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Distributions with Exponential
Growth and Boehner-Schwartz

Theorem for Fourier Hyperfunctions

By

Soon-Yeong CHUNG* and Dohan KIM* *

Abstract

Every positive definite Fourier hyperfunction is a Fourier transform of a positive and

infra-exponentially tempered measure, which is the generalized Boehner-Schwartz theorem for the

Fourier hyperfunctions. To prove this we characterize the distributions with exponential growth via

the heat kernel method.
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with exponential growth.

§0. Introduction

It is well known in the theory of distributions that

( i ) Every positive distribution is a measure.
( i i ) Every positive tempered distribution is a tempered measure.
(iii) (Boehner-Schwartz) Every positive definite (tempered) distribution

is the Fourier transform of a positive tempered measure.

Recall that a generalized function u is said to be positive if u(cp}>0 for ev-
ery nonnegative test function cp and is said to be positive definite (or of positive
type in Schwartz [12]) if u (cp * <p) ̂  0 for any positive test function (p, where
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cp(x) =cp( ~x) . Also, a positive measure // is asid ro be tempered if for some p ̂  0

In this paper we will generalize the above theorems to the generalized func-
tions including hyperfunctions, Fourier hyperfunctions, and furthermore Arons-
zajn traces of analytic solutions of the heat equations, which we will call Arons-
zajn traces hereafter, as follows.

( i ) Every positive hyperfunction is a measure.
( i i ) Every positive Fourier hyperfunction is an infra-exponentially tem-

pered measure.
(iii) (Bochner-Schwartz) Every positive definite Fourier hyperfunction is

the Fourier transform of a positive and infra-exponentially tempered
measure.

(iv) Every positive Aronszajn trace is nothing but a measure.

Here, a positive measure fi is said to be infra- exponentially tempered if for
every

To prove these main theorems we represent the above generalized functions
as the initial values of smooth solutions of heat equations. Using this heat ker-
nel method Matsuzawa gives structure theorems for distributions, hyperfunc-
tions in [9,11] and we give structure theorems for ultradistributions, Fourier
hyperfunctions in [3,10] as follows : Let U(x, t) be a solution of the heat equa-
tion (d/dt-A)U&, 0=0 for t>0. If U(x, t) is of 0 (l/tN} the initial value
u (x) is uniquely determined as a distribution. Also, if U (x, t} is of 0 (exp e/t)
(0 (exp 6 (l/t + \x |) respectively) for every e> 0 the initial value u (x) is
uniquely determined as a hyperfunction (Fourier hyperfunction respectively).

In this paper refining this method more effectively we characterize the dis-
tributions with exponential growth and can prove the theorems on the positive
hyperfunctions and positive and positive definite Fourier hyperfunctions, which
have not been easy due to the sheaf theoretical definition of the hyperfunctions
and Fourier hyperfunctions.

In Section 1 we introduce the real version of the space 3F of test functions
for the Fourier hyperfunctions as in [10] and the space S&E of test functions for
the infra-exponentially tempered distributions, and their strong dual spaces.
Section 2 is devoted to the known results on the representations of distributions
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and Fourier hyperfunctions, and to derive the representation therorem for the
space S&'E of the infra-exponentially tempered distributions, which are neces-
sary in the next section. In Section 3 as the main section in this paper we prove
the main results on the characterizations of the positive hyperfunctions and the
positive Fourier hyperfunctions and on the generalization of Bochner-Schwartz
theorem for the Fourier hyperfunctions. Finally applying the heat equation
method again we prove that every positive Aronszajn trace which can be con-
sidered as the initial value of the solutions of the heat equation without any
growth condition is also a positive measure in Section 4. We may say that this
is the most general theorem on the positive generalized functions.

§1. The Spaces of Generalized Functions

We use the multi-index notations such as \OL\~ a.\ + ••• + an for a ^ NO

where N0 is the set of nonnegative integers and da = di1-~d£n, dj = d/dxj.
By C°° we denote the set of all infinitely differentiate functions in Rw, by

C53 the set of C°° functions with compact support and by & the Schwartz space
of rapidly decreasing functions. Also, we denote by ®' the space of distributions
in RM and by s&' the space of tempered distributions in Rw. See [7] for more de-
tails on the distributions, Fourier transforms and [8] for hyperfunctions.

We will introduce the real version of the space ?F of Fourier hyperfunc-
tions as in [10] and the space $E of distributions with infra-exponentially tem-
pered growth which are necessary and important throughout this paper.

