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Estimation of the Number of the
Critical Values at Infinity of a

Polynomial Function

By

Le Van THANH* and Mutsuo OKA**

§1. Introduction

Let f ( x , y ) be a polynomial of degree d and we consider the polynomial
function / : C2 — > C . Let £(/) be the critical values. The restriction

is not necessarily a locally trivial fibration. In general, we have to exclude a finite
values Z^ c C from the base space so that / : C2 - f~] (L u Z^ ) — > C - (Z u Z^ )
is a locally trivial fibration. We say that r e C is a regular value at infinity of the
function / : C2 — > C if there exist positive numbers R and 8 so that the restriction
of/, f:f-l(D£(T))-B*^>D£(T),is a trivial fibration over the disc D£(r) where
De(T) = {r]£C\\ri-i\<£} and B*=[(x,y);x\2 =\y\2 <R}. Otherwise ris a called a
critical value at infinity or an atypical value. We denote the set of the critical
values at infinity by Z^. It is known that Z^ is finite ([V], [HI]). This fact also
results from Theorem (1.4). The purpose of this note is to give an estimation on
the number of critical values at infinity.

We consider the canonical projective compactification C2 cz P2 . We denote
the homogeneous coordinates of P2 by X, Y, Z so that ;c = X/Z and y = Y/Z. Let
L^ be the line at infinity: Loo={Z = 0}. Write

where f , ( x , y ) is a homogeneous polynomial of degree / for / = 0,...,d. We can
write

(1.1) f l l ( x , y ) = cxv°y^'Y{(y-llJx)v>
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where ceC* and AP . . . ,A^ are non-zero distinct complex numbers and we
assume that v, > 0 for 1 < i < k and V0, vk+l > 0 . Note that we have the equality

(1.2) vQ+-- + vk+]=d.

Let CT be the projective curve which is the closure of the fiber f ~ l ( t ) . Then CT

is defined by Cr = {(X;F;Z)eP2;F(X,F,Z)-TZ ( / =0} where F(X,y,Z) is the
homogeneous polynomial defined by

The intersection of CT and the line at infinity, CT nL^, is independent of r e C2

and it is the base point locus of the family {CT;TeC}. Obviouly we have
C T nL 0 0 ={Z = / r f(X,F) = 0}. For brevity, let A, = (a f;/J,;0) 6 P2 for / = 0,...,£ + 1
where A0 = (0;1;0),AA+1 = (1;0;0) and jB, la, = A, for l<i<k. Then under the
assumption (1.1), C0 nL^ ={A,;v, >0}. Note that A ^ e Q n L ^ for i = l , . . . ,k. We
consider the family of germs of a curve at Aj : {(CT, Ay);r e C} . Then it is known
that T is a regular value at infinity if and only if {(C/5 Ay);f e C} is a topologically
stable family near t = T for any Aj with v y > 0 ([HI]). This is the case if
f(x,y)-T is reduced and the local Milnor number /LL of the family
{ ( C t , A j ) \ t e C} is constant in a neighborhood U of r e C . Note that the regularity
at infinity of a value r for /has nothing to do with the regularity (as a variety) of
the curve CT at infinity.

Definition (1.3). Let v; = max{vf -1,0} and put v£'(/) = I^vl
/. We call

v£' (/) the projective degeneracy at infinity.

Then we have the following estimation.

Theorem (1.4). The number of critical points at infinity |XJ is less than
or equal to v£' (/) . In particular, |Xoo ^d — l.

A precise description of the cardinality £j is given in Theorem (2.6.1).
Note that C0 intersects transversely with the line at infintiy if and only if v, < 1
for any / = 0, ...,£ + 1 . Thus we get the following well-known corollary .

Corollary (1.4.1). Asuume that C() intersects transversely with the line
at infinity Lx, i.e. v£' (/) = 0 . Then f has no critical value at infinity.

There are many papers which are related with this topics. See for instance
[B, HI, H2, H3, LI, O2, O3, O5, V]. The projective degeneracy v£f (/) does not
depend on the choice of a linear coordinate system ( x , y ) . On the other hand, by
this reason, when the support of ftl(x, v) is small, this estimation is not so sharp.
We will sharpen this estimation in §4. In fact, we introduce the toric dgeneracy
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V1T (/) m a similar way in §4. For the definition, we use not only f(l(x, y) but also
the information from other outside faces. This number v£" (/) is in general
smaller than v£' (/) (Proposition (4.18)). The estimation in Theorem (1.4) can be
replaced by the toric degeneracy v'" (/) (Main Theorem (4.17)). For the proof
we use the affine polar invariant and the toric compactification method.

