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Cancellation and Non Cancellation Phenomena

for Infinite Complexes

By

Yoshimi SfflTANDA*

Abstract

Let L(I, J) be defined by the pull-back of CPT >#(Q, 2)< QSJ where {/, /} is a partition

of all primes. We classify spaces (Qk Z* C(f)} of loop-suspension of mapping cone of phantom

map f'.L(l, J) *S3 for k = 0, 1, • • • , °° which have the same n-type for all n. In the category of fi-

nite CW-complexes, cancellation and non cancellation phenomena are well studied. In the category

of infinite CW-complexes, the phenomena are less known. We study cancellation and non cancella-

tion phenomena for infinite dimensional complexes by using above spaces.

Introduction

P. J. Hilton and J. Roitberg [3] constructed an //-space E(5w) which does
not have the homotopy type of a Lie group. It is given by a fiber bundle over
S7 with a fiber S3 induced by 5t: S7 - >S7 and a fiber bundle p: Sp(2) - >S7.
Sp(2) and E(5w) are not homotopy equivalent and have the same genus, that is,
Sp(2) (p)~E(5iu) (p) for all prime p. These spaces satisfy also the following non
cancellation properties:

Sp(2) x sp(2)
Sp(2) x Sk~E(5w) x Sk (A = 3, 7)

Many topologists, [1] , [2] , [6] , [7] , [12] , [13] , [14] , studied cancellation and
non cancellation phenomena for finite CV7~complexes. It seems that examples
of cancellation and non cancellation phenomena are less studied for infinite
dimensional CW-complexes. Hence we study various examples of the phe-
nomena and its related topics in this paper.
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384 YOSHIMI SHITANDA

Let CP°° be an infinite dimensional complex projective space and Sk a

/c-dimension sphere. The based homotopy set [Z* CP°°, Sk+3] contains only
phantom maps and is equal to a rational vector space ZYZ as an additive
group. Now we state our main results.

Theorem 0.1. Let {/,-: i = l, • • • , n} , (gj\ j = l, • • • , n} be two sets of maps

from ^L,k CP°° to Sk+3 for k^O. Assume that there is a homotopy equivalence be-
tween the two wedge sums of mapping cones :

(1) C(/j) V- VC(/J - >C(*i) V- VC(gn)

If exactly k members of the set ( f \ , ° 8 ° , /«} are essential then the same is true of the
set (gi, "a, gn}. Relabelling the essential maps first, if necessary, it follows that

(2) C(/ i)V-VC(/ f t) ~C(* i )V-VC(* f c )

In other words, the numbers of trivial mapping cones occurring on each
side of (l) are equal and they can be cancelled. Cancellation phenomenon for
non trivial mapping cones is open. We prove the following Theorem 0.2.
From the results, we see that nC(f) V sC(g) VnC(/) VsC(/) implies g~±g.

Theorem 0.20 Let f i ( i = l, • • • , n) , g and g be phantom maps from 2* CP°°

to Sk+3 for k^O. Assume that /,- (i =1, • • • , n) are non trivial and there is a homo-
topy equivalence between C(/i) V — VC(/J VsC(g) and C(/i) V — V C(/»)
V5C(/).

In [9] , [10] , we classified spaces (Qk *Z,k C(/)} of loop-suspension of
mapping cone of phantom map /: CP°° - >S3 for k =0, 1, " • ° , °° which have the
same n~type for all n. In Section 3, we generalize the result.

Theorem 0.3. Let C ( /) and C ( g } be mapping cones of phantom maps f, g :
L(I, J) - >S3 respectively. Then, Qk 2? C(/) and Qk 27 C(^ ) are homotopy
equivalent if and only if f and -£g are homotopic for k =0, 1, o o ° , °°.

By using the theorem, we prove the following theorems and give examples
of cancellation and non cancellation phenomena.

Theorem 0.4e Let f and g be phantom maps from Z* L (i, /) to Sk+3 of
order m and n respectively. Then, if m and n are relatively prime, C ( f ) V C ( g ) is
homotopy equivalent to C(f+ g ) V C ( Q ) for k^l.
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Theorem 0.5. Let f and g be phantom maps from Z* L (I, /) to Sk+3 for k
^ 1. Then, if sC(f] V fC(0) and sC(g) V *C(0) are homotopy equivalent, ord (/)
and ord (g) are equal.

