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On the ^-theory of the Projective
Symplectic Groups
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Introduction

In this paper we compute the real ^-groups KO*(PSp(n^) of the projective
symplectic groups PSp(n).

As for the complex ^-groups, we have in [6, 8] two kinds of methods of
computing 7f*(G) in general for a compact connected Lie group G with finite
fundamental group of prime order and by using actually those methods its ring
structure is explicitly described. Neither of them deals with the projective unitary
groups PU(n) except the case when n is prime. In more general, however, the case
when n is a power of prime is investigated in more earlier times but not explicitly
[18]. The computation in any case is based on the fact [7] that ^*(G0) (where
G0 is simply connected) is an exterior algebra generated by elements of degree one
arising from the basic irreducible complex representations of G0 .

It seems not easy to find a comprehensive method of computing KO* (G) as in
the complex case. So we proceed case by case and determined the JfO-groups of
SOM, PEQ, PE7, and PSp(24w)in [10, 11, 12, 13, 14, 15]. Then we also use
essentially the structure theorem on ^CO*(G0) [17] analogous to that on #*(G0).

We compute KO*(PSpW) by applying the modification of the method used
for the computation of X"0*(PSp(24")). Making use of the equi variant ^0-theory
KOz/2, especially the Thorn isomorphism theorem for KOz/2- theory, we reduce the
structure of KO*(PSpM) to those of KO*(SpM} and #O*(P*) for a certain
integer £ > 0 where P£ denotes a real projective £ -space. Then we need
K*(PSp(n^ with a basis in the form conforming to our method and so we begin
by computing this group by a way similar to that used in computing

In §§ 1 — 3 we collect materials for the computations of the ^-groups of PSp 00
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which are done in §§4 — 6. The main theorem is Theorem 5.1.
Throughout this paper KO*(X} is identified with the Real K-group KR*(X}

in the sense of Atiyah [1] because the reality of all spaces is assumed to be trivial.

§ 1. Preliminaries

From now on, we denote by G = SpM the symplectic group on quaternionic
n-spaee Hn and by F the center of G which is a cyclic subgroup of order 2 generated
by -/ where / is the identity of G. Then PG = G/F.

By H we denote the representation space of the canonical nontrivial 1-
dimensional real representation of jT and by pH the direct sum of p copies of H. Let
B(pH@ Rq} and S(pH ® Rq} be the unit ball and the unit sphere in pH © Rq

centered at the origin o, and let HpH~9 = B(pH © Rq}/S(pH © Rq} be the quotient
space with the collapsed S(pH © Rq) as a base point. These spaces are equipped
with the induced T-action and Pk = S((fc+l)/0/r, the real projective /c-space.

Let L = H <8> C be the complexification of H. We write L for 2H in the
complex case since L ~ 2H as a T-space.

LetpH c (p + q}H be the submodule consisting of the firsts-tuples. Then the
assignment (x, y) |-» (x, y/ i y \) (x G pH, y £ qlf} induces an equivariant
homeomorphism S ((/> + g)#) - S (pH} ~ IntB(pH) XS(gtf). Taking one-point
compactification of the spaces on both sides yields an equivariant homeomorphism

(1.1) S((/> + 0)#}/S(/tfO ~ XPH AS(<?#) +

where X+ denotes the disjoint union of X and a single point + which is to serve as
the base point for X^ .

To compute KO* (PG) we use the ^-functor KSp in addition to K. Here
KSp(JC) denotes the Jf-group associated with the quaternionic vector bundles over
X, and a quaternionic vector bundle means a complex vector bundle provided with
a complex conjugate anti-involution. Given two quaternionic vector bundles E
-> X and F-^ Y, the external tensor product E® CF -* XX Y becomes a Real
vector bundle in the sense of [1], so that this can be viewed as a usual real vector

bundle. Thus any given x e KSp(X^) and y e KSp(Y^) give rise to an element of

KO(X/\ 7), denoted by x Ac y, for based spaces X and Y.
Let/' X^Sp(ri) be a base point preserving map from a based space X to

•SpOO with/as base point. Then the homotopy class of/ defines in a canonical

manner an element of KSp ~l (X) which we denote by £ (/). Of course a similar fact
holds for KO- and #-theories. We use the same symbol /3( ) for such elements.

Identify S° = 0(1), S1 = £7(1) and S3 = Sjp(l), and let ^ denote the identity
map of Sk into itself for /c = 0, 1, 3, then each £(O is a generator of the (— 1)-
dimensional coefficient group of the corresponding ^-theory. We write

And moreover we put
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(1.2) 778 = 0/\C0, 7?4 = €H/\C0

where 6H denotes the reduced bundle of the trivial quaternionic line bundle over
S°. Then#*( + ) = ZlX]/G/2-l)1 #O*( + ) =Zlril, 7?4, 77817(277!, n\, 77^, 774

2-4,
778—1) and KSp*(X^) = KO*(X} which is induced by smash multiplication Ac by
o. Further there holds s(a) = ^ where s:KSp*(X) -* K*(X*) denotes the
complexification homomorphism.

