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High-energy Behavior of the Scattering Amplitude
for a Dirac Operator

By

Hiroshi T. ITO*

Abstract

We study the high-energy behavior of the scattering amplitude and the total scattering
cross section for a Dirac operator with a 4 X 4 matrix-valued potential. Moreover, in the
electro-magnetic case, it is shown that the electric potential and the magnetic field can be
reconstructed from the high-energy behavior of the scattering amplitude. The study of the
high-energy behavior of the resolvent estimates is crucial for our proof.

§ 1. Introduction

The aim of this paper is to study the high-energy behavior of the scattering
amplitude and the total scattering cross section for a Dirac operator. Moreover, in
the electro-magnetic case, we show that the electric potential and the magnetic
field (not the magnetic potential) can be reconstructed from the high-energy
behavior of the scattering amplitude.

We define 4x4 matrices

a =(° Oi] 1 < ' < 3 /3 = f/Z °
"' \o, OA ~J~ ' \0 -72

where /„ is the n x n unit matrix and

'0 1\ /O -i\ /I 0
i .

l O/ \z 0 / VO -1

are the Pauli matrices. Then the matrices a; and ft satisfy the relation:

(1.1) ajak+akaj- = 26jk, a^4-^ = 0 (!<;, /c < 3),
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where 8ik denotes the Kronecker symbol. With the matrices the free Dirac operator
can be written as follows:

3

HQ = COL - D+/3mc2 = c £ ajDj+@mc2 in 2?= L2(R3', C4),

where c > 0 is the velocity of light, m > 0 is the rest mass of the particle, and
a = (#! , a2 , «3), D = (Dl , D2 , D$), Dj = —id/dxr The free Dirac operator HQ is a
self-adjoint operator with domain D(H0) = Hl(R*; C4), the Sobolev space of order
1, and has purely absolutely continuous spectrum:

cr(#0) = a^O/o) - (-00, -me2-] U [me2, oo).

The symbol h(p) := ca • p+/3mc2, p e R\ of HQ has two eigenvalues ±AG>) : =
±Vc2 |p |2 H-raV, and each eigenspace Jf ±(p) is a two-dimensional subspace of
C4. Each element of X±(p^) describes an internal (spin) state of the free particle
with momentum p.

When a magnetic potential ^L(r) = (^(z), A2(x\ A$(x)} and an electric
potential 0(:r) exist, the Dirac operator has the form:

H= ca • (Z)
(1.2)

where

(The factor e/c in front of A is omitted for simplicity, where e is charge of the
particle.) We assume the following.

Assumption 1. There exist a real p > 2 and an integer d > 2 such that each
v = Al , A2 , A3 , 0 is in Cd(R3 ; E) and obeys

<d

for some C > 0.

In Sect. 2 we will define the scattering amplitude F(E, 9, co), which is a linear
map from X~(v(E)a)) to JT±(^(£1)^), for energy E with ±£ > me2, initial direc-
tion a) G S2 and scattering direction 6 e S2, where S2 is the unit sphere in R* and

(1.3)
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For a normalized initial state u EE X±(v(E^(jo), \ u\= I, the total scattering cross
section is defined by

(1.4) a(£, to, w) = fs2 \ F(E, 9, to)w I 2d0.

It will be shown in Sect. 2 that the scattering amplitude is well-defined for each
(E, 6, to) if p > 3 and the total scattering cross section is well-defined for each
(£, to) ifp > 2.

To state our results on the high-energy asymptotics of F(E, 8, to) and
a(£, to, w), we need some notations: For each to £ S2 let IIW denote a plane
orthogonal to to, nw := {77 £ J23 77 • to = 0}, and define

and

+ i r f i r ° ° ](1.5) m~(a)):=——r iexp( v±tl)(s(x) + 7i)ds) — l\dri,
LTLCl Jll^ [ C J-°° J

where the integral with respect to 77 is absolutely convergent if p > 3. Let
B(X, F) denote the space of bounded operators from a Banach space X to a Banach
space Y and set B(X) := B(X, X\

Theorem 1.1. Suppose Assumption 1 with p > 3 and fix to £ S2.
(i) Let K be an arbitrary compact set of S2\{to}.

(1.6) sup || F(E, 0, to) \\B(x±ME^ x±(^
d&K

as E^> ±00.
(ii)

(1.7) lim
F(E, to, to)

Theorem 1.2. Suppose Assumption 1 and fix to £ S2.

-0.

(1.8) lim r f /1 r°°a(£, to, w ) — 2 U—cos — t;±fl)^nw[ \ c ̂ -°o
-0.

The latter theorem implies that the total scattering cross section has a limit
independent of normalized initial internal states.

Finally, we show that the scalar potential <p and the magnetic field rotA can
be reconstructed from the high energy behavior of the scattering amplitudes. To
do so we fix an orthonormal basis {uf(p)}3 = 1 2 of X±(p) for each£ e J23\{0} with
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the following properties throughout this paper:
Each wf GO is a C^-valued continuous function of p e JS3\{0} and the limit

wf(°°, oO := lim wf(y(£)oj)
] |£|->oo 3

exist uniformly in a) e= S2.
It follows immediately that uf(°°t &>) is continuous on S2 and

each {wf(°°, w)};- = 1 2 forms an orthonormal basis of the space -X"*(&0 := {u ^
C* I (a*a>}u = ±u}. If we define, for example, {uf(p)}j = li 2 by

P \ '

1 , me2

2-2*00 '

it is an orthonormal basis of X+(p) and satisfies the above properties (see [Tha],
P.9).

