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Galilei Invariant Molecular Dynamics
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Christian D. JAKEL*, Giinther HORMANN*

Abstract

We construct a model for a chemical reaction in the Heisenberg representation. The time

evolution exists in the thermodynamic limit, independent of the particle density and the initial state.

In mathematical terms, we establish a C*~dynamical system. Thus we can benefit from general re-

sults in algebraic quantum statistical mechanics, showing, for example, that equilibrium states exist.

Galilei invariance of our nonrelativistic model is demonstrated by defining it directly on the Gali-

lean space-time manifold, without reference to any coordinate system. PACS 05.30.Fk, 03.70.+ k,

ll.10.Cd, 11.15.Tk

§1. Introduction

Many of the properties typically attributed to relativistic field theories are
actually a common feature of every theory with a zero mean-particle density
and translation-invariant Hamiltonian [1]. Galilei invariant quantum field
theories provide a natural candidate for a comparison with relativistic models.
Especially the Galilei invariant Lee model has attracted much attention [2-4].
Most of the work in nonrelativistic field theory was based on the Hamiltonian
approach and constructed in the vacuum representation. More recently, thermo
field theories aimed at the construction of systems in an equilibrium state at fi-
nite temperature.

The usual procedure is to define a model in some kind of "box", then let the
box go to infinity and show that the thermodynamic limit is independent of the
boundary conditions involved in the definition of the system. While one could
argue that a box is in agreement with the experimental situation, one should
keep in mind that for macroscopic bodies it is not possible to isolate the energy

levels completely — their widths are on the order of (macroscopic time) -1, which

Communicated by H. Araki, November 14, 1994.

1991 Mathematics Subject Classifications: 46L40, 20C35, 81V45

*II. Institut fur Theoretische Physik, Universitat Hamburg, D-22761 Hamburg, Germany

* * Institut fur Mathematik, Universitat Wien, A-1090 Wien, Austria



806 CHRISTIAN D. JAKEL AND GUNTHER HORMANN

is much larger than their spacing. So in order to avoid mathematical curiosi-
ties comming from periodic boundary conditions and a discrete spectrum it is
better to idealize macroscopic bodies as being infinite and having continuous
energy spectra, which comes closer to reality than does the fiction of a discrete
spectrum. But for an infinite sytem, even for a finite particle density, one has
to face the possibility of unitary inequivalent representations. In fact, if the
algebra of observables changes globally as time passes, as is expected for
almost any initial state, then a representation may change at any moment into an
inequivalent representation, and it is not possible to represent the time- evolu-
tion with a group of unitary transformations within the representation (cf.
[10] ) . Thus even for the free time evolution r° one can not expect that a for-
mal expression like

(1)

will exist as a selfadjoint operator acting on a certain Hilbert space for an arbit-
rary initial state. Nevertheless, at least for fermions, the free time evolution

exists as a strongly continuous automorphism t — » rf acting on a C*~algebra,
which describes the possibilities of testing the system experimentally. Only re-
cently it was demonstrated by Narnhofer and Thirring [5, 6] that pair interac-
tion can be added to the free time evolution. There one has to face a problem
known as "stability of matter", which roughly speaking tells us that independent
of the initial conditions the system does not heat up and collapse.

In this article we demonstrate that even a chemical reaction can be added
to a system of fermions with pairinteraction. In §2 we define the appropriate
C*~algebra of observables si. for our model. We deal with three different spe-
cies of fermions. Different methods for the construction of automorphisms of
the algebra of observables si are discussed, and some remarks on the super-
selection structure are added. In §3 we present our "C*-dynamical" model for
a chemical reaction, which was inspired by the Galilei invariant Lee model cited
above. As in the Narnhofer-Thirring model, the existence of the time evolution
is achieved by cutting off high relative momenta, thereby introducing a slightly
non-local character of the interaction. The time development is well defined
for arbitrary initial states, and in principle one could tackle problems of
nonequilibrium situations where the state changes globally with time and the
time evolution T can not be unitarily implemented in the GNS~representation
corresponding to a state at a fixed time. But work in this direction seems diffi-
cult and much remains to be done. Mixing properties will be discussed else-
where.

The advantage of formulating our model as a "C*-dynamical system" is that
the algebraic formulation of quantum statistical mechanics [7-10] and quantum
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ergodic theory [11-17] become applicable. We can only mention a few basic
results here, for further details and properties the reader is refered to the liter-
ature cited. In §5 we answer the question whether or not our model has
equilibrium states. The positive answer is based on a result by Powers and
Sakai [18] . By definition, ground and equilibrium states are time-invariant, so
in the corresponding GNS representation 11$ the time evolution r can be repre-
sented by a Hamilton operator H0,

TL, (r, (a) ) =elt**xB (a)e"tmf , aerf , (2)

where the representations it$ are labeled by the inverse temperature /?=l/feT of
the equilibrium state . This establishes the connection with the standard con-
struction starting from a system in a box mentioned above. The other vector
states now represent local excitations of the equilibrium state and differ only
locally, and thus do not change in time, from a global point of view. We will
also point out that equilibrium states spontaneously break Galilei invariance
and that even a local perturbation changes the number of parameters labelling
different equilibrium states.
While our model might well serve as an effective theory for a chemical reaction in
studying thermodynamical properties, we can not expect phenomenological ap-
plications. Although we consider molecules as the elementary objects, we have
resisted, in order to keep the notational amount acceptable, to include the
two-particle interactions responsible for the formation of molecules. It is not
hard to check that our model can be combined with the two-particle interactions
recently presented by Narnhofer and Thirring [5, 6] as well as similar two-
particle interactions between different species.

