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Kaoru Morisuct* and Hideaki OsHIMA **

§ 1. Introduction and Statement of Results

Let X € m,_,(SO(g+1)). We denote the induced g-sphere bundle over the n-
sphere by E(X) or simply E. The purpose of this note is to study the image of the
function

[E(X),E(X)] — Hom(H*(E(X))/Tor, H*(E(X))/Tor)
which assigns the induced homomorphism, where H™(X) is tHe reduced m-th
cohomology group of a space X with values in Z, the group of integers. Let p,:
SO(g+1) — S be the canonical projection. We denote p,, (X) by a € x,_,(S9.
According to [13],
E(X) =S'U,e"U,e""™,

where o is the attaching map of the top cell of E(X). Let Y = S’U,¢". Whenn=1
or when g=1 and a =0, the function is surjective by [5]. In this note, if we do not
specify otherwise, we will always assume

g=2,n2=2 and a =0 provided n = g+1.

In this case, note from [5, 6] that
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H(Y) =L{z,y,},
H*(EC0) =L, YTy}, 4n =0,

where deg(z,) = ¢ and deg(y,)=n. Let k|l be integers. When g#n, a self map f
of E(X) or Y is called an M(k,)-structure if f*(z,) = kz, and f*(y,) = ly,. Let
(a,-j) be a 2 X 2-matrix whose entries a;; are integers. When g=n, a self map f of
E(X) or Y=S8"vS" is called an (a;) -structure with respect to {z,y,} if
f(z,) = a;x,+ay, and f*(y,) = ayx,+ayuy, When no confusion will occur, we
will omit the words “with respect to {z,,y,}". Notice that when g #n, an M(k,0)-
structure is an M,-structure [4] for any 6: {1,2,..} = Z with 6 (¢g)=k and
6 (n)=L.

We will study conditions on the existence of an M (k,l) -structure and an
(a;)-structure on E(X) in §2 and § 3, respectively. Our results are partial when
E(X) does not have a section. To state our results, we need some notations. When
E(X) has a section, we denote by £ an element of =z, ,(SO(g)) such that
i.(§) = X, wherei: SO(g) - SO(g+1) is the inclusion. Let ¢,, denote the identity
map of S” and J: n,(SO(m)) - =,,,(S™) the J-homomorphism.

Theorem 1. When q+#n and E(X) has a section, E(X) has an M (k,1)-structure
if and only if

kJ(E)—ke,0 J(E) = kle,B] for some B € m,(S7).
In particular, when q >n, E(X) has an M(k,1)-structure if and only if
kU—-1DJ(Xx) =0.

Theorem 2. When g=n, there exists a basis 8= {z,,y,}such that E(X) has an
(a,-,-)-structure with respect to B if and only if one of the following holds.

(1) n=1,3,7 and (ay) is arbitrary.

(20 n =1 (mod 2) withn # 1,3,7, X=0and a,,a5 = a1, = 0 (mod 2).

(3) n =0 (mod 2), X=0and a,,ay = @@, = 0.

4) n=2,X # 0 and

2 —
antayay, = a18yn+a18,y,

ap(a,+2ay,) = a,(a,—ay) =0.

(5) n=4,8, X = mO(m # 0), where 9 is a generator such that —J(0) is the
suspension of the Hopf map, and
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ma?l“'zauam = m(ma,a,+a,ay+a,a,;),
ma, (a,—1)+2a,,ay, = ma,, =0 (mod 2b),

ap(may,+2a,) = may,(a;—ay) =0,

where b is 12 or 24 according as n is 4 or 8.
6) » =0 (mod 2) withn # 2,4,8, X#0 and

@18y = Gz = 61,(ap—1)J(X) = a, J(X) = 0.
(T n=1 (mod 8)>9,X # 0and a,;, = a,,a, = a;;(ap—1) = 0 (mod 2).
Theorem 3. If ¢ # n and E(X) has an M(k,1)-structure, then
(1) k,oa = la

and there exists an element y € ,, ,(S™) such that
(2) (Za)oy = ke, 0 J()—kJ(OO).

Theorem 4. Suppose that there exist integers ab.c such that ac,0a =0,
b,0a0p =0, and cx = 0, where a: Y — Sis an extension of at,. If k = 0 (mnod ab)
and | = 0 (mod c), then there exists an M(k,1)-structure on E(X).

These theorems except Theorem 2 will be proved in § 2. Theorem 2 will be
proved in § 3. As applications of these theorems, we will give partial results on
the Stiefel manifolds of 2-frames: V,,,, = O(n+2)/0(n), W, 5, = Un+2)/U(n)

and X,,,, = Sp(n+2)/Sp(n) in §4, §5 and § 6, respectively. For example, in
§ 5, we will prove

Theorem 5. (1) If nis 0 or 2, then W, ,, has an M(k,1)-structure for all k and L
(2) When n is even with n > 4, W, ,, has an M(k,1)-structure if and only if
k(I—1) =0 (mod 8) ork(I—5)= 0 (mod 8).
(3) Wi, has an M(k,D)-structure if and only if k = | (mod 2).
(4) If nis odd with n > 3 and W, ,, has an M(k,0)-structure, then
k = 0,1 (mod 4) and k=1 (mod 2).
(5) When n is odd with n > 3, W,,, has an M(k,0)-structure in the following two
cases:
k=0 (mod4) and [ = 0 (mod 2),
k is the square of an odd integer and [ is odd.
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We use the following notations. Letj: S? — Y be the inclusion. Given an
element B of a group, we denote by #8 the order of B or zero according as 8 has
a finite order or not. Given a subset B of a group, {(B) denotes the subgroup
generated by B. We denote by H the Hopf invariant z,, ;(S") — Z and the 0-th
Hopf-Hilton homomorphism 7,,(S*) — 7,,(S*"") (cf., [22]).

In 8§87, we will give results on cohomology classification of self maps of the

suspension of £(X).
§ 2. Generalities
The following lemma is probably well-known.

Lemma 2.1. Let ¢ > 2 and n > q+1. Assume that K is a (g — 1)-connected
CW-complex. Let 8:S" ' — K and let K* be the mapping cone of B. Forr<n-+q—
3, there exists an exact sequence which makes the following diagram commutative;

T (K)—57, (8" ) Loy 7. (K) Lo, (K*)—> ...

” (s | |

B

8 R
7, (K*)—>z,. (K*K) —>7,(K) —]—>7Z',(K*) —>

where the lower horizontal sequence is the homotopy exact sequence of the pair
(K*,K) and p: (K*,K) — (S", %) is the pinching map. Moreover if n,(K) = Z{6},
then

Ker{j.: m, - o(K) > m,,, ,(K*)} = Image B.+<(6,81),
where [0, B] is the Whitehead product of 6 and 8.