Let us define/*^): Z"(p) -> C2 by

Then the 2 x 2 matrix

(1.9) f ( E , 0, <o) =J±

is a representation of F(E, ft w).
Let w e S2 and f e nw, f ^ 0. Then we can take a family of 0(E) e S2,

|E |»lwith lim yCE)(0CE)-w) = £
I £ |-> oo

Proposition 1.3. Suppose Assumption 1 witfi p > 3. Le^ a) ̂  S2 and
f e nw, f ^ 0 awd Ze^ (0(^)} &e as above. Then we have

i,-m > > -rlim - r̂ ri - — c>±

The integral with respect to 77 is absolutely convergent because of p > 3.

Proposition 1.4. TTze soz/ar potential (/> and the magnetic field rotA can be
written in terms of the function Gw(f) on {(co, f) e S2X^3 1 f e Hw , f ^ 0}.
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Combining the above propositions, we immediately obtain the following result.
The same result for Schrodinger operators with A = 0 has been well-known since
Faddeev [F].

Theorem 1.5. Suppose Assumption 1 with p > 3. The scalar potential 0 and the
magnetic field rot A can be determined by the high energy asymptotics off(E, 0, co\

Remark. Here it should be noted that it is impossible to determine the
magnetic potential A itself because the scattering amplitude is invariant under the
change A -> A + V0 if (p is a rapidly decreasing smooth real-valued function.

In general, a Dirac operator H has the form H = HQ+V, where V is the
multiplication operator by a 4X4 Hermitian matrix-valued function F(x).
Obviously, V = VA$in the electromagnetic case. In Sect. 2 the scattering amplitude
and the total scattering cross section will be defined for a Dirac operator with a
general potential V(x\ and a representation formula of the scattering amplitude
will be given. In Sect. 3 it will be shown that Theorems 1.1, 1.2 and Proposition 1.3
follow immediately from more general results, i.e., Theorems 3.1, 3.2 and
Proposition 3.3, respectively, and Proposition 1.4 is also proved. The limiting
absorption principle, LAP, plays an important role in our proofs. Though the LAP
for Dirac operators has been studied by several authors (see, e.g., [BMP], [PSU],
[V], [Yaml]), they discuss it in finite energy regions except for [PSU], and so it
is needed to study the LAP for the high-energy range. In Sect. 4 we will give our
result on the LAP for the high-energy range (Proposition 4.1). The proof can be
carried out by combining the commutator method, due to Mourre, and a scaling
argument in the same way as in the case of Schrodinger operators [Yaf2],
Theorem 2. Thus, we give only a sketch of the proof in Sect.6. In Sect. 4 we will
also show that the operator e~'X£)w"*(#-£-zOrVXjB)ara: has a limit (in some
sense) as E -> ± °° and the limit is expressed by the resolvent of some first order
differential operator (Corollary 4.4). Theorems 3.1, 3.2 and Proposition 3.3 will be
proved in Sect 5.

Recently, there are several works on scattering matrices for Dirac operators.
See, for example, [BGU], [BGW], [BH] and the notes in [Tha].

§ 2. Scattering Amplitude

To define the scattering amplitude we need a spectral representation of HQ.
Denote by P±(p) the orthogonal projection from C4 onto the subspace X±(p) and
write Z+= (me2, +°°), £_ = (-00, -me2), E = 2 _ U Z + . For each E <E I we
define a positive constant #(£) = (T3/2(£2CE2-ra2c4))1/4 and a Hilbert space

by a direct integral
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(2.1) JTCE) = f @X±(v(E)a))da), ±E > me2,
Jsz

(see [BS], ch.7 for the definition of the direct integrals). By definition,
±E > me2, is a subspace of L2(S2; C4) consisting of all elements / satisfying

) for a.a. co e S2. We also define a unitary operator

UHQ : JT-^ JT0 := J

by ((Z7^)CE))(0 ^C^P^CEOO^K^)") for ±E>mc2, where 0 is the
Fourier transform of 0:

It is easy to see that £/#o gives a spectral representation of JiT0

where the right-hand side is the multiplication operator by E.
Now let us consider a Dirac operator

where V is the multiplication operator by an Hermitian matrix-valued function
F(:r) = ( V/fcOz:))i < ; - i f c < 4 on J23. We assume the following.

Assumption 2. There exist a real p > 2 and an integer rf > 2 such that each
Vjk, 1 < ;, /c < 4, is in Cd(£3 ; C) and obeys

\dlVj k(x) <C(1+ ]x | ) - p , \r\<d

for some C > 0.

Obviously the potential V = V^, defined in the previous section, satisfies
Assumption 2 if A and 0 satisfy Assumption 1. Under Assumption 2, H is a
self -ad joint operator with domain D(/0 = D(HQ), and moreover the wave opera-
tors

(2.2) 1^=5- lim expGW)exp(-*W0)
£-*±oo

exist and are asymptotically complete:
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(2.3) Range W±=2fac(H),

where J^(#) denotes the absolutely continuous subspace of J^(see, e.g., [Tha]).
It is also known that there is no eigenvalue in Z under Assumption 2 ([Yam 1],
Proposition 2.5). It follows from (2.2) and (2.3) that the scattering operator
S = W*+W_ is a unitary operator on %f. On the other hand, it follows from the
definition of the wave operators that exp(zW) W± = W± exp(2W0) for alH GE R,
and so, S commutes with HQ :

exp(i*#o)S = S exp(zW0), t e R.