In quantum mechanics space and time coordinates do not refer to an indi-
vidual particle but refer to preparation and registration apparatuses. The
'classical' space-time structure is merely encoded in the net of local algebras.
This aspect is worked out in an appendix, where the algebra of observables is
equipped with the fiber-bundle structure induced by the structure of space-
time. The symmetry group of 'nonrelativistic' space-time is of course the
Galilei group [19, 20]. In fact, the Galilei group provides the transition func-
tions between different charts of the space-time manifold2. In §4 we show that
the time-evolution is Galilei invariant, i.e., it can be defined chart independently
on the new bundle. While this might look extraordinary for the first sight, we

k denotes the Boltzmann constant.

The representation theory of the Galilei group on Hilbert spaces is well established [19, 20]. Re-

cently there has been some interest in more abstract aspects of this group [21-26]. Nevertheless

the Banach space representations we construct in the appendix seem to have no counterpart in

literature.
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feel that it is the natural, coordinate free formulation of Galilei invariance.
That we are able to define a time-evolution in a coordinate-free way makes it
evident that only the spatial relationship between the preparation and registra-
tion apparatuses are relevant.

§20 The Algebra of Observables

We want to describe molecular dynamics involving chemical reactions such as
the dissociation of large molecules into two different smaller parts, for example
a four atomic molecule which dissociates into two simple molecules:

cc cc

bb ' bb

Since the difference between various isotopes are of no relevance for us we
assume that all the particles are fermions. The relevant C*-algebra is then the
3-fold tensor product of the usual CAR or Fermi algebra sip for one species of
fermions. Uniqueness of this tensor product is guaranteed by the fact the Fer-
mi algebra sip is nuclear [8] .

Definition. Let d denote the unital C*-algebra generated by annihilation
and creation operators a(/) t a*(/), b(f), b*(f), c(f) and c*(f), where / e

L2(R3). These operators correspond to three different particle species with
masses ma

=mb+mc and obey anticommutation relations

\ a ( f l , a * ( g ) \ = ( f \ g ) l , \a(f) , a (<?)} =0 , (3)

and similarly for b and c. Operators corresponding to particles of different
species commute. Thus s&=da ®s$b ®^c; £$X = £$F, x=a, b, c.

Note that we consider si as an abstract algebra — representations of si in cer-
tain Hilbert spaces will be state dependent and discussed in §5. If we are in-
terested in obtaining a Galilei invariant quantum field theory exhibiting produc-
tion processes, we have to include particles with mass values chosen in agree-
ment with the mass conservation law. This was done in the definition of si.
As noticed by Bargmann [19] , the mass operator M, appearing as an element of
the center of the extended Galilei group Lie algebra, gives rise to a superselec-
tion rule. In fact, as long as we have no chemical reactions the superselection
sectors are labelled by three charges, corresponding to the three different total
masses M = Mfl + M6 + Mc. The corresponding equilibrium states are labeled
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by three distinct chemical potentials. A chemical interaction will change the
superselection structure. Besides the total mass only one more parameter will
survive. If the particles are charged, then this parameter turns out to be the
total charge.

We list three different procedures for the construction of automorphisms 7
of si. Their common feature is that 7 (a (/")), 7 (&(/)) and if(c(f)) are specified
on a total set ^ of functions/^ Of <^L2(R3). Then this definition is extended to
the whole generating system of d by setting 7 (l) : = 1 and j (a* (/)):= (7 (a (/)))*
and similarly for b and c. If now 7 respects the defining relations among the
generators, it can be extended to a ^-isomorphism of si (again denoted by 7) ,
because of the uniqueness of the CAR-algebra [8] and the involved tensor pro-
ducts.

(i) Coherent states

f d
3x) , *= (q,p) eT*(R3) , (4)

explicitly relate to the classical picture. We may think of az: = a (fz) as an
operator destroying a particle centered at 2 = (q, p) in phase space. This cor-
responence between the classical and the quantum picture allows us to lift
group representations from ordinary phase space T* (R3) to groups of auto-
morphisms of si. For example, the kinematical automorphisms

T^in(t)(az): = eimaA+tmai(t-s}+tmaV-Rqa, , z= (Rq+v (t~s) +1, Rp+mav) , (5)

g = U, s, /, v , R} , define a representation of the extended Galilei group G1 in
Aut(s£). (The phase-factor was chosen in agreement with the cocycle relation
of the Galilei group extension.)

(ii) The standard procedure to lift unitary representations of groups from the
quantum mechanical one-particle space to quasifree automorphisms of the algeb-
ra was introduced by Bogoliubov [8] . Since the kinematical automorphisms
are quasifree we could as well use representations of the Galilei group in
coordinate-space [20] :

/W^e^-'^-^^^ya?-1^-/-!;^-^))) , /€EL2(R3) , (6)

for a construction of these automorphisms. The free time evolution r?(a (/)): =

a (e 2ma /) provides another example.
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(iii) Each hermitian element h = h* of sd defines a so-called inner automorph-
ism jh\

Tth: = eithae-ith , a^d , t<=R . (7)

Since d is a Banach space, we are allowed to consider limits. The limit yt'-
 =

Iimw_oo7'*>l might exist even when \hn\ MeN does not converge in si. Automorph-
isms which are not inner are called outer automorphisms.

The Lie algebra of the extended Galilei group (see Appendix) tells us that
gauge transformations have to commute with time translations. We might
therefore think of the gauge group as representing inner symmetries. In addi-
tion we expect gauge-dependent quantities to be unobservable. Nevertheless a
chemical reaction, corresponding to an operator of the form a*bc, has to be
observable. This suggests the following choice for the action of gauge trans-
formations on si.

Definition. The action of the gauge group U(l) as a group of
^-automorphism of si, is given by the continuous, faithful representation X^S1

— » 7;u defined by algebraic extension of their action on the generating elements
of s&,

a (f) ®b (/) ®c (f) -> e
u(ma+mfi+mc)a (f) ®b (/) ®c (f) , (8)

and topological closure3. The fixed-point algebra under the action of [/(I) is
called the algebra of observables.