Usually the functor K is Z/2-graded as shown above, but it is considered to be
Z/8-graded, that is, the order of// is 4, in the case of connecting two functors K and
KO. In fact we use the following exact sequence of Bott [2] :

(1.3) ••• ->KO*(X^KO*(X^K*(X^KO*(X^~-

where % is the multiplication by rjlt c the complexification homomorphism and 8 the
homomorphism given by the equality 5(r) = r(jLt~lx^) using the realification
homomorphism r:K*(X) -» #O*OO.

We now confine ourself to the real and complex ^-theories. It is well known
that there holds KO*r(X} = KO*(X/n if X is a free T-space. Let flOCD and
/?CO be the real and complex representation rings of F. Then we also have KO*r

(JO = RO(n ® KO*(X^ if X is a trivial T-space by reason of F = Z/2. Similar
isomorphisms hold for the complex ^-functor (of course Jt?OCO must be replaced
by #CO). In the sequel we assume that such isomorphisms are identified.

Recall from [16, 3, 9] the Thorn isomorphism theorem which is our basic tool
together with the facts stated in the next section.

(1.4) For k > 0, e = 0, 1 there exists elements

and co(8,+4f)//+4e e KOr(

satisfying the following properties:
(i) Multiplication by r^ and &>(8A.+4O#+4e induces isomorphisms K *r(X) =

KrCE^ AJT+) and KO*r(X} = KO*r(^
8k+^H+*€ AJf+) for any T-space X respec-

tively.
(ii) ;*(r^) = 2*-1(l-L) e ^r(o) = *(r), ;*(fi)(afc+4f)ff+J - 24/c-1(l-^)1+e774

e

e ^Or(S
4e) - ^O(r) • 77!, 0(r^) = / and <Kco(8/c+4em4e) - ^+f , so that

c(w(8^+4e)H+4e) = r(4^+2e)L/c£2e where; denotes the composite {0} C 5(/cL) -> S^ of
obvious two maps and the inclusion S4e C j](8/fc+4e)jfir+4f and 0 denotes the forgetful
transformations Kr -> K and KOr -> /TO.

§ 2. The ̂ -groups of G and Pk

In this section we recall the ring structure of the ^-groups of G and give that
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of the Jf-groups of Pk which we need later on.
Let p — id: G -> Sp(n) be the canonical quaternionic representation of G

and letp : G -> £7(2w) denote the complexification of p. Then we know (2.1) and
(2.2) below from [7] and [17] respectively.

(2.1) #*(G) = A(/3(p\ £Q2p), - , /3(Anp))

as a ring where 7*p denotes the /c-th exterior power of p.
Let ACP be the /c-th exterior power of p over C. As seen in the previous section

AcP is real and AC+IP is quaternionic, so that we have /5(A^p) ^KO~l(G} and

£(4+1p) eXS/T'CG). We also set ̂ U^p") = <7Ac£(A?+1/5) e#CT5(G). Then we
have

(2.2)

as a ^fO*( + ) -module where [ ] denotes the Gaussian notation. Further, the ring
structure is given by

)) and

where the indices 4i and 4j + 2 indicate the integers mod 2n because of
= X2c'kp for 0 < k < n. (The indices appeared later on indicate such integers as
well.) These square formulas follow from

(2.3) z2 = n$x for x e ^O~!(Z) and (crAcr)2 - 77/cx for

which is due to [4, 11].

Let f £ ^O'^P^"1) be the reduced vector bundle of the real line bundle f :
S(/c/0 X r/f -> Pk~l. That is, 7 = [f] — 1 where [ ] denotes the equivalence class.
And write 7 = c(f) ^ K(Pk~1}. Let

v = />*(/) e K~l(P2k~1} and ̂  = ^*(778") e ^0^(P8/C^)

where j) denotes the map PA -> S^ obtained by collapsing the outside of a top
dimensional cell in Pk. From [2] we then have

(2.4) K(P2r'1} = Z/2r'1 • 7, K~\P2r~1^ =Z-v, #(P2r) = Z/2r • 7, K~l(P2r) = 0

where the relations 72+27 = 0 and }/ = 0 hold.
As for JTO*(P/C~1) it has been additively determined in [5,19] for any

k>2. By using (1.2) together with this result and (2.4), and by observing the
exact sequence for the pair (#(/cL), S(/cL)) in KOr- theory together with (1.4), we
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can get the multiplicative structure of them relevant to our calculation as follows.

(2.5) In the following table the modules KO~p(P8r"Q) are arranged in the order
subordinate top = 0, 1, ••• , 7 for each q.

Case q = 3.