This fact guarantees that L/^SL^"1 is a decomposable operator on 2tfQ:

(2.4) UHQSUHQ
l =

where S(E), called the scattering matrix at energy E, is a unitary operator on
<%"(£). Under Assumption 2, S(£)-7 is of Hilbert-Schmidt class for each E e Z
and its integral kernel is denoted by T(E, ft w) e JSCX^d/CE)^), X±(v(E)^)),
where (£, ft co) £ Z±xS2xS2 . The scattering amplitude with energy E, incident
direction co and scattering direction 9 is defined by

F(E, 9, w) - -27rix(ErlT(E, 0, w),

which is well-defined for each (£, ft w) if p > 3. For w e X±(i^(£)w) with
I t/ |= 1, the differential cross section is defined by F(E, 6, co)w |2 and the total
scattering cross section is defined by (1.4), which is well-defined for each (E, co)
and u for p > 2 (see Proposition 2.1 below).

We give a representation formula of /(£, 9, CL>) defined by (1.9). For s e E we
define

L2CR3; C4) - {/£LLCS3; C4) ! !|/||Lj=|| (1+ I x r)s /2/liL2(^ ;C4 )< 00}

and Bs = B(L2
S(R

3 ; C4), L2_s(^
3 ; C4)). Let fl(z) := (H-zT1 for Im 2 ^ 0. Then,

it is known that the following norm limits exist in Bs , s > 1/2, uniformly for £ in
any compact set of Z:

and that R(E±iQ) is a ^-valued continuous function of E. This fact is called
the limiting absorption principle (see, e.g., [BMP], [V], [Yaml]). We define
an operator Q(£) := —V+VR(E+iti)V for each £^Z and a 4x4 matrix

, 9, w) = (Q;-,te ft co)) by
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(2.5) Qjk(E, ft co) : = (Q(E)e0(^(E)co, •)** , e0

where eQ(p, r) = e*'* and {%J-}i< ;-<4 is the canonical basis of C4: %l ='(1, 0, 0, 0),
•", %4

 ='(0, 0, 0, 1). The following result is obtained by a usual way in scattering
theory, and we give only a sketch of the proof.

Proposition 2.1. Suppose Assumption 2. Then S(E) —I is of Hilbert-Schmidt
class for each E £ I, and f ( E , 8, <u) defined in (1.9) /zas £/&e following represen-
tation.

(2.6) /(£, 0, w)

- (27TC2)-1 | E I (wf(K£)0) uf(v(E)6»*Q(E, 6, w)(wf(v(£)co) tt2
±(i/(£)cu))

/or£ (E Z+, w/iere (uf(v(E)O) M2
x(vCE)0)) is f/ie 4x2matrix with the j- th column

vector uf(v(E}0}. In particular, f ( E , 0, <w) /zas ̂ e following properties:
(i) £<2c/z component of f(E,',co) is an L2 (S2) -valued continuous function of
(E, w) (ESXS2 .
(ii) /(£", ft w)-/CE, w, 0)* is continuous in (E, 0, CD) <E S X5 2 X 52.
Moreover, i f p > 3 , then S(E) —I is of trace class for each E ^ S, awd /(E, ft &>) zs
continuous in (E, 0, <u) e Z XS2x S2.

o/ ^ proo/. We define ^o(E) : L2(E3,C4) -* JT(E), s > 1/2, by
0 = ((%00) (£))(•). Then the following relation is verified

Taking account of this relation, we can derive

Er fora.a.E

in a usual way (see, for example, [Yafl], p.94) and verify that the right-hand side
is of Hilbert-Schmidt class if p > 2, and of trace class if p > 3. Therefore, from the
definition of £/#0(£) it follows that

(2.7) F(E, ft w) = (27TC2)"1 E | P±(v(E)0)Q(£, ft w) l^w)^

where ljf±o(£)w) denotes the restriction to X±(v(E^)a)\ Hence, we obtain (2.6) by
(1.9). The properties of f(E, ft o>) follow from those of Q(E, ft CD) discussed
below.

We see that F e #a2_s , L
2) for s + £ < p and raQ?±iO) 7 £ E_s for s <

p — (1/2) by Assumption 2 and the limiting absorption principle. Since %k& L2

for any s < —3/2, the /-component of Q(£1)e0(^(JE)w, •)%* is an LS(J23)- valued
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continuous function of (E, w) for some s > 1/2. Thus, noting that Qjk(E, - ,CL>) is the
restriction of the Fourier transform of the function to the sphere
{fe RB || f|= i/CE)}, we see that Qjk(E,-,a>) is an L2(S2) -valued continuous
function of (£, o>) e ZXS2 . On the other hand, by the equality

, 0)*

we can verify that it is continuous in (E, 9, w) ^ ZxS2XS2 . Moreover, it is easily
seen that Q(E, 0, w) is also continuous (E, 0, w) e IXS 2 XS 2 if p > 3. D

§3. General Potentials

Theorems 1.1, 1.2 and Proposition 1.3 follow from more general results below
(Theorems 3.1, 3.2, Proposition 3.3). To state these results we prepare some
notations. For each co £ S2, define the 2x2 matrix

(3.1) F/Cr) = ir±(fi))*7(x)/ir±(a)) f

where K±(a)} = (ttfC00 , &>) w2
±(00, w)) is the 4x2 matrix with the ;-th column

vector wf(°°, co). For each rj ̂ U^ let £//(£, 77) be a 2x 2 matrix-valued function
on R satisfying the following equation:

(3.2) d ± ( * ' ^ = ^(^ + 77)^^, 77),

(3.3) lim U*(t,v) =IZ.
t-» -o

It is easily verified that under Assumption 2 this equation has a unique solution
and that the solution is a unitary matrix for each t and has a limit as t -> + °°:

(3.4) ££"( + «>, tf):= Hm U*(t,v).
£-» +00

Moreover, we have the following estimate easily:

Let ReU= (£/+C/*)/2. Then (tf-/2)(£/*-/2) - 2-2 Re f/, and hence
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Theorem 3.1. Suppose Assumption 2 with p > 3. Let a) e S2.
(i) Let K be an arbitrary compact set in S2\{a)}. Then

(3.5) sup || F(E, 9,
a c= K.

as E -> ±00.

(ii) Let

± i r

Tfcew

(3.6) lim

= lim ', W, Cc>)
- 0.

Next we consider the total scattering cross section. A normalized internal state
u e ^(yCEOw) can be written as w = T?j = lckUk(v(E}a)}, ±E > me2 with

! , c2 e C, I Cj I2 -r I c2 1
2= 1. Let fjk(E, 9, w) denote the (j, /c) -component of

, 0, w). Then

(3.7) a(E, «, «) = t J^ ! £ ct/yt(£, 0,

where

(3.8) ak(E, w) = J f
j = i Js

(3.9)
2 ,>

, w) = X! J 2

Theorem 3.2. Suppose Assumption 2. L^ w £ S2.

(3.10) ^lim^ crfc(^, w) = %f {l-Ret^C + oo, 77)^}^, A; = 1, 2,

(3.11) lim a21(£, co) - - f {RfC + oo, 7?)21 + ̂ ( + 00,77)^77,£— ±c» Jnw

where Uc^( + °°, rj^jk is the (;', /c) -component of £4~( + °°, 77).

Proposition 3.3. Suppose Assumption 2 w;#/i p > 3. Le^ co e S2 and
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, and let {#(£)} be a family of unit vectors in R3 such that
\E\-*°°. Then

r /(£. 0(£). ft>)lim —

Accepting Theorems 3.1, 3.2 and Proposition 3.3, we prove Theorems 1.1, 1.2 and
Proposition 1.3.

Proofs of Theorems 1.1, 1.2 and Proposition 1.3. We first prove that

(3.12) K

Indeed, the (j, /c) -component of the matrixK±(co)*(ia'A)K±(a)) can be written as
follows:

((a -A) u£ , wf)c4 = ((

because each uf = wf(°°, w) belongs to JC^(w). On the other hand, taking
account of (1.1), we get the well-known formula

(3.13) (a-4)(a-w) + (a-6>)(a-4) = 2u-A.

Thus, (3.12) follows immediately. Substituting V = VA^ in (3.1) and using (3.12),
we see that V^(x) is a scalar function:

(3.14) F/U) = v

and

(3.15) D r
w

± a ,77 )=exp( -— f t;±aj(sc
C J —oo

Therefore,

(3.16) f4±( + °°, 77)12 - ^( + 00, 77

(3.17) Re£7w
±(4-oo, 77) - cos( — f z;±

\ C ^-oo

andM±(oj) = m±(o;)/2 (see (1.5)). Hence, Theorems 1.1, 1.2 and Proposition 1.3
immediately follow from Theorems 3.1, 3.2 and Proposition 3.3, respectively. D

Next we give the proof of Proposition 1.4.
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Proof of Proposition 1.4. Since G^Cf) is the Fourier transform of a function
const (0"H/c)/-"-c*CjWTJ!)"w'al(">+1|))*-l) of 7 7 < E n w , and since /I ( 0(5^ + 77) -

is continuous in 7? e nw and goes to zero as | 77 |-> °of the function
c^L(sw + 77))<is can be determined by the function Gw(fr), f ^

nw. Replacing co by — w, we also obtain /_°°00(0(sa)4-77)+co-c^(sct) + 7?))ds from
G_w(£). Thus, both /_°L <f>(sa) + 7])ds and /^ wyKsw + 77)cte are determined by
G± w(fr), f E: H^. Taking account of the Fourier transform on J23

we see that 0 is determined by the function Gw(f ) of (&>, f ) with co G S2, f ^ nw ,
because co can move on the whole sphere. To represent the magnetic field rotA in
terms of /^ wA (tco + rj^dt, co e S2, 77 e nw , we prepare the following.

Lemma 3.4. Let {6, co, 00'} be an orthonormal basis ofR* with CD' = 6X a), and let

X
oo

o)'A(ta) + 7i)dt, rj en,,.-00

Then

(3.18) (0-roMf (f) - (2rf-a/2i(F-o)/) f e-'^aMdv.Jnu

/or f £ IIW, where the left-hand side is the Fourier transform of the function 6' rot A on
R\

Proof of Lemma 3.4. Taking account of p > 3, we have by Stokes' theorem

= [ ds

for A, A', 0 e fl. Thus,

-^ra£U(Aw/+//6>) = - fa/I J-c

and so^

-rotA f
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where we have used integration by parts at the second step. We have thus proved
the lemma. D

Since, for fixed 9 ^ S2, the union of {11̂  co ^ S2DIIe} coincides with the whole
space R3, the function O-rotA(x^) is determined by {^(77) | co e S2, 77 e IIJ by
virtue of the above lemma. Consequently, rotA (or) is determined by this set for
6 is arbitrary, and Proposition 1.4 has been proved. D

§ 4. High Energy Behavior of The Resolvent

The following assumption on potentials is sufficient for the limiting absorp-
tion principle at the high-energy.