The theorem above is best. We can not get cancellation phenomenon in
this case. In fact, let /be a phantom map of order 5. We show that C(/) V C
(0) and C(2/) VC(0) are homotopy equivalent but C(/) and C(2/) are not
homotopy equivalent by Theorem 0.3.

The author would like to thank a referee for his useful comment.

§1. Preliminary

We work in the category of CW-complexes with base point and base point
preserving continuous maps. Let X V Y be a wedge sum of X and Y. A map /:
X V Y >Z with J\X = a, J\Y=bis denoted by (a, b). When X is a co#-space,
a map g = (xV y) A : X >XV X »ZV W is denoted by t (x, y). When X, Y
are co/f-spaces, we define the following map:

F : XV Y > ZV W

AV A (a, b) V (c, d)

XV XV YV Y > ZV FVZV 7
7V TV I

which is denoted by the matrix:.
c d

We can prove easily the following composition law.

Lemma 1.1. Let X and Y be double suspended spaces, and Z and W sus-
pended spaces. When F'.XV Y >ZV W and G:ZV W » U V V are given by
matrices where e, f, g and h suspension maps, the composition GF is given as fol-
lows:

I a b\ i e f \ i ae+ bg af+ bh

c d g h ce+dg cf+dh
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For general case, the composition law is given by the same way as the mul-
tiplication of matrices.

We must remark that even though the assumptions of the lemma don't hold,
the composition law is true in our applications by Theorem D of [15].

kX means a wedge sum of k copies of X and //: kX *kX is a map repre-
senting a diagonal matrix Diag(f, ••• , / ) for /: X *X:

When a complex X can be decomposed as X ~ Y V Z where Y and Z are not
contractible, X is said "decomposable". If it is not so, it is said "prime".

Theorem 1.2. Let /: 5? CP°° >Sk+3 be a nontrivial phantom map for k ^
0. Then C(f) is prime, that is, non decomposable.

Proof. If C(/) is decomposed as X\/ Y where X and Y are non trivial,
there exist maps a : C ( f ) >XVY, $:XVY >C(/) such that a$~Id, $ a

~ Id. It is sufficient to prove for the case of odd k. Since K (^2k CPn V

S2k+2)=Z+K(Z2k CPn) + K(S2k+2) = Z{<7^, v\j = 0,1, • • < , n}f we set jS1 (apt) =
Uj, j8' (v) =v. Here we set fji = r] — 1 where T] is a canonical complex line bun-
dle over CP°° and a is &-time suspension isomorphism. We get easily Adams
operation:

(*) 0* ((70') =fc*<rt (0+1) *-!}', 0*(y)=fc*+1y

By using the relations, we can get Adams operations of HJ and v. If #00 con-
tains ui and f, K(X) contains all % by using (/>2(uj). Hence ^T(7) —Z and 7 is
trivial. This is a contradiction. We may assume that K (X) and X"(7) con-
tains ^ = aui+bv and £>

 = cui~\-dv respectively where a, 6, c, d are integers and

ad-te = ±l. We have (f)2($=2k+l %+2kau2, 0
2(0=2*+1 C + 2*cua. If £U)

contains ti2, we get c=Q and a = ±1 and d = ±1. Hence K ( X ) =Z{^ Uj\j = 2,

3, —}, K(Y)=Z{v}. This implies that skeletons of X and F have %2kCPn

and 52fc+2 as retractions respectively. We get that C( / ) has retraction r :

C(f) >S2k+2 and Id = ri:Sk+3 »C(/) >Sk+3. By composing f=rif: Hk

CP°° >Sk+3 >C(f) >Sk+3, we have /~0. This is a contradiction. It is
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the same for the case K( Y) ̂ uz. •

Let j: S3 ^ZICP00 be a canonical inclusion. By Theorem D of [15] , a

homotopy set [2fc CP°°, Sk+3] is equal to ZVZ which is a vector space over Q
with uncountable basis. We proved the following theorems in [9], [10].

Theorem 1.3. The map j: S3 »2CP°° induces a monomorphism for k ^0 :

T.k j: [S* CP00, Sk+3] >[S* CP00, 2?+1 CP00]

By using this theorem, we classified the homotopy type of some spaces of
the same n~type for all n.

Theorem 1.4. Let f and g be maps from CP00 to S3, and C(/) and C ( g ]
mapping cones of f and g respectively. Then, Qk Z* C(f] and Qk Z* C ( g ) are
homotopy equivalent, if and only if f and ±g" are ho mo topic for k = 0, 1, 2, • • - , °°.

In Section 3, we generalize the above theorem and get examples of cancella-
tion and non cancellation phenomena.

