then @xuv becomes holonomic [Ka3, 5.1.12]. If X consists of a
single G-orbit, then <3ixuv becomes a locally free 0^-module of rank <1.
(Remark. This rank can become zero. For example, consider the case where
g acts trivially on X and v ̂ 0. For a less trivial example, see (6.1 1.10).) Assume
that we are given g-actions on non-singular varieties X and F, a g-equivariant
morphism £:X-» F, and a ^r-module Jt. For a local section u^Ji, put

Then we can see that

(6.8.2) A(£ *ii) = £ *(Au) (Ae&ue Jf).
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(Proof. We may consider locally with respect to the classical topology.

Let *={* = (• ",**•••)}, Y= {y = (.- ,y >•••)}, «x) = (-.,^)»-), and Xafc)^,
(resp. Sf&jGOgpj) be the vector field on X (resp. 7) defined by A e g. For any
exjunction t on r,^W=£^
From this relation follows that £,̂ ,{*)î  = &/£(*))• Hence

d
^-
dyj

Remark 6.8.3. Let G be a simply connected semisimple group, F a finite
subgroup, and X:=G/T. Since g:=Lie(G) has no non-trivial character,
DRx(@xuv) ~ Cx . On the other hand, the locally constant sheaves of rank
one on Jfare in one-to-one correspondence with x's in Hom(F,Cx). Hence the
locally constant sheaf of rank one associated to % =£ 1 can not be obtained as
DRx(@xuv). The author does not know whether all the locally constant sheaves
of rank one on O^ can be obtained as DR(^wv), or not.

6.9. Keep the notation and the assumption of (6.8). We further assume that
there is an algebraic group action on X of a connected linear algebraic group
G such that g = Lie((j) and that the G-action induces the g-action on X given
in (6.8). For yeG, define an isomorphism

(6.9.1) <p = <p,:y*9x-+9x

so that (p(P)h = y*Py*~1h for he&XiX and for Pe(y*@x)x = @x,yx. (Here and
below, we denote by y the morphism X -* X, x\-^>yx.) Since y*Ay*~1=y~lAy
for yeG and Ae§ (the right hand side is the adjoint action), and since
v(y~lAy) = v(A), we have

<?(?*! @x(A+v(A)))= X @x(A+v(A)).
Aeg ASQ

Hence (6.9.1) induces a ^-isomorphism

(6.9.2) <p = q>



46 AKIHIKO GYOJA

such that (p(y*uv) = uv.

6.10. Some Z)-moduIes. Put

(See (6.6) for cuv. Note that J7«<Psr = Jf <Pg..) Then we can consider the

global sections

,ni f 0gr) ( = r(fT, f 00.)),
Jr J7v

(In (3.17), (5^ and S^ were denoted by ^ and h, but here we change the
notation.) Since njF*l~iv®dv i§ a regular holonomic ^D-module, we can apply

the results of §5 to the ^-modules ®v[s](f''F*5m*) and ^F(/a-F*5(()V)
(aeC). We define S&9 F"*SS , «„, Fv*«w, ^FvM(/vs-Fv*5J and
^Fv(/va-JF

v*(50,), similarly, interchanging the roles of F and Fv. For
), put (t)0(A):= trace p(>4). Then

(6.10.1) -A8m* = <l>0(A)dn* by (3.17),

(6.10.2) -A(F*8m*) = <l>0(A)F*Sm* by (6.8.2), and

(6.10.3)

6.11. Locally constant sheaves on O and O^ . Consider

(6.11.1) a regular holonomic &Q-module @nu0 which is @Q-free of rank one,
and such that —AuQ = %(A)u0 (AEQ) with some Lie algebra character % of g.