Proof. By Blakers-Massey theorem, p, : 7,.,(K*,K) — =,,,(S") is isomorphic

for r < n+g—3 and is epimorphic for r=n+g—2. Let F be the homotopy fiber of
j: K — K*. Then there exists a map f:F—QS” such that the following diagram of
fiber sequences commutes:

QK*—> F——> k1> K>

S A A X

QS"—— QS"—> * —> §".
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Moreover the following diagram commutes:

b, 0
7, (8<— 7, (K* K)—>r,(K)
o o !|
= = I

2. (O8N < 7 (F)—> 7. (K)

where the vertical isomorphisms are canonical ones (see (8.20) of [22]). Let
vy € m,_,(F) = Z be a generator, which corresponds to 8 € z,(K* K). Then, the
above diagrams imply that f,7y = £,(¢,_,) and i,(y) = B, where £: 8" '—>QS" is
the suspension. This implies that for r=zn—1 the middle rectangle of the diagram
in Lemma 2.1 commutes.

We define A to make the first rectangle of the diagram in Lemma 2.1
commutative.

Letr <n+qg—2anda € r,(F). Since f,: r,(F) = 7,(QS") and the suspension

L. 1, (S*") = 7,(QS™) are surjective, there exists an element @, € 7,(S*™") such
that f,(a) = 2, (a,) = f«(y0a,), hence a—7y0a, € Ker(f,). When r<n+q — 3,
since f, and ¥, are isomorphic, we have a = 7oa, so that i, (a) = ioyoa, = Boa,.
Therefore we have proved the commutativity and exactness of Lemma 2.1 for
r<mn+q—3. Let r=n+q—2 and suppose 7,(K) = Z{6}. It then follows from the
James exact sequence [11] that the kernel of p,:7,., , (K*,K)—m,,,,(S") is
generated by the relative Whitehead product [6,3], where 8 is the characteristic
map of the cell of K*, which is attached by 8. We then have

i.(a—70a,) € i, (Ker(£,)) = d(Ker(p,)) = 0{[6,8]> = {[6,8])
and i,(a—7%a,) = i.(a) —ioyrca, = i,(a) —Boa, Hence
Image{i,: 7,4, ,(K) = 7m,.,,(K*)} C Image(B,)+<[6,81) C Image(i,).

Thus Image(i,) = Image(8.) +<[6,8]) and the result follows from the equalities
Ker(j.) = Image(d) = Image(i,). This completes the proof of Lemma 2.1. O

Lemma 2.2. (1) Let gn > 1. Then there exists a self map h of Y such that
hoj = jokt, and poh = L,0p if and only if kt,oa = lo,where p:Y — S” is the quotient
map.

(2) When q + n, E(X) has an M(k,1)-structure if and only if there exists an
M(k,1)-structure h on Y such that hop = klp.

Proof. When n<g+1 and a =0, (1) is obvious. Whenz=¢g+1>2 and a #0,
(1) holds, since k¢, 0a = la if and only if k=I. Let n>g+2. When ¢g=1, the bundle
is trivial so that (1) is obvious. Let g=>2. Suppose given a self map % of Y satisfying
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the properties in (1). Then, by Lemma 2.1, there is an integer m satisfying
kt,0a = aom,_, so that there exists a self map A’ of ¥ such that h'0j = jok¢, and
me,0p = poh’. Since j*(h) = j*(h’), there exists an element b € z,(Y) such that
k' = h®. Here h° is the composition of

Yo SYV S A,y

where ¢ is the cooperator [8]. Then me,0p = pok’ = poh® = (poh)*®® = (I, +pob)op.
Considering the induced homomorphisms of these maps on cohomology, we have
me, = li,+pob. Since p.:7,(Y,S?) = #,(S™), it follows from the homotopy exact
sequence of the pair (¥,S8?) that pob = xz, with z =0 (mod #a). Hence m=I[+x
= [ (mod #a) so that kt,oa = ma = la. Conversely if kt,0a = la, then there is a
desired map. This ends the proof of (1).

To prove (2), suppose that E(X) has an M(k,l)-structure f. Then h = fl|, is an
M(k,D-structure on Y. By 2.1, there exists an integer m with hop = pomu, ., so
that there is a self map f' of E(X) with f'oj = joh, where j: Y — E(X) is the
inclusion. By the method used above, we can prove m = kI (mod #p) so that
hoop = klp as desired. The converse is apparently true. This completes the proof of

(2). O

Recall that if E(X) has a section, then a =0, Y = S’V S” and there exists an
element £ € x,_,(SO(g)) such that i,(§) = X € x,_,(SO(g+1)), where i: SO(q)

— S0O(g+1) is the inclusion. By James-Whitehead [13], we have
(2.3) o= li,i,]1+i,.J(8),

where i, and i, are the obvious inclusion maps.

Proof of Theorem 1. First suppose that n>g+1. Note that a map A:S5‘VvS"
— S?Vv S§” gives an M(k,1)-structure if and only if hoi, = ki, and soi, = li,+1,08 for
some 8 € r,(S?). Therefore,
holi,i,] = [hoi,hoi,] = [ki,li,+i,08]

Kklligi,]+k(i,i,08] = kili,i,] +k(i00e,BD).

I

On the other hand, hoi,0J(§) = i,0k,0]/(§). By using (2.3), we get klo—hop =
Ggx (KLJ(E) — ke 0] (E) +Kk[e,,B81). Since i,, is monomorphic, we have the desired
result by Lemma 2.2.

Second suppose that n < q. Let h=h(kx )< [S?VvS",S?VS"] be the map
corresponding to k,®zx®l, € 7,(S) O x,(S") ®x,(S") under the canonical iso-
morphism, that is zoi, = ki,+1i,0x and hoi, = li,. It follows that k. [i,i,] = [hoi,
hoi,] = [ki,+i,02,1i,] = Ki[i,i,] +1i,[z,:,] and
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hsig] (8) = (ki +1i,0x)0](§)
= kioJ(£)+1i,0x0](£), by p.534 in{22],
= k(i,0](£)) +1i,0 zo](£)

so that klo—h,0 = i,,(k(I—1)J(E)) —i,,(I[z,¢,] +20](E)). Hence klp = h,p if and
only if k(I—1)J(&)= 0 and l[z,¢,] +xoJ(E) = 0. If there exists an M (k,)-structure
on E, then there is an M (k,[)-structure g on Y with klo = g0 by Lemma 2.2 so that
k(I—1)J(&)= 0 by the above discussion. Conversely if k(I —1)J(£)= 0, then
1[0,¢,]+00J(§) = 0 and klo = h(k,0,1),0 by the above discussion so that there is
an M(k,0)-structure on E. Since XJ(§) = —J(X)and X: 7,., ,(S?) =z, (S,
it follows that #J(&) = #J(X). This ends the proof of Theorem 1. O