§2. Cancellation Phenomena

Let/;-, # / :Z* CP00 >Sk+3 be maps for / c^O , i, / = !, 2, —, n. We pro-
pose the following problem:

Problem. Does a homotopy equivalence C(/i) V - - - V C(/J ~C(#i) V - - - V
C(gn) imply f i ~ g s d ) where s ( i ) means a permutation?

For the case n = l, this is true by Theorem 1.4. For the case n=2, we can
easily give the following counter example.

Example. Let maps A: I? CP00 V 2" CP00 >Ek CP00 V Z* CP00 and

B: Sk+3 VSk+3 >Sk+3 V Sk+B be given by the matrices (k >0). Here m and
n are relatively prime and ms+nt=l.

(
1 —nt\ /m — t \

) B=( )1 ms n s

These maps are homotopy equivalences. Let / be a non trivial phantom map

from 2? CP00 to Sk+3. Then, C(mf] V C(n/) and C(/) M C(mnf) are homo-
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topy equivalent. Since we have the commutativity :

mf 0 \ / 1 ~nt\ i m

0 n/' U ms ' n s Q mnf

we can easily get the commutativity between cofiber sequences and the homo-
topy equivalence between C(m/) V C(nf) and C(/) V C(mnf) . By Theorem
1.4, C(/), C(mf) , C(nf) and C(mnf) are not homotopy equivalent each others.

On the other side, we have the next partial answer for the problem.

Theorem 2.1. Let {ft, g/: i, / = 1, 2, • • • , nHe phantom map from 2A CP°° to

S*+3 such that any two maps of {fi : i =1, 2, • • • , n} af£ linearly independent over Q.
Then, C(fi) V ••• V C(fn) and C(gi) V"° V C(gn) are homotopy equivalent, if and
only if fi and -tgsu) are homotopic for k ^0 where s ( i ) means a permutation.

Proof. By the assumption, f i ( i =1, 2, ° - 8 , w) are not 0-homotopic. Let 0 : C
(/i) V ° - a VC(/J - *C(gi) V"-VC(#n) be a homotopy equivalence. Since the

composition nZ* CP°° - > nS*+3 - > C (/J V - V C (/») - ^ C (ft) V - V

C(gn) - ^nX A + 1 CP°° is 0-homotopic, 0 induces a homotopy equivalence ^4:

nS - >nS by Theorem 1.3. (p and ̂ 4. induce homotopy equivalences B:n

Z"+1 CP00 - >nEk+1 CP00. Hence we get ZU • JWa^(A, -, fn)=Diag(g1, -,
^•w) B. Here we may assume that ^4 and B are w x n-matrices with components
an and 6,; of integers respectively by Theorem D of [15] . If an and a/* are
not 0, fj and /A are linearly dependent by gibn = an fj and gibik = aik fk- This
is a contradiction. Each row of A has only one non-zero component which is
± 1 and also for B. Hence we get the result. H

When {/,-: i =1, 2,"°,n} are not linearly independent over Q, we investigate
cancellation phenomena in the following. The following theorem is proved by
the same method as Theorem 2. 1. Hence we omit the proof.

Theorem 2.2. Let (fa; i = 1, --, m, j = 1, • • • , £,-}, {#,-* ; i = l, "°, m, A: =1,
o e o , ^J be the two sets of non trivial phantom maps from Zfc CP°° to Sk+3. Assume

that fij= dij fi, gij= d 'a fi for non zero rational numbers da, d 'a for i = 1, • • • , m, j=
1, 0 8 ° , Pi, k = l, "°, qi and {/ ,- ; i=l , o e o , w} are linearly independent over Q.
Then, a homotopy equivalence of the two wedge sums V tj C(fij) ~ Vz-, f t C(gtk) im-
plies pi — qi for i = 1, • • •, m.

Theorem 2.3. Let {fi, g j ' . i — l , ••*, m, j = 1, °-°, n} be non trivial phantom
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maps from 2A CP°° to Sk+3 for k ^0. Then, a homotopy equivalence C(/i) V ••• V
C(/J VsC(0)~C(*i)V-VC(#,) VtC(O) i

Proof. By the consideration of /c +3 dimension homology, we get m+s —n
+ t. We suppose £ > s. When F is a diagonal matrix, we set Diag(fi, '", fm}
and C(F) =C(/i) V — VC(/J etc. Set an inclusion i :C(F) - > C ( F ) V
sC(0) and a homotopy equivalence 0 : C ( F ) VsC(O) - >C(G) WC(0) and a
retraction r: C(G) WC(0) - >C(G) . We represent Hk+3($} by the following
matrix where A ,/s are small matrices of ///c+3 (0) .