Z/24r+2 - f, Z ' HP © Z/2 • 77!?, Z/2 • 77??, 0, Z/24r • 77,?,

Z • v, Z/2 • w © Z/2 - C, Z/2 - 771* © Z/2 • T\£

where t is given by c(T) = 2 W and the generators are subject to the relations:

?2+2? = o, *2 - r2 = 774r = o, 77!* - ?r, ̂ r = 24r+1f.

Case q = 4.

Z/24r+3 • f, Z/2 • Tfc?, Z/2 • T?2?, 0, Z/24r+1 • 774?, 0, Z/2 • £ Z/2 • 77^

where f is given by c(£0 = 24rTl//V and the generators are subject to the relations:

?2+2f = o, r2 = 7?4r = o, ?r = o, /72r = 24r+2f.

Case g = 5.

Z/24r+3 • f, Z/2 • 77!?, Z/2 • 77??, Z • i?f Z/24r+2 • 774r, 0 (p = 5, 6), Z • v

where v is given by c(i/) = //3i> and the generators are subject to the relations:

72 + 2? = 0, w - 0, 77^ = 24r+1774r, W = 24r+2f, rif> = 2v, -nff = 2v.

Case q = 6.

Z/24r+3 • ?, Z/2 • 77!?, Z/2 • 772? © Z/2 • £ Z/2 • 77^, Z/24r+3 • 77,7, 0 (p = 5, 6, 7)

where Cis given by c(C) = 24r+2//r and the generators are subject to the relations:

?2 i-27 = o, r2 = ?r = o, 772r = 24r+2774?.

Case q = l.

Z/24r+5 • ?, Z/2 • 77!?, Z/2 • T72?, Z • v, Z/24r+4 • 77,7, 0 (p = 5, 6), Z • v
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where v is given by c(y') = nv and the generators are subject to the relations:

f2+2f = 0, w = 0, 774* = 2v, np = 2v, np = 24r+4f, W = 24r+3774f.

§ 3. Generators of K* (PG) and KO* (PG)

In this section we describe the multiplicative generators of K*(PG) and
JTO*(PG) except one of them in the real case which is given in §§5 and 6.

For the reduced complex and real line bundles over PG associated with the
principal T-bundle G -» PG we use the same symbols

7 e #(PG) and f e #O(PG)

as those over Pk

Since A2zp(-7) = ACP(-/) = /, the A2'p and %p factor through the canonical
projection n: G -> PG and so these can be viewed as representations of PG.
Further, since p is quaternionic, the same argument as that on the product Ac in
§1 shows that the latter is real. Thus we have

for 1 < f < [n/2].
In order to give another kind of odd dimensional generator we consider the

binomial coefficients ( oy+i ) >s- From now on, we denote by

s =

the exponent of 2 in the n. Since 2S+1 | for 0 < ; < w-1, we put

Then evidently d0 is odd and dQ+d^ -•- +dn^ = 22n's~2 so that ( d Q , dlt

•" , dn--d = 1. Hence there are integers a0 , al , ••• , an_! such that

From this fact we see that there exists a base point preserving map

K: G -> S£(2s+m)
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such that £(-0) = D(-/i, /2)/c(fiO (g ̂  G) for some m > 0 where ̂  e S£(2S) and
72 e Sp(m^) denote the identities. Here in general we write D^A^ , • • • , AJ for the
matrix with square matrices Alt •-, A& placed diagonally in this order and with
zero entries in the other spaces. And when A{ = A (I < i < ^), D(Al , • • • , A^ is
abbreviated as Z)(M). Then the desired map K can be given as follows. We may
assume without loss of generality that aQ , ••• , a£ > 0 and the others are negative.
Let^CflO = jD(a,A^+1p(flO) or jQ(-a;A

2^+1p(fiO) according as a, > 0 oray < 0. Then
it suffices to put

/c(<?) = £>(/! , A£+1(gr\ '", An^(gr^DU0(g), -, A£g» (g e G)

where 7j is as above. Suppose now that m = 0 for simplicity.
Define a map /c/. G -> Sp(2sdJ for 0<; < n-1 by /c/g) -DC^/cCfi')"1)

Ac+1p(00(sr ^ G). Then, since /c,(-g) = /c;(gO, the /c,- factors through n\ G -* PG
and so it can be viewed as a map

/c;:PG -> Sp(2sdJ.