Proof of Theorem 3. Since E(X) has an M(k,l)-structure, Y has also an M(k,l)
-structure. Then (1) follows from Lemma 2.2(1).
In order to prove (2), we consider the following commutative diagram:

s 2, ge AN v

" — E/§* — §"¢
g Zp

st H, sy,

Sﬂ

where all the straight lines are cofiber sequences. Since p ©p =0, where p is the
bundle projection, we see that E/S? = $"V S"*% Thus we can write as g= XaVw
for some w: S""?— S?*’, in other words, there exists a map i,,,: S""? = E/S? such
that p’0i, ,=1¢,,and goi,,, = w. This implies that (£j),(w) = Zp. On the
other hand, by [12], we know that o = (X7), (J(X)). So we have (Z7),(w) =
(Z7),(J(X)). Applying Lemma 2.1 for the case 8 = Xa, we get

(24) w=JX)+(Za)(x)+mle,, Tal,

for some z € 7,.,(S") and m EZ. Now suppose that there exists an M(k,D-
structure on E. Then, there exists the following commutative diagram:

§* — E — E/§* R go

T

§* — E — E/S* 22 5o
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where fo i, = li, and foi,,, = kli,,,+1,0y for some y € ,,,(S™).
Hence X aoy+klw = kt,,,0w. From this and(2.4),
kl](X) —qu+1oj(x>

= ki(w—(Za)ox—mle,.,, Zal) — k. 0(w—(Za)ox—mle,,, Tal)
= kegoo( Sa)oz+m(k’—ki) [ty Sal (mod( Za), 7,.,(SM)

= ktyy0( Za)oz (mod( Ea), 7, ,(S™M), since (k—1) Za =0,
Yao(ke,oz) (mod(X a),m, ,(S™)

0 (mod( Xa), 7, ,(S™).
This implies (2) and completes the proof of Theorem 3. ]

I

From now on, we consider the sufficient conditions for the existence of
M (k,1)-structure on E(X).

Proposition 2.5. Let g>2 and n=>2. Assume that there exists a non-zero integer
a such that at,0o = 0. Then, there exists an extension of at, to Y, say a:Y — S
Suppose that there exists a non-zero integer b such that bt,0a%0 = 0. Then there exists
a map f,: E(X) — S*XS" such that the following diagram commutes:

sttt £,y —  E(X)

laln,,,,,,1 l (beea) vVp lfl

Sn+q—1 [iv'in] qusn ¢ SqX Sn
where p is the restriction of the bundle projection p : E(X) — S™.

Proof. 1t is clear that pop = 0. Since dim Y < n+gq, the map (&, 0a)Xp:Y
— S7X S" goes through S?V S”. From the assumption, {0((&¢,0a) V p)op = 0, where
i:S7VvS"— 87X 8" is the inclusion map. Recall that the Whitehead product
[4,%,] is the attaching map of the top cell of S*XS". Thus from Lemma 2.1, there
exists an integer m such that [i,i,]= ((&,03) Vp)op. By the method used in the
proof of Lemma 2.2, we have m =ab. We omit the details. O

Proposition 2.6. Let gn>1. Suppose that there exists a non-zero integer x such
that xX =0. Then there exists a coextension of xzt, say £:S"—Y, and a map
fo: S¥X 8" — E(X) such that the following diagram commutes:

gret B gty gt s sixst

lﬂna—\ lj\/i 1 2

14

st L.y L B0,
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where j: S*— Y = S7U,e" is the bottom inclusion map.

Proof. The assumption zX=0 implies that the bundle induced from E(X) by
the map of degree x is trivial. So there exists a bundle map:

SIxS" L E(X)

11,,2 l

Sn Ity Sn,

where pr, is the projection to the second factor. By restricting this bundle map f,
to the n+q — 1-skeleton, we get the map S? vV §"— Y. Then clearly, this map is
described as jVZ by some coextension % : S"— Y. Since i.((j vV #)o[i,i,]) =0,
there exist an integer m and a map f:S?XS"— E(X) such that mo = (j V £)o
[4,1,], foi = i0(j V %) and m¢,,,0p = pof. Using cohomology, we then have m=x.
This ends the proof. O

Corollary 2.7. Under the assumption of the above proposition, we have xp =
[j,Z]. Moreover there exists an element & € m,_,(SO0(q)) with i.(§) = (#a)X

and (#a)p = [J, %] +7. J(E"), where i : SO(q) — SO(g+1) is the inclusion and

#a:S"— Y is a coextension of (#a)t,

Proof. First assertion is obvious from the above diagram in Proposition 2.6.
We show the second assertion. Let E’ be the induced bundle from E(X) by the
map of degree #a. Then E’ has a section, that is, E' = (SVS")U,€""% The
existence of the bundle map E’ — E implies that there exists a following commuta-
tive diagram:

Sn+q~1 Badin-s Sn+q—1
—_—

b L

¥
SIS 81U, 0
Therefore, using (2.3), we have the desired result. O
Proof of Theorem 4. Consider the composite:

E(X) —sgixgr HaXz qaon kL B0,

where f; and f, are maps in Propositions 2.5 and 2.6. This gives the desired M (k,1)-
structure. O

Remark 2.8. Suppose that there exists an integer m such that mX = X. Then



172 KAORU MORISUGI AND HIDEAKI OSHIMA
there exists an M(1,m)-structure on E(X).

Proposition 2.9. Suppose =2, n>qg+1and a =0 provided n=q+1. Leth:Y
— Y be an M(k,1)-structure on Y. Then we have

hoo—klo = j, B for some B € m,,, ,(S.

Besides, if X =0 for an integer x and =,(S%) is generated by aomn,_,, then xjx B = 0.
Here 1,: S° — S% is the Hopf map and n,, = 2" *n, form > 2.

Proof. Let @ € x,(Y,S?) = Z be a characteristic map of the top cell of Y.
Then we haveh«(d) = ld. Let i : (Y,0) — (Y,S% be the inclusion. Consider the
commutative diagram:

”n-Lq—l<Sq> ]—‘) ﬂn+q—1(Y) -IL') ”n*q—l(Y’Sq)

b

Ty (8D 2 7 L (V) 1, (YD

We have
ixhx(0) = hxix(0)

= he(—[1,@]), byl14],
= —kil,d]

= ix(klo),

and s« (o) —kip € Ker(ix) = Image(J, ), so there exists 8 € z,.,(S?) such that
h« (0) = klo+j«(B8). Now assume that zX = 0 and 7,(S?) is generated by aon,_,.
We have p«hsi = zlt, = p«(I£), wherep: ¥ = S7U,e" — S” is the pinching map of
S? From the assumption, it follows that p«:z,(Y) — x,(S") is injective, so that
hx& = [Z. Then from Corollary 2.7, we have zhx(0) = h,[5,£] = [kj,I1£] = ki[],£]
= zklpo so that zj«8 = 0. ]

Proposition 2.10. Suppose that =2, n=qg+1 and a #0. Then q is odd and there
exists an M-structure [4] on E for k = 0,1 (mod #p).