Hk+3((f)} = (Aij}

where A^d, j — 1,2,3 and 4) are defined as follows:

3) - >Hk+3(nSk+3}

Z*+1 CP°°},Hk+3(tZ
k+1 CP00) resp.)

A /2 : H t+3 (5S *+3) - >H,+3 (nS fc+3)

Cff f c + 3(fS*+ 3) f ff*+3(nZ*+1 CP00), ^+3(^Zfc+1 CP00) resp.)

Ai3:Hk+3(mZk+1 CP00) - >Ffc+3(n5A+3)

(Hk+3(tS
k+3)t Hk+3(nZk+1 CP00}, Hk+3(tZ

k+1 CP00) resp.}

Au:Hk+3(sZk+l CP00} - >Hk+3(nSk+3}

(Hk+3(tS
k+3},Hk+3(nZk+1 CP00), Hk+3(tZ

k+1 CP00} resp.}

By (co) homological reason, we get Ai3 = Q, Au = 0, A^ — 0, A 24— 0. Consider
the composition r 0 r. C(F) - > C ( F ) VsC(O) - >C(G) V f C ( O ) - ^ ( n + t)

Ek+1 CP00 which is equal to C(F) - >mSk+3 - > ( n + t) Sfc+1 CP00. Since r 0
iFis 0-homotopic, we get A31 = 0, A41 = Q by Theorem 1.3. Similarly we get A2i
= 0. If 5 is smaller than t, we see rank (An Ai2} ^n and rank (0 A 22) =s.
Hence the rank of the following matrix is smaller than m+s:

A-

/i22/

This contradicts the assumption. Hence m = n, s — t and A is non singular.
Similarly, the following matrix B is non singular:
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Since A u and A 22 are non singular, we can easily construct a homotopy equiva-
lence 0: C ( F ) V«?C(0) >C(F) VsC(O) such that Hk+3((f>) is equal to the fol-
lowing matrix:

0 0

0 /, 0 0

0 /A32\ Im 0

is equal to the matrix:

0 0

A22 0

0 AZZ

0 A±3

Consider the following diagram of cofiber sequences:

(m+s) 2?CP°°—»(m+s) S*+a-*C(F) VsC(O)—»(m+s) Hk+1 (

B

By the commutativity of the above diagram, we get AnF= GA3s and A^ = 0.
Since detU33) = ±l, det( Au) = ±1, we see C(F)-C(G). E

As corollaries of Theorem 2.3, we get the following results.

Corollary 2.4. L*f / aw^ ̂  be maps from Ek CP°° to S k+3. mC(f) V 5C(0)
and mC(g) V sC(0) are homotopy equivalent, if and only if f and + g are homotopic
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for k^Q. In particular, mC(f) and mC(g) are homotopy equivalent, if and only iff
and g are homo topic for k ^0.

Proof. If /~0 and g"~0, it is true. We may assume that / or g are not
0-homotopic. By theorem 2.2, we get m C ( f ) ~ mC (g) . By using the same

notation, we get An f= gA33. We have flm
 = g(Au) ~1 ̂ 33. By comparing the

both sides, we get/~±£\ •

Now we prove a theorem which gives another type of cancellation phe-
nomenon. We prepare an elementary lemma of linear algebra.

Lemma 2.5. Let X and Y be n X n matrices with components x a, y a of inte-
gers or rational numbers respectively and H a diagonal matrix Diag(hi, • • • , hn)
with component h l in Z YZ. Then, XH = HY implies detX = detY.

Proof. XH= HY implies % hj — hiya for all i, j. For any permutation o —

Gi, °", jn), we see * l f l x2j2
m"xnjn = y^i W'ywn and hence detX = detY.

Theorem 2.6. Let f t ( i = l, • • • , m) , g and g be phantom map from 2* CP°°

to Sk+3 and ft (l, — , m) non trivial phantom map. C(/i) V ••• V C(/«) V sC(g)
and C(fi) V '"VC(/ W ) V sC(g') are homotopy equivalent, if and only if g and
are homotopic for k ^0.