Assumption 3. F(x) is an Hermitian matrix-valued C2 function on R3 such
that all i Or- VYV]k(x) are bounded on R* for £ = 0, 1, 2.

Proposition 4.1. There exists EQ > 0 such that for any s with 1/2 < s < 1 the
following estimates are valid:

(4.1) sup ||flCE±ze) \\B< +00,
0 < e < 1 s

\E\>E,

(4.2) sup !|#CE±ie)-flCE±ie') ! i 5 < Cs e-e'\a, 0 < e, e' < 1
I ^ i > £0 s

for some Cs > 0, w/zere a = (s— (l/2))/(s+(l/2)). 7w particular, the norm limits
R(E±iQ^) : limR(E±ie^) exist in Bs uniformly in E > EQ.

e i O

Remark 1. Let WCar) = (T^^(r)) be a 4 x 4 Hermitian matrix-valued C1

function such that (1+ x !)p | W^(;r) | and | VWjk(x) \ are bounded for some
p > I and let F(x) = /cPF(x), K ̂  R, then the same results have been obtained by
Pladdy, Saito and Umeda [PSU] for small /c's.

Remark 2. Though the resolvent estimate for any compact energy range in
Z has been already proved by many authors (see, e.g., [BMP], [V], [Yaml]), the
estimate for the high energy range (\ E\» 1) is, so far as the author knows,
proved in only [PSU] above. On the other hand, in the case of Schrodinger
operators, Yafaev [Yaf 2] has obtained high-energy resolvent estimates by combin-
ing the commutator method, due to Mourre ([CFKS], [M]), and a scaling argu-
ment (see also [J]). His argument is applicable to our case, and we can prove
Proposition 4.1 in the same way as [Yaf 2]. So, we will give only a sketch of the
proof in Sect.6.
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Next we study the asymptotic behavior of R (E + i 0 ) as E -» ± °o . For proving
Propositions 4.2, 4.3 below, the following assumption on the Hermitian matrix-
valued function F(:r) is sufficient:

Assumption 4. Each Vjk , 1 < ;, k < 4, is in C2(E3 ; C) and

(4.3) surj | d^Cr) |<C, l r l < 2

for some C > 0.

Define an operator L(w), w e S2, in L2Q?3 ; C2) by

0 , 0 - r
V2 \cr-o;

It is easily seen that the operator #0(±w) can be regarded as a unitary operator
fromL2(E3 ; C2) ontoL2(J23 ; ̂ (<w)) as well as from C2 ontoZ^Cw). The operator
L(CL>) is a self-adjoint operator with domain

flCLCco)) - {f^L\R3- C2)\o)-Df^L\R3', C2)}.

Proposition 4.2. Suppose Assumption 4. Let e > Q, a) <^ S2 and f ^L2(R3 ; C4).
T/zgw one /las

s- Km g"" (£)w^(E+fe)ezX£)w-y-^0(±w)(L(±w)-f£)~X(±w)^
£-» ±°°

in L2(R* ; C4), w;^erg KQ(±co)* is the adjoint matrix ofKQ(±a)).

The proof is given at the end of this section.
The limiting absorption principle for L(co) also holds:

Proposition 4.3. Suppose Assumption 4. Let a) ̂  S2 and s > 1/2. Then

sup
0< £ < 1

and the norm limit (L(o>) — x'O)"1 := lim(L(&>) — z's)"1 m'sts m ^'s, where
Bf

s: = B(Ll(R*l C2), L2_s(£
3; C2)). £i°

Proo/. We use the commutator method by Mourre (see, [M], [PSS], [CFKS]).
Let A be the multiplication operator by co'X. Since t[L(o)), A~\ = c on the space of
rapidly decreasing functions, we can adopts! as a conjugate operator for L(w) to
obtain the desired results. The detail is ommited. D
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Combining Propositions 4.1, 4.2 and 4.3, we obtain the following result immedi-
ately.

Corollary 4.4. Suppose Assumptions 3 and 4. Let s > 1/2 and f £L2 (/23; C4).
Then one has

s— lim e~^E^'x^

Remark 1. Note that the corollary implies

limjnf ||#(£±iO) \\B* 0

for any s > 1/2. In the case of the free Dirac operator, 7=0 , this has been already
pointed out by Yamada [Yam2] (see also [Yam3]). On the other hand, in the case
of Schrodinger operators, the following estimate is well-known for any s > 1/2:

(4.4) || (-A + 0-^iO)"1 IU (L2,L2_ s )- O(£~1/2), £-> + 00,

for a large class of potentials v , and this estimate (4.4) plays an important role
when one reconstructs v from the high energy behavior of scattering amplitudes
(see, e.g., [F], [N], [SI], [S2]). Since a similar estimate such as (4.4) dose not hold
in the case of Dirac operators, we need a more detailed information of the high
energy behavior of the resolvent such as Corollary 4.4 to consider similar re-
construction problems.