Proof. Recall from [5] thatp*: H*(S""%) = H*(E)/Tor. By [15], n,(SO(q
+1)) is finite for ¢ even. Hence ¢ is odd under the assumption. Since
Ty, (S? U,e?"") is finite by a Serre’s theorem, the order of p, #0, is finite. Hence, when
gis0if k = 0 (mod #p) and id if k = 1 (mod #p), there exists a self map f of £
which makes the following diagram commutative:
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§¥ £> S — E

b b
§% £ sUe” — E
It is obvious that f is an Mj-structure. O

§ 8. Proof of Theorem 2

In this section we assume g=n. Leti;: S" — S"V S" be the inclusion to the j-th
component for j=1,2. Given a self map a of S"V S”, we define an integral 2 X
2-matrix (a;) by aoi; = a;i,+aui, for j = 1,2. This defines a bijection between
[S"VvS",S" v S"] and the set of 2 X 2 integral matrices.

Lemma 38.1. (1) For any x € n,,_,(S") and a,b € Z we have

b
(ai, +bip)oz =i,,(az+ (;)H(:c) [tyta]) + iz + (Z)H(ar) [tat]) +@BH () [, 5],

(2) E has an (a,-]-)-structure with respect to a basis B= {x,y} if and only if there
exists an (a,-j)-stmcture g on Y with respect to B such that

gop = (a,85a+a,8p+(—1)"ay,a,+a,a,b)p,
where a and b are defined by x*=axy and y*="bxy.
(3) There exist bases B= {z,y,}and B = {z,,y,}of H*(E(X)) such that

a = H(J(E), ie, z:=HJE)Z,Y,

, {1 ifn =248 and HJ(¥)) =1 (mod 2)
a =

0 otherwise
b =b =0, ie, y>=0.

Proof. Under the notations in (1), it follows from Theorem 8.5 on p.534 in
[22] that we have (ai,+ bi,)oz = ai,ox+bi,ox+ [ai, bi,]0H(x)t,,_,. We also have

a
aior = il*(at,,ox) = 1:1*((11"" (2) [ln,l"]OH(x)‘zn—l)
a
= il*(ax+( )H(I)[t,,,cn])
2
and similarly
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b

biox = iz*(bx+( )H(z) )
2

Hence (1) follows.

Let B ={xy} be a basis of H"(E). Note that if n is odd, then z* = y*= 0. If
fis an (a,)-structure on E(X) with respect to 8, then g=f| Y is an (a,)-structure
on Y=S" v S” with respect to 8. By Lemma 2.1, there exists an integer m such that
gop = mp. Thus there is a map f E(X) — E(X) which makes the following
diagram of cofibre sequences commutative:

s L SVt —> E(X) — S”

bbb e

st Ls §'vST — E(X) — S”

Since

f*(xy) = @)™
= (g z+a,y) (@yz+ayuy)
= 1111“21372‘*"111‘1222?/‘9”alzazlyx+a12“22y2

= {a8ya+a 8+ (—1)"a 0, +a,a,b} Yy,

we have m=a,a,,a+a @+ (—1)"a 0, +a,a,b. This has proved a half of (2). The
other half is obvious.
By (2.3), we have the following commutative diagram of the cofibre se-

quences:
SZn— 1 ° Sn \V; Sﬂ E SZn

| L

SZn—l Sn C SZH

Here pr, is the first projection. Choose generators z, € H"(C) = Z and z,, €
H™(C) = Z such that 2 = H(J(£))z,, Set z, = f*(z,). Let y, be the image of a
generator of H"(S™) under the bundle projection and satisfy f*(z,,) = z,y,. Then
z2 = H(J(E))x,y, As is well-known, the image of HoJ: z,_,(SO(n)) =Zis Z (if n
=2,4,8), 2Z (if n is even and not 2,4,8), or 0 (if z is odd). It follows easily that the
following element has the desired property.
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, {xn—{(H(](s))—U/z}yn if H(J(®) =1 (mod 2)
" z,— ((HU(E)/2}y, it HJE) =0 (mod 2)

This completes the proof of Lemma 3.1. O

Remark 3.2. When we say “the basis 8 in Lemma 3.1(3)", it is the one defined
in the proof of Lemma 3.1(3). This satisfies the following: z, = = pr*[S"] and y,
= *pr,*[S"], where pr;: S*V S" — S" is the j-th projection and [S"] is a generator
of H"(S™).

Lemma 8.3. Let 8= {z,y,} be the basis in Lemma 3.1(3). Then E(X) has an
(a)-structure with respect to B if and only if

(i) a J(E)+{ <a2“>H<J<s>> +aan) [ty]

= {ana,HJ(E)) +a,ay,+ (—1)a,a,} J(E),
(i) 2, J(E) + <a212>H(](E)) + 1585} [tt,] =0,
i) a1, (ay—ay ) HJ(E)) = 0.

Proof. Let 8= {z,y,} be the basis in Lemma 3.1(3). By Lemma 3.1, there
exists an (a,-])-structure on E with respect to 8 if and only if

X)) 9+(0) = {a,anHU(E)) +a,an+ (=1 ananlo,
where g is the (a,)-structure on S"V S” with respect to 8. We have

gx (0) =gut 1+ (J(E)) +g,(Tiy,i,1)
= (a8, +a50)0] (E) + [ayd; T Ay Qoly+asis]
an

= i1*{a11](§)+(< 5 >H(](E))+anaz1) Lentnl}

Qyy

+i2* {a12](§) + (< 5 >H(](E)) +alzazz) [l,,,Ln]}
+ {allale(](E)) +a11a22+(_ l)nalgaﬂ} [il,izj
and the right hand term of (3.4) is equal to i,x(mJ(§)) +m[i,i,], where m=aa,

HJ(E)+auau+ (—1)"aa,. Since the homomorphism ¢ : 7,,_,(S") ®7,,_,(S") &
Z— m,,_,(S™ Vv S™) which is defined by ¢(u,v,w) = i1x(w) +im(v) +wliy,i,] is an
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isomorphism, it follows that (3.4) holds if and only if the three equations in Lemma
3.3 hold. This completes the proof of Lemma 3.3. ]

Proof of Theorem 2. Let B be the basis in Lemma 3.1(3). As is well-known

Z if n=0(mod4)
7,_1(SO(n+1)) =1Z: if n=12(mod8) > 2

0 otherwise.

Note that all possible cases of » and X are givenin (1), ..., (7).

When n=1,3,7, the bundle E(X) is trivial and S” is an H-space. Hence every
self map of S"VS” can be extended to a self map of S”XS". Thus E(X) has an
(a;)-structure for every (a;) for n=13,7.