§2. Affine Polar Quotients

Let l(x,y) = ay- fix be a linear form. The polar curve F,(/) for / with
respect to t is defined by the Jacobian F,(/) = { ( x , y ) e C2;/(/,0(*. j) = 0}
where

, =

T( (/) is an affine curve of degree d - 1 and equal to the critical locus of the
mapping (/, 0 : C2 -*C2. Let Ln be the projective line [aY - f& - TjZ = 0} which
is the closure of the affine line ^~ !(?7). The base point of this pencil {L^r/eC} is
B = (a\/3',Q} in the homogeneous coordinateds. We say that € is generic at
infinity for the polynomial /if B&C^nL^. This is the case if and only if
/ f /(a, /J)^0. We assume the genericity of t hereafter.

Let F,(/) be the projective closure of F,(/) and let T!(f)nLOQ={Q],...,Qs}.
Let 7 be a local analytic irreducible component of F, (/) at Qt. Consider an
analytic parametrization <&7 : (Df(0),0) —> (y,Q,) in a local coordinate system in a
neighborhood of Qr In the original affine coordinates, this can be written as
®7(t) = ( x 7 ( t ) , y 7 ( t ) ) where x7(t) and y r ( t ) are Laurent series in t. Consider the
rational number vy(/,T) defined by

_val,(/(*y(Q.;yy(0)-T)
V-/'T)- vaL,(f(xr(t),yr(t)))

Here val, is the standard valuation defined by the variable f. It is easy to see that
this number depends only on T, 7 and / and it does not depend on the choice of
the parametrization. So we call this number the affine polar quotient of the fiber
/"'(T) along 7 ([L1],[N-L]). In the case of f(xr(t\yr(t))-T = 0, the valuation
v a \ l ( f ( x 7 ( t ) , y 7 ( t ) ) - T ) is +°° by definition. Let p be a positive integer. We use
the convention +oo/±p = ±oo and -°° (resp. +°°) is negative (resp. positive). This
is an analogy of the local polar quotient defined in [L-M-W].

Take Qt EFX/^nL^ and assume that Q,^B. Let y be a local analytic
irreducible component at Ql and let ( x 7 ( t ) , y r ( t ) ) be a parametrization of y at Qt.
We consider their Laurent series:
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xr(t)} fa} (a\ (Q= ur + (terms of higher desree)> U * U
As (jcy(f),.y r(0)->Q l

 in P2 and IIO*7 (O.^yW)!-*00 when f - » 0 , we must have
/ ?>0 .

Lemma (2.1), Under the above situation, we have valt(l(x7(t),y7(t))) =
-p<0 and val{(f(xr(t),y7(t))-i;)>-pd. The equality holds if and only if Q, £
C0 n L^ . // r/izs w J/ze case, vy (/, r) = J > 0 .

Proof. Write (*y(f)».yyW) as above. This implies that (am,b;0) = Ql for some
/. It is easy to see that

t(xy (0, yr (0) = (ab - pa)t~p + (higher terms)

f(xr (0, yr (0) - /,/ (fl, t)^ + (higher terms)

and the assumption B#Qt implies ab-/3a*Q. Thus val /(^(jcy(r),yy(r))) = -p<0
and fd(a,b)&Q if we assume further that Qf ^CoOL^. Thus we have vy(/,r) =

Lemma (2.2). A55wme r/zar £ fc generic at infinity. Then the base point B
of the pencil {L^^rjeC} is not contained in F, (/) n L^ and Ff (/) n C0 n L^ =

Proof. Recall that T,(/) = {( jc , j )GC2 ;a-U,j) + / 3 U , y ) = 0}. By the
dx ay

genericity of I and the Euler equality, a^(a,

- — -This implies that a — -(;c, v) + j8 — -(jc,v) is a non-zero homogeneous polynomial
<9.r " oy

of degree ^/ - I and

{Q[,...,Q,,,} = {(X-,Y;0)eL^,a^(X,Y) + p^(X,Y) = 0}
ox ay

and therefore B^ G,,...,G,,,- This proves the first assertion. Let /47 =(or / ; )8 f ;0)G
C0 n LTC as in § 1 and assume that A, e Fr (/) n L^ for some / with vf > 0 . Then we
have

(2.2.1) a . ( .
ax ay

By the Euler equation for fd(ai,pl) = 0 implies

(2.2.2) a
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Combining (2.2.1) and (2.2.2), we obtain

/ r f(a I ,A) = ̂ -(a,,A) = ̂ -(al,A) = 0.