§30 A Thermodynamical System with Chemical Reactions

While the Narnhofer-Thirring model is concerned with pair interactions, of
similar molecules with (regularised) Van der Waal's interaction for example,
the present effective interaction only includes vertex functions that model the
restructuring of the electrons once the molecules have got so close to one
another that their electron clouds overlap. In fact, our model describes only a
certain chemical reaction of diatomic molecules. The existence of diatomic mole-
cules is assumed and the forces responsible for the formation of molecules are
not dealt with.
We construct the interacting time-evolution in three steps, as proposed by
Guenin [27]:

3 That ft is well defined can be easily checked by computing the new anticommutationrelations.
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(i) We "cut-off" the interaction in such a way that vn exists as an element in
erf, thereby destroying Galilei invariance.
(ii) We define inner automorphisms Tn corresponding to the "cut-off" interac-
tion vn.
(111) We construct the interacting time-evolution as a limit of inner auto-
morphisms by releasing the cut-offs and thereby restoring Galilei invariance.

Diatomic molecules are idealised as two atoms at a fixed distance q and with
equal momentum. The spatial orientation of the molecular axis should be of
secondary importance and is therefore neglected.

DefinitioHo Let TS\ — s~ Hindoo r?, where 5 — lim denotes the strong (i.e.,
pointwise) limit in f$ (erf) — the Banach space of bounded operators acting on erf

— of the following automorphisms r?:

T? (a): = TS (a) + 2|f J d (ti...tk) [r?t (v»), [..., [r£ (vn), r° (a) ]...] ], a e«rf, (9)
k=1 [0,sl*

where d (ti...tk) denotes the time ordered integral (however over [0, s] k and
hence divided by k\) and

r r
vn = J Hd3qtd% J dO V(\qi-q2\, \qi~ql

\q,\,\p,\<nl \d= const

Pi P2

ma nib
A.

ma m,

+q^^ . (10)

•9q denotes the angle between (q\~~q2) and (qi~~~q^) and -9/, between {— — -\wia

and ( — -^1 and dO denotes the surface integral over the sphere \q\ = const.
\Wla Wlc/

The vertex V(\r\, |r |, \k\, \k'\, 9q, $p} is assumed to be in L1 (E12, d3rdVd3fed3fe')

HC(R12), thus all Bochner-integrals exist.

The interaction is constructed so that there are two conservation laws: the num-
ber of a-particles plus the number of fr-particles is conserved, and the number
of b particles minus the number of c-particles. The vertex function V should
be localised in a region of order of the atomic distances q. The momentum de-
pendence of the vertex function is unknown, but we have only required integra-
bility and this seems to be a decent assumption. We have made no restrictions
on the angular dependence of the position and the momentum distributions since
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V will certainly depend on $g and &p. Furthermore, our six-particle vertex
will suppress dissociation with very high relative momenta of the molecules.
However, there will be no limit on the momentum cut-off and one expect that
for stable systems where high momenta do not occur in a reasonable subset of
states, our interaction gives a physically acceptable description.
One can interpret the presented model alternatively as one involving particle
creation and annihilation. In any case, it exists strictly on the C*~algebraic
level, without any renormalization or restriction to any representation. Before
we show that the limits involved in the definition of the time evolution exist, we
mention that the interaction is stable for both signs of the coupling constant. It
was argued in [14] that this is necessary, if the interaction defines a strongly
continuous automorphism. Furthermore it automatically ensures a reasonable
thermodynamical behaviour of the system by guaranteeing that the energy is an
extensive quantity, which is a basic assumption in phenomenological thermo-
dynamics.

Lemma 3.1. The interaction is stable , i.e., there exists a positive real num-
ber C^R+, such that

, (ll)

where («)„ = 3qd3p a*(Vfq,P}a(fq,P)>0,

(Na)n= I \\\\< d3#d3p a*Paq,P^Q, and similiarfor b, c.and an \\\\<

Proof. We first show that x+x*<-/2 (x*x+xx*)1/2. From (x— x*) *(x~
x*) >0 we infer

x*x+xx*>x2+(x*)2 . (12)

Thus 2 (x*x+xx*) > (x+x*)2. We simplify the notation,

zt=(qi,pi} , Zi=(qi+q,pt) , (13)

and recall that operators corresponding to different particles commute. Thus

—vn=— I d6*id6*2(l6£3 J
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3 \V(\qi-q2\.\qi-q^ ^ mb, ̂  ^

|if| = const.

( \l/2
cfff3bf2bf2azlaZla*iaflbz£ (14)

Next we apply the operator inequality

abb*a*<aa*\\b\\\\b*\\ (15)

and use the operator monotony of the square root. Once more it is crucial that
operators corresponding to different particles commute. We find

f A°Zid*z^V(\qi-q2l \qi-q*\, .-, ̂  ^) l) f d6*2 b*2bZ2

J ' J.lpil^n W,b>2l^n

d6
Z2d

8«s|V(ki-92|. l«i-9sl ..... ««.«*) l) f d6
2la*azl

/ ^

n |9l|,y^n

f d*z2b?2bZ2+ f d^a.w) (16)

In the last two inequalities we used the fact that Pa
=afaz and Pb = bfbz are com-

muting projection operators and therefore (Pa+P6)
1/2<Pfl+F6.

Thus -t;w<v/247r|^|2m^||l/||i((]Vfl)w+(]V6)J, and similar

Stability for the opposite sign follows by the same line of arguments. The ine-
quality (11) gives a bound on the chemical reaction rate, which depends on two
different processes. First, the heavy molecules can dissipate by their own,
without a partner for a reaction. Thus their number Na has to be included in
all bounds on the reaction rate. Secondly, the formation of the larger molecule
of type aa is limited by the more seldom reaction partner.

