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§ 1. Introduction and Statement of Results

Let % e TT^CSOCg + l)). We denote the induced g-sphere bundle over the n-
sphere by £(%) or simply E. The purpose of this note is to study the image of the
function

[£(%),£(%)] -*Hom(#*(£(%))/Tor, #*(£(%))/Tor)

which assigns the induced homomorphism, where Hm(X) is the reduced ra-th
cohomology group of a space X with values in Z, the group of integers. Let pl :

> SQ be the canonical projection. We denote PUC*Q by a <E Tr^CS*).

According to [13],

where p is the attaching map of the top cell of £(%). Let Y = SQUa e
n. When n = 1

or when q= I and a =0, the function is surjective by [5]. In this note, if we do not
specify otherwise, we will always assume

q > 2, n > 2, and a — 0 provided n = q + l.

In this case, note from [5, 6] that
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=Z{xQ,yn,xQyn}, y2
n = 0,

where deg(a:9) = q and deg(t/n) =n. Let kj, be integers. When #^w, a self map /
of £(%) or 7 is called an M(W) -structure if /*(*<,) = /cr9 and/*(yj = /yn. Let
(fly) be a 2 X 2-matrix whose entries a^ are integers. When q =n, a self map / of
E(X) or Y= SnVSn is called an (a^-) -structure with respect to {xn,yn} if
/*(£„) = G,uXn+al2yn and /*(t/n) — fl2A+G222/n- When no confusion will occur, we
will omit the words "with respect to {xn,yn}". Notice that when q¥=n, an M(k,0-
structure is an Me -structure [4] for any 6: {1,2,...} -> Z with 9 (#) =

We will study conditions on the existence of an M (A:,/) -structure and an
(a#) -structure on £(%) in § 2 and § 3, respectively. Our results are partial when
E(%) does not have a section. To state our results, we need some notations. When
E(%) has a section, we denote by f an element of Tr^CSOCg)) such that
i'.(?) = X where f : S0(q) -> S0(^ + l) is the inclusion. Let jm denote the identity
map of Sm and /: ;rr(SO(m)) -» 7rr+m(Sm) the /-homomorphism.

Theorem 1. When q^n and E(%) has a section, £(%) has an M(k,i) -structure
if and only if

-kiq o /(?) - ftC^fl] /or some ̂  e ;rn(S
9).

7w particular, when q^>n, E(%} has an M(/c,Z) -structure if and only if

k(l- !)/(%) -0.

Theorem 2. Wzew g=w, ̂ ere e '̂sfe a basis % = {xn,yn}such that £(%) has an
(a^-structure with respect to $8 if and only if one of the following holds.

(1) n= 1, 3, 7 awd (a^-) zs arbitrary.
(2) n = 1 (mod 2) w% w ^ 1, 3, 7, %=0 and flna21 = a12a22 = 0 (mod 2).
(3) w = 0 (mod 2), %=0 and ana2i = <2i2fl22 = 0-
(4) n = 2,% ^

(5) n = 4,8,X = m6(m ̂  0), w;/iere 0 is a generator such that — /( 6 ) fs the
suspension of the Hopf map, and
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a21 = mal2 = 0 (mod 2

al2(mal2+2a22) = man(al2—a2l) = 0,

where b is 12 or 24 according as n is 4 or 8.
(6) n = 0 (mod 2) «ntfi w =£ 2,4,8,

ana2l = <212a22
 = 0ii(fl22~l)/C*0 = a12/(%) = 0.

(7) n = 1 (mod 8)>9, ̂  =£ 0 and a12 = aua21 = an(a22-l} = 0 (mod 2).

Theorem 3. If q !=• n and E(%) has an M(k, 0 -structure, then

(1) kcqoa = la

and there exists an element y £ nn+q(S
n} such that

(2) (E a)o y - kiq+l

Theorem 4. Suppose that there exist integers a,b,c such that atqoa = Q,
biqOdop = 0, and Q; = 0, where a: Y-* S9is an extension ofacq. Ifk = Q (mod ab}
and I = 0 (mod c), then there exists an M(k,V) -structure on

These theorems except Theorem 2 will be proved in § 2. Theorem 2 will be
proved in § 3. As applications of these theorems, we will give partial results on
theStiefel manifolds of 2-frames: Vn+2>2 = 0(w + 2)/0(n), Wn+2>2 = Z7(n + 2)/£7(n)
and JCw+2,2 = SJp(w + 2)/Sp(w) in § 4, § 5 and § 6, respectively. For example, in
§ 5, we will prove

Theorem 5. (1) If n is 0 or 2, then Wn+2>2 has an M(k, 0 -structure for all k and I
(2) When n is even with n > 4, Wn+2t2 has an M X/c;/) -structure if and only if

/c(Z-l) =0 (mod8) or/cO-5)= 0 (mod 8).
(3) Wj2 has an M(k, /) -structure if and only if k = I (mod 2).
(4) If n is odd with n>3 and Wn+2>2 has an M(k,l) -structure, then

k = 0,1 (mod 4) and k= I (mod 2).
(5) When n is odd with n > 3, Wn+2t2 has an M(Jk,V) -structure in the following two

cases:
k = 0 (mod 4) and I = 0 (mod 2),
A: z's the square of an odd integer and I is odd.
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We use the following notations. Let j : SQ -> Y be the inclusion. Given an
element $ of a group, we denote by #0 the order of 0 or zero according as fi has
a finite order or not. Given a subset B of a group, CS> denotes the subgroup
generated by B. We denote by H the Hopf invariant T^^CS") -* Z and the 0-th
Hopf-Hilton homomorphism 7rm(Sn) -» ^(S2""1) (cf., [22]).

In § 7, we will give results on cohomology classification of self maps of the
suspension of E(%}.

§2. Generalities

The following lemma is probably well-known.

Lemma 2.1. Let q > 2 and n > q + l. Assume that K is a (q — ̂ -connected
CW-complex. Let 0 : Sn~l -> K and let K* be the mapping cone of 0. For r<n+q-
3, there exists an exact sequence which makes the following diagram commutative',

P.

where the lower horizontal sequence is the homotopy exact sequence of the pair
(K*,K) andp: (K*,K) -> (S", *)is the pinching map. Moreover if nq{K) = 1(6},
then

Kerb', : 7rn+<7_2QO -> 7rn+g_2(^*)} - Image ^* + <[ft^3]>,

where [0,0] is the Whitehead product of 0 and /3.