Remark 2. Denote by P«T(OJ) the orthogonal projection from C4 onto -X
and by E*(w) the embedding fromX*(w) into C4. We can regard them as the
orthogonal projection from L2CR3; C4) onto L2(E3; JC(w)) and the embedding
fromL2(£3; X^(cu)) intoL2(J?3; C4), respectively. Define an operator L~(<u) in
L2Q£3;J^(o;)) by

(4.5) £*(<») = cwD+P^Cw) FGc)£^(w),

which is the restriction of the operator corD4- F(x) in L2(i?3;C4) to
L2CK3; Jd;(w)). If we identify C2 with X*(w) by #0(±<y), then L(±o>) is
identified with L±(w). Moreover, we can easily see that

(4.6) ^0(±

Since {uf(°o, &>)}; = 1 12 is an orthonormal basis of X^(w), we also have
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(4.7) ^0(±

Proof of Proposition 4.2. In this proof we fix a) £ S2 and e >0, and write
= z>(£) (see (1.3)) and 11 • l| = || - \\BaW;cz» f°r simplicity. First note that

'K L"

VL* M)

where

K = mc2+Un-E-ie, M= -mc2jrU22-E~ie,

L = a

and Left's are 2x2 matrices defined by

V =
\Un _

Here note that C71*2= U2l. If we set

Y

W,

we have X, Yt Z, W ^ £(L2(E3; C2), tf'O*3; C2)) and

'K L\/X

VL* M / \ Z TP.

fX Y\/K L

\Z w)\L* M.

that is,

(4.8) KX+LZ = I2, L*X+MZ = 0 in B(L2(R3; C2)),

(4.9) KY+LW = 0, L* Y+MW = I2 in B(L2(R3; C2)),

(4.10) XK+YL*=I2, XL+YM=0 in B(Hl(R3', C2)),

(4.11) Z#+^L* = 0, ZL+WM-/ 2 in JKtf'OR3; C2)).

Moreover, it follows from ||^(^+ze) IU ( j r )< 1/e that || J JT | | f || 7||, ||Z i, II W\\<
l/e. Since all components of U22 and their derivatives are bounded and
II M"11| < 1/e, both M and the inverse M'1 belong to B(L\R*',C2»n
B(H\R*; C2)). Therefore, by the second equality in (4.8) we can see that

m2(J?3; C2), Hl(R3; C2)) . Since (a-^ + zT1 e B(Hl(R3; C2),
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H2(R*; C2)) follows immediately from (a-D)2 = -A (see (4.16) below), we have
X^B(L\R3; C2\H\R*; C2)). The equalities in (4.8) yield Z = -M~1L*X and
(K-LM~1L*)X =/2 e=B(L2CK3; C2)). Moreover, we can also have X(K-LM~1L*)
= I2^B(H\R3; C2)) by (4.10), and so, the operator K-LM~1L* with domain
#2CR3; C2) has a bounded inverse:

X = (K-LM~lL*yl , Z = -M~lL*(K-LM-lL*rl .

In the same way as above it follows from (4.9) and (4.11) that M—L*K~1L with
domain H2(RZ ; C2) has a bounded inverse:

W = (M-L*K~lLTl , Y = -K~~lL(M-L*K~lLTl .

Lemma 4.5. Bounded operators X, Y, Z and W have strong limits as E -> ± °o;

(4.12) s- lim X= (2L(±w)-2ze)~1 ,
£ — * i °o

(4.13) s- lim 7- (2L(±w)-2f£)"1(±a-ct)) ,
£-*• ±00

(4.14) s- lim Z= (±a-(u)(2L(±co)-2ie)~1 ,
j?-» ±°°

(4.15) s- lim W= (±cr-w)(2L(±o;)-2z£)~1(±or-a;) .
£-*±oo

Proof of Lemma 4.5. We only give the proof of (4.12) and (4.14) for E^ ±°of

because the other cases can be treated similarly. In this proof, the notation
A=B + 02(E~^ means that || U-tfX-A + l)'1 1|= 00E~J) as E^+°°. We
write

K-LM~1L* = -c

and observe that

M~l = -E~l-(U22-mc2-i£^E

v = c~lE+02(E~l\ ID, M~l~\ = 02C5T2).

Now, noting that the Pauli matrices satisfy the following relation:

(4.16) Oj ok+ok oj = 2djkI2 , 1 < ;, k < 3,

we obtain
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(4.17) (a-w)(a-£>) + (a-D)(cr-CL>) - 2a)-D, O^)2 - 1.

Thus, it is easily seen that

K-LM~1L* = 2L(w)-2z£ + O2CET1),

and hence,

(4.18) X- (2L(w) -2ieTl = O2(E~l),

since (-A+l)(2L(w)-2f£)~1(-A+ 1)'1 is bounded and \X\\< 1/e . This implies
(4.12), because the operator norm of the left-hand side in (4.18) is uniformly bounded
in E » 1. Since

LDj, e-™'x(H-E-ierle™'xl

= -e'^tH-E-ier'lDj, 7] (H-E-ieTlJ™'x ,

it follows that sup || e~™'x(H-E-i&YlJ™'x \\B(HI(R*-,C*»< + °°, and hence

(4.19) sup ! X\\BUIw.c*»< +00.
£, > .> I

We write

The second term in the right-hand side goes to zero by (4.12) for / e L2(R3 ; C2), and
the first term goes to zero by (4.19) if /e H\R* \ C2) since
II — M~1L* — (<7'&)) 115(^1(^3.^)^2^3.^))= O(E~1)- On the other hand, the operator
norm of Z— (<7'o>)(2Z,(a>)— 2ie)~l is uniformly bounded in E » 1, and hence
(4.14) follows. D