Define a locally constant sheaf on O of rank one by L := DRQ(@nu0). By
(6.5), F induces an isomorphism 7C1(Q)-*7C1(0{')- Hence L can be uniquely
expressed as L = F*LV with a locally constant sheaf Lv on Of of rank
one.
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Example 6.11.2. Let fl9 ••-,/, 6 C[F]\{0} be relative invariants with
characters 0 l 5 - - - ,0 / such that /f(Q)^0. Let f? eC[Fv]\{0} be a relative
invariant with the character 0J"1. Then/f

v (resp. ft~
l) is a non-zero constant

multiple of Fv*/t"S (resp. F*ft
v), and u0:=Ul

i=1f^ faeC) satisfies (6.11.1)
with x = £«i$i • The locally constant sheaves L on Q, and L v on 0^ are given by

Example 6.11.3. Let <^, ft and f^ (!</</) be as in (6.11.2). Then
tiQ\=Tl\=lf*

l-F*dwv (o^-eC) satisfies the above condition with # = Z[=1aj0r

The locally constant sheaves L and Lv are given by

v), and

v _/ p .T~T /* v «, j ̂ iv j/
' —1^ 1 l^i I ̂ l I V

\ i /

Note that (Ccov)(x)(Ca;v) = C0v and hence D(Ca>v[m]) = Co;v[m], where D( )

denotes the Verdier dual.

Remark 6.11.4. For a fixed A e C x , define aeGL(V) by a(v) = )(,v. By

(6.8.2), there exists a ^Oo-isomorphism (p:a*@0oux =>@OQUX such that

fl*^)^!®!^!-*!^. (See ^ for (6.11.1) and ux for (6.8.1).) Since @0oux~@0ou0

(ux h-> w0), we have 9 : «*%0w0 3- ̂ Oow0 («*w0 1-> w0). Let cp : fl*^Qw0 ̂  ^«wo be

its extension. (Note that ^nuQ is the minimal extension of ^Oow0.) Since
(a*u0) = UQ on <90, and since they are global sections of the free (Pfi-module

0) = w0 on the whole Q.

The global isomorphism <p on fi induces a*L^L and
We can consider an infinitesimal version of the above argument. Put

Euler.^E"^;*;^. For any C00 -function \l/ on F, we have A(\l/(cx)) = (A\l/)(cx)
(A eg, ceCx). Differentiating by c and then letting c-»l, we can see that
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the Euler operator commutes with the g-action. Hence we can define a
morphism (p£Hom^:=Hom^(^M0,^M0) by (p(M0) = (Eu!er)w0. Here 2 means
@0o, but we may read 2 also as @Q. (Note that SfQuQ is the minimal extension
of ^OOMO.) Since @0o

uo is a locally free 00o-module of rank one, Hom^
= C. Hence

(6.11.5) (Euler)w0eCw0.

This remark is useful when we need (2.7.2).

Remark 6.11.6. If (G,p, F) is a regular prehomogeneous vector space,
(6.11.2) and (6.11.3) are essentially the same. See [S, Proposition 11]. Let
us show that, in general, if we do not assume the regularity for (G,p, F), then
the locally constant sheaves L of (6.11.3) can not be obtained as in (6.11.2). Let
/i>•"»// be the totality (up to Cx) of mutually distinct irreducible relative
invariants. Let <^ be the character of ft. Put u:=F*8mv (cf. (6.10)),
f*-:=fp—ffl (a,eC), L:=DR(@Qu), and assume that

(6.11.7) L~C/-*(=(g)C/rai) on 00.
i

Then @0ou~@0of-. Since L is locally constant on O, a f eZ whenever
/;(Q)90. Removing the factor C/j~af for such i from the right hand side of
(6.11.7), we may assume from the beginning that

(6.11.8) a,. = 0 whenever *<£/, where I:={i\fffl)#Q}.