Proof. By Blakers-Massey theorem,^?* : nr+l(K*,K^ -> 7rr+1(S
n) is isomorphic

for r < n+q — 3 and is epimorphic for r=n+q — 2. Let F be the homotopy fiber of
j: K-^K*. Then there exists a map/:F^QSw such that the following diagram of
fiber sequences commutes:

QK* - >
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Moreover the following diagram commutes:

where the vertical isomorphisms are canonical ones (see (8.20) of [22]). Let
7 ^ ^-^(F) = Z be a generator, which corresponds to 0 £ 7tn(K*,K\ Then, the
above diagrams imply that/*/ = S*dn-i) and f* (r) = A where X : S""1 -> QSn is

the suspension. This implies that for r=n — 1 the middle rectangle of the diagram
in Lemma 2.1 commutes.

We define A to make the first rectangle of the diagram in Lemma 2.1
commutative.

Let r <n+q-2 and a e 7rrCF). Since/*: ;rrCF) -* 7rr(^Sn) and the suspension

I*: Tz-^S*"1) -> 7rr(QSra) are surjective, there exists an element al e 7rr(S
n"!) such

that /*(a) = Z*^) = /* (70^), hence a- 700! e Ker(/*). When r<n+<?-3 ,

since/* and Z* are isomorphic, we have a = 70^ so that z*(a) = 70700 j = ftoalt

Therefore we have proved the commutativity and exactness of Lemma 2.1 for
r<n+q — 3. Let r=n+q — 2 and suppose nq(K) = 1(0}. It then follows from the
James exact sequence [11] that the kernel of p^:7un+g_l (K*, K} -->>^n+ff_1(S11) is

generated by the relative Whitehead product [0,£], where 4 is the characteristic
map of the cell of K*, which is attached by 0. We then have

and ^(a — /Oflj) = z*(fl) — io-^al — z* ( f l )— /8°fli. Hence

z*: 7rn+g_2(^) -> 7rn+g_2(^*)} c Image (£ J + <[6>,^J> c Imaged',,).

Thus Image ( i*) = Image (^*) + <[0,/3]> and the result follows from the equalities

Ker(/*) = Image(^) = Imaged*). This completes the proof of Lemma 2.1. D

Lemma 2.2. (1) Let q,n > 1. Then there exists a self map h of Y such that
hoj = joktg and poh = ltnop if and only if kcgoa = la, where p: Y-+ Sn is the quotient
map.

(2) When q ^ n, E(%) has an M(k, Z) -structure if and only if there exists an
M(k, /) -structure h on Y such that hop = kip.

Proof. When n<# + l and a =0, (1) is obvious. When n=q + l>2 and a ^0,
(1) holds, since kiqoa = la if and only if k=l. Let n>q + 2. When q = l, the bundle
is trivial so that (1) is obvious. Let q > 2. Suppose given a self map h of Y satisfying
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the properties in (1). Then, by Lemma 2.1, there is an integer m satisfying
kiqoa = aomcn_l so that there exists a self map ti of Y such that h'oj = jofaQ and
minop = poh'. Since ;*(/0 = j*(h'\ there exists an element b e nn(Y} such that
ti = hb. Here hb is the composition of

V Sn hvb > y

where c is the cooperator [8]. Then m^qp = poh' = pohb = (p°h}pob = (hn+pob)op.
Considering the induced homomorphisms of these maps on cohomology, we have
mtn = ltn+pob. Sincep*:7rn(7,S9) = 7rn(Sw), it follows from the homotopy exact

sequence of the pair (7,S9) thatpob = xin with x = 0 (mod#a). Hence m=l+x
= I (mod #a) so that kiqoa = ma = la. Conversely if faqoa = la, then there is a
desired map. This ends the proof of (1).

To prove (2), suppose that E(%) has an M(/c,Z) -structure /. Then h = f\Y is an
M(k,Z) -structure on Y. By 2.1, there exists an integer m with hop = pomtn+Q^l so
that there is a self map /' of £(%) with f'oj = joh, where; : 7 ->£(%) is the
inclusion. By the method used above, we can prove m = kl (mod # p ) so that
hop = kip as desired. The converse is apparently true. This completes the proof of
(2). ^ n

Recall that if £(%) has a section, then a =0, Y = SgVSn and there exists an
element f e ^n_1(SO(g)) such thati,(f) = % e ^_1(SO(g + l)), where f: SO(g)

-> SO(g + l) is the inclusion. By James- Whitehead [13], we have

(2.3) p= [v4]+zgj(f),

where xff and in are the obvious inclusion maps.

Proof of Theorem 1. First suppose that n>q + l. Note that a map h:SQVSn

-*SgVS" gives an M(fcZ) -structure if and only if Aoffl = /czg and hoin = lin+iqo^ for
some 0 e ^(S9). Therefore,

On the other hand, ho{goj(^ = iQokiqoj(g\ By using (2.3), we get kip -hop =
iQ*(klJ(S)—kcQoJ(^-\-k[cg,0D. Since f f f * is monomorphic, we have the desired

result by Lemma 2.2.
Second suppose that n < q. Let h=h(k,x,f)^ [S9VSn,S9VSn] be the map

corresponding to kcq@x®hn e ^g(S9)©^(Sn)©7rM(Sw) under the canonical iso-
morphism, that is &ot'g = kiq+inox and /iofw = /fn. It follows that /z* [iff,fn] =

~ j +#„* [>,£„] and
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= («, + «,, oa;)o/(£)

, by p.534 in [22],

sothatklp-h*p = z^(/c(/-l)/(f))-xnsK(/[a:,O +*o/(f)). Hence kip = h^p if and
only if k(Z- l)/(f) = 0 and Z[x,dJ +xq/(F) - 0. If there exists an M(A;0 -structure
on E, then there is an M(/c,0 -structure g on 7 with /c/p = g*p by Lemma 2.2 so that
k(l — l)/(f)= 0 by the above discussion. Conversely if / c ( Z — 1 )/(?)= 0, then
/[0,*J + 0o/(i:) = 0 and kip = h(k,Q,l\p by the above discussion so that there is
an Af (A; 0 -structure on E. Since I/(f) - -/(%) and S: T^+^CS9) = 7rw+g(S9+1),
it follows that #/(f) = #/(%). This ends the proof of Theorem 1. D

Proof of Theorem 3. Since £(%) has an M(/c,0 -structure, Y has also an M(/c,0
-structure. Then (1) follows from Lemma 2.2(1).