Theorem 3.2. r is well defined (as a strongly continuous one-parameter
group of automorphism of

Proof. We show that the perturbation formula (9) for rf (a*') converges
for all z^T*(R3) as n — > °°. We proceed in three steps.
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(i) The number of terms does not increase too fast. The strategy is to rewrite
commutators in terms of anticommutators. The first order in the coupling con-
stant is

Pdfi f d'ftdWss f dO V(\qi-qa\, \qi-q,\, %—£, £~ ^ *.- «*)
J 0 •/ •/ Wfl Wife Wfl We

|<?,|,|p,|<w \q\=const.

x {Tti(aflaf,bz2bzzCzzCz^cf^bf2bf^zlaz^ , T°t (az
f}~\ . (17)

As one can see from this expression, every new order in the coupling constant
introduces two products of six creation and annihlitation operators. Given a
fixed creation operator (resp. annihilation operator) only one of these two
terms has a nonvanishing commutator. For example, in the first order we find:

[TH (a?fl$) , T°t (a*0 ] r°tl (bZ2bz£Z3cz-3} = |rA (a*) , r/ (a*') } rA (a*M^*^J

+ Itfi (a?) , r; (a*0 [ ̂  (aXfc^*,) (18)

Thus we are left with two products of five (=4 + 1) creation and annihilation
operators. If we expand the next commutator into anticommutators each of the
4 + 1 creation and annihilation operators has two non vanishing anticommuta-
tors with the interaction. Therefore in second order we have to compute
bounds for 2° (4 + 1) °2 terms of lengh 2-4 + 1. By the same line of arguments
the number of nonvanishing terms in third order is given by 2° (4+1) °2e (8 +
1) -2. For arbitrary order k we find 2- (4 + 1) °2- (2-4 + 1) •...• (fc-4 + l) -2 and
taking the factor l/kl in equation (9) into account we arrive at

2- (4 + 1) -2- (2-4 + 1) '...-2- (fe-4 + 1) -2 m. ( } . / +j\ .(4+n<2.(2.5).
1-2-3-...-* { ' \ 2/ - V1 fe/ [ ' '

(19)

(ii) All rf (az') can be bounded uniformly in w^N and /^R6. First we note
that

°° -i /»

(20)

for all n ^ N. The next step is to use the fact that the spreading of free cohe-
rent wave functions /> does not depend on the footpoint z ^ T* (R3):
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r; (of) , i* (a,0 1 ||=/d'z|

(21)

Explicitly the norm of the first order term of r* (a*') ,

*oW f d6zid8Z2daz3 / dO K-.) [rA (fl&*

"• ™ +*ft&fcrf*).r?W] (22)

is bounded uniformly in n by

dO\V(\qi-q»\, k-d,

t.

(a» rA (afi , tf (a^) ] II llrt (fcj || |rA (6*) II Ik (c J

/ dOlFd^-d.ki-d, ^-^, ^-f-- «..«>) I
J rrla "^c "la WLC

\q\ = const.

X ||rA (a*) || I |TA (4) , r; (a,0 1 1|+| |rA (a» , r(° (a,0 [ || |rA (a*)

<2 sup fd^d^sl V (...) I x 4;r|tf|2 fd6^ f Wl (^Je-^"-'1'/,') I
«,/•!*' J J °

/ / f_f ' \2 \3 / 4

<87r|<?-M|T/||1k|(27r)3 1+ Vf . (23)
\ \ Ma ' I

Higher orders can be treated in a similar manner. We can assume that mc<m6,
then

(24)

uniformly in n ^ N. By inspecting the perturbation formula (9) we establish

the convergence of limrf (azO for k|<£0, with to given by

(25)
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(iii) The coherent states fz form a total set in L2 (E3) , thus Tt can be extended
to arbitrary a (/) , f&L2 (E3) . Tt (b (f) ) and Tt (c (f) ) are constructed in exactly

the same manner and so limw^oorf (a) , a ^ sd exists for t small enough by the
Banach-Steinhaus theorem. By inspecting (9) one can see that in a neighbour-
hood of £— 0 additivity in t holds for all n

T?l°T?2(a)=Tfl+t2(a} , a^4 , V f , € = R , (26)

and since \imn-^ooTn (a*') converges for |f|<£0 we have,

Ttl°Tt2(aZ')=Ttl+t2(aZ') , \ti\ + \t2\<to . (27)

This allows us to define Tt for arbitrary £^E:

| t f |<f0 . (28)

It even defines a *-endomorphism, as can be seen from the (anti-) commutator
relations, e.g.,

Ma(/)) . r , (a*(ff))} = )«(/), a* (0)1 . (29)

Surjectivity is recovered from the group property: T-t provides an inverse for
Tt, which shows surjectivity and consequently Tt defines a ^-isomorphism.
Thus Vae^, ||r,(a)|| = ||a||. D

§40 Galilei Invariance of the Time Evolution

In nonrelativistic models we deal with nets of local observables (/,
(/, sd(0}}, I an open intervall, 0 an open region in E3, and
the C*-algebra corresponding to the respective region. We now equip

U (/,0)cRxR3(/, dl(0}}c* with the bundle structure induced from the space-time

structure (see Appendix) . Recall that the kinematical automorphisms jKm

have been specified in §2 by setting

with z= (Rq+v (t—s) +1, Rp+mav} .

Definition. Let g and h be elements of the isochronous Galilei group5

5 For further details we refer the reader to the appendix.
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GO".— \(A, s, I, f, R) ^G1|s = 0( . Furthermore consider the transition functions

f x
(31)

t - > r - f t ° r K -

We define the Galilean field algebra bundle to be the fiber bundle

, (32)

where the equivalence relation ~ is given by [0, t, a] ~~ [h, t', a']: €=> t = t' and
a=Wh,g(t) a.