Considering the minimal extension, we get DQu~DQf-. Let Pf- (PeDQ)
be the element of @nf- corresponding to u. Since the G-action on
^ = 2m>o/~m^ = ̂ m>o7~mC[F](x)C[Fv] is locally finite, there exists a finite
dimensional G-submodule W containing P. Let PF=®AFFA, P = EAPA be the
G-isotypic decomposition. Since —Af-=&iu.i$i(A))f- and — Au = (f)0(A)u
(0o = tracep) for all A eg, there exists Wx associated to Za^ —<^ 0 . For such
A, Pf-=Ptf-> and hence we may assume from the beginning that P is
relatively G-invariant with the character Sa^- — 00, i.e., (g*)"1P^* = (Za,-0I-
-<t>o)(g)'P- Take m>0 so that ^Ac/-m/}F8 Let f = c f f i - ~ f l

a i (^eZ>0 ,
ceCx). Then ^ = 0 (i^T), and fmP<=Dv is relatively G-invariant with the
character E^X^ — ma^i — 00. Put/-= IIfe/i/j

5i, where ^'s are independent
indeterminates. Consider /- in a simply connected neighbourhood of a point
of OQ. Then /m(P/-)7^0, since it does not vanish for .s = a. If 5/s are
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specialized to non-negative integers, then /- and /m(P/-) become relatively
invariant polynomials. Hence considering the character of fm(Pf-), we can
show that for se(Z>0)J, there exists c = c(s)e(Z>oy such that

i
Z ( - a, + mat + s^fa + <£0 = Z cfaWt >
iel i=l

whenever Pf- /O. We can easily see that this relation implies that each ct(s)
is a Z-linear combination of st (iel) and 1. Put d:=c(G). Then

i
4- (£o = Z d$i and ^ e Z>

and hence

(6.11.9)
ie/

Inspecting [Ki, §3, Table B], we can see that (6.11.9) is not satisfied by none
of prehomogeneous vector spaces which are listed in the table and satisfy

card{irreducible components of (p, V)}

> card {irreducible relative in variants} /C x >0.

Hence for these prehomogeneous vector spaces, (6. 1 1.2) and (6. 1 1.3) are essentially
different. (On the other hand, it is easy to see that (6.11.2) and (6.11.3) are
essentially the same if these two cardinalities coincide.)

Remark 6.11.10. Consider the ^-module ^xwv (/O) as in (6.8) with
X=Ol . By the same argument as in (6.11.6), we obtain the relation
v e I^jC^ + E^jZ^j- in place of (6.11.9). In other words if this relation does
not hold, then

6.12. 6-Functions. In the subsequent paragraphs (6.12)-(6.19)5 we study the
'^-function' of/sw0, taking up and fixing some ^QuQ as (6.11.1).

Let 2)0^_s]us^K denote the ^Oo[5]-submodule of ^00fKus^+x (cf. (6.8.1))
generated by us^+x. For a commutative C[>]-algebra C, provisionally put
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(6.12.1) ^c(/
s"o) := C® C[s]%0M(/sWo), and

We assume that C[>] c C. Since ^0oMMs(^+x and ^Ool>](/sw0) are COJ-flat
(i.e., C[Y]-torsion free),

(6.12.2)
and

where @ = @0o. In the following lemma, we use the notation of (5.7) together
with the provisional notation given here.

Lemma 6.13. Define <peHon% by q>(us§+7)=fsUQ. Then (1) <p induces
sW, (2) dimKHom = l, and (3)

Proof. (1) is obvious. (2) Since D0oKus^+x and ^OO,K(/SWO) are locally
free $0o<K-modules of rank one, dimHom^ ^dimHom^^l. (Here Hom^ is
defined as (6.12.1) replacing Hom^ with Hom^ .) Since O^^eHom^ , we
get the result. (3) For aeC, put C:={£(s)/ri(s)\£9rieC[s]9 ^(a)^0}. Then C
is a discrete valuation ring. Assume that Hon%c ^ C<p for some a. Since
Hom^c is a torsion free C-module of rank one by (2), it follows that (p = (s — x)(pf

with some (p'eHomgc, and hence that there exists a surjection

0=

This is absurd. Therefore Hom@c = C(p for all a. Take ^eHon%[s]. Then
there uniquely exists a G K such that if/ = acp. By what we have porved, a e C
for all a. Hence 0eC[>]. D

Lemma 6.14. Let u0 be as in (6.11.1). Then with some polynomial

in Dvts-](fsu0).