In order to prove (2), we consider the following commutative diagram:

S»-l a > C<2 ^ ^ \ro 1.

where all the straight lines are cofiber sequences. Since p o p = 0, where _p is the
bundle projection, we see that E/Sq = SnVSn+q. Thus we can write as g= ^aVco
for some CD : Sn~q -> S9+1, in other words, there exists a map in+ff : S

n+Q -> £/S? such
that p'oin^q = in_Q and g°in+Q = a). This implies that ( I ;%(&)) = Up. On the
other hand, by [12], we know that Ip = (Z;X (/(%)). So we have

(/(%)). Applying Lemma 2.1 for the case ft = la, we get

(2.4) a) i

for some x & nn+q(S
n} a n d m ^ Z . Now suppose that there exists an M(k,t)-

structure on E. Then, there exists the following commutative diagram:

Sq - > E - > E/Sq ^^ Sq+l

k /* / *
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where /o in = lin and /o in+g = klin+q+in°y for some y e 7rn+(7(S").
Hence ^aoy-t-klco — kiQ+loco. From this and(2.4),

(mod(

= /aff+1o( Ea)ox (mod( Ea)Hc7rn+g(Sn)), since (fc-Z) la - 0,

This implies (2) and completes the proof of Theorem 3. G

From now on, we consider the sufficient conditions for the existence of
M(A; 0 -structure on £(%).

Proposition 2.5. Let q>2 and n>2. Assume that there exists a non-zero integer
a such that at, fa = 0. Then, there exists an extension of aiq to Y, say a: Y -> Sq.
Suppose that there exists a non-zero integer b such that bifavp = 0. Then there exists
a map /j : E(X) -» S9 X Sn such that the following diagram commutes:

sn+q~l

where p is the restriction of the bundle projection p : £(%) -> S".

Proof. It is clear that^op = 0. Since dim Y < n+q, the map (fogo0) X£ : Y
-> S9XSW goes through 59VSn. From the assumption, io((bt£>a)\/p}c>p = 0, where
f: S9VS"->S9XS" is the inclusion map. Recall that the Whitehead product
[f f f f x n ] is the attaching map of the top cell of S9XSn. Thus from Lemma 2.1, there
exists an integer m such that [z'^ij = ((biQoa) V£)op. By the method used in the
proof of Lemma 2.2, we have m =ab. We omit the details. [H

Proposition 2.6. Le£ <?, w > 1. Suppose that there exists a non-zero integer x such
that x% = Q. Then there exists a coextension of xin, say x\Sn-*Y, and a map
fz: Sq x S" -> £(%) such that the following diagram commutes:
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where j : SQ -> Y = SQ Uae
n is the bottom inclusion map.

Proof. The assumption x%=0 implies that the bundle induced from £(%) by
the map of degree x is trivial. So there exists a bundle map:

SQxSn

{'
sn -^ sn,

where pr2 is the projection to the second factor. By restricting this bundle map /2

to the n+q — 1-skeleton, we get the map SQ V Sn-* Y. Then clearly, this map is
described as jVx by some coextension £ : Sn -> Y. Since f.(0' v £)^\.iqtin\') = 0,
there exist an integer m and a map /: SQxSn -> E(%) such that mp = 0' V :r)o
[f f f , fn] , /of = fo(y v T) and miq+rpp = pof. Using cohomology, we then have m=x.
This ends the proof. D

Corollary 2.7. Under the assumption of the above proposition, we have xp =
[/,£]. Moreover there exists an element f7 e 7rn_1(SO(^)) td;zY/z f*(f x ) = (#a )%

and (#a)p = [;", #a^Jrj*J(g'\ where i : SO(q) -> SO(^ + l ) fs t/ze inclusion and

#a: Sn -> Y is a coextension of

Proof. First assertion is obvious from the above diagram in Proposition 2.6.
We show the second assertion. Let E' be the induced bundle from E(%) by the
map of degree #a . Then E' has a section, that is, E' = (S9VSn)UX+?- The

existence of the bundle map E' -> £ implies that there exists a following commuta-
tive diagram:

SQVSn

Therefore, using (2.3), we have the desired result.

Proof of Theorem 4. Consider the composite:

where/ and/2 are maps in Propositions 2.5 and 2.6. This gives the desired M(k,V)-
structure. D

Remark 2.8. Suppose that there exists an integer m such that m% = %. Then
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there exists an M(l,w)-structure on £(%).

Proposition 2.9. Suppose q>2, n>q + l and a = 0provided n=q + l. Let h : Y
-> Y be an M(jk,F)-structure on Y. Then we have

hop-klp=j*0 for some j3 <E 7rn+g_1(S'7).

Besides, if x% =0 for an integer x and ;rn(S
9) is generated by aor/n_l, then xj*j3 = 0.

Here 7]2:S
3-+ S2 is the Hopf map and rjm = Zm~27]2 for m > 2.

Proof. Let a e nn(Y,Sq} = 1 be a characteristic map of the top cell of Y.
Then we have h* (a) = Id. Let x : (7,0) -> (7,S9) be the inclusion. Consider the
commutative diagram:

We have
z*/i*(p) =

= /»*(- MIX by [14],

and h*(p)—klp £ Ker(z*) = ImageCy^), so there exists /S £ ;rn+g_1(S9) such that
/z* (p) = /c/p+y+C^). Now assume that x^ = 0 and 7rn(S

9) is generated by ao?7w_1.
We have£*/**:r = a:/^ = p* (£rX where ̂  : F = S9Uae" -> Sn is the pinching map of
S9. From the assumption, it follows that p* : 7rn(Y^) -> 7rn(S") is injective, so that
h*x = Ix. Then from Corollary 2.7, we have x/z*(p) = ^[y,^] = lkj,lx] = kl[j,£]
= r/c/p so that x; *^8 = 0. D

Proposition 2.10. Suppose that q>2,n=q + l and a ^ 0. Then q is odd and there
exists an Mk-structure [4] on E for k = 0,1 (mod #p).