The set of transition functions \Wg, hi g,h^cl satisfies the necessary cocycle condi-

tion ¥,;-= r^0- = id^ and ̂ °^7=7*-^7fI"orf-?°7f" = 7^-?oiok--.o/=^V. so
Mst is well defined. Our intention is to show Galilei invariance of the
time-evolution by defining it chart-independent on the Galilean field algebra
bundle. We will use the following

Lemma 4.1. Let g = U, 5, /, v, R} and g' ' = U', 5', /', v\R') denote two ele-
ments of G1, The composition law of the automorphisms

(33)

is given by

rd(t+s] oTg,(t) (a) =7W'(0 (a) , Va^^ , (34)

where

It can be verifed by restricting jg to one parameter subgroups, that Lemma 4.1
reproduces the relations used by Narnhofer and Thirring [6] to characterise
Galilei invariance. We will see in a moment that this leads to a chart indepen-
dent description.

Proof. Let denote g = (0, s, 0, 0, 1) og = (A, s, a, v, R} . A straightforward
computation yields

7. (*+«') °7V to («) = r , ° t *o r - (t) (a)
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r̂*' i r
yj^OO^^f kl <J 2

(35)

Thus it remains to show that the spatial symmetry gets restored, Hindoo ||[vw~

rfm(t} G>II), a] II = 0, for all a^d and f eR. The following computation needs
some care: one has to make sure that simple substitution of variables does not

change the operator. This can be easily checked by computing \f*in (f) (vn),
az

f\ with the different expressions on the right hand side of the following ex-
pression:

rf'n(t)(vn)= f dMW* f AOV(\qi-q2\,...,9p)

\q\= const.

v (t~s) +l,Rp3+mav

= f d62id%d% / dO V(\R~l(qi-l-vt) -R'l(q2-l-vt)l ...,

\R-l(qt-l-vt)\<n
\R-l(p-m<v}\<n

x

= f d6*id6z2d
6*3/dO V(\qi-qz\, ..., ̂ ) (aMWtfrf*+c&3jfr?16ii«1a/I). (36)

\q,— a— vt\<n \q\=const.
\pt—mtv\<n

The change of integration boundaries vanishes in the limit n to infinity. Due to
the strong continuity of r° this implies

V1** f
n^°° k=l [QiS]k

and consequently (34) holds.

Together with the kinematical automorphisms ?Km the time evolution provides a
representation of the extended Galilei group G1 as bundle isomorphisms on M^:
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Theorem 4.2. Let h = U, 0, I, v, R) ^Gl and g = U, s, J, v, R) ^G1. Then
II:

[ h , t , d ] -> Di'f £+s, 70(0 (a)]

with hf = U, 5, /, v, R) ° g'1, defines a representation of G1 as fiber
bundle -isomorphisms on MM.

Proof, (i) First we show that ig does not depend on the representant of
the equivalence class: Let [g, t, a] ~ [#', t', a'] be two representants of the same
equivalence class. Then (by definition) t = t' and a'=¥h',h(t}a, therefore t+s =
t'+s. Furthermore

(39)

with fe= U'f s, r, t/, I?') o^f-1 and h'= U', 5, f, i/, i?') o^-1. From (39) and the
definition (38) we infer i g ( [ g , t, a]) ~ig([g', t' , a']), and thus ig is well defined.
(ii) The group multiplication law holds:

ig° ig' ( [h, t, a] ) =ig ( [2, s', I v, R) og'~\ t+s', jg' (t) (a) ] )

= [U, 5+5', I, v, R) o (gog'}-\ t+ (5+5'), 7^ (t) (a)]
=W([M,a]) (40)

for a l l f l f , ^'

Corollary 4.3. rs defines a Galilei invariant time evolution.

Proof. The restriction of II to the time component, U\time'. R ~ > /so ( J(^) :

[ti, t, a] -* [/i, f+5, rs(a)]

defines the time evolution independent of the chart.
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§5. Equilibrium and Ground states

True (pure phase) equilibrium states are distinguished by strict invariance
under time translations and stability against local perturbations. If we add
some technical assumptions, then these requirements are equivalent [28-30] to
a characterising property first found by Kubo, Martin and Schwinger [31-32]:
A state a) over sA is defined to be a (r, (3) -KMS state, if

Q)(ab)=Q)(bTiff(a)) (42)

for all a, b in a norm dense, r-invariant *~subalgebra of s&T, where sir denotes
the set of analytic elements for r. The GNS-representation (#£a), fta, Qa>)
associated with an equilibrium state a)$ connects our state-independent results
with the more common equilibrium formalism. While the laws of physics have
to be Galilei invariant, the KMS condition distinguishes a rest frame [33] . The
breakdown of Galilei invariance is an unavoidable consequence of the
Tomita-Takesaki theory: Any symmetry not commuting with time translations
can not leave a KMS state (over a simple C*~algebra) invariant ( [34] , see also
[35, 36] ) . If we want to describe a KMS state from a different inertial frame,
we have to use the following covariant KMS condition,

o)(ab)=a)(bKM) (43)

where \/Ct\ t^R^ \Jg\ ^eci denotes the one parameter group of automorphism cor-
responding to the central element U — H — P2/2m of the extended Galilei group
(see Appendix) .

Once we have established our C*-dynamical system (R, si, r) , the exist-
ence of equilibrium states for our model follows from the literature. We short-
ly outline the line of results. The free time evolution respects the tensor pro-
duct structure of si,

T°(a®b®c)=T°(a®l®l) ®r°( l®6®l) ®r°(l®l®c) , (44)

for all a ^ sia* etc. The unique (r°, /J, fa, lib, fa) ~KMS state [8] , where /? =
1/kT is the inverse temperature and fa, fa, fa are the chemical potentials for
the different species, is given by

(a ®b ®c) =o)0
0tUa (a) a)l,ub (b) a)luc (c) , (45)

for all a^sia, etc., with
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*= 0n,*Det ^/*-)) '=1. (46)
na I j = l k

and simlar for b and c. In order to see how the three chemical potentials enter
one has to examine the role of the U(l) gauge invariance more closely [37, 38].