Proof. Le t0 :C( / i ) V-VC(/m) V sC(g) - >C(/i) V- V C(/J
be a homotopy equivalence. If g is homotopic to a constant map, the theorem is
true by using the proof of Theorem 2.3. We assume that g and g are not
homotopic to a constant map. A homotopy equivalence 0 induces homotopy

equivalences 0': (m + s) Sk+3 - » (m + 5) SA + 3 and 0" : (w + s) 27+1 CP°° - >

(m + 5) 2fc+1 CP°° by the same way of Theorem 2.3. We represent H k+3 (0)
by a matrix as in Theorem 2.3, where A tj is restriction of 2 (m + s) X (m + 5)
matrix # fe+3 (0) = (^4 „•) . By the same method as Theorem 2.3, 20' Diag(f\,
• • " , fm, g, '" , g) = Diag(fi, • • - , /w, / • • - , / ) 0". By representing homotopy
equivalence 20 and 0" by matrices, we get the following equation where F =

F

N C D ' N 0 ^ / 7 X 0

Here determinants of the following matrices are ± 1 and A and D are matrices
of degree m and s respectively:
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5\ ,A B\

From the equation (*) , we have

(**) AF= FA\ Bg= FB' ,CF=g C" and Dg= g Df.

If D is not zero matrix, we get D' = dD and g= dg for a non-zero rational
number d from Dg= g D'. If D is a zero matrix, B, C, B' and C" are not zero
matrices. We get g = &*/,- for some non zero bi from Bg = FB', and / = GJ fj
for some non zero GJ from CF = g C'. If g and / are linearly independent, it
contradicts Theorem 2.2. Hence g = dg for a non-zero rational number d.
From(*), we have the following equation:

dB,F Ox ,F 0 v A' B'

dD o gfi o gfr

Hence we get the following equation from Lemma 2.5 :

i A dB\ i A' B\

det I } = ±ds = ±1= det I j
XC dn' V' D''

We see d = ±1 and hence g = ±/. H

By using Theorem 2.2 and 2.6, we get Theorem 0.1 stated in Introduction
and the following corollary.

Corollary 2.7. Let f, g and g be phantom map from I? CP°° to Sk+3. mC
(/) VsC(g") and mC(f) V ' sC(g') are homotopy equivalent, if and only if g and ±
g are homotopic for k^Q.

We can also prove the following cancellation theorem by the same way as
Theorem 2.3.

Theorem 288«, Let ft, gi (i =1, - o o , m) be non trivial phantom map from lLk

CP00 toSk+3. C(/i) V-VC(/J V(5 / Z 1 V-V5'5) VfZ"+ 1 CP00 and C(gl)V

V (S*i V — VS*0 V^2A+1 CP00 are homotopy equivalent, if and only if
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C(/i) V —VC(/«) and C(gi) V — V C(#«) are homotopy equivalent for k + 3^

§3. Spaces of the Same w~Type for All n

Let {/, /} be a partition of all primes and L(l, /) defined by the pull-back of

CP? - >K(Q, 2) < - £S5. Clearly we have L ( 7, /) / = CPf and L ( 7, j)f = QSj.
The space 7, (7, /) is QMl(j, 7) in [11]. The spaces are also studied in [4],
[8]. When /is empty, L(7, /) is CP°°. The integral homology of L(l, /) is a
free abelian group of finite type. Hereafter, we assume that { 7, /} is a
non-trivial partition. Clearly spaces (C(/) | phantom map /: Z* L ( 7, /) - *

Sk+3} are of finite type and have the same n-type for all n. We shall classify
the homotopy type of mapping cones (C(/) Iphantom map /: Zfe L ( I, /) - »

S1*"4"3}. When /is empty, we classified the homotopy type in [9]. The homo-

topy set [Z* L ( 7, /) , S*"1"3] is given by Milnor exact sequence, that is, it con-

tains a homotopy set Ph(Z f c L(7, /), Sk+3) of phantom maps and Lim[Z fc 7, (7,

/) w, S1**3] . We can determine the former set The following result is also
proved by using Mayer-Vietoris sequence (cf. [8], [11]).

Lemma 3.1. The homotopy set Ph (Z* L(7, /) , Sk+3} of phantom maps is
Zr /Z= Z r / Z i@ (@Z/q°°, q^j}. The suspension homomorphism S * : Ph (2fc

L ( 7 , / ) , S*+3) - ^Ph(Z f c + 1 L(7 , / ) , 5fe+4) is an isomorphism.