PREHOMOGENEOUS VECTOR SPACES 51

Proof. Keep the notation of (6.13). Define cpr GHom^[s] by
=/v(gradx)(/

s+1w0). (The well-definedness follows from that of cp'
Then (p' = b(s,u0)(p with some b(s,u0)eC[s^ by (6.13, (3)). Put u\—
fv(gmdx)(f

s+1u0)-b(s,u0)(f
su0). Then u\O0 = 0 in ^0oM(/X)5 and hence

u\ O0 = Q in ^OO(K(/SWO)- Since ^K.K(/SWO) *s a simple ^FK-module by (6.7.3),
w|O 0 = 0 implies w = 0 in ^K.K(/SMO) by the next sublemma. Hence we get
the result by (6. 12.2). D

Sublemma 6.14.1. Let M be a simple ^-module, i.e., a non-zero coherent
2 ] -module without proper coherent ^-submodule, and U c X an open subset. If
^lc//0, then the restriction map T(X,Jt)-*Y(U,Jt) is injective.

Proof. Assume that 0/wer(Jf,^) and wl^O. Since M is simple,
Jt = Q)u and hence Jt\v = Q. D

6.15. Orbit 0°. Put O°:={v-F* F(v)\veO0}. Then 0° is a G-orbit of V,
since it is an image of G-orbit by an equivariant mapping.

Example 6.15.1. In the example (3.24), O° = O8, the orbit appearing at
the bottom of the right half of the holonomy diagram.

6.16. Microlocal ^-function. Let w0 be as in (6.11.1), and bloc(s,u0) (resp.
6lo%s,^(w0))) be the microlocal 6-function of/sw0 at ^(O0) c r*K(resp./vsJ^(w0)
at {0} x O0 c r*Fv, i.e., the open orbit in the conormal bundle of {0} cz Fv).
(See (6.5) for *F.) We normalize 6loc to be monic. Thus we get the functional
equation, /s+1w0 = £lo%s,w0)P(s)(/sw0) with some microdifferential operator
P(s) e $[s~] whose principal symbol is invertible on *¥(OQ), and similarly for
/VSJ^(M0). See [G3, (0.5) and (6.1)].

Remark 6.16.1. In [G3], we have exclusively studied w0 as in
(6.11.2). However the argument in [G3] is based on the relative invariance
of/aw0, and works for general w0 as in (6.11.1).

Lemma 6.17. Let w0 be as in (6.11.1). Take veO° and v' e0°. Let a(u0)
be the leading coefficient of b(s,u0). Then

a(u0) ~ lb(s, M0) = BQ(s, u0) = B0(s, «0) = Bv.(s, M0) =
 Bv(s> wo) = ^loc(^ wo)-
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(See (6.14), (5.10) and (6.16) for the various 6-functions.)

Proof. (1) We have

{0} x 01 c: (TOO1 <= ch(/)/a) by (3.3)

= ch(£>(/X)) by (6.7.4).

Since /v(gradj is invertible as a microdifferential operator at any point of

{0} x Ol , we get the first equality by (5.15). (Note that {0} x Ol projects to
0.) The second equality is a part of (5.12).

(2) Let us show that Bv divides Bv,9 using (5.11.5) with T = G and

X=V. It suffices to prove (5.11.2). Since @0oux^> @0ou0 (UK\-*UO\ we have

for yeG, a ^Oo-isomorphism (p = (py:y*<S}0ou0-* @0ou0 such that (p(y*u0) = u0

by (6.9.2). This q> uniquely extends to an isomorphism (p:y*^nuQ-^^Qu0.

Since ((p(y*uQ)-u0)\ <90=0, (p(y*u0) = u0 on O. Thus we get (5.11.2).
(3) By the same argument as in (2), using the C x -action instead of the

G-action, and using (6.11.4), we can show that Bv, divides B0.