Even if we allow chemical reactions only in a local region, the situation
changes dramatically: The tensor product structure is destroyed and we lose
control over the relative particles densities. The chemical reaction itself will
abjust the equilibrium relative densities, depending on the temperature. Never-
theless, for each initial choice of (/?, fa, fa, fa) and each n ^ N there exists

([8], Prop. 5.4.1 and Cor. 5.4.5) exactly one (r, /?)-KMS state tug, when we
switch on the interaction6. The existence of KMS states in the limit n — > °° fol-
lows from standard arguments: the unit ball in «^F* is weak* compact, thus

there exists a subsequence7 of |<wg| « e N converging to some state O)Q. It re-
mains to show that o># satisfies the KMS relation. A priory one can not be
sure that the intersection of the sets of analytic elements for the different auto-
morphisms is dense, but this problem can be avoided by using a different for-
mulation of the KMS condition ([8], 5.3.12) emphasising the properties of
analyticity: Let ® denote the set of infinitely differentiable functions with com-

pact support in R. If /^®, then the inverse Fourier transform/ is an entire
analytic function and since limw_oorw exists with respect to the strong topology
on the automorphism group,

/*»00 /WOQ /'oo

I dtf(t) CDB (art (b) ) = lim I dtf(t) 0)n
B (arf (b) ) = lim / Atf(t+i$ a% (T? (b)a)

J -oo _^OQJ -oo n_^OQJ -oo

/,(r,- f /,(&)a) Va, b^^T . (47)

Now choose 7*^® such that 0^7*^lf7*(x) =1 if \x\<k and AW =0 if \x\>k
_ w* w*

+ 1. Since fk — * 1 e ®', it follows that fk— * 5. Thus, for any bounded, con-
tinuous function g,

\imf~ At fk(i)g(i)=g(0) (48)
Jr->ao*' —°°

The reverse is of course false. Different initial states can lead to the same interacting KMS state.

Since sAp is separable the weak* topology is metrizable on bounded subsets of S$F*.
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and hence O)0(ab) = (tip (T-W (b) a) for all a, b^s$T. Uniqueness in the thermo-
dynamic limit n — + °° can no longer be expected for all temperatures,
since phase transitions might occur. There is no uniform convergence

limn-»oosupna||=i||r?(a) — TV (a)|| = 0. Consequently also the representations given

by the KMS state a)°$ and a)p will not be quasi-equivalent, which means that
there will be no weakly continuous isomorphism between the corresponding von

Neumann algebras. (Dp is space translation-invariant and the extremal
translation-invariant components of a)0 will not admit another normal
translation-invariant state [6] .

§60 Appendix

In non-relativistic classical as well as quantum physics it is a basic assumption
that the laws of nature have a Galilei invariant meaning i.e., they are indepen-
dent of the actual time, the position, the orientation and the center of mass
momentum of the described physical system. Two descriptions of a series of
physical events are equivalent if they can be connected by a coordinate trans-
formation induced by an element g = (s, I, v, R} ^R <8>R3 ®R3 ® 0 (3, R) of the
proper Galilei group G:

x=Rx+vt+l , t' = t+s . (49)

Starting from an arbitrary coordinate system we can label equivalent frames by
the corresponding group element g ^ G. Space-time, or more precisely, the
space-time manifold MG is constructed by gluing different frames together and
then identifying equivalent points in different charts. While in Aristotelian
physics both, space and time, were absolute, every event defined by an instant
of time and a location in space, in Galilean physics space becomes relative: the
space-like distance of two space-time points with different time components has
no a priori meaning. Time remains absolute and gives rise to a (fiber-bundle)
projection pc\ MG ~~* R, providing a universal synchronisation prescription for
watches [39, 40]. Once the watches are synchronised in different charts, the
group connecting equivalent charts is reduced to the isochronous Galilei group
Go:— Us, /, v, R) ^G\s = 0[ . This is the starting-point for our construction of
the space-time fiber bundle. Equivalent points in the charts g and h^Go are
identified by transition functions (pg,h(t) acting in the fiber R3 (= space) and
depending on the base point f^R (=time).

Definition. Let g, h G Go and £3 denote the Euclidean group in three
dimensions. Furthermore, consider the following transition functions
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te R - E, (5o)

t -» eg(t}-l°ea(i)

where eg~(t)x: = Rx+vt+l. The space-time manifold MG,

geG.\g\ X R X R 3 - , (51)

is described by the equivalence relations [g, t, x] ~ [h, t', x']: <£> t = t' and x —
<l)ha (t) x. The bundle projection is given by pG ([0, t, x]} = t. Galilean
space-time is defined to be the fiberbundle (MG, PG, R) with fiber E3.

Although MG is split up into space and time components in every (uniformly
moving) coordinate system g: J£G— »Rx R3, there is no canonical projection
from MG — > R3. MG is trivializeable, but not canonically trivial. By definition,
the set \(pg,h\ gb^c. fulfills the cocycle conditions (pgh°(ph/=0gj and (/)g~,g~ = id on
R3, the required compatibility condition for the construction of fiberbundles
[41].