Proof. Recall from [5] thatp*: H *(Sn+<?) = ^*(E)/Tor. By [15],
+ 1)) is finite for <? even. Hence q is odd under the assumption. Since
7u2q(S

Q\Jae
9"l>) is finite by a Serre's theorem, the order ofp, #p, is finite. Hence, when

<7 is 0 if /c = 0 (mod #p) and zrf if k = 1 (mod #p), there exists a self map f of E
which makes the following diagram commutative:
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SZQ -?-» S9Ueq+l — > E

lfa* I* \f

S2Q -^ SgUeQ+l — > E
It is obvious that / is an M^-structure.

§ 3. Proof of Theorem 2

In this section we assume q=n. Let ij: Sn -> SnVSn be the inclusion to ihej-ih
component for; = 1,2. Given a self map a of S"VSn, we define an integral 2 x
2-matrix (<2f;-) by aoij = a^i^ + a^ f°r J ~ 1.2. This defines a bijection between
LSnVSn,Sn V Sn] and the set of 2 x 2 integral matrices.

Lemma 3.1. (1) For any x El 7r2w_i(Sw) and a,& £ Z,

ax ,&

2' * '"''" *2 ^ ^2

(2) E has an (a^-structure with respect to a basis S3 = {x,y} if and only if there
exists an (a^-structure g on Y with respect to §8 such that

gop = (anc

where a and b are defined by x2=axy and yz = bxy.

(3) There exist bases %= {xn,yn}and %'= (x'n,yn}of Hn(£"(%)) such that

i.e.,

1 ifn = 2,4,8 awd #(/(£)) = 1 (mod 2)
a — '

fc 0 otherwise

b = b' =Q, i.e., y2
n = 0.

Proof. Under the notations in (1), it follows from Theorem 8.5 on p.534 in
[22] that we have (<ail

jrbi^)0x = ailox+biz°x+ [ai1,bi2]°H(x^t2n-i. We also have

aipx =

and similarly
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Hence (1) follows.
Let 33 = {x,y} be a basis of #"(£). Note that if n is odd, then x2 = y2 = 0. If

/ is an (<2y) -structure on £(%) with respect to 23, then flr=/| 7 is an (af;) -structure
on y=Sn V Sn with respect to 53. By Lemma 2.1, there exists an integer m such that
gop = mp. Thus there is a map /': £(%) -> £O0 which makes the following
diagram of cofibre sequences commutative:

S2n-l

Since

= {ana21a+ana22+(-lTa12a2l+al2a22b}xy,

we have m=ana2la+ana22+( — iyalji2l+alfl22b. This has proved a half of (2). The
other half is obvious.

By (2.3), we have the following commutative diagram of the cofibre se-
quences:

sz»-i _f_^ snVSn —> E —> S2n

*
o2n

Here prl is the first projection. Choose generators zn ^ F"(C) = Z and z2n e
/f2n(C) = Z such that z2 = flr(/(f))22»- Set xn - /*(«„). Let yn be the image of a
generator of £P(Sn) under the bundle projection and satisfy f*(z2n) = xnyn. Then
^ = H(J(^xnyn. As is well-known, the image of #o/: z^CSOOi)) ^Z is Z (if w
= 2,4,8), 2Z (if n is even and not 2,4,8), or 0 (if n is odd). It follows easily that the
following element has the desired property.
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if #(/(£» = 1 (mod 2)

xn-{(H(J(£»/2}yn if #(/(?)) = 0 (mod 2)

This completes the proof of Lemma 3.1. D

Remark 3.2. When we say "the basis S3 in Lemma 3.1(3)", it is the one defined
in the proof of Lemma 3.1(3). This satisfies the following: xn = ±pr1*[Sn] and yn

= ±pr2*[Sn], where p^: SnVSn->S" is the;-th projection and [Sn] is a generator

Lemma 3.3. Let S3 = {xn,yn} be the basis in Lemma 3.1(3). Then £(%) has an
(0 f;0 -structure with respect to 58 if and only if

(ii)
\ 2

(iii) an(a12-fl21)frC/(f))

Proo/. Let S3 = {xn,yn} be the basis in Lemma 3.1(3). By Lemma 3.1, there
exists an (a^) -structure on E with respect to S3 if and only if

(3.4) <7*(p) - {a11

where g is the (a^) -structure on S"VS" with respect to S3. We have

an

2

and the right hand term of (3.4) is equal to z1*(m/(F))+w[z1,x'2], where m=ana2i
H(J(?))+ ana22H-(~l)na 12a21. Since the homomorphism ^-.^.^S^e^-^S11)©
Z-^^-2n_1(Sn V Sn) which is defined by </>(u,v,w) = f1*(w)+^2*(f)+w;[f1 ,z2] is an
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isomorphism, it follows that (3.4) holds if and only if the three equations in Lemma
3.3 hold. This completes the proof of Lemma 3.3. EH

Proof of Theorem 2. Let S3 be the basis in Lemma 3.1(3). As is well-known

Z if n = 0 (mod 4)

Z2 if n = 1,2 (mod 8) > 2

0 otherwise.

Note that all possible cases of n and % are given in (1) (7).
When n = 1,3,7, the bundle £(%) is trivial and Sn is an #-space. Hence every

self map of SnVSn can be extended to a self map of SnxSn. Thus £(%) has an
(af;-)-structure for every (ai;-) for n= 1,3,7.

Let ni-1,3,7 and %=0. Taking f =0, it follows from 3.3 that flnfl2ilX.O =

<212a22[jn,O = 0. Hence E(%) has an (afj-)-structure when (2) or (3) happens.
In the rest of the proof we always assume % ¥= 0.
Let i : SO(n)->SO(n + l) be the inclusion and A:^n(Sw) ->^n_1(SO(n))the

connecting homomorphism for the bundle SO(w + l)-»S*.
Let n = 2,4r,8 and r : S2""1 -> S" the Hopf map such that #([*„,«„]) = 2/Kr)

= 2. Recall the following:

1 if n = 2

12 if n = 4

120 if n = 8.