(4) Let us show that BJ(s,u0) = bloc(s9u0) = a(u0)~
lb(s9u0). Take u0eO0 so

that v0-F"f(v0) = v. By (3.3), (6.5), and (6.7.4), V(v0) = (v,F(v0))e(TOf)L

a ch^f* = ch@ (/aw0)» which is a point lying over v of the cotangent bundle
r*F, and whose G-orbit ^F(O0) is of dimension n. Since /v(gradj is invertible

in fv(vo}9 we get the equality. (Cf. 5.15).) D

Lemma 6.18* Let u0 be as in (6.11.1). Then degb(s,uQ) = d ( = deg/).

Proof. By (6.17), it suffices to calculate deg6lo%y,w0). By [G3, (0.5, (4))],
this degree does not depend on MO. Since we have already proved in (1.7)

that deg b(s,l) ( = deg&lo%s,l)) = rf, where 1 denotes the identity element of C[O],

we get the result. D

Lemma 6.19. Let u0 be as in (6.11.1). (1) /(grady)(/*
vs+1J^(/X))

= (-l)rf6(a-^-l,M0)/
vsJr(/aM0), where ^(-) denotes the Fourier transforma-

tion of Dv-modules. (See (2.7).) (2) fl(M0)"
1(

Proof. (1) Read the proof of (3.1) replacing b(s) -> b(s,uQ) and f*
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(2) We have

)[/v-1]) by (5.6.1)

= chD(^(fu0)) (cf. the proof of (3.2))

= chD(f*u0) by (2.7.2) and (6.11.5)

= chDf* by (6.7.4)

^{0}x00.

Since f(grady) is invertible as a microdifferential operator on {0} x O0 , and
since {0} x O0 is an open dense G-orbit of the irreducible component {0} x V
of chDf, we get the assertion. (The second equality is a part of (5.12).)

D

Now we can prove the following theorem in the same way as (3.11), using
the results of this section so far.

Theorem 6.20. Let u0 be as in (6.11.1) and put

A+:={aeC\b(a+j,u0)*Qforj=Q,l,2,-}, and

A.:={*eC\b(«-j,u0)iiOfarj=l,2,-}.

(1) D(f"u0) =

(3) tF(D(f"u0)) = ̂ (DC/^o))[/ v - '] if a e A +

(4) J2r(JD(/X))=(^rW/X))*[/^1])*
(5) Let I be the defining ideal ofOY in C[FV], 00 := trace p(A), and let
be the D-module defined by

-Au". = («0 + 1 + (/>0)(^K far A e Lie(G), and

fl«;' = 0 for a el.

Then for any a e C and for any keZ,

where ^(fuo) is identified with /v"X+t-
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Corollary 6.21. (Cf. (3.23).) Let u0, L and Lv be as in (6.11).

(1) DR(/V(/X)) = Rj^(Cf-"®L} ifxeA_.

(2) DR(Dv(f*u0)) =j,(Cf'x®L) ifxeA+.

(3)
(4)

Corollary 6.22. (Cf. [G2, Theorem 4].) Let L and L* be as in (6.11), and

!F denote the Sato-Fourier transformation.

(1)
(2)
(3)
(4)
Moreover, for these perverse sheaves, e^ = Jr~1.

Example 6.23. Let/and/v be as in (6.3). Let {/Ji < i< f c (resp. {/iv }i < i<&)
be relative invariants on K(resp. Kv) such that/f(i;)/;

v(t;v) ((y,uv)e Fx Fv) are

absolutely invariant, and such that 0£/j(Q) and 0^/j-v(Qv) for all /. Then

(6.22) holds for L = C/1
ai---/fe

ak and Lv =C/!V "a i---/ fc
v -ak|01

v .

6.24. Remark on Ccov. Let 7iv:O1
v -> Ox

v be the double covering defined

by co v (cf. (6.6)), and let L(a)y) denote the isotypic part of ft^Ccr corresponding

to the non-trivial character of Gal(01
v/01

v). Then L(cov) = Co}v. This
description of Cwv enables us to consider an analogue of (6.22) in the category

of etale Qrsheaves, which will be used in a study of character sums associated
to prehomogeneous vector spaces over a finite field.
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Let us list some symbols used in [Gl] ( = Part I) and the present paper ( = Part II). Some of
them are included in both lists if the symbol is appeared in Part I and is reviewed in Part II.