Definition 1.1 ([10]). (i) We denote by 9 the set of all infinitely diffe-
rentiate functions (p in Rw with the property that there exist constants k, /i>0
such that

(i.,) -P
"

(ii) We say that p/— >0 in 3F if there exist k>0 and h>0 such that

k\x\
(1.2) l

(iii) We denote by ^' the strong dual space of 3F and call its elements Fourier
hyperfunctions.
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Definition 1.2. (i) We denote by S&E the set of all infinitely differentiate

functions cp in ¥tn with the property that for any a^Ng there exists a positive
constant k such that

(1.3) sup \da(p(x}\expk\x\<°° .

The function cp^s^s is said to be exponentially decreasing on W1.
(ii)We say (p— »0 in J£E if for any A/">0 there exists &>0 such that

(1.4) sup
*eR"

(iii) We denote by S&'E the strong dual space of S&E and call its elements
infra- exponentially tempered distributions.

It is easy to see the following topological inclusions:

U.5)

The space ^# of test functions for Fourier hyperfunctions, which is origi-
nally defined by Sato~Kawai, is shown to be isomorphic to the space 3F in [10] .

Also, we give an equivalent definition for the space 9 via Fourier trans-
form as follows.

Theorem 1.3 ( [3] ) . The space 3F consists of all locally integrable functions
(p such that

sup|<pOr)|exp

for some fo>0 and fe>0, where 0 (?) is the Fourier transform of (p.

Remark. The space J&E is slightly different from H (W1} given by Hasumi in
[6] and Si given by Gelfand-Shilov in [5] . In fact,
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§2. Representations of ®', d'E and 9'

We denote by E(X, t) the w-dimensional heat kernel:

f v \ (4;rt) -w/2 exp (-W2/4t), f >0.
E (x, t) =

10, £<0.

Note tha t£(- , t) belongs to % for each t>0. Thus C/(x, i) =uv(E(x — y, i)) is
well defined for u^SF' or w^j^V

Consider the following initial value problem:

t(d/dt-A)Ub,t)=0, 0<t<T,
W • I/ 1 / x

llim^o+t/(x, £) =u,

where u is a generalized function.
Several authors succeeded in representing various generalized functions

such as distributions, hyperfunctions, ultradistributions and Fourier hyperfunc-
tions in [4,9,10,11] as the initial values of solutions of the heat equation.

Theorem 2.1 ([11]). Let u e ®' and T> 0. Then there exists a C°° function
U(x, t) in RWX (0, T) which satisfies the following:

(i) (d/dt-A)U(x, t}=QinRn* (0, T).
( i i ) For any compact set #CRW there exist N=N(K) >0 and C>0 such that

(2.2)

(iii) lim^o+£/(•£, t) =u in

/or gv^ry

Conversely, if U (x, 0 i5 a C°° functions in Rw X (0, T) satisfying (i) and (ii)
unique u^ffi satisfying the relation (iii) .

Theorem 2.2 ([10]). Letu^y and T>0. Then U(x, t) =uv(E(x-y, t))
is a C°° function in RWX (0, T) and satisfies the following:

(i) (d/dt-A) U(x, t) =0 in Rnx (0, T).
(ii) For every £ > 0 and every k>Q there exists a constant O 0 such that
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(2.3) |[/(x, t)\<C exp(y+fcW) in Rnx (0, T).

(iii) \imt-*o+U(x, t) =u in 2F' as in Theorem 2.1.

Conversely, every C°° function U (x, t) in W X (0, T) satisfying (i) and (ii)
can be expressed in the form U(x, t) =uy(E (x~y, t)) with a unique element u^2F'.

In the rest of this section we are going to prove the following representa-
tion theorem for the space $ ' E of infra-exponentially tempered distributions
which is essential to prove the main theorems.

Proposition 2.3. For every (p^s£E, let

, t>0.

Then (pt^^sfor each £>0 and (pt~^(p in S&E as t—* 0+.

Proof. First, we note that for each

(2.4)

and for each <5>0 and fe>0

(2.5) f E(y,t)
J \y\>d

as t~ * 0+. It is easy to see that cpt^^E for each £>0. Now we will prove the

convergence. Let (p^&$E. Then for every a^No there exist fc>0 and C=C(k, a)
such that

(2.6) sup|9>(x)|exp k\x\<C
xeRB

and for each y there exists C'>0 such that

(2.7)

On the other hand, for each <5>0 we have
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ap(r-i/)-9a«pOr)= f, E(y, i) (9>(x-jy) ~da(x)}dy
J |i/iSO