Let 0"e ^n_1(SO(w + l)) be a generator satisfying /(0/0 = -Ir. Let 0' e
jr^CSOCn)) be an element satisfying t* (00 = 0/7. Then /(00 -T e Ker S. Hence
/(00-r = a[«„,*„] for some a e Z by the EHP-sequence. Set 0 = 0'-aA^. Then

fZ{0} if» = 2
7rn_1(SO(w)) - i , /(0) = r, and x*(0) = 8''.

lZ{A£n}0 Z{0} if n = 4,8

Since #([*„,«„] ~2r) = 0, there exists o> e ^2n_2(S"~1) = Z 6 with [*„,*„] -2r
= Iw. Hence -21 T= I2co so that # I 2 w = (1/2) # IT = b. Therefore co is a
generator. Let % = 010" with m = 1 forn = 2 and m ̂  0 forn = 4,8. Set f =m6. Then
the three equations in 3.3 are equivalent to the following:

m( )+ana2l = m[ }+al2a22 = 0 (mod b),
2 / \ 2
m<2i2+2a12a22 = man(al2-a2l) = 0.
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Hence £(%) has an (a^-structure when (4) or (5) happens.
Let n = 0 (mod 2) and n^ 2,4,8. Since we have assumed % =£ 0, it follows that

n = 0 (mod 4) or w = 2 (mod 8). Then

if n = 0 (mod 4)
f . [^O=/A^

if * = 2 (mod 8)

Choose f such that/ (f) e T. Then#/(f) = #/(%) and the three equations in 3.3
are equivalent to the following:

= 0.

Thus£C\0 has an (a0) -structure when (6) happens.
Let n = 1 (mod 8) > 9. Then

and/(f5|s/8)^0 by Adams [1]. Let % = i*@ and g = 0 . Suppose the three equa-
tions in 3.3 hold. Applying S to them, we have a12 = an(a22—l) = aua2l = 0 (mod
2) since E/(f ) = — /(%) whose order is 2. Conversely if these equations hold, then
so do the three equations in 3.3. Thus £(%) has an (afj-) -structure when (7) hold.
This completes the proof of Theorem 2. d

§ 4. Real Stief el Manifolds of 2-Frames

Lemma 4.1 ([7,9,10,16]).
(1) [jw,7?m] =0 if and only if m = 3 (mod 4) or m = 2,6.
(2) [*w,77^] =0 if and only if m = 2,3 (mod 4) orm = 5.

Proposition 4.2. Let n>2 be even. Then Vn+2i2 has an M(k, /) -structure if and
only if one of the following holds:

(1) n = 2,6 and k, I are arbitrary,
(2) n = 0 (mod 4) and k = 0 (mod 4);
(3) n = 0 (mod 4) and k and I are odd;
(4) n = 2 (mod 4) with n> 10 and k = 0 (mod 4);
(5) n = 2 (mod 4) iw'tfi n> 10 and / zs odd.

Proof. Whenw = 2,6,^n(SO(w + l)) = 0 so that Vn+2j2 = SnxS"+1and ^+2,2 has
an M(A;0 -structure for every k,l.

In the rest of the proof, we assume w^2,6. By Nomura [19], we have
(i) #/(f) = 0 and 2/(f) - [/?„,£„] for n = 2 (mod 4) with n> 10;
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(ii) HJ(£) =?72«-i and /(£) is of order 2 for n = 0 (mod 4).
Given integers A;/, we then have

if » = 2 (mod 4)

By Theorem 1, there exists an Af( A;,/) -structure on T^+2t2 if and only if
d e /c<[77w,*n]>. It follows from Lemma 4.1(1) and the above Nomura's result (i) that,
for n = 2 (mod 4)> 10, Vn^22 has an M(/c,0 -structure if and only if k(l — 1) = 0
(mod 4) or ft(/-3) = 0 (mod 4) if and only if k = 0 (mod 4) or I = 1 (mod 2).
When w = 0 (mod 4), (ii) and the equation S /(f) = [jn+i,£n+1] imply that/(lO and
L77n,jJ are linearly independent over Z2. The assertion then follows easily in this
case. This completes the proof of Proposition 4.2. D

§ 5. Complex Stief el Manifolds of 2-Frames

Let % & 7u2n+2(SO(2n + 2^ be the characteristic map of the bundle

rrr & „ c«2n + 3
^ + 2,2 - ^ SS2n+l

Then, the following lemma is known.

Lemma 5.1. Let n> 4 be an even integer. Then the bundle Wn+2<2 -> S2n+3 has a
section and there is a generator f e 7r2n+2(SO(2w + 1)) = Z8, [15], swc/z ?/z^

(1) ([15]) i»(f) = %, w/ierB fiSO(2n+ l)-*S0(2n + 2) is ^ inclusion map',
(2) ([15,20])/(f) e 7r4n+3(S2n+1) can fce desuspended;
(3) ([7,15,21,23]) 4/(f) = /(A(772

2
w+i)) - [^2n+1,772

2
n+J ^ 0, w&ere A » ^

connecting homomorphism of the bundle

Proofs of Theorem 5 (1), (2). Let n be even. Then (1) follows, since
^+2,2 = S2w+1xS2n+3 for n = 0,2. Suppose w>4. Applying Theorem 1 and Lemma
5.1, we see that Wn+2,z

 nas an M(/c,0 -structure if and only if /c//(f) — /c/(f) =
4Arc/(f ) for some a: G Z . Since /(f) is of order 8, the proof of (2) follows easily, n

Lemma 5.2. Le£ » be odd. Then, since p^(%) = 7}2n+lt the bundle Wn^2t2 -> S2

can not have a section.
(1) X e_7T2n+2(SO(2w + 2)) is of order 2.
(2) Lef 2 :_S2n+1 U^^e2^3 -> S2w+1 be an extension of 2c2n+1.