Let n#1,3,7 and X=0. Taking & =0, it follows from 3.3 that a,a,[¢,¢t,] =
@185 tyt,] = 0. Hence ECX) has an (a;)-structure when (2) or (3) happens.

In the rest of the proof we always assume X # 0.

Let i : SO(n)—>SO(n+1) be the inclusion and A:z,(S") — x,_,(SO(n)) the
connecting homomorphism for the bundle SO(n+1)—S".

Letn=2,48 and 7 :S* ' — S” the Hopf map such that H([¢,t,]) = 2H(z)
=2. Recall the following:

1 if n=2
Tou(8") = Z{t}® Z,, b=1412 if n=4
120 if n=28.

Let 8" € r,_,(SO(n+1)) be a generator satisfying J(8”) = — %tz Letf' €
7,—,(SO(n)) be an element satisfying ix (") = 8”. Then J(8') —t € Ker . Hence
J(8)—t=alt,,] for some a € Z by the EHP-sequence. Set § = 8’—aA¢,. Then

Z {6} ifn=2
7,_,(S0On)) = , J(@) =1, and ix(0) = 6”.
Z{AL} D Z{6) ifn =48

Since H([t,t,]—2t) =0, there exists w € 7y, ,(S"") = Z, with [t,¢,] —27
= Y w. Hence —2X 7= X’w so that # X% = (1/2) # X7 = b. Therefore w is a
generator. Let X = m6” withm=1 for n=2 and m#0 for n=4,8. Set £ =m@. Then
the three equations in 3.3 are equivalent to the following:

2 _
may,+2a,ay = m(ma, @y, +a,ay,+asa,),

an (4P
m . +aay, =m ) +a,,a, = 0 (mod b),

2
ma,+2a,,a9 = ma,; (@, —ay) = 0.
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Hence E(X) has an (a;)-structure when (4) or (5) happens.
Letn = 0 (mod 2) and n+#2,4,8. Since we have assumed X # 0, it follows that
n = 0 (mod 4) or z = 2(mod 8). Then

Ton1(S™) = Z{[1,,1} DT, =:T = 1, (8",
7,.,(S0(n)) = Z{[A, 1} ®<{B>, m,_,(SO(n+1)) = {i.B,
Z if n=0(mod4)
B =ixB) = { ,
Zz if n =2 (mod8)

Choose £ such that] (§) € T. Then#/J(¥) = #J(X) and the three equations in 3.3
are equivalent to the following:

Lept,] = JAC,.

anJ(E) = (ayapta,a,)J(E), ajay = apay=a,J(E) =0.

Thus E(X) has an (a;)-structure when (6) happens.
Letz = 1 (mnod 8)> 9. Then

7, 1(SO(n)) = Z2{A¢r,} ® Z2{B}, =, ,(SO(n+1)) = Z2{i B},

and J(i4B8) #0 by Adams [1]. Let X = {,8 and & = B. Suppose the three equa-
tions in 3.3 hold. Applying ¥ to them, we have a,, = a,;(a»—1) = a,,a, = 0 (mod
2) since X J(§)= —J(X) whose order is 2. Conversely if these equations hold, then
so do the three equations in 3.3. Thus E(X) has an (a;)-structure when (7) hold.
This completes the proof of Theorem 2. ]

§ 4. Real Stiefel Manifolds of 2-Frames

Lemma 4.1 ([7,9,10,16]).
(1) (tw7,]=0if and only if m = 3 (mod 4) or m=2,6.
@) [t,n2]1=0if and only if m = 2,3 (mod 4) or m=5.

Proposition 4.2. Let n>2 be even. Then V,,,, has an M(k,))-structure if and
only if one of the following holds:

(1) n=2,6 and k,  are arbitrary,

(20 n = 0 (mod 4) and k = 0 (mod 4);

(3) » = 0 (mod 4) and k and | are odd,

(4) n = 2 (mod 4) with n>10 and k = 0 (mod 4);

(5) 7 = 2 (mod 4) with n>10 and ! is odd.

Proof. Whenn=26,7,(SO(n+1)) = 0so that V,,,, = S"XS""" and V,,,, has
an M(k,0)-structure for every kL
In the rest of the proof, we assume n+#2,6. By Nomura [19], we have
(i) HJ(®)= 0 and 2J(§) =[7,¢,] for n = 2 (mod 4) with n>10;
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i) HJ(E)=mn,,_, and J(&) is of order 2 for n = 0 (mod 4).
Given integers k[, we then have

0 : = klJ(&) —ke,0J (E)

0 if n =2 (mod4)
= k(l—l)](f)—{ i
B [Mptn] if 7=0(mod4).

By Theorem 1, there exists an M(k,l)-structure on V,,,, if and only if
6 € k{[n,t,1>. 1t follows from Lemma 4.1(1) and the above Nomura’s result (i) that,
forn = 2 (mod 4) > 10, V,_,, has an M(k,D)-structure if and only if k(—1) =0
(mod 4) or k({—3)= 0 (mod 4) if and only if K = 0 (mod 4) or [ = 1 (mod 2).
When n = 0 (mod 4), (ii) and the equation X J(§) = [¢,.1,¢,+,] imply that J(¥) and
[7M.t,] are linearly independent over Zz. The assertion then follows easily in this
case. This completes the proof of Proposition 4.2. ]

§ 5. Complex Stiefel Manifolds of 2-Frames

Let X € m,,.,(SO(2n+2)) be the characteristic map of the bundle

2n+1 » 2n+3
S T Wate T S .

Then, the following lemma is known.

Lemma 5.1. Let n>4 be an even integer. Then the bundle W, ,,— S has a
section and there is a generator £ € n,,.,(SO(2n+1)) = Z,, [15], such that

(1) ([15]) ix(E) = X, where i:S0(2n+1)—>S0(2n+2) is the inclusion map;

(2) ([15,20]) J(&) € m,,.5(S™"") can be desuspended,

3) ([7,1521,231) 4 J(E) = J(A2+)) = [tons1sMoasr] # 0, where A is the
connecting homomorphism of the bundle SO(2n+1)—S0(2n+2) — S**2,

Proofs of Theorem 5 (1),(2). Let n be even. Then (1) follows, since
W, .5, = S™'X 8™ for n = 0,2. Suppose 7>4. Applying Theorem 1 and Lemma
5.1, we see that W,,, has an M(k,l)-structure if and only if kiJ(§¥) —kJ(E)=
4fexJ (E) for some x € Z . Since J(£) is of order 8, the proof of (2) follows easily. [ ]

Lemma 5.2. Let n be odd. Then, since p,x(X) = n,,.,, the bundle W, _,,— S™"°
can not have a section.
(1) X E 7y, .,(SO(2n+2)) is of order 2.
(2) Let2: Sy, e — S be an extension of 2ty,.;.