Then it follows from (2.4) and (2.7) that

(2.8) sup|/i|expMx|<C'<5
X

and from (2.5) and (2.6)

sup|/3|exp k\x\ <C f E (y,
x J\y\>-8

as t~* 0+. Also, it follows from (2.5) that

(2.9) sup|/2|expfc|x|<cf E(y, t)exp k\y\dy -» 0

as £ — * 0+. Therefore, if we choose <5>0 to be small enough then the estimates
(2. 8) and (2.9) complete the proof. D

Theorem 2.4. Letu^s&'E and T>0. Then U (x, t) =uy (E (x-y, 0) is a
C°° function in W1 X (0, T) and satisfies the following:

(i) (d/dt-A}U(x, t)=OinRnx (0, T).
(ii) There exists N>0 such that for every fe>0 and for some C>0

(2.10) | [/Or, Ol^Cr^ exp fe|x| in Rwx (0, T).

(iii) limt-o+U(x, t) =u in J£'E-
Conversely, every C°° function U (x, t) in Rw X (0, T) satisfying (i) and (ii) can

be expressed in the form U(x, t) =uy(E (x~y, t)) with a unique element U^-S&'E.

Proof. Since E(X, t) belongs to J&E for each £>0, U(x, t} is well defined and
a C°° function in IT X (0, T) for any T>0. Furthermore, U(x, t) satisfies

(d/dt-A) U(x, t) =0 in Rwx (0, T).

On the other hand, u ^ S&'E implies that there exists N> 0 such that for every
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&>0 and for some OO

(2 . 11) |u (<p) | <C sup 2 \da(p (x) |exp fcW,
x \a\<N

Note that that there exists #>1 such that

(2.12) |9jf£(x, OI<^al+1r(w+lal)/2a!1/2exp(

Therefore, it follows that

|[/(r, £) |<C sup 2 |3££(.r-y, 0 |exp k\y\
y \a\^N

<CHN+1 sup 2 r(w

sup

for some constants C' and C" depending on k and T. From this we obtain (ii) .
To prove (iii) let (p^s&E- Then

jU(x, t)(p(x)dx=uy(jE(x—y, t)(p(x}dxj

by taking limit of the Riemann sum of the first integral. Then it follows from
Proposition 2.3 that

u((p)=lim I U (x, t) (p (x) dx, (p^^s-
t_0+ J

Thus we show that

lim U(x, t) =u in s&'E.

We now prove the converse. For a positive integer m we put

tm~l/(m-l}\ t>0

0 KO.

Multiplying / with a suitable C°° function with compact support we have the fol-
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lowing relation

(2.14) (d/dt)mv(t)=5(i)+co(i)

where v (t) =f(t) for £<T/4, v(i)=Q for t>T/2 and <a(i) ec°°(R), supp a) c
[T/4, T/2] .

Take w=JV+2 where JV is a constant given in (ii) and consider the follow-
ing function

U(x, t) = f°°[/(x, t+s)v(s}ds, CKKT/2.
Jo

Then U(x, t} is a C°° function in RWX (0, T/2) and satisfies that for every

|[7(x, t)\<C exp fc|x| in R"x [0, T/2).

This implies that U (x, 0 can be continuously extended to Rw X [0, T/2) .
Moreover, we have

(2.15) (d/dt-A) U(x, t) =0 in Rwx (0, T/2).

Therefore, it follows from (2.14) and (2.15) that

(2.16) (~A)mU(x, t) = (-d/dt)mU(x, t)

(x, t+s) a) (s)ds.
o

If we put

f*°°
H(x, t) = - I U(x, t+s)a)(s)dsJo

then H (x, t) is also a C°° solution of heat equation in W X (0, T/2) which is
continuously extended to RWX [0, T/2). Also, for every k>0 we have

\H(x, t) | <C exp k\x\ in Rn X [0, T) .

Furthermore, if we define g (x) = U (x, 0) and h (x) — H (x, 0) then g (x) and
h (x) are continuous on Rw and for every

(2 . 17) |* (x) | <C exp k\x\, \h (x) \ <C exp k\x\.
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Because of the uniqueness of the solutions of the heat equation we have

U(x, t) =fE(x~y, t)g(x)dx=g*E

H(x, t)=JE(x-y, t)h(x)dx = h*E

where * denotes the convolution with respect to the x variable. Define u as

u=(-A}mg(x)+h(x).

Then, by (2.17) u belongs to S£'E. The first part of this proof implies that

lim (u *£) =u in S&'E.

Hence it remains to show that U (x, t) =u*E. In fact, it follows from (2.16)
that

u*E=(-A}m(g*E)+h*E

= (-A}mU(x,t)+H(x,t)

Since the uniqueness of such U^S£'E is obvious this completes the proof. D

Corollary 2.5e If U^S£'E then there exist a positive integer m and continuous
functions g (x) , h (x) on W1 such that for every &>0

\g(x}\<Cexpk\x\, \h(x)\<C expk\x\,

and

u = Amg(x)+h(x}.