Then 2op ^ 0 and 2i2n+1o2op = 0.
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Proof. The assertion (1) follows from [15]. We will show (2). We have

I (2op) - 2*2n+2o/(%), since £ p = E;o/(%) by [12],
- 2/(%) + [*2n+2, <2n+2]o774n+3, since #(/(%)) - 7?4n+3,

= 0,

so that 2op ̂  0. In the exact sequence

we have P(7?4n+3) = [^n+i'^L+J — 0 so that S is injective, and

I (2j2n+1o2op) = 2Z(2op) = 2([^2ra+2,772n+2]) = 0.

Hence 2^2n+1o2op = 0. D

Proof of Theorem 5 (4). Suppose that n>3 is odd and Wn+2iZ has an M(/c,Z)-
structure. Applying Theorem 3, we see that k = I (mod 2) and there exists an
element y e 7r4n+4(S2n+3) such that r]2n+2oy = ki2n+2oJ(X)-klJ(X^. Now, from [22],
we have/c^2n+2o/(%) = /c/(%) + (2) [£2n+2,j2n+2]o#(/(%)). On the other hand, since
#(/(%)) = 774n+3, /(%) is of order 2 and k = I (mod 2), it follows that

_fk\
Tl2n + 2°y ^ l2n + 2> ^2n + 2 O^n + 5.

However, by Nomura [18], this can occur only when (2) = 0 (mod 2) or n = 1.
Since in our case n>3, it follows that k = 0 or 1 (mod 4). This proves (4). n

To prove Theorem 5 (3),(5), we need some preliminaries. Set Ym = SmUTlmem+2

for m > 2. Let; : Sm -> Ym and p:Ym^> Sm+2 the inclusion and the quotient maps,
respectively.

Lemma 5.3. Let m>2.
(1) Wehavenm(Yj = 1{j}, i_Ym,Sm+2~] =1{p}and

11(2} if m > 3 m _ I 1{2) if m > 3

1 0 if m = 2 ^ 1 0 if m = 2

where p*2 = 2cm+2 and j*2 = 2tm.
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(2) The set [ Ym, Y^ has a structure of an abelian group such that the following is
a short exact sequence of groups:

o — *m+2(yj -^ [Ym trj J^*m(YJ —>o,
which is natural under the suspension.

(3) When m>3, every element of [ Ym, Ym~] has a form

hktl = k-id+ {(/-AO/2} -p*2, k = I (mod 2),

Proof. The assertion (1) is well-known.
Recall that Y2 = P(C3), the complex projective plane, so that 7T4(P(C3)) = 0,

7T2(P(C3)) = Z{j}, andki207j2 = kzrj2 for any integer k. These and the following
commutative diagram imply the assertion when m = 2.

[P(C3),P(C3)] — [P(C3),P(CT)] — #2(P(C3))

'[S2,P(C3)] — [S2,P(CT)] — H\S2)

Since Y3 = ZY2is cogroup-like and SU(3) is group-like, [ >g,S£7(3)] is an abelian
group so that an isomorphism

(5.4) [73,73] = [73,Sf/(3)]

induced by the inclusion Y3d Y3Ue8 = S£7(3) gives [^,13] an abelian group
structure. Since 7T4(S£7(3)) =0, by applying [-, S£/(3)] to the cofibration S4 ̂ > S3

-» Y3, we have an exact sequence of groups

0 -* 7T5(S£7(3)) -> [ F3,Sf/(3)] -> ^3(S£/(3)) -> 0.

The assertion (2) then follows from (5.4) when m = 3.
When m>4, [1^,1^] is stable so that the assertion (2) follows easily by

applying {-,Ym} = limfc[S*(-),2*^] to the cofibration Sm+l ^ Sm -> Ym. This
proves (2).

From now on we suppose m>3. By (1) and (2), we have

Applying #*( — ), for every integers ,̂3;, we have a commutative diagram:
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&m \X'id+vp*2

Hence (3) follows. D

The following is obvious from Proposition 2.9 and Lemma 5.2(1).

Lemma 5.5. Letn> 3 be odd and k = I (mod 2). Then Yhas an MQ^t)-structure
hkj such that hk*(p) = klp+j*(/3kj) for some fiktl E= 7r4n+3(S

27l+1) which satisfies

Proofs of Theorem 5 (3),(5). If W3t2 = S£7(3) has an M(fc/)-structure, then k = I
(mod 2), by Theorem 3 (1). Conversely assume k = I (mod 2). Since ;r7(SZ7(3)) =0,
it follows from the next diagram that i°hkl can be extended to an M(A;0 -structure
on SC7 (3).

P i

S7 > 73 >

This proves (3).
Let n be odd. When k = I (mod 2), we have

= k2l2p,

where the 4-th equality follows from Lemma 4.1(2). Hence Wn+2i2 has an M(/c2,/2)-
structure when k =1 (mod 2). In particular there is an M(m2,l) -structure fmztl for
m odd. Now from Remark 2.8, it follows that there exists an M(l, 0 -structure /u for
I odd. Hence, when m and / are odd, X,2flo/u is a desired M(/c2, /) -structure. When
/c = 0 (mod 4) and / = 0 (mod 2), we have an M(k,0 -structure by Theorem 4 and
Lemma 5.2. This completes the proof of Theorem 5.

Problem 5.6. Does there exist an M(4m + 1,1) -structure on Wn+2i2 for n odd?
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Proposition 5.7. There is a central extension of groups:

0 -> x8(SU(3» = Z12 -£ [SZ7(3),SZ7(3)] -> [ 73, 73] = 1 0 Z -> 0.

Proof. Applying [-,S£7(3)] to the cofibration S7 ̂  73-»S£7(3), we have an
exact sequence of groups:

Then we obtain the desired exact sequence, since (Z p)* is factored as

0^ 7T8(SC7(3)),

and since ;r7(S£7(3)) = 0 and i, : [^,1^] = [^,5^7(3)]. The sequence is central by
(3.10) on page 465 in [22]. D

Remark 5.8. We can determine the group [S£7(3),S£7(3)] which is non-abelian.
Details will appear elsewhere.