List of Symbols

Part I

1.1. G,p, F, 00, v0

1.2. /, $
1.3. «:=dim F, d:=degf, Q = Q(/):= FV'̂ O)

Oiv=0iv(/v) '

1.8. F:=gradlog/, Fv :=gradlog/v

1.10.
1.11.
1.16.
1.18.
2.1.1. A(V) = C[V],{x1,'--,xn},D(V),A=A(U),D = D(Uldi = £i,ord(P),Dk,grk(D\
2.1.2. p*9 n
2.1.3. Av, mv, AV9 mv, Av, mv, Dv, Dv, Ep

2.1.4. Dv,^v, Dv.^v,v, lv^v
2.1.7. A/I/-1] for a D-module M
2.2.3. ch(M)
2.2.4. m(C) = m(C,M) (multiplicity of a Z)-module M), ch(M) = ch(M)
2.3.1. DM, DM/S, Df*
2.3.2. N=D[_s~](f2u\ N(a) = D(f*u)
2.3.5. C[s9i], D[s9t]
2.3.6. A+=A+(c), A_=A_(c)
2.4.1. W, WQ

2.5.1. B(s\ Bv(s\ Bv(s\ Bv(s)
2.5.7. bp(s)
2.6.3. M*:=Extf)(M,Z))(g)ylO~1 (dual holonomic D-module)
2.7.1. & (Fourier transformation)

3.5. 00 := trace(p(^l)), Du'a, Dul

3.12. Oi-^O-i F, Oiv ^Qv ^ Fv, cov2

3.15. F:01->0iv
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J*M. /. OQJv == OQV /iv == - T , i/to - — i/o • fa ' —
?cvVvi A---A^ n ) " dyif\---/\dyn

(In [Gl], (5e5v (resp. ^o,v) was denoted by K (resp. /r), but we change the notation.)

3.22. L(a) = C/a, Lv(a) = C/va, H v =L(cov) (L(<uv) is a new notation introduced in the part II.)
3.23. m := dim 0t = dim 0iv

4.1. 38 = @lx = {hyperfunctions}
4.2. ykt V(K\ etc.
4.4. QJ9 Q/
4.7. /=/' = /"
4.8. G(R)+

4.10. /?v = ^-———— -, \fv\j'*'hv ( l<y<l)

4.14. |/|J(1 <y</)

Part II

5.3. ,̂̂ ), ,4+ MO, ^_MO
5.5. (r,^)*, (/a,^/),
5.7. K ( = algebraic closure of C(^))
5.10. BXQ(s,u), BXo(s,u), BXo(s,u), B(s,u),
6.1. G, p, F, 00, v0, g
6.2. ^/
6.3. pv, Fv , /v , <uv ,t;> = <i;,i;v>, dim F= dim V v =: «, deg/=deg/v =\d

6.4. F:=gradlog/, Fv :=gradlog/v, Ol -^Q^ F, Oiv ^Qv J-i Fv

6.6. co2, co, a>, n, Ol5 Q, F, wv 2 , wv, c5v, TC V , Oiv , Ov, Fv,
6.8. MV (v is a Lie algebra character.), £*w
6.9. <p = <py

6.10. 6^ =dd],^ , F*fa =F*ddl,^ , d^ =do*^ , F*^^ =F*S0;,^ , <t>0(A)
6.11. w 0 , x , L , Lv

6.14. ^,Wo)
6.15. 0°
6.16. £lo%?,Wo), 6loc

6.17. a(uQ]
6.24. L(wv)

Errata of [Gl]

/7.S96,
p.903,
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(In the two places, v should be replaced with uv.)
/7.903, t/-7: dzV A - - A z£> -> ̂  A... A dzff.