(Here note that /c; = /cw_ ;_! because of AC+IP = A2^ "2;"1p.) Clearly these maps define

j8(/c) e KSp~l(G^ and /3(/c;) £ KSp~\PG\ Let A; and /c; denote the complexifi-
cation of /c and /c; respectively. Then

and/3(/c;) =

Further we set

The map PG -> S^)(2S) given by the assignment ;r(g) ^ K(gY (g <= G)

defines similarly an element of KSp~l(PG), denoted by /3(/c , 2). And we set

/3(/c, 2) - c03(/c, 2)) GE K~l(PG) and^(/c, 2) - crAc/3(/c, 2) e ^

By definition we can easily check that there hold the equalities

and

so that a0T*(/8(/e0)) + — + an_1ff*(4(/cn-i)) = 0. Let V be the free submodule of
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KO 5(G) on /3(;$+1p) ( 0 < ; < [(w-l)/2]). Then this fact shows that the
submodule W c V generated by 7T*03(/cy))'s has the rank smaller than
l(n —1)/2] and that there exist certain integral linear combinations %i, '", Xt °f
/leap's over Z such that their characters on F are zero and they yield a free basis for
W as follows. By the construction similar to that of K/S, each &., being viewed as

a virtual representation of PG, gives rise to an element/SG^) £ KSp^PG) so that
we have

£(;^) e K'l(PG} and^Gfo) £ #0~5CPG)

for 1 < /c < £ as before. Then TT*(^(%A.)) (1 < /c < 0 form a basis for W and we
will find that t is just equal to \_(n —1)/2] —1 in the sequel.

Finally for later use we give an estimate of the orders of 7 and 7 which follows
from the property of K immediately.

(3.1) 2sf 0 H = 0 EE KSp(PG) so that 2^7 = 2s"2? = 0 and 2S+V = 0.

§ 4. Calculation of K

In this section we prove the following

Theorem 4.1 ([6,8]). With the above notation

= z[ri/(r2+2r, 2S+V)

Oc, 2), /3UV

where / = (7 ® £(/e, 2)).

Apply the ^-functor #r to the cofibration S((s + 2)L)xG -

X G -^2(s+2)L AG+ where i and; are the obvious inclusion and projection and s is
the integer as in previous section. Then we have an exact sequence

where 5 denotes the coboundary homomorphism. By (1.4)(ii) and (3.1) we get
J*(^(S+2)LAD = -2S+17 = Oe^;(5((s + 2)L)xG) =A"*(PG). Hence, via the
Thorn isomorphism ^;(S(s+2)L AG+) = K*(PG), this sequence becomes

(4.2) 0 -> 7T*(PG) > ̂ ;(S((s + 2)L)xG) > 7r*(FG) -> 0

where the equality
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(4.3)

holds because the equality <5(;n*(t/)) = d(x)y does.
Next we consider the group £"*(S((s + 2)L)xG) of (4.2) and begin by

preparing generators of this group. Let f = jp*(7), £ = P* (y ) and /3(A2*p) = jpg
G8(A2lp)) for 0 < £ < n where p! and £2 are the canonical projections from
S((s + 2)L) XG to the 1st and 2nd factors.

By (2.4) 2s+lr= 0<E#(P2s+3). This fact shows that there is a T-bundle
isomorphism S((s + 2)L) X (2S+1L 0 Af) = S((s + 2)L) X (C2S+10 M) for some T
-module M. Here we may assume that this isomorphism is chosen such that the
Thorn class r(s+2)L arises from this in the usual way. Now this gives rise to a base
point preserving map a: S((s + 2)L) -> £7(2s+1+ra) for some m > 0 satisfying
a(-:r) =a(:r)JD(-/ l f /2) Or e S((s + 2)L)) where /! e £/(2s+1) and 72 e £7(ra)
denote the identities. Assuming that m = 0 for simplicity we can define a map
J5:S((s + 2)L)xG -£/(2s^;) for 0 < / < n-1 by^U, g) =D(dja(x')n2i+lp(g)
(x e S((s + 2)L), ^ e G). Then^( — x, —g) = fj(x, g} and so^ may be viewed as
a map from S((s + 2)L)x rG to £7(2S+1) . We write /3(A2;'+1p) for

Then we have

Lemma 4.4.

^;(S((s + 2)L)xG) -Z[f]/(f2+2f, 2s+1f) ^^(

where I = (f 0 P).

Proo/. Let f : S((/c-l)L) c S(/cL) be the embedding as in § 1 where 1 <
k <s + 2. Denote by the same symbol the restriction of /3(Afp) to K*r(S(kL) X G) by
i*. Then there is a natural morphism /f*QO ® E -> ^^(XXG) induced by the
cross product where E = A(j3(Alp\ • • • , /8(Anp))- We show that this is an isomor-
phism when X = S((s + 2)L).

Let us view as S(L) = {D(nx} \ x eS(L)} C G. Then the multiplication on G
induces an equivariant homeomorphism S(L) XG ~ S(L) X0(G) where 0(G)
denotes G with trivial /"-action. This yields 7f;(S(L)xG) = ^(S1) 0 /f*(G)
where S1 = S(L)/r. And we see that v and /3(/l^o) correspond to # 0 1 and

mod Z • // 0 1 under this isomorphism. Hence #;,(S(L)xG) =#;

According to (1.1), S(/cL) xX/S((/c-l)L) XZ ~ Sa"1)L A(S(L) XX)+ for
any T -space X. Hence identifying the Thorn isomorphism we have an exact
sequence
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from the exact sequence in X"r-theory for the pair (S(kL)xX, S((/c-l)L) X X ) .
Making use of this sequence when X = G and a single point, and using the above
result when k — 1 it follows by induction on k that the above morphism K*r

(S(/cL)) <8> E -^K*r(S(kL) X G) is an isomorphism for each k. This completes the
proof.