§ 6. Quaternionic Stief el Manifolds of 2-Frames

Recall that Y = S4n+3Uae
4n+7 and

3 if n > 1

a) if n = 0

where 2^ : S7 -> S4 is the Hopf map, J/OT = I m~4^4 for m > 4, and co is a generator of
;r6(S

3) = Z12 and I2w = 2^5. Recall that # [i^2n^2n] is 12 or 24 for n>2, since

H[v2n,i2n\ = H(\_i2n,i2n]ov4n-i) = 2y4n_1. Let (m,mO denote the greatest commom
divisor of integers m,m. The purpose of this section is to prove the following two
results.

Proposition 6.1. We have

(1) #% =

'4-3 if n = 0

8-3/Ox + 2,3) if n = 1 (mod 2) or n = 2

.16-3/Oi+2,3) otherwise.

f #%/2 ifn = Q (mod 2) > 4 and # [y4n+4,*4n+4] = 12,_
(2) #/(%) =

l#^ otherwise.
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Proposition 6.2. (1) Sp(2) has an M(k,l} -structure if and only ifk = I (mod 12).

(2) // there is an M(k,l) -structure on Xn+22, then

[(mod 2(w + 2,8)) ifn = Q (mod 2) > 4 and # O4w+4^4w+4] = 24

(mod (w + 2,8)) if n = 0 (mod 2) > 4 and # [^+4,^+4] = 12.

k =

/ cO-D^o j

(3)///c = 0 (mod #%} for n even and k = 0 (mod 2#%)/or n odd and I = 0

(mod #%), #zew #zere fs an M(/c, Z)-structure on Xn+22.

(4) W^/zew w + 2 = 0 (mod 24), X2+2t2 has an M(k,F)-structure if and only if

k(l -!)/(%) -0.

Proof of Proposition 6.1. Let XSp ^ ^4n+6(S^(w-rl)) be the characteristic

element of the bundle Sp(w + 2)-*S4n+7. This is a generator and £*(%s/)) = %, where

x: Sp(n + l) -> SO(4w + 4) is the inclusion.

The case n = 0 follows from the following commutative diagram.

1̂

7T6(S
3) -^ 7T6(S

3) ^

In the rest of the proof we suppose n > 1. Set

J2 if w = 0 (mod 2) > 2

ll if w = 1 (mod 2).

Applying TT* ( — ) to the diagram

S4n+7

we see that f'*: ^4n+6(Sjp(w + l))->^4n+6(SZ7(2n + 3)) is surjective. Since

7T4n+6(SO (4w+6)/S£7(2w+3)) = 0 by [3], the inclusion induces a surjection

7r4n+6(S£7(2n + 3))-^7r4n+6(SO(4w + 6)). Hence the composite of the following

is surjective: 7r4n+6(S£(w + l)) -^ ;r4n+6(SO(4n+4)) ^^ ^4n+6(SO(4w + 5)) -^

7T4w+6(SO(4w + 6)), where t l f i2 are inclusions. Let f0: SO(4n + 3) -> SO(4w + 4) be

also the inclusion. Consider the commutative diagram where m=4n + 3:
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7rm+3(SO(m))

;rm+4(S
m+1)

We have A'(y4n+4) = A'G4ll+4)oi;4lI+3 = ±2^4n+3, where the second equality follows
from the fact that 7r4n+3(T^n+5i2) = Z2 so that A'G4n+3) = ±2*4n+3. It then follows

from [2] and [15] that

f Z8e(n){0} if n * 2
7T4n+6(SO(4W+3)) = ;

I Z8{a} if n * 2

;r4n+6(SO(4w+4)) =
Z8{x0sjtfl}eZ12{[2^n]} if « = 2

7T4n+6(SO(4w + 6)) =

where ^[6(^)^+3] = e(w)^4n+3 and fuEeCn)^^] = 0. Write % = X'i^a
y[e(w)y4B+3]. Since (^of^^is a generator and /)*(%) = (w + 2)^4w4-3, we have
= 1 (mod 2) and y =(n +2)/e(w)(mod 24/e(w)). Hence (1) follows and

Since ^T/(%) = -S4n+4p*U) - -(w + 2)v8n+7, we have 3/(3,n + 2)| #/(%) so
that the 3-component of #/(%) is 3/(3,n + 2) by (1). Since F/[6(n)i>4n^3] =
-6(w)^8n+7, we have 24/6(n) #/[<Kw>4w+3]. Hence #/[6(w)^4n+3] - 24/e(n).

When n = 1 (mod 2), (2) follows easily from the above calculations.
Suppose w = 0 (mod 2). Write A(v4n^4) = wz0jlea+f[2^4n^3]. Applying^* to it,

we have v = ±1 (mod 12). Since #A(i^4no.4) is 12 if n = 2 and 24 if n > 2, it follows
that w is even if n = 2 and 2 (mod 4) if n > 2. We then have !>4?J+4,£4w+4] =

4n^3], hence

12 [1/4^4,^+4] = 12w/(z0#a).

If #[^n+4,£4n+4]-24,then n > 2 and #/(i0l/0=16 so that #/(%) - 16-3/(3,
» + 2). Suppose # [^4n+4,*4w+4J = 12. Then 8/(z0sNa)=0, hence #/(%) |8-3/(3,w + 2).
We have -4S/(i0*fl) =/(4fui0ll lfl) = /A(7?4

2
w+5) = [^^5.«4»+5] ̂  0- Hence 4/(z0slea)

^0 so that #/(%)= 8-3/(3,n+2) as desired. This completes the proof of



COHOMOLOGY CLASSIFICATION OF SELF MAPS 185

Proposition 6.1. D

Set cn = #a = 24/(24,w + 2). Let cn:S
4n+7-^ Y (or Xn+2t2) be a coextension of

Lemma 6.3. (1) [7, 7] =1{id] © 1{cnop} as an abelian group.
(2) Y has an MQ^V) -structure if and only ifk = l (mod cn). When k = I (mod

the map

is the unique M(k, /) -structure up to homotopy.
(3) Sp(2) has an M(k,l) -structure if and only if Y does.