Then 200 # 0 and 2L2n+IO§Op =0.
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Proof. The assertion (1) follows from [15]. We will show (2). We have

% (200) = 205,:0](X), since £p = X joJ(X) by [12],
=2J(%)+ [L2n+2! L2n+2:| ONyn+3 SINCE H(JX) = Nan+3
= [lynt2 Lont2)OManrs  since 2J(X) =0,

= [tonsn Monsal
#0,

so that §Op # (. In the exact sequence
4n+3y _P 2n+1y _XZ 2n+2
Tini5(S™) == 714 5(ST7) == 7, (8T79),
we have P(7%,.3) = [tons1ins1) = 0 so that ¥ is injective, and
% (20419200) = 22 (200) = 2([t34Mpn+21) = O.
Hence 2t,,,,0290 = 0. ]

Proof of Theorem 5 (4). Suppose that n>3 is odd and W,.,, has an M(k,D)-
structure. Applying Theorem 3, we see that k = [ (mod 2) and there exists an
elementy € 7,,,,(S***) such that 7,,,,0y = kty,.,0J(X) —kiJ(X). Now, from [22],
we have ki, .0 (X) = EJ(0) + (5 [tgy 0 tans, ] °H(J(X)). On the other hand, since
H(J(X)) = n4prs J(X) is of order 2 and k = I (mod 2), it follows that

k
Mon+20Y = <2>[‘2n+2, Lon+2)ONan+a

However, by Nomura [18], this can occur only when () =0 (mod 2) or n = 1.
Since in our case #>3, it follows that k¥ = 0 or 1 (tnod 4). This proves (4). ]

To prove Theorem 5 (3),(5), we need some preliminaries. Set ¥,, = S™U, ¢"™*
form > 2. Let j:S™— Y, and p: ¥, > S™*? the inclusion and the quotient maps,
respectively.

Lemma 5.3. Letm>2.

(1) We have r,,(Y,) = Z{j},(Y,,S™"*] = Z{p}and
Z{2} if m>3 z{2} ifm=>3
”mﬁ(n):{ {2} ifm , [Y,,,,S'"Jz{ if m
0 if m=2 0 ifm=2

where p,j = 2,,.,and j*E = 2,
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(2) The set [ Y,,Y,] has a structure of an abelian group such that the following is
a short exact sequence of groups:

0— Z1s( %) 2= %, ¥,] L= 7,(Y,) — 0,
which is natural under the suspension.

(3) When m=3, every element of Y, Y, ] has a form
By = k-id+{(1—k)/2}-p*2, k=1 (mod?2),
Proof. The assertion (1) is well-known.
Recall that ¥; = P(C®), the complex projective plane, so that z,(P(C*)) =0,

7,(P(C®) = Z{j}, and ke,0n, = k’p, for any integer k. These and the following
commutative diagram imply the assertion when m=2.

[P(C®),P(C*)] ——= [P(C®),P(C™)] ——H*(P(C?)
& <)
[S2P(CY)] =—— [SLP(C™)] —— HXSY

Since ¥, = XY, is cogroup-like and SU(3) is group-like, [ ¥, SU(3)] is an abelian
group so that an isomorphism

64 [Ys Y2l = [V, SU(3)]

induced by the inclusion ¥; C Y;Ue® = SU(3) gives [ ¥, ¥;] an abelian group
structure. Since 7z,(SU(3)) =0, by applying [—, SU(3)] to the cofibration S* I s
— Y,, we have an exact sequence of groups

0— 75(SU(3)) = [ Y, SU(3)] — m,(SU(3)) — 0.
The assertion (2) then follows from (5.4) when m=3.
When m >4, [Y,,Y,] is stable so that the assertion (2) follows easily by
applying {—,Y,} =1im,[2%(—),2*Y,] to the cofibration S™"' 7> S™— ¥, . This

proves (2).
From now on we suppose m>3. By (1) and (2), we have

(Y, Y,] = Z{p*2} ® Z{id}.

Applying H*(—), for every integers x,y, we have a commutative diagram:
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J - +2
Sm — Smuﬂem 2 _)Sm

l:u,. l:-id+y~p'§ 1(z+2y)tm+z

Sm J Sm U”e"‘” Sm+2

Hence (3) follows. O
The following is obvious from Proposition 2.9 and Lemma 5.2(1).

Lemma 5.5. Letn> 3 be odd and k = I (mod 2). Then Y has an M(k,0)-structure
hy, such that h,,*(0) = klo+5*(B,,) for some B, € my, s(S™") which satisfies
zj*(lgk,z) = 0.

Proofs of Theorem 5 (3),5). If W;, = SU(3) has an M(k1)-structure, thenk = I
(mod 2), by Theorem 3 (1). Conversely assume k = [ (mod 2). Since z,(SU(3)) =0,
it follows from the next diagram that ioh,; can be extended to an M (k )-structure
on SU (3).

P i

ST — v, — SU@3)

lhu
i

Y, — SU@®)

This proves (3).
Let n be odd. When k = [ (mod 2), we have

Ry (0) = hyy, by (0)
= klhk,z.(P) + 7t G *(ﬁk,l))
= klo+klj *(ﬁk,l) +7* (Kt 3019851
= K Vp+klj™(B,) +5"(kBy,)
= ko +k(I—1)5"(8,)
= Kk*l%,

where the 4-th equality follows from Lemma 4.1(2). Hence W,,,, has an M(k%[?)-
structure when k =1 (mod 2). In particular there is an M(m’ 1)-structure f,z, for
m odd. Now from Remark 2.8, it follows that there exists an M(1, )-structure £, for
! odd. Hence, when m and [ are odd, f,z,0f;, is a desired M(k?1)-structure. When
k = 0 (mod 4) and /=0 (mod 2), we have an M(k[)-structure by Theorem 4 and
Lemma 5.2. This completes the proof of Theorem 5.

Problem 5.6. Does there exist an M(4m+1,1)-structure on W, ,, for n odd?
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Proposition 5.7. There is a central extension of groups:
0— 7,(SU(3)) = Z,, > [SU(3),SUD] - [ Y, ;] = Z & Z 0.

Proof. Applying [—,SU(3)] to the cofibration S’ 2> ¥,— SU(3), we have an
exact sequence of groups:

[, SU(3)] =2 7,(SU3)) — [SU(3),SU(3)] — [ ¥, SU3)] — 7,(SU3)).

Then we obtain the desired exact sequence, since (¥ o)* is factored as
(Y, SU)] > 7,(SUB)) = 0525 7,(SUB)),

and since 7;(SU(3)) = 0and i,:[Y, ¥;] = [ ¥, SU(3)]. The sequence is central by
(8.10) on page 465 in [22]. J

Remark 5.8. We can determine the group [SU(3),SU(3)] which is non-abelian.
Details will appear elsewhere.