Proof. Let U(x, t) =u*E and U(x, t) and H(X, t) be as in the above proof.
Defining

g(x) = (~l)mU (x, 0), h (x) =H(x, 0)

we obtain by the similar argument as in the above proof

. n
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§3. Positive and Positive Definite Generalized Functions

In this section we will prove the main theorems on the positive and positive
definite generalized functions. First we prove that every positive Fourier hyper-
function and every positive and infra-exponentially tempered distribution is a
measure. Also, we will show that every positive hyperfunction is also a measure
by an elementary method. Finally, we will show that every positive definite
Fourier hyperfunction is the Fourier transform of a positive and infra-exponen-
tially tempered measure, which is the generalized Bochner- Schwartz theorem
for the Fourier hyperfunctions.

We first show that every positive element in S&'E is a measure satisfying
some growth condition.

Theorem 3.1. Every positive generalized function in S&'E is an infra-exponen-
tially tempered measure.

Conversely, if [i is a positive and infra- exponentially tempered measure then it
defines a positive generalized function u in J£'E in a sense that

u((p) =J (p(x}d/J.(x),

Proof. Let U^^'E be positive. Then, since j^'^c:©' and u (<p) ^0 for every cp

~ with (p>Q u must be a measure with

(3.1) u(q>)=f<pdn,

In order that (3.1) be meaningful for every function (p ̂  s&E the measure IJL
should be infra-exponentially tempered. To prove this let 0 (x) be a C°° function
with compact support such that 0 (x) — 1 for |x|<l. Consider a sequence (pm^

as

<pm(x) =0^

It is clear that <pm^0 and (pm~* exp[ — fcyl + W2] in ^>E as m~ » °°. Therefore,
by the continuity of u on S£E there exists M>0 such that

lim u (<pm) <
m-K>°

So it follows from Fatou's lemma that
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which implies that fJ. is infra~exponentially tempered. This completes the proof
since the converse is obvious. D

From now on we use the characterizations of generalized functions by the
solutions of heat equation developed in Section 2.

Since the heat kernel E (r, t) ^0, we have u *E = uv (E (x~ y, £)) >0 for
each £>0 if u is a positive element in S&'E or 2F' . Conversely, if U(x, t) is a C°°
function satisfying (i) and (ii) in Theorems 2.1, 2.2 and 2.4 and if U(x, t)>Q
then U(x, 0+) defines a positive element for each case.

We are now in a position to state and prove one of the main theorems
which gives the general form of positive Fourier hyperfunctions.

Theorem 3.2. Every positive Fourier hyperfunction is an infra- exponentially
tempered measure.

Conversely, if jj. is an infra- exponentially tempered measure, then /JL defines a
positive Fourier hyperfunction in a sense that

u ( ( p ) = f ( p ( x } d f j i ( x ) ,

Proof. By Theorem 3.1 it suffices to show that each positive element in 2F'
belongs to s&'E. To prove this let u^2F' be positive. Then Theorem 2.2 implies
that for every £>0 and k>0 there exists a constant C>0 such that

(3.2) It/Or, t)\<C exp(7+feMJ in R"x (0, T)

where U(x, t) =uy(E(x—y, t ) ) . The positivity of u implies that for Q<t<c<T

Q<U(x, t) =

= (j) (Uy,E(x-y,c)}

( r\n/2
7) U(x,c).
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Since c is arbitrary we have

(3.3) 0<[/(x, 0 <Ct~n/2 U(x, T).

Hence combining (3.2) and (3.3) we obtain

,0<Crw/2exp(j7-

<C(T)rw/2 exp k\x\ in Rwx (0, T).

Then by Theoerm 2.4 u belongs to s2'E. Since the converse is obvious the proof
is completed. D

We now give a characterization of positive definite Fourier hyperfunctions,
which is the generalized Bochner-Schwartz theorem for the Fourier hyperfunc-
tions. Here, we also make use of the heat equation method more effectively
which makes the proof possible.

Theorem 3.3. Every positive definite Fourier hyperfunction is the Fourier
transform of a positive and infra-exponentially tempered measure /J..

Conversely, the Fourier transform of any positive and infra-exponentially tem-
pered measure defines a positive definite Fourier hyperfunction u in a sense that

Proof. li<p^& and (p(x) = (p(~x) then

Let u^&' and (p^HF. Since (u, $) = (2n}n(u, cp) , the validity of the ine-

quality (w, cp*(p)>0 for all (p^2F is equivalent to the condition that (u, 00) >
0 for all 0 €= 5F . Here we used the fact that ?F is self-dual with respect to the
Fourier transformation. Let V(x, t) — (uv, E(x~y, t ) ) .