Proof. We will prove this only for n = 0. Other is easier. Consider the following
commutative diagram:

^ ire(S/>(2))

Since 7r4(S^(2)) = Z2, 7T7(S£(2)) = ^(12), ^(7) = 1{j} and 7r6(S/>(2)) = 0, the

lower sequence is short exact Also it is central by p.465 in [22]. Hence [7,7] is

abelian and [7, 7] =%{id} © Z{12op}. Consider the following commutative square
form = 3,7:

[7,7] - >

5f Hom(i*,xd)

This diagram shows that (/+#)* = f*+g* for any self maps /, g of 7. It then

follows that, for a,b & Z, a • id + b • 12 op is an M(afa + 1 2&) -structure on 7. This ends
the proof for n = 0. D

Proof of Proposition 6.2. (1) is Lemma 6.3(2),(3). To prove (2), suppose that there
exists an M(/c,0 -structure on Xn+2i2- Then 7 has an M(A;0 -structure so that the first
part follows from Lemma 6.3(2). By Theorem 3, there exists an element y £
^an+io (S4n+7) such that (w + 2)i>4n+4oy - to 4n+4o/(%) -£//(%). Since y is stable, it
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follows that (wH-2)y4n+4ot/ = (w + 2)(^4n+4ot/). Also

k

2

k

2

Hence

-lk

\2

Since cn(= 24/(24,w + 2))-times of the right hand term is zero, it follows that

By Proposition 6.1, this gives us a non trivial information only when n = 0 (mod
2) > 4. The result (2) then follows easily.

Note that n + 2 = 0 (mod 24) if and only if Xn+2>2 has a section. Thus, since
/(?) can be desuspended in this case, Xn+22 has an M(k,l)-structure if and only if
k(l — l)/(f)=0 by Theorem 1.

Since 7T8w+11(S
8n+7) = 0, the suspension S : 7T8w+9(S4n+3) -> 7r8w+10(S4n+4) is

injective. Hence #/(?) = #/(%) provided w + 2 = 0 (mod 24) so that (4) follows.
We also have

by[12],

Let 6 denote #X/#a or 2 *#X/#a according as n is even or odd. Then cnbX = Q
and &(w + 2)(c

2") is 0 (mod 48) or 0 (mod 24) according as n is even or odd. Hence

ECfa^gO^op) = &2(cBcp) =0 so that b^n+3ocnop = 0. Thus (3) follows from
Theorem 4. This completes the proof of Proposition 6.2. O
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§7. Self Maps of

In this section we assume n > q + 2 and q > 2.
A self map/of E£ is called an M(k,l,m) -structure if/*: #r(I£) -» #r(Z£) is

the multiplication by k,l orm according as r is # +7, w + 1 or q+n+1. We use the
word M(/c,0 -structure on 17 in the obvious sense. Let j : Sq+l -» S7 and
/ : 17 ->I£ be the inclusions and£ : I 7-> Sn+1 and / : Z 7-> S9+n+1 the quotient
maps.

Proposition 7.1. Suppose n>q + 2 and q>2.
(1) There xs aw exacZ sequence of groups:

Q-*xH+l(S
9^/<I,ao7iH,TiQ+1pT*ay® Z{£} -> [SF, 17] ->Z - 0,

0 0

where <f>(x^ = p*j*(x~) forx e 7rw+1(S9+1),0(/3) -#Saop, and <f>(f) =/*!/*(/}.
(2) T/zer^ exists an M(/c,/) -structure on LY if and only if k = I (mod #Sa ).
(3) There exists an M(k,l,m) -structure on "LE if and only if

( i) / c=Kmod#Za)
(ii)

Corollary 7.2. Wien £ is Wn+2<2 or Xn+2<2, there is an MQt,l,m) -structure on I>E if
and only if k = I (mod #Za) and k = m (mod #Sp).

When n is odd, #Zp in 7.2 was determined by Mukai [17]. When n is even, we
don't know the value of #Zp except the following cases.

Proposition 7.3. (1) // n>4 is even and E=Wn+2i2, then #Zp =4 and#T?p = 2.
= 0 (mod 24)and E=Xn+2tZ, then #Sp =16 and#I?p = 8 (provided

Proof of Proposition 7.1. We can prove (1) by using Puppe sequences. We omit
its proof.

We have (2) by Lemma 2.2(1)?
The equality in (3)(ii) follows from Lemma 2.1.
Suppose given an M(/c,/,m) -structure /on £E. Write h = f\^Y- This is an

M(/c,/) -structure on Z7. Hence (i) follows from (2). By Lemma 2.1, there is an
integer m with ra'Ep = h^Lp. Hence there is a self map / 'of £E such that
/o/i = /'oy' and p'°f' = m'i,q+n+]ppf. By the method used in the proof of Lemma 2.2,
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we have m = m (mod #Sp ) so that h°I>p = rriLp. Since Up = ;*/(%), we then
have (ii).

Conversely suppose (i) and (ii). By (2), there is an M(k,f)-structure h on ZF.
Then mlp =;»(m/(%)) = ;»(tefl+1o/(%)) = fcq/o/(%) = hol,p. Hence there is a
self map / of I.E such that /o/& = foj'and p'of = mig+n+lop'. Clearly / is an
M(k,l,rri)-structure on ^LE. This ends the proof of (3) and completes the proof of
Lemma 7.1. dl

Proof of Corollary 7.2. This follows from 7.1 and the following two equalities:

fk\
hLq+pJ(X)=kJ(X)±{ [«,+!,Sal and ;./(%) =Sp. D

Proof of Proposition 7.3. We prove only (2), because (1) can be proved similarly.
Since Up =./*/(%) and S2p = (Ij)* H/(%) and since j* and (Xj% are injective,
it suffices to prove the assertions replacing #Sp and # S2p by #/(%) and
#2/0*0, respectively. By the proof of 6.1, we have #/(%) = 16. Since
7T4w+6(SO(4w + 5)) =Z8,we have 2(8/(%)) = -8/(i*(%))= 0, where i:SO(4n+4)

-»SO(4n + 5) is the inclusion. Hence 8/(%) = 12[£4B+4,^4n+4], since Ker I =
<[£4w+4,^4n+4]>. To induce a contradiction, assume 4X/(%) = 0. Then 4/(%) =
c[^4nJ.4,^4w+4] with 2c = 12 (mod 24). By applying H, we have 0 = 12i>8n+7 which is
a contradiction. Hence #£/(%) =8. This ends the proof of (2). D
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