Proof of Theorem 4.1. Let £(&) <E Kr1(S((s + 2)H) XG) be the element
obtained by replacing, for example, A!p by K in/SC/l/p). Then by definition we see
that/SOe) = a0^(A1p) + --+an_1/3(A2w"1p). Observe the exact sequence of (4.2).
Directly from the definition, it then follows that

(4.5) 7G3U2W) = 1 ® /§Q2'p), 7(/30c;)) = I

/G30e, 2)) - (?+2) <8> £(/e) + P (8) 1

and

>£(/e) ) - -1, A ( P ® 1) = f + 2 .

Using these formulas together with (4.3) and Lemma 4.4 we see from the exactness
of (4.2) and the argument similar to that of £(*y)fs in § 3 that A (£(*,) (1 <
j < 0) is a subalgebra of K*(PG) with £ = [(TZ — l)/2] — 1. And further inspection
proves the theorem easily.

§ 5. Calculation of #O*(PG)

We ready to calculate KO*(PG\ We proceed in nearly the same way as for
K*(PG). In order to state our theorem we first prepare a few notations.

Since each %} is a linear combination of A^^p's over Z and there holds
4(A2c+1p)2 = 77!^(A4c+2p) for any k, it is seen that there exists a linear combination
<pj of A2c/o's with non-negative integers as coefficients satisfying ^(%;-)

2 = Tjj/SC^y).
Set a = ao^cP'' ----- l^-r^c 2P where a^'s are as in § 3. Then we see analogously
that there holds /3(/e)2 — 771^(a). Also we need an additional element of dimension
-6, denoted by <f e KO~\PG\ which is given in (5.9) and (6.8) below. Further,
let us set

s = 4r+u (0 < u < 3)

where s = i/2(w) as before. Then we have the following

Theorem 5.1. With the above notation

, fl/(f2+2r, 2s+2f, r2)
2), 0U?/5X ^ (;?,-) (1 < f < [»/2]f 1 < ; < [(n-l)/2] -I))//
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where I is the ideal generated by the elements

2s774f, 2f, ril nl£-2s+v+lr, fid*, 2)2, (/S(^p)2-

G3(*;)
2-7?i/3(^))'s, ff-77i/3(/c, 2), fiSOE, 2),

tfzY/i t; = 0 (w = 0, 1), t; = 1 (otherwise^).

The proof of the theorem is divided into the four cases according as 0 < u
< 3. _

We first study KO > (S((8r+w + 4)#) XG) . By (2.5), KO~KP8r+u+^ =
Z/24r+u - riff. So by using (1.2) we have 24r+Mf ® H=Q which implies that there is
a quaternionic r -bundle isomorphism S((8r+w + 4)#) X (24r+"# 0 1? 0 Af) =
S((8r+w+ 4)^0 X (U2 0 M) for some quaternionic /"-module M. This gives rise
to a base point preserving map a : S((8r-f w+4)#) -» S^(24r+M + m) for some
ra>0 satisfying a(-x) = a(x)D(-/1 , 72) (x e S((8r+w + 4)#)) where /! e
S^)(24r+M) and I2^Sp(.m} denote the identities. For simplicity assume that
m = 0. Then since dim^A2;+1p = 24r""d; we can define a map jj : S((8r+w+4)/J)
xG->Sp(24r+") by fj(x, g) = D(d ;a(x))A2j+1p(sr) for 0 <j < n-1. Clearly this
map satisfies fj(—x, —g) = fj(x, g) and so defines naturally an element

G). We put

G) (0 < j < n-1).

In general, for a e KO*(Pk^ and & e /TO*(PG) we write

a = ^>; (a), b = p; (&) e #0;(S(fcff) x G)

where pj and^2 denote the canonical projections from S(kH^) X G to the 1st and 2nd
factors. Then we have

Lemma 5.2. #0;(S((8r+w+4)#) XG) = ^0*(P8r+u+3) ®KO*WE
for Q<u<3 where E = AK0.Mtf(%p\ /§(A2^+1p) (1 < i < [n/2], 0 < ; <

[U-D/2])) with the relations ^(A2^)2 = 7?1(/8(A4cp)-h

Proo/. We give a natural morphism Tk: KO*(Pk~l) ®KO*ME -*KO*r(S(kH)
X G ) b y T^x ® y) =^1*(a:)(8) y (a: e KO*(Pk~l\ y e £) for 1 < /c < 8r-^w+4 and
show that T8r+M+4 is an isomorphism by induction by /c.