Since u also belongs to 2F' we have

», exp(-|x-y|2/&)expHx-y|2/8t)
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which shows that u is a positive Fourier hyperfunction. Hence Theorem 3. 1 im-
plies that u is a positive measure [i with (3.3), which proves the first part.
Since the converse is clear, the proof is completed. ED

Finally, in the rest of this section we prove that every positive hyperfunc-
tion is a measure.

An analytic functional u carried by a compact set K in W1 is defined to be a
continuous linear functional on the space of real analytic functions on K with
the inductive limit topology. Also, an analytic functional is called positive if
u(<p) ^0 for every nonnegative analytic function <p^0 on W1. A positive hyper-
function on an open set Q is considered as a hyperfunction whose restriction on
each bounded open subest V of Q is represented by a positive analytic function-

al carried by V.

Theorem 3*4* Every positive hyperfunction on an open set Q is a positive
(Radon) measure.

Proof. We have only to show that a positive analytic functional u carried by

V is a positive measure where V is a bounded open subest of Q. Let (p be a real
valued polynomial in Rw. Then

xeV

It follows from the positivity of u that

or equivalently that

\ u ( ( p ) \ < n ( l ) s u p \ ( p ( x ) \

for every real valued polynomial (p in Rw. Since every real valued continuous
function on Q can be uniformly approximated by polynomials on each compact
subest of Q u can be extended to the space of all continuous functions with
topology of compact convergence, i.e., u is a measure. For the general case, if we

apply this to Re eld(p where 6 is real and choose 6 so that el°u ((p) is real we
obtain the same inequality for complex valued (p. This completes the proof.

In the next section the above theorem will be generalized to the positive
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Aronszajn traces by the heat kernel method.

§4. Positive Temperature Functions

A C°° solution of heat equation

(d/dt-A)u(x, t) =0 in Ewx (0, T)

is called a temperature function. In view of Theorem 2.1, 2.2, and 2.3 we expect
that each temperature function with some growth condition defines a generalized
function. The space of all temperature functions without any growth condition is
just the space of Aronszajn traces given in [1] .

In this section we will prove that every positive temperature function is a
measure which can be the most general theorem on the positive generalized
functions. For this the following lemma which is the several variables version of
the result in [13] is needed.

Lemma 4.1. Let U(x, t) be a positive temperature function i. e., C°° function
in W1 X (0, T) such that

(i) U(x,t)>0
(ii) (d/dt-A)U(x,t)=Q.

Then for any 5 > 0 and 0< £ < T— d we have

U(x, t+d) =fE(x~y, t) U(y, 5)dy.

We are now in a position to state and prove the main result in this section.

Therorem 4.2. Let U(x, t) be a C°° function in Rwx (0, T) such that
(i) U(x,t)>Q
(ii) (d/dt-A)U(x,t)=0.

Then, for any compact set K of W1 there exist A/">0 and C>0 such that

Q<U(x,t}<Ct~N, x^K, 0<t<T.

In other words, in view of Theorem 2.1 the initial value U (x, 0+) defines a positive
distribution, therefore a positive measure.
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Proof. From Lemma 4.1 it follows that for any <5>0, 0<t<s<T~<5,

U(x, t+S) =Eb-y, t)U(y, S)dy

< (y)»/2/(47rs) -»/2 exp (-\x-y\2/±s) U(y, S)dy

= (f)"/2 fE(x-y,s)U(y,5)dy

Since <5 is arbitrary the continuity of U(x, t) implies that

0<U(x, t)<(j)n/2U(x,s), 0<t<s<T

2[/(x, T), Q<t<T

<C(T)rw/2, x<EK, 0<a<T,

which proves the theorem. D

Remark, (i) In fact, Widder [13] proved that every positive temperature
function U (x, t} in R X (0, T) can be written in the form

(x~y, t)da(y)

where a is an increasing function. But this makes no sense for the sveral vari-
able case, since the Stieltjes measure da deos not have any meaning. Therefore,
the above theorem may be considered as a generalization of the result of Widder.

(ii) In [11] it was shown that every hyperf unction u is a initial value of
temperature functions U (x, t) such that for every compact set K c: W1 and for
every £>0

|[/(x, t)\<C(K, e) exp (6/0

for (x, t) <EKX (0, T). Thus, Theorem 4.2 implies Theorem 3. 5.
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