Proposition 4.2 immediately follows from Lemma 4.5. D

§ 5. Proofs of Theorems 3.1, 3.2 and Proposition 3.3

Proof of Theorem 3.1 (i). Assumption 2 with p > 3 is supposed. We first note
that
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where each Z)0) stands for some Dk, 1 < k < 3, and the commutator is the £-ih fold
one, £<d. Since \_Dkt #CE+iO)] = -R(E+iQ)(DkV}R(E+iV), it follows that

for s < p/2 by Proposition 4.1 and p > 3. Consequently, we hae

for each a with a <d and for s with 3/2 < s < p-(3/2) , where Q(£) =
(Q^CE))^. fc<4. Since 6> ^ co, writing Q^(£, ft <y) as

(5.1) Qy,

(see (2.5)) and integrating by parts, we have the desired result by Proposition 2.1.
D

Proof of Theorem 3.1 (ii). Assumption 2 withp > 3 is supposed. We set

Then it follows from our assumption, Corollary 4.4 and (4.7) that Q ± (w) £ B_s and

5- lim e~i^"'xQ(E)el^OJ'xf= Q±(w)/ in L2
S(123; C4)

£-» ±CX3

for each w e S2 and / e L2_S(R* ; C4) if s < p/2. Thus, by (5.1) we have

lim^ Q]k(E, a), to) = (0±(cu)% f c , %;-)L2.

Since

lim (wf
£-> XOQ

it follows that

lim

where/)±(a)) = (Df*(w)) := -7/4- ^(cw-D^^-tOrV/.and {̂ }t _ ,, 2 is the
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canonical basis of C2. Writing x = to + 77, t e R, rj £ H^ , we denote by £7* the
multiplication operator with U^(x) := U*(t, 77). Then by (3.2)

Therefore, we have for each constant vector u e C2 :

- fc-'KfCto + Trttf/a T?) f tf/
I/ — OO

a T?)-'

and hence

(5.2)

This yields

( JD
±(w)^, ^W3;C2) = -ci f f Sj^fC*. T?);

«^nwt/j?

= -ci f (£/&f( + 00, 77)-/2);.^77,Jnw

and Theorem 3.1 (i) has been proved. EH

Proof of Proposition 3.3. In the same way as the proof of Theorem 3.1 (ii), we
have

and so, by using (3.2) and (5.2) we obtain the desired results. D

For the proof of Theorem 3.2 the following proposition, may be called the optical
theorem, is useful.

Proposition 5.1. Under Assumption 2, we have
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(5.3) ok(E, co) = 4:7rv(E)~lImfkk(E, co, co), k = 1, 2,

(5.4) a21(£, co) = -27TVCE1) 'i (/21(£, co, co)-/12CE, co, CD)).

for E^ I, and a) e S2.

Proof. Since the scattering operator S is a unitary operator, the scattering
matrices S(E) are unitary operator for a.a. £ €E Z, and hence

(5.5) (S(£)-/)*(£(£)-/) = -(S(£)-/)-(£(£)-/)* for a.a. E.

Taking account of Proposition 2.1, we get by (5.5)

\2 n

?, 6, co')*/(£, ft

-(f(E, a>',

^^J \ I rS-r. „ / N * .

for each (£, co, w'). By putting w = w', this yields

E, 60, co), ft = 1, 2,

E f2
k = lJs2 , 6, u>}dO = (-f2l(E, co,

By (3.8) and (3.9), we have completed the proof. D

Proof of Theorem 3.2. In the same way as in the proof of Theorem 3.1 (ii), we
have

r /(£, 6), &j)-/(£, ftj, flj)*
lim - r-=ri -

£-±oo I E I

= ^TrcVtf^co^aQ^co)^

= (27rc2Tl(((D±(^-D^(cor^k,

and

Since
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we obtain by using Fubini's theorem

= fc f ((^t( + ~,77)-/2)(^±(
°%

= 2fc f (O-ReRfC + oo, 7?))^,
Jno;

Hence, Theorem 3.2 follows from Proposition 5.1. D

§ 6. Proof of Proposition 4.1

We give a sketch of the proof of Proposition 4.1 for only the case E > EQ, because
the case E < — EQ can be treated similarly.

In this section the norm || • || stands for || • IU0 or | • ||L2(/?3;C4) for simplicity. By
scaling x -> E~~lx we have

where HE = ca'D+E~l(@mcz+ F(r/E)). Hence, Proposition 4.1 is equivalent to the
following.

Theorem 6.1. Them exists EQ > 0 such that for 1/2 < s < I the following estimates
are valid:

(6.1)
j[S

(6.2) I! CE+ xi)-s(J?£(l + i4)-^(l + ̂ ))(£+ l^ l )~ s l l< Cs£'-2s I.5-5T,

/or any 0 < d, d' < 1 and any E > EQ, where RE(z) = (HE-zTl.

Accepting the following proposition for a while, we give the proof of Theorem 6.1.

Proposition 6.2. There exists E0 > 0 such that for any s with 1/2 < s < I the
following estimates are valid.
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• O \ S n i I * I > —S h ^- /"i r-<l-2s(6.3) || (E+ \ A | rs#£( 1-H—)CE+ I ̂  I) s ||< Cs££

* ^x
.0 NN^ , ^ |)-S | |<

0 < d, d' < I andanyE > EQ, where A = (l/2)(x-D+D'X} is the generator of
dilation.