§ 6. Quaternionic Stiefel Manifolds of 2-Frames

Recall that Y = $**3U """ and

{(71-%2)14,,,+3 if n>1
a p—t
w if n=0

where v,: 8" — S* is the Hopf map, v,, = ™y, for m > 4, and w is a generator of
7(S*) = Z,, and ¥’w = 2v; Recall that # [v,,.¢,,] is 12 or 24 for n>2, since

Hlvyto] = H([tt5,19V4,—1) = 2v,,_,. Let (m,m’) denote the greatest commom
divisor of integers m,m’. The purpose of this section is to prove the following two
results.

Proposition 6.1. We have
4-3 if n=0

(1) #X =18:3/(n+2,3) if n=1(mod2) or n =2
16-3/(n+2,3) otherwise.

#X/2 if n=0(mod2) 24 and # [V, 4ty = 12,

X otherwise.

(2) #J(X) = {
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Proposition 6.2. (1) Sp(2) has an M(k,1)-structure if and only if kK = | (mod 12).
(2) If there is an M(kD)-structure on X, ., ,, then

k =1 (mod 24/(n+2,24)),
(mod2(n+2,8)) if n=0(mod2) >4 and # (Vi stimssl = 24

(mod (n+2,8)) if n=0(mod2) >4 and # [V, stsss] = 12.

k(1-1) = 0{

8)Ifk =0(mod #X) fornevenand k = 0 (mod 2#X) for n odd and Il = 0
(mod #X0), then there is an M(k1)-structure on X, ,,.

(4) When n+2 = 0(mod 24), X,,,, has an M(k,])-structure if and only if
kU—-1Dj)=0.

Proof of Proposition 6.1. Let X, € m,,,,(Sp(n+1)) be the characteristic
element of the bundle Sp(n+2)—S**". This is a generator and i+(Xg,) = X, where
i1: Sp(n+1) - SO(4n+4) is the inclusion.

The case n=0 follows from the following commutative diagram.

7(Sp(1)) —— 7(SO4)) —I> 7,(SH

e b b
(S —— w8 5 1S

In the rest of the proof we suppose » > 1. Set

2 if n=0(mod 2) >2
1 if n=1(mod 2).
Applying 7« (=) to the diagram

e(n) = {

Sp(n+1) —> Sp(n+2) — 87

I l H

SU(2n+3) — SU2n+4) — S*7

we see that i's: 7y, (Sp(n+1)) —>r,,.(SU(2n+3)) is surjective. Since
Z4n6(SO (4n+6)/SU(2n+3)) = 0 by [3], the inclusion induces a surjection
Tin+6(SU (2n+3)) = 74,,6,(SO(4n+6)). Hence the composite of the following
is surjective: 74,,5(Sp(n+1)) —> 7,,,s(SOUn+4)) 1> 7, (SO(4n+5)) ~=>
T4,+5(SO(4n+6)), where 1,1, are inclusions. Let i,: SO(4n+3) — SO(4n+4) be

also the inclusion. Consider the commutative diagram where m=4n+3:
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T +3(SO(m))

l

T, (8™ 2 7, (SO(m+1)) —> 7,.,(SO(m+2)) —> 7,.4(S™D)

II | l ||

A’ m-+
7Tm+4(sm+l) - T +3(S™) - Tmis(Ving)  — Tpis(S D)

We have A’(Vypiy) = A'(L4pss)Vanrs = T 2v,,.5 Where the second equality follows
from the fact that 7., 3(V;,152) = Z, so that A'(¢4,.3) = +2¢,,5 It then follows

from [2] and [15] that

Zae(n){a} lf n + 2
Za) if n#2
Zss(n){io*a} e Z24/5(n){[€(7l)1/4n+3]} if n# 2-
Zs{io*a} @Z12{[2V11]} if n= 2’

7[4,,+5(SO(421+5)) = Zs{(iloio)*a};
Tunrs(SO(4n+6)) = Z,{(i,0i,0%,) . a},

Tins(SO(Un+3)) = {

Tin6(SO(4n+4)) = {

where ple(Mvy,,3] = €(M)yy,.sand i [e(m)yy,.4] =0. Write X = z-ija+
yle(n)v,,.5]. Since (i,07;),X is a generator and p, (X) = (n+2)v,,., We have x
= 1(mod 2)andy =(n +2)/e(n)(mod 24/e(n)). Hence (1) follows and

J0) = zJ(ia) +{(n+2)/e(n)} J(Le(n)vyy.s)).

Since HJ(X) = — =" pu(X) = —(n+2)vg,.,, we have 3/(3,n+2)| #J(X) so
that the 3-component of # J(X) is 3/(38,n+2) by (1). Since HJ[e(n)v,,.,] =
—e(n)vg,.q, we have 24/e(n) | #][e(n)v,, . 5). Hence #Jle(n)v,, 5] = 24/€(n).

When n = 1 (mod 2), (2) follows easily from the above calculations.

Suppose 7 = 0 (mod 2). Write A(y,,.,) = u-ig,a+v[2y,,, ;1. Applying p, to it,
we have v = *1 (mod 12). Since #A(v,,.,) is 12 if n=2 and 24 if n > 2, it follows
that » is even if # = 2 and 2 (mod 4) if n > 2. We then have [y, 4l4ps] =
JA ) = uJ(ig,a) £ ] [2v,,. 5], hence

12[v4eptinral = 12uj(i0*a)'

If # (Viniatania =24,then n > 2 and #J(i,a) =16 so that #J(X) = 16-3/(3,
n+2). Suppose # [V, 0tim+e] = 12. Then 8/(4y,a) =0, hence #7(X)|8:3/(8,n+2).
We have —4 % J(igsa) = J(4i,,00,a) = JA(ME,15) = [Npestinss) # 0. Hence 47(ig,a)
#0 so that #J(X) =8-3/(38,n+2) as desired. This completes the proof of
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Proposition 6.1. O

Set ¢, = #a = 24/(24,n+2). Let ¢,:S*"""— Y (or X,.,,) be a coextension of

Cn‘ An+T"

Lemma 6.3. (1) [Y,Y] =Z{id}® Z{¢,0p} as an abelian group.
(2) Y has an M(k,D)-structure if and only if k = | (mod c,). When k = I (mod
C,),the map

e, = kid+(1—k)/c,€,0p

is the unique M (k,1)-structure up to homotopy.
(3) Sp(2) has an M (k,1)-structure if and only if Y does.