When 1 < k < 4 we can regard as S(/c#) C F canonically and identify any
x e S(kH} withD(wx) e G. Then S(/c#) becomes a T-invariant subspace of G
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and so we have S(/c#) xrG ~ Pk~lX(p(G) which is induced by, for example, the
assignment (z, g) •-» (^r(r), D(.nx)g) (x e S(kH\ g <E G). Moreover KO * (G) is
free over^TO*(+). So we see that this homeomorphism yields an isomorphism
#O;(S(/c#)xG) = KO*(Pk~l)®K0.mKO*(G} which sends £( A? P) and/f(A2^+1p)
to 1 0 £Ucp) and 1 0 y§(^'+1p) modTTO*^"1) respectively. Hence it is immedi-
ate that Tk is an isomorphism for 1 < k < 4.

Let/*;OD denote either KO*r(XXG) or KO*r(X) ®K0.ME. Apply /i* to the
cofibrationS(4(/c-l)#) -> S(4A^) -> S4(*-1)H AS(4#)+. Then we get an exact
sequence

under the identification of the Thorn isomorphism /^(Z40'"0*"4 AS(4H) J = A;
(S(4J^)). Compare these two exact sequences by using Tk. Then it is easily seen
by induction on k that T8r^4 is an isomorphism because so is T4. Next again by
applying h *r to the cofibration S((8r+4)#) -> S((8r+w+4)^) -*2(8r""4)ff A
S(uH}+ we have an exact sequence

and so in a way similar to the above we can check that T8r+u_4 is an isomorphism
since so are Tu and T8r+4. This completes the proof.

First we consider the cases u = 0, 1. Similarly to the complex case the pair
Q3((8r+w+4)#)xG, S((8r+w+4)#) XG) gives rise to an exact sequence

(5.3) -- ^0*(PG)-^0;(5((8r+w^-4)^)xG)^^0;(i;MHAG+)^---

under the identification of the Thorn isomorphism ^O;(i;(8r+"+4)j?/+4 AG+) = KO*
HuH AG+) where there holds

(5.4) AGz/Ci/)) - A(a:)i/.

Moreover we can define an element 4 00 ^ KOp 5(S((8r+w+4)^/) x G) similar to
£(/e) which satisfies^) = a04(Acp) + —+a l l_1)8( A^p). Then by definition we
have the following formulas analogous to (4.5) as for /.

(5.5)

(« = 0)
, 2)) = (f-

0 (« = 1).

Using this we can show that (5.3) becomes as follows.
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Lemma 5.6.

foru = 0, 1.

Proo/. It suffices to show that/ = 0 in (5.3). Consider the exact sequence of
the pair (5(w#) x G, S(w#) x G)

(5.7) --^(E^AGJ ^ &*(PG) ^ fc;(S(uff)xG)

for /z = ^TO, # where ^ and ih denote the homomorphisms induced by obvious
inclusions and dh the coboundary homomorphism. Then by (1.4)(ii) we have

for x e tfOXE11* A G+). (Note that S°^ - o., .) So the case u = 0 is immediate from
(3.1).

We consider the cases u = 1. Since K*r(S(uH)xG) = JT*(G), by using
Theorem 4.1, (2.1) and (2.4) it can be verified that ImjK is generated by elements
of the form r m where mis a monomial in /3(A2W's, /3(/e;)'s. Together with this we
also observe the Bott sequence (1.3) for PG. Consider the order of elements of
#0*(PG) using (5.5), (2.5), (3.1) and noting that c(f) = r, cQSQcp)) = £(A2W,
c(/3(/c;)) = //2^(/c;). Then we see that there is an elements (E KO~\PG} such that
c(a) = 24r+1//V And then we see that Imj^Q is generated by elements of the form
fm, 774fm, am modulo rjtKO* (PG) where m is a monomial in /S(Acp)'s, /3(/c;)'s.
Now, by definition fa is divisible by 77^ So / = 0 follows from the above equality,
since 2^lrjj = 0 and 77^4 = 0.

Before proving Theorem 5.1 we make a remark about the subalgebra E of
((8r+w + 4)#)xG) of Lemma 5.2. Since there hold 4(^+1p) =/§Oc;.)-t-
by definition, it is seen thatE is generated by /3(/icp)'s, ^(/c^O's and /§(/c).

To be exact,

Proof of Cases u = 0, 1. Let us write # for the algebra of the right-hand side
of the equality in Theorem 5.1.

By considering (5.7) with a point instead of G we get an element a) &
KOr(Z

uH) satisfying ;';o(w) = (!-#)" and J^O^(Z^) =#0*( + ) - w . Then it
follows directly from the definition that

(5.8) A0§00) = -coAl, A(f) = ^co A 1
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where f is as in (2.5). Using this and the exactness of Lemma 5.6, the element
f e #0~6(PG) of R is uniquely given by

(5.9) /(£) = 77^02) + £.