Proof of Theorem 6.1. By the resolvent equation RE(z) = RE(i) + (2 — x)
RE(z)RE(ii\ we have

(6.5) ££(l + *e) = ^(0 + (l + fe-0^(02+(l + t£-02^(0^(l + xe)^(0.

Thus, by 11^(0 ||= 1 and || (£ + x |)"s l|= E~s, the proof of (6.1) is reduced to that
of

(6.6) !!(£+ |Tl)-^(0^(l + iE)^CO(£+ x\rs\\<CsE
l~2s,

forE>EQ,Q< e< 1. With the aid of (6.3), it suffices for the proof of (6.6) to show
that

(6.7) sup || CE-t- A \)sRE(±iKE+ I z i T ' l K « f
E >Ea

for each 0 < s < 1. The case s = 0 is obvious, and so the cases 0 < s < 1 are reduced
to the case s = 1 by interpolation. Thus, it suffices to show that

(6.8) sup ||A^(±0(£+ x\rl\\<°°.
E > Zi Q

To do so we write

(6.9) ARE(±iKE+ I x I)"1 - RE(±fiA(E+ \ x IT1

and

(6.10)

where L0 = a-D, VE = E~~l($mc2+V(x/E}} . Since (LQ-iYlD is bounded and
A = D-x+ (3/2), the operator norm of the first term in the right-hand side of (6.9) is
uniformly bounded for E » 1 , and that of the second term is also uniformly
bounded by Assumption 3 for
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(6.11) HHaAl = HE-VE-x

(6.8) is now proved and so is (6.1). (6.2) follows from (6.4) in the same way as above.
This completes the proof. D

It remains to prove Proposition 6.2. Since this proposition can be obtained if we track
the proofs in [PSS] with carefully taking account of the E dependence (see [Yaf 2] ,
[J]), we only give a sketch of the proof. In particular, we omit the proofs of Lemmas
6.3-6.6 below.

Sketch of the proof of Proposition 6.2. We first note that

(6.12) |ui>{|| iHE,Al(HE+iTl\\ + !! i[HE,Al,AUHE+irl\\} < °°,

by (6.11) and Assumption 3. Fix/e C°°(E) with

0 < / < 1, f=Q(\x-l\> 1/2), f=l(\x-l\< 1/4).

Then it follows from the definition of VE that

(6.13) M^.

(6.14)

for any E > EQ if EQ is sufficiently large.

HE—ieME and
Lemma 6.3. // e > 0 and 6 > 0, then l + id belongs to the resolvent set of

E—ieME

£.($):= (^£-feM£
2-l-z5)"1eC([0, °o); #(#>)) n ̂ ((0, °°);

as a function of e. Moreover, there exists £0 > 0 such that G£(5) satisfies the following
estimates.

(6.15) ||/(#£)G£(S)0||< C£~1/2 | (Ge(«0, 0) |1/2,

(6.16) || (^-1-OG.C*) ll< Ce~l, || (^+z)(l-/(^))G£((5) ||< C,

/or a// 0 (E<^ £ > E0 , 0 < 6 < 1 and 0 < e < £0 for suitable e0 > 0.
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Using this lemma, we can obtain the following.

Lemma 6.4 Define D, := (E+ \ A |)"s(e | A +1)5"1, F£(<5) := DEGE(6^DE.
Then

(6.17)

(6.18) HF e(<5) ||< CE~2se'1

for E > EQ, 0 < d < 1 and 0 < e < £0.

Lemma 6.5. Let g e C^Cff ). Then

(6.19) sup I! LA.gOk)] ||< oo.
£>£o

Combining (6.16), (6.17) and (6.18), we can obtain

Lemma 6.6.

(6.20)
de

forE>EQ,Q<d<landQ<e<£Q.

Define KE(E, <5) := E2s~lFE/E(d). Then by (6.18) and (6.20) we have

(6.21) d

(6.22) \\Ke(E,d) !;< Ce'1,

for£ > £0, 0 < 5 < 1 and 0 < e < EQeQ. From (6.21) and (6.22) it can be shown
that

(6.23) sup \\Ke(E,6)\\< «>,
E>E0° °

and that the norm limit KQ(E, 5) := lim e^0Ke(Et 5) exists in B ( ^ f ) . Therefore, it
follows that

(6.24) !!F£((5) || < CEl~2s, 0 < £ < e 0 . E>E0,

and that the norm limit F0(£) := lim £ ioF£(5) exists in /?(<%*). This completes the
proof of (6.3). Next we prove (6.4). Taking account of (6.24) and (6.21), we
integrate dK£(E, d/E^/de to have
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(6.25)

for E > E0, 0 < 6 < 1 and 0 < £ < £0. Since || DEGE(6) \ has the same estimate as
(6.17), it follows from (d/dd)F£(d/E) = iE~lD£GE(8/E^DE and (6.24) that
II (d/dd)F£(d/E) || < C£~lE~2s, and so

(6.26) |l F£(S/£)-F£(S'/£) II < Ce~lE'2s \d-d'\

for E > EQ, 0 < 6, 5' < I and 0 < e < e0. In virtue of (6.25) and (6.26), we get

(6.27) [|

^ /rl —2s/ 5 — 0/2)77 —(1/2)-^s _i_ ~"lz?~l I j? x1 I "N
S: LsJb {E £L i £ hi | O — 0 U

for £ > EQ, 0 < d, d' < 1 and 0 < £ < £0. Thus, setting e = E~l \ d-d' \ l~a, we
obtain (6.4). D
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