Let j:Sk+3 - »2:*+1 1(7, /) be the canonical inclusion and L ( 7, /) n the
~skeleton of L(7, /) . The map j induces the map of inverse systems (/n) * "•

(7, /), 5fc+3) - »Ph(2? L(7, /), ZA+1 L ( 7 , / ) ) . The following theorem is
proved by the same way as Proposition 1.2 of [9] . By Proposition 3.2 and
Lemma 3.3, we can also prove Lemma 3.1.

Proposition 3.2. The canonical inclusion j: Sk+3 - >^k+1 L( 7, /) induces

a monomorphism j * : Ph (Zfc L ( 7, /) , S*+3) - »Ph (Zfc L ( 7, /) , Z*+1 L ( 7, /) )
/or fc^O.

Proo/. It is sufficient to prove that the map {(>) *}:{[Z*+1 L ( 7, /) n,

Sk+3]} - »{[Z*+1 L(7 , J ) n , Z"+1 L (7 , /)]} induces an into-isomorphism of

Lim^groups for k^Q. Since [Zft+1 L ( 7, /) M, Zfc+1 L ( 7, /)] ® Q is equal to

Q, V?=i(Sk+2i+1)Q], there exists a free generator ^:Z*+1 L ( 7,
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/) n - *• 2A+1 L ( I, /) where gQ represents (inclusion) • (projection) : V/=i

(Sk+2j+1} Q - > (5 k+3) Q - > Vr=i (5 *+2m) Q up to a finite degree. The free part

of [2?+1 L(lj)n, Sk+3] is Zand is mapped into the free part Gn of [2?+1 L(/,

/)w , 2*+1 L(/ , /)] which is generated by the map £-. It is sufficient to prove

that the homological of the image of icn : G« - ^[S1^3, 2*+1 L( / , /)] increasing
as n is increasing for /c ̂  0. Since this value is evaluated by the ordinary

cohomology Hk+3 (tcn) or the ^-theory K(/cn) , we obtain the result for k > I
from the following Lemma 3.3. For k = 1, we project it to its abelianized
group.

Lemma 3.3. // amaph: 2?+1 L ( I, /) n - »2?+1 L ( I, /) satisfies Hm (ti) = 0

for m>k + 3, then the degree d (n, k) of the map Hk+3 (h) :Hk+3 (Z*+1 L (/, /))

- >Hk+3 (2?+1 L( /,/)") satisfies

vp (d(n, k) ) ^ Mo*{^ (y) : ; = 1, 2, — , n}

/or primg number p in /, ty/igrg y/, (y) is the exponent of p in the decomposition of j
to prime factors. Moreover there exist maps h such that vq (d(n, k)) = 0 for prime
q in J and n, k.

Proof. The proof of the lemma is similar to Lemma 1.3 of [9] . We may
prove this lemma for odd k by considering the suspension. We shall prove
only in the case of k = 1, because in the other case the proof is similar. Since
Chern character map is monomorphic in this case, we use a localized ^-theory
K(-\Zt) = K(-}®Zr. We set in K(-\Zj):

ti (Bn)= 53=10, By! (a,ez/)

Clearly a\ is equal to the degree of //4( h) . Since the Chern character map is
monomorphic, it holds hl (B^) = 0 for j > I by the assumption. We calculate

the next formulas. 02 ti (Bft) = (p2 (S?=ia,- BfjLJ) =2B<p2 (ZjLia, fij) =

2l>=ia;- B(2fjt + ^2)j and ti (/)2(B[i) =2hl B(p2 (ji) =2hl (B^ + 2B^)} =

4 (Zy=io,- Erf) . By 02 ti = h ' 02, we obtain T (p2 + 20) = 2T (0) where

T(fi) = Z7=io/ 0;'. Hence T(fi) must be ai L^(l +0) = a! S~=i {(-l)J'+1/;j

^ mod 0W+1 and a/ = ai (-l);'+1/;. Since ay = ax ( — l)y+V; is in Zt for ; =

1, 2, • • • , n. We obtain the former result For any map h: Z!*"1"1 L(/, /)w - *

2?+1 L(J, /), we can construct h' by (h')I=h/n^q (degree (h)) (q^f) and (/iO/
is a map of degree IIvp (degree (h)) (p^- 1) . This is possible by James's split-

ting of the suspension of QSf. Hence we get the result. H
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For the case of empty set /, we classified spaces (C(/) |/} by Theorem 2.1

of [9] . Since a homotopy set Ph (2fc L( /, /) , Sk+3) of phantom maps is equal
to Z/VZ, it contains torsion elements. When a map /satisfies r/~ 0 for the
smallest natural number r, we call the number r the order of / denoted by ord
(/) = r. For a generalization to the case of non empty set /, we must prepare
the following proposition.