The Galilei group was analysed in detail by Levy-Leblond [20]. We col-
lect a few facts relevant for a discussion of the present model. Each element of
the Galilei group G can be written as a product of a time translation (s, 0, 0, 1) ,
a space translation (0, /, 0, 1) , a pure Galilei transformation (0, 0, v , 1) and a rota-
tion (0, 0, 0, Re) with generators H, P, X, J respectively:

(s, a, v Re) = (s, 0, 0, 1) o (0, a, 0, 1) o (0, 0, v, 1) o (0, 0, 0, Rd)

=e-t**e-™e-*>™e-*o t (52)

where 6 denotes the three rotation angles. A scaling factor m ^ R+ was intro-
duced in front of v , so that the notation is closer to the standard notation in
classical mechanics. So far space and momentun translations commute, as can
be seen from the group multiplication law. In classical mechanics the observ-

ables form an abelian algebra of functions over phase space T* (R3JV). The
generators P, X, J and H are identified with the momentum, position, angular
momentum and energy of the physical system.

In quantum theory this scheme is generalised by releasing the commutativ-
ity of space and time translations. Since Galilei invariance should not be
affected by gauge transformations, a central extension of the Galilei group seems
appropriate. U(l) , the gauge group of classical electromagnetism, is the minim-
al choice.

Definition. Let m^R. The extended Galilei group (Gm, °) is the eleven
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parameter group g = U, s, a, v, R) e S1 x R x R3 x E3 x 0 (3, E) with the group
multiplication ° defined by

U, s, lv,R)o U' s', I' v, R'} =

(x+Xf+m(^-+v.Rlf), s+s', l+Rl'+vs, v+Rv, RR') . (53)

Let M denote the generator of the gauge transformations. Then the Lie algebra
of the extended Galilei group Gm is characterised by the relations:

CJ,, Jy] =te«J* [J<, H] =0 [Pff P,] -0

[Jt,Xj]=i€uJLk [J,,M]=0 [P,-,H]=0

[J,f P,] =icmPk [XX,] =0 [P,,M]=0 (54)

[X,, PJ =idij [X,, M] =0 [H, M] =0

[mXf, H] =tPz-

As argued, the extension is central, so M commutes with all other Lie algebra
elements. The total mass M, the internal energy U:=H — P2/2m and the spin,
i.e., the internal angular momentum S2:= (J— Xxp) 2= 5 (5 + !) generate a three
dimensional center of the group and are therefore chart independent properties
associated with a particle.

As pointed out in [19] , the difference between Galilei and Poincare in-
variance is that, if we add an interaction V to the Hamiltonian H = IL + V, the
commutation relations are not modified in the Galilean case, provided that V
commutes with (P, J, K, M), while in the relativistic case any modification of
the Hamiltonian requires a subsequent modification of other elements of the Lie
algebra, since the Hamiltonian appears in the commutator of the generators of
space translations and pure Lorentz transformations.

All the quantities usually considered as physically relevant, namely the
energy, momentum, position, angular momentum and mass, appear as generators
of the (extended) Galilei group. The problem is that for systems with an infi-
nite number of particles quantities like the Hamiltonian or even the particle
number are not well defined without reference to a Hibert space representation.
Here we present a representation of the Lie algebra of Gm as an algebra of de-
rivations acting on si.

Proposition 6.1. Each ?g (t) , 9^Gm can be written as a product of derivable
automorphisms,

5 Here m e R denotes a parameter labeling different extensions of the Galilei group. Note that the

factor ma (resp. m) in (4) (resp. (5)) has a somewhat different origin.
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Tg (t) = T u, o. o. o. i) ° 7(o. s. o, o, i) ° T(Q, o, i, o, i) ° 7(o. o, o, v, i) W ° 7(o. o. o, o, Rg) • w5)

corresponding derivations dm, <5n, <5p, (5x and <5j define a representation of the

Lie algebra of Gm on a common dense set ®,

[<5Jf, <5J(] =ietjk, djk [<5j,, <5H] =0 [5
[&., <5xJ =*€//*, <5x* [<5j,, dm] = 0 [fa,, <5H] =0

Pft [&,, &J =0 [5Pl, 5n] =0 (56)
[&,, flu] =0 [

Lie-bracket is defined by [<5, 5'] (a) : = <5 (5' (a) ) — 5' (5 (a) ) , V a ^

5Z7 w t/i^ Kronecker symbol, while all the other <5's denote derivations.)

Proof. Let ®= &e^| , with

(57)(f
I for all w, and bn~* b in the norm topology as n~> °°. It follows ([7],

2.5.22.) that each bn is an analytic element for TV For example, there exists a
derivation dp,

1C C C 1(0p) (bn)= lim 1 d zpazaz > I dzpbzbz~^~ I dzpczCz,bn\ , (58)
w_>oo L ^ */ J J

|^|,|p|<m |<?|,|/>|<ra |^|,|/j|<m

such that

7(o.o.,.o.i)(6.) = Z fe, and S^p (O IK + ~ ,

(59)

for some open neighbourhood C7 of the origin in R3. The multiplication table
(56) can be established by direct computation. D

Acknowledgments

The authors want to thank Martin Neuwirther for discussion of the classic-
al Galilei bundle and C. J. wants to thank D. Buchholz for valuable suggestions
on several points for the present version of the manuscript.



826 CHRISTIAN D. JAKEL AND GUNTHER HORMANN

Eeferences

[ 1 ] Requardt, M., Spectrum Condition, Analyticity, Reeh-Schlieder and Cluster Properties in

Non-relativistic Galilei Invariant Quantum Theory, /. Phys. A: Math. Gen., 15 (1982), 3715-

3723.

[ 2 ] Levy-Leblond, J. M., Galilean Quantum Field Theory and a Ghostless Lee Model, Comm. Math.

Phys., 4 (1967), 157-176.

[ 3 ] Schrader, R., On the Existence of a Local Hamiltonian in the Galilean Invariant Lee Model,

Comm. Math. Phys., 10 (1968), 155-178.

[ 4 ] Hagen, C. R., Galilean Invariant Lee Model for All Spins and Parities Comm. Math. Phys., 21

(1971), 219-236.