And so by using (5.5), (5.9) and Lemma 5.2 together with (2.5), (2.2) and further
by the injectivity of/ we can verify that R is a subalgebra of KO*(PG).

It remains to check the fullness of R into KO*(PG). In the case u = 0 the
situation is quite similar to the case of K*(PG) and we have ImA = R, so that
R = KO*(PG} by the surjectivity of A, by the same discussion using (5.8), (5.9),
(5.5) together with (5.4). In the case u = I we have a difference from the case
u = 0 in the 3rd group of the exact sequence of Lemma 5.6. But using (5.8) an
analogous argument shows that KO*(HH AG^) is generated by coAl as an R-
module, so that lmjKO C R. To prove the fullness of R into 7fO*(PG) it therefore
suffices to show that iKO(R) = Imz^o in (5.7). This follows from the equalities

ijroGSOe, 2)) = 2/300, :'«>(£) = T^Oe), <

together with dKO(xiKO(y}} = dKO(x^)y and an inspection of the complexification
form of these formulas using the results of § 4.

§ 6. Proof of Cases u = 2, 3

We begin by calculating KO * (S ((8r+ 10)#) XG) . Through the homeomor-
phism of (1.1) we have a cofibration S((8r+4)#) XG -> S((8r,+ 10)fOxG -»
2(8r+4)// A (5(6^) x G)+ . Under the identification of the Thorn isomorphism for
^(8r+4)#+4 ancj ^g isomorphism of Lemma 5.2 this gives the following exact

sequence:

Using this sequence we can get the above group. We set

w = 4:—u

and consider generators. As before let us write £ for the element induced from a
generator x of each factor of S((8r+ 10)#) x G. Let WK,R and 2iwc denote the direct
sums of w and 2w copies of the realification of tcR and the K respectively. Then
these maps give rise to elements
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XG)

similarly to, for example, /§(Ac+1p) in § 5 by making use of the maps arising from

the equalities 24r+5f = 0 e #0(P8r+9) and 24r+47?4r = 0 e #0~4(P8r+9) respectively.

In the construction of /3~(/c) (E #0f 5(S((8r+4)#) XG) , we may take the F-

mapS((8r+4)#) C S((8r+6)tf) -> Sp(24r+3) arising from the equality 24r+27?4f

= 0 £ ^CO~4(P8r+5) as the T-map corresponding to a mentioned after Theorem 5.1

because of #O~5(P8r+5) = 0. Then we see

(6.1) <5( l®40e)) = -2 M ~ 1 f® 1,

so that there is an element f e tfOf 6(S((8r+ 10)77) X G) such that

(6.2) /(£) = 1 0 ^Oc) .

From a direct construction of f we see that it may satisfy

2f = 77?r= 774f = 0 and 0(f) = 1X7^(000)

where <^ denotes the same forgetful functor as in §§1 and 4. Furthermore we put

(6.3) e=J(l® /§0c)) and e' - /(^ 0 4(/c)).

Then we have

Lemma 6.4. With the above notation #O*(S((8r+ 10)/0 x G) zs an algebra over
generated by

/8(/c, 2), £ £', e, ex,

relations

2S+2 f = 2s7?4

)2 = ^^(^)'s, /3(/c, 2)2 = ^2 = 0'2 = e2 = e'2 = /S(ms)
2 = ^(2m)2 = f 2 = 0,

«, 2) = f v = f ?' = fe = ff' = 0, w' = ee' = 0, v&(2wK) = 2we,

V$((K, 2) = 2e, $'&(.2wK) = 2we', p'/8(/c( 2) = 2e', e^(/c, 2) = e'/§(/c, 2) = 0,