Proposition 3.4. L e t f : 2? L( /, /) - >Sk+3 be a phantom of order r. Then

there exists a map r~ : C(/) - > Sk+3 such that H k+3 (r~) = 0 on H k+3 (2?

L( /, /) ) and degree mr on H k+3 (Sk+3) fork^Q and m.

Proof. By rnrf— 0, there is a map r~ : C(/) - >Sk+3 such that the degree

on Hic+3(S
k+3) is mr. The localized map // is a constant map, we have C( / ) /

= C(//) = (S*+3)/ VEk+1 CP7. Since a map from I?+1 CP? to (S*+3)/ is
a constant map, we have ( r~) / ~ 0. From this, we get the result. •

By using a codiagonal map A for A: > 0, we define (id, ir~) A : C(f) - >

C(/) VC( / ) - >C( / ) where i is an inclusion of Sk+3 into Con*(Z* L(/ , /))
of C(/). We get the following result.

Proposition 3.5. Let/: Z* L( /, /) - >sk+3 be a phantom map of order r for
k^l. Then there exists a homotopy equivalence r : C ( f ) - > C (/) such that
Hk+3 (r) is given by the following 2X2 matrix for m :

Id 0 v

j : Hk+3 (S
 k

mr Id'

Now we classify the homotopy type of mapping cones (C(/) Iphantom map

Theorem 3.6. For k^Q, let / g: lLkL ( /, /) - > Sk+3 be phantom maps.
Then C(f] and C(g) are homotopy equivalent if and only if f and ± g are homoto-
pic.

Proof. If / and =t g are homotopic, C(/) and C(^) are clearly homotopy
equivalent. If / or g are infinite order, the proof of the theorem is the same as
Theorem 2.1 of [9] . Hence we assume that /and g are finite order. If there is
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a homotopy equivalence 0: C(/) >C(g), we set £* (V) = aV + bEk+1 U and

£* (5?+1 If) = cV + dZk+l U, ad- bc= ±1 where V is the generator of

Hk+s (s*+3; z) and 2/H-i [/is the generator of #*+3 (Z*+1 L(/, /) ; Z). By a

property of phantom maps, we have b — 0 and hence a — ±1, d = ±1 by ad ~

5c= ±1. The map /J does not induce a map a:S*+3 >$k+3 of degree ± 1.

But by modifying /J, it induces a map a: Sk+3 >sk+3 of degree ± 1 and c = 0
as follows.

When f ~ g ~ 0, the statement is clear. We may assume that / is not
homotopic to a constant map. qf$ jf\ !Lk L( /, /) >^k L( /, /) is homotopic to
the constant map by jf~ 0. Since q$ jf is homotopic to sf: 2fc L (l, /) >

s*+3 ,2fe+1 L ( / f /) where 5:5 f t+3 ^2fc+1 L ( / f /) is the map of degree 5,
the map 5 is a map of multiple degree mroir= ord(/) by Proposition 3.3. By
making use of j8:C(/) >C(/) and h : C ( f ) >C(/) in Proposition 3.5, we
may assume that fih induces the following commutative diagram where a, fih, j
and d are maps of homotopy equivalences.

/ i P -S/

a

L(IJ) - »S&+3 - >
g k

We have that 2/ and Z^ are equivalent under the action homotopy equiva-

lences on Ph(2?+1 L ( / , / ) , SM) = Ext(Hk+3 (Zk+l L(l, /) ; Q), 7r*+4(S*+4))
/Im (ZT/Z) = Ext(Q, Z) /Im (Zf/Z) = Zr/Z. From this, we have Zf~ ±
^g and hence /~ ±^ by the suspension isomorphism. The case for k = 0 is
proved by considering the suspension isomorphism between sets of phantom
maps. •

The next theorem is analogously proved by the method of Theorem 3.2 of
[9] and Theorem 2.1 of [10] . Hence we omit the proof.

Theorem 3.7. Let f, g:L(l, /) - >S3 be phantom maps. Then Qm Zm

C(/) and Qm ^,m C(g) are homotopy equivalent if and only if f and ± g are homo-
topic for 0 ^ m^ oo.

By the same way as Theorem 1.2, we can get the primarity of mapping cone

of a non trivial phantom map /: 27 L(/, /) - >Sk+3.
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Theorem 3.8. Let f: 2* L ( / , /) >$k+s ^e a non trivial phantom map.
Then C (/) is prime, that is, C (/) can not be decomposed as a wedge sum of
non-trivial spaces.