[ 5 ] Narnhofer, H. and Thirring, W., Quantum Field Theories with Galilei-Invariant Interactions,

Phys. Rev. Lett., 64 (1990), 1863-1866.

[ 6 ] , Galilei-Invariant Quantum Field Theories with Pair Interactions, Int. J. Mod. Phys., A6

(1991), 2937-2970.

[7] Bratteli, 0. and Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics. I,

Springer-Verlag, New York-Heidelberg-Berlin, 1979.

[ 8 ] , Operator Algebras and Quantum Statistical Mechanics. II, Springer-Verlag, New

York-Heidelberg-Berlin, 1981.

[ 9 ] Emch, G. G., Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley, New

York, 1972.

[10] Thirring, W., A Course in Mathematical Physics IV, Springer-Verlag, Berlin-Heidelberg-New

York, 1983.

[11] Narnhofer, H. and Thirring W., Mixing Properties of Quantum Systems, /. Stat. Phys., 57

(1989), 811-825.

[12] Narnhofer H., Pflug, A. and Thirring W., Mixing and Entropy Increase in Quantum Systems,

Estatto da "Symmetry in Nature" Volume in honour of Luigi A. Radicati di Brozolo. Scuola

Normale Superiore, (1989), Pisa.

[13] Narnhofer H., Thirring, W. and Wiklicky H., Transitivity and Ergodicity of Quantum Sys-

tems,/. Stat. Phys., 52 (1988), 1097-1112.

[14] Narnhofer, H. and Thirring, W., Ergodic Properties in Quantum Field Theories, Beer~Sheva

Proceedings, to appear.

[15] Benatti, F., Deterministic chaos in infinite quantum systems. Springer Verlag, Berlin, 1993.

[16] Ohya, M. and Petz, D., Quantum Entropy and its Use, Springer-Verlag Berlin Heidelberg, 1993.

[17] Jakel, C. D., Asymptotic Triviality of the M011er Operators in Galilei Invariant Quantum Field

Theories, Lett. Math. Phys., 21 (1991), 343-350.

[18] Powers, R. T. and Sakai, S., Existence of Ground States and KMS States for Approximately

Inner Dynamics, Comm. Math. Phys., 39 (1975), 273-288.

[19] Bargmann, V., On Unitary Ray Representations of Continuous Groups, Ann. Math., 59 (1952),

1-46.

[20] Levy-Leblond, J. M., Galilei Group and Galilei Invariance, in Loebl: Group Theory II. Academic

Press, New York, (1971).

[21] Marmo, G. and Whiston, G. S., The Group of Automorphisms of the Galilei Group, Int. J. Theo.

Phys., 6 (1972), 293-299.

[22] Havas, P. and Plebanski, J., Conformal Extensions of the Galilei Group and their Relations to

the Schrodinger Group,/. Math. Phys., 19 (1978), 482-488.



GALILEI INVARIANT MOLECULAR DYNAMICS 827

[23] Elizalde, E., Poincare is a Subgroup of Galilei in One Space Dimension More, /. Math. Phys.,

19 (1978), 526-528.

[24] Cattaneo, U., The Quantum Mechanical Poincare and Galilei Group, /. Math. Phys., 19 (1978),

767-773.

[25] Brooke, J. A., A Galileian Formulation of Spin I. Clifford Algebras and Spin Groups, /. Math.

Phys., 19 (1978), 952-959.

[26] Cassinelli, G. and Lahti, P. J., Nontransitive imprimitivity systems for the Galilei group, /.

Math. Phys., 31 (1990), 1859-1861.

[27] Guenin, M., On the Interaction Picture, Camm. Math. Phys., 3 (1966), 120-132.

[28] Haag, R., Hugenholtz, N. M. and Winnink, M., On the equilibrium states in quantum statistical

mechanics, Camm. Math. Phys., 5 (1967), 215-236.

[29] Narnhofer, H. and Thirring W., Adiabatic Theorem in Quantum Statistical Mechanics, Phys.

Rev. A., 26 (1982), 3646-3652.

[30] Haag, R., Kastler, D. and Trych-Pohlmeyer, E. B., Stability and Equilibrium States, Comm.

Math. Phys., 38 (1974), 173-193.

[31] Kubo, R., Statistical mechanical theory of irreversible processes I, /. Math. Soc. Japan., 12

(1957), 570-586.

[32] Martin, P. C. and Schwinger, J., Theory of Many-Particle Systems. I, Phys. Rev., 115 (1959),

1342-1373.

[33] Swieca, J. A., Range of Forces and Broken Symmetries in Many-Body Systems, Comm. Math.

Phys., 4 (1967), 1-7.

[34] Herman, R. H. and Takesaki, M., States and automorphism groups of operator algebras,

Comm. Math. Phys., 19 (1970), 142-160.

[35] Narnhofer, H., Kommutative Automor phis men und Gleichgewichtszustande, Act. Phys. Aust.,

47 (1977), 1-29.

[36] Ojima, I., Lorentz Invariance vs. Temperature in QFT, Lett. Math. Phys., 11 (1986), 73-80.

[37] Araki, H., Haag, R., Kastler, D. and Takesaki, M., Extension of KMS States and Chemical

Potential, Comm. Math. Phys., 53 (1977), 97-134.

[38] Araki, H. and Kishimoto, A., Symmetry and Equilibrium States, Comm. Math. Phys., 52
(1977), 211-232.

[39] Trautman, A., Fibre bundles associated with space-time, Rep. Math. Phys., 1 (1970), 29-62.

[40] Thirring, W., A Course in Mathematical Physics I, Springer-Verlag, Berlin-Heidelberg-New

York, 1978.

[41] Dieudonne, J., Foundations of Modern Analysis III, Academic Press, New York, 1972.