ef = e'f = 0, f^(/c, 2) = ^f/SCa), f f = J7i4(«. 2), e£(zwe*) = e'/SCuw,) = 0,



1060 HARUO MINAMI

= 0, @(wKR*)/3(2w/c) = 0(wKR)/3(/c, 2) = 0(2w/t)/5(/t, 2) = 0,

- 0, r/3(2tm) = 0, ̂ O/eJ = t'(i(2wK\

6$ = e'$ = ev = e'v = 0, rjl^(<WK,R) = r\^r = 0,

77,6 - A? = 2s~lrj4mwfcR\ THE' = S'i; = V'f0(wics\ rjj(2w^ = 0,

0, 7?4£ = 2v, 7?4£' = 2$, TJ^ = 2e', r\^r = 2e, rj^(2w/c) = 20(wicR),

, 2) - (f+2)0(w/cR), 2w/3(K, 2) =

Proof. By construction we have

(6.5) /(I) - -24r7?4f, /(* 01) = ̂

, 2)) - (f+2)0/f(/c),

Further, by noting (1.2) and the equalities f£ = 2£ = 0, we get

(6.6) /(I (8) ^00) - -2s-3?i3(uMR\ 6(t 0 ^U)) - (f+2)® to,

Moreover for a monomial m in 4(^cP)'s, ^(^O's, ^(/c, 2) we have relations
/Cr(l 0 m)) = /Gc)m, /(OTI) - /(a:)(l 0 m), 5(x(l 0 m)) = 5(x)(l 0 m) and
further there hold 5(:r/(y)) = 5(x)y. From these facts together with (6.1) -(6.3),
(6.5), (6.6) and the remark stated previous to the proof of the cases u = 0, 1 we can
infer that 7TO;(S((8r+10)^) x G) is generated by the elements given above.

We next check the algebra structure. Let X = S(/c#), G orS(kH) x G and let
(JO) -*#"0*(Z) denote the transfer map. Then it follows that
=:rtr(y) and 0*r = 2. By definition ̂ (/c, 2) = *rG§(00c))f so that

, 2)2 - *r(0G30e, 2))4(0U))) - ^r(2/f(0(/c))2) = 0

since /S(0(^))2 is divisible by T?!. Similarly f/3(^, 2) = 0 follows because of
=7-1-2. Using also the above formulas

, 2) =

since /8(0(/c))2 = 77^(0(0;)), and analogously

7?J(/c, 2) = K77!/(0(/c))) = *r(0(0) = ff .
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By (1.3), T/jKi:) = 0 which implies rj^/B^w/c^ = 0. By construction we see
that 7jl0(2wK^) = 2£(= 0) . Because @(WKR) is a linear combination of fi(H
®c/lc

+1p)'s whose squares are zero by (2.3),yS(z^/c^)2 = 0 is immediate.
The other relations are either obtained easily from the construction of the

generators or inherited from the relations of the groups on the both sides of the
above exact sequence. So we omit the proof of them.

Combining the exact sequence of the pair C8((8r+10)#) X G, S((8r+ 10)#)
XG) with the Thorn isomorphism ̂ 0;(S(8r+10)// AG+) = KO*r(T?H AG+) we have
an exact sequence

- -> #0*(PG) -^ #0;(S((8r+10)tf)xG) ^ £o;(S2// AG+) ^> -.

This becomes the following short exact sequence.

Lemma 6.7.

o -> #O*(PG) ^ #o(s((8r+io)#)xG) ^ KO H AG+)-> o .

Proof. Consider (5.7) which is of course valid when u = 2, 3. We have an
element a e JTO~6(PG) such that c(a) = 2S#37 and fa is divisible by TJI by using
(1.3) and noting that the orders of 7 and TJJ are 2STl and 2s respectively. Further
note that the order of f is 2S+Z by (3.1) and Lemma 6.9 and compare Im;^0 with
lmjK. Then just as in the case u = 1 of Lemma 5.6 it is seen that Im/#0 is generated
by elements of the form 27m, rj^th, am modulo rj^O* (PG) where m is a monomial
in/8(A2c/o)'s, £(/e;)'s. Because of /(x) = 2*r+3fJKo(x^> this implies/ = 0 as asserted.

Proof of Cases u = 2, 3. In order to study the A above we observe (5.7) with

u = 2 in more detail. A short computation gives KO~r
pC£2H) as follows.

-'cs8*) = o

with the relations

2 = (#-!)&>! = (#-l)cL>3 = 0, 774w0 = 2w2 , 7746)1

, (x)\ = 0)1 = 0, (JL)Q(JL)I =

Also these generators satisfy

7^0(^0) = 2(1 -7J), JxodoJ = 7]l(l-H\ jKO(a)2') = 774(1-^), j

Using such notation it follows directly from the construction
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A(P) = W j A l , A(£') = cwgAl, AGSCu;*;*)) = w 0Al, AQ3(2m)) - <o2Al,

A ( f ) = 0 .

The last formula together with Lemma 6.7 shows that the element
of Theorem 5.1 is uniquely defined by

(6.8) /(f) = f -

And further we have

AC^e) = 2s+1co2Al,

View iKO as the composite

where f is an obvious inclusion of S(2#) into S((8r+10)#). Then we see by
Lemma 6.4 that these do not belong to lmiKO , namely, the orders of both elements
77^ and 77^' are 2. Moreover we can verify that

= 0, jKO(t/(2wK» = /*0(^(2^/e)) - 0.

Let # be as in § 5. Then it is immediate by Lemma 6.4 and the injectivity of
/ that R c #0*(PG). And from the data above together with A(o^(y)) = A(x)t/
we infer that Irm'#0 c ^ since A is surjective. Similarly to the case u = 1 we also
have Irm'^o = iKO(R). Hence we conclude that^TO*(PG) = R, which completes the
proof of Theorem 5.1.
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