§4. Non Cancellation Phenomena

We got some results of cancellation phenomena in Section 2 for mapping

cones of f:^kCP°° - >Sk+3. If the orders of / and g are infinite, the state-
ments of Section 2 hold by the same method. Actually the following theorem
corresponds to Theorem 2.6.

Theorem 4.1. Let ft (i = 1, • • • , n) , g and g be phantom maps from ZAL( /,

/) to Sk+3 of infinite order for k ^ 0. Then C(/i) V — V C(/«) V sC(g) and C
(/i) V ••• V C(fn) V sC(g') are homotopy equivalent, if and only if g and ± g are
homotopic.

In this Section, we give some examples of non cancellation phenomena.

Theorem 4.2. Let f, g: ZfeL( /, /) - >sk+3 be phantom maps of order m and
n for k> 0. // m and n are relatively prime and ms + nt = 1, the following formu-
la hold :

(1) C(/)VC(*) ~C(/+*)VC(0)
(2) C ( f ) V C ( g ) ~C(f+sg)VC(0)
(3) C(/)VCy ~C(ff+fg)VC(Q)

Proof. Since m and n are relatively prime, there exist integers s, t such that
ms + nt = 1. By the following calculations, we get the results respectively.

L s\ If 0\ = //+£• (A Int+mnst ms2\

m nt] \0 J " \ 0 O/ \ -m 1 /

nt ms

1 -1

n m

s —t
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By using Theorem 4.2, we can get various examples.

Example, Let / g: lLkL( I, /) >Sk+3 be phantom maps of order 3 and 5
for 3 and 5 in /. By 3 X 2 + 5 X (- l) = 1 and Theorem 4.2, we have C(/) V
C(g) - C(f+g)VC(Q) - C(f+2g)VC(Q). By C(f) - C ( ± f ) and C(j'g)
~C(±jg) 0'= 1 .2 ,3 ,4 ) . Spaces {C(if+jg) VC(0) i = l, 2, / =1, 2, 3, 4}
are homotopy equivalent to C(/) VC(g"). The example shows that uniqueness
of splitting and cancellation phenomena fail.

Theorem 4.3, Let /, g: 2?L (/, /) > S*+3 &0 phantom maps for k^Q,
and orders off and g finite. If sC(/) V fC(0) and sC(g) V fC(0) ar<? homotopy
equivalent, ord(/) and ord(^) arg equal

Proof. If sC(/) WC(0) and sC(g) WC(0) are homotopy equivalent, we set
a homotopy equivalence 0 between them. We represent Hk+s (0) as in
Theorem 2.2. By (co) homological reason, we have A 13 = 0, A u = 0, A 23 — 0

and A 24 — 0. By Proposition 3.2, we have A 31 = mA 31 and A^i = mA 41 where

components of A 31 and A 41 are integers. By Proposition 3.5 and the method of
Theorem 3.6, there is a homotopy equivalence 0:sC(/) VfC(O) > sC(/) V
£C(0) such that the composed map 00 gives -A ,^ — 0 for (i, /) = (3, l), (3, 2),
(4, 1), (4, 2), (1, 3), (1, 4), (2, 3) and (2, 4) in Hk+3 (00). Hence we get the
following equation:

0

0

By comparing the both side, we have An f=gBn, A2i /= 0 and gBi2 = 0.
Set m — ord (/) = ac and n = ord (g) = be where c is the greatest common di-

visor of ord (/) and ord (g). From the above relations, we get A n = aA n, Bn

= bB'u, A 21 ~ mA'2i, B\2 = nBi2. If m ^ n, that is, a or b is not 1, we see that
det A or det B is not ± 1. This is a contradiction. Hence we get the result. H

Example. When the homotopy set Ph(^kL(l, /), Sk+3) of phantom maps

contains a subgroup Z/5 of order 5 generated by /: ^kL(l, /) »S fc+3, C(/)
and C(2/) are not homotopy equivalent by Theorem 3.6. Let A and B be maps
given by the following matrices respectively:
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2

5

We get a homotopy equivalence between C(/) VC(0) and C(2/) VC(0) by Diag
(2/, 0) A = B Diag(f, 0). Hence cancellation phenomena does not hold. Let
G and H be maps given by the following matrices respectively:

/2 5

U 3

By G/= 2/H, we get a homotopy equivalence between 2C(/) and 2C(2/).
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