This is the case if and only if vt > 2 . Q

Thus by Lemma (2.1) and Lemma (2.2), if the affine polar quotients vy(/,T)
for an irreducible component /at Q} is not positive, we must have Q} e{A,;v( >

2}-

We generalize the notion of a regular value at infinity. Let A, e C0 n Lx (so
v, >0) and let T e C . We say that T is a regular value at A for / : C2 — > C if
there exists an open neighborhood U of A in P2 and a positive number £ such
that / : (7n/- ' (D f (T))-^D f ( r ) is a trivial fibration. Here /~ l(£>f (T)) c C2 and
therefore (/n/~ !(D f(r)) c £/- L^ . Now the importance of the affine polar
quotients is the following lemma:

Lemma (23). Assume that £ is generic. Then TeC is a regular value at
A, for f : C2 -> C if either (i) v, = 1 or (ii) V, > 2 arcd r/ze a$me /?o/ar quotient
V

7 (fi?) > 0 /or any local irreducible component 7 of Y( (/) at A, .

Proof. Assume first that v, =1. In this case, Ct meets transversely with the
line at infinity Lx for any t e C and there is no polar curve near A, . Thus the

family of curves (C, ,A 7 ) are topologically stable and the assertion is immediate.

Assume now that v, >2 and let ( x r ( t ) , y r ( t ) ) be a parametrization of component
7 of F,(f) at A;. Then the assumption v y ( / ,T)>0 and Lemma (2.1) implies that

v3.ll(f(xY(t),yY(t))-r)<0. Thus either \ f ( x r ( t ) , y r ( t ) ) \ goes to infinity or

lim,^0f(xr(t),yr(t)) exists and \imt_,0f(xY(t),yr(t))*r. We can choose an open
neighborhood U and a positive number £>0 so that L rn/~1(D f(r))nr,(/) = 0.

Then we can choose a large enough positive number Rt so that for any rj E C with

|r]|>/?,, L / 7n/- '(D f(T)) is compact and its boundary is L?? n f~l (dD£(T)) . This

results from the elementary fact that the restriction f\L _(B} is an open mapping.

At this point we need the genericity of € . We define a holomorphic vector field

x = x} -lj- + X, 4~ on f'} (De(i))r\U such that
ox ay

(1) Z(/) = ̂ , + ̂ 2 - l and (2)

The condition (2) says that any integral curve of x preserves each line L,? in U .
So any integral curve does not approach to A, and it can be extended as long as its
image by / is still in the interior of De(r) . Thus the trivialization follows from
the standard argument using the integrals of the vector field x • D
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Corollary (2.3.1)([N-L]). Assume that I is generic. Then TeC is a
regular value at infinity for the function f : C2 — » C if (and only if) the affine
polar quotient satisfies v y ( / ,T)>0 , for any local irreducible component j of
r,(/) at A, with V, > 2 .

We do not use the only if part in this paper. For other characterizations of the
regularity at infinity, see [HI, 2,3]- Now we are ready to prove Theorem (1.4).
Let A, e C0 n LM be as in § 1 .

Proposition (2.4). The number of the local irreducible components of the
polar curve F, (/) at At for a generic £ is less than or equal to vf — 1 .

Proof. Let (w ,v ) be a local coordinate centered at A, so that v, =0 is the
defining equation of Lx. In the case that 1 < / < * + !, we can take u = YIX-h,
and v = Z/X.ln the case of / = 0 (so V 0 > 2 ) , we take u = XI Y, v = Z/Y . In any
case, the local defining function of F,(/) say h(u,v) satisfies that
h(u,Q) = ctu

v'-l + (higher terms) with c, * 0 . Let y,,...,y5| be the local
irreducible components of F,(/) at A, and let / Z ; ( M , V ) be the local defining
function of the component yy. Then we must have that /7;(0,0) = 0 and / Z ( M , V ) =
^(w,v)n^,/z (w,v) with e a suitable unit. This is enough to conclude that

The estimation of the number of the local irreducible components by
Proposition (2.4) is usually very rough. Note also that the local irreducible
components of Fr(/) near At