Proof. We will prove this only for n=0. Other is easier. Consider the following
commutative diagram:

(Sp(2)) — m(Sp(2)) — L[V, Sp(2)] — m(Sp(2)) — 7(Sp(2)

A o A

oy 2 vyl L o

Since 7,(Sp(2)) = L, 7,(Sp(2)) = Z{12}, 7,(Y) = Z{j} and m,(Sp(2)) = 0, the
lower sequence is short exact. Also it is central by p.465 in [22]. Hence [Y,Y] is

abelian and [Y,Y]=Z{id} & Z{TéOp}. Consider the following commutative square
for m=3,7:

'Y,Y] — Hom(H™(Y),H"(Y))
i.l&‘ =] lHom(i',id)
[Y,Sp(2)] — Hom(H™(Sp(2)),H™(Y))

This diagram shows that (f+g)* = f*+g* for any self maps f, g of Y. It then

follows that, fora,b € Z,a-id+b- ﬁop is an M(a@,a+12b)-structure on Y. This ends
the proof for n=0. ]

Proof of Proposition 6.2. (1) is Lemma 6.3(2),(3). To prove (2), suppose that there
exists an M (k )-structure on X, ,,. Then Y has an M (k 1)-structure so that the first
part follows from Lemma 6.3(2). By Theorem 3, there exists an element y €
Tgnr10 (ST such that (n+2)v,,.0Y = kiyy. o (X) —KIJ(X). Since y is stable, it



186 KAORU MORISUGI AND HIDEAKI OSHIMA

follows that (n+2)v,,, 0y = (n+2)(v,,.0y). Also

k
k‘4n+4oj(x) = k](x) +<2> [‘4n+4!t4n+4] OH](X)

k
= KJ(X) _<2>(n+2) (Vgnsarlansal
Hence
k
E(-DJX) = (n+2) {_<2> (Wanstrtansa) —Van+OY}.

Since c,(= 24/(24,n+2))-times of the right hand term is zero, it follows that
k(l1—1)c, =0 (mod #J(X)).

By Proposition 6.1, this gives us a non trivial information only when n = 0 (mod
2) > 4. The result (2) then follows easily.

Note that z+2 = 0 (mod 24) if and only if X,,,, has a section. Thus, since
J(&) can be desuspended in this case, X, ,, has an M(k,l)-structure if and only if
k(l—1)J(&) =0 by Theorem 1.

Since 7g,.,(S¥7) =0, thesuspension X : 7g,.o(S”"?) = 7, 0(S") s
injective. Hence #J(&)= #J(X) provided n+2 = 0 (mod 24) so that (4) follows.
We also have

2(c,00)= X ¢,0%p

= Scoxjo/(X), byl12],
Cn
= Cplan+ O (X) = c,,](X)+< 2>[l4n+4yl4n+4JOH](x>

Cn
= ](Cnx) + (”+2)< 9 > [V4n+4y54n+4]-

Let b denote #X/#a or 2-#X/#a according as n is even or odd. Then ¢,bX =0
and b(n+2) (%) is 0 (mod 48) or 0 (mod 24) according as # is even or odd. Hence
% (btyy.50c,00) = b2 (c,00) =0 so that br,,.40c,00 = 0. Thus (3) follows from
Theorem 4. This completes the proof of Proposition 6.2. U
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§ 7. Self Maps of = E(X)

In this section we assume #z > ¢+2 and g > 2.

A self map f of XE is called an M(k,[,m)-structure if f*: H'(ZE) - H'(ZE) is
the multiplication by A,/ or m according asrisg+1, n+1 org+n+1. We use the
word M(k,l)-structure on Y in the obvious sense. Let j:S’"'— XY and
j': Y —XE be the inclusions andp : XY — S""' and p’: Y — S7""*! the quotient
maps.

Proposition 7.1. Suppose n>q+2 and q=>2.
(1) There is an exact sequence of groups:

0— 7,.,(S* ) /{Zaon,n,, 0 ) ® Z{B} - [2Y,3Y] »Z -0,

where $(z) = p*jx(2) forz € 1,,,(S*™),6(B) = #2 aop, and () = j='5*(f).
(2) There exists an M(k,1)-structure on XY if and only if k = | (mod #Xa).
(3) There exists an M (k,l,m)-structure on LE if and only if

(i) k=1(mod#Xa) and
M mJ(X) —ke,.,0J(X) € Ker{ju: 7,,,(S*™) = 7,,,,(2Y)}
=Y aom,,,(S8") +<{le, 1, Zal).

Corollary 7.2. When E is W, ,,, or X, ., ,, there is an M(k,l,m)-structure on LE if
and only if k = | (mod #Xa)and k = m (mod #Xp).

When 7 is odd, #X p in 7.2 was determined by Mukai [17]. When 7 is even, we
don’'t know the value of #X o except the following cases.

Proposition 7.3. (1) If n>4 is even and E=W,_,,, then #Xp =4 and #¥p=2.
(2)If n+2 = 0 (mod 24) and E=X,,,,, then #Xp =16 and # Y% =8 (provided
# LtgpraVansal =24).

Proof of Proposition 7.1. We can prove (1) by using Puppe sequences. We omit
its proof.

We have (2) by Lemma 2.2(1)

The equality in (3)(ii) follows from Lemma 2.1.

Suppose given an M(k,,m)-structure f on T E. Write A = flyy. This is an
M(k,l)-structure on XY. Hence (i) follows from (2). By Lemma 2.1, there is an
integer m’ with m'2p = hoXp. Hence there is a self map f’ of L E such that
j'on = f'0j" and p'of " = m't,.,.,op’". By the method used in the proof of Lemma 2.2,

~
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we have m = m’ (mod #X o) so that hoXp = mZp. Since o = j, J(X), we then
have (ii).

Conversely suppose (i) and (ii). By (2), there is an M(k,l)-structure 2 on XY.
Then m¥p = j,(mJ(X)) = j.(kt,.,0]J(X)) = hojo](X) = hoZXp. Hence there is a
self map f of TE such that j'oh = foj’and p’of = mu,,,,,0p". Clearly f is an
M(k,l,m)-structure on X E. This ends the proof of (3) and completes the proof of
Lemma 7.1. ]

Proof of Corollary 7.2. This follows from 7.1 and the following two equalities:

k
k‘q—HO](X) = k](x)i<2>[5q+1»za] and ]*](x) =X p. D

Proof of Proposition 7.3. We prove only (2), because (1) can be proved similarly.
Since Tp =7, J(X) and X0 = (Zj)« £J(X) and since 7« and (£)« are injective,
it suffices to prove the assertions replacing #Xp and # X% by #J(X) and
# > 7(X), respectively. By the proof of 6.1, we have # J(X) = 16. Since
T4 16(SO(4n+5)) =Zg, we have X(8/(X)) = —8/(i+(X)) =0, where i:SO(4n+4)
— SO0(4n+5) is the inclusion. Hence 87(X) = 12[t4,+4V4m+4], Since Ker ¥ =
{[t4n+0Van+4]>. To induce a contradiction, assume 4XJ(X) =0. Then 4/(X) =
CltyyiaVansal With 2¢ = 12 (mod 24). By applying H, we have 0=12y,,., which is
a contradiction. Hence #XJ(X)=8. This ends the proof of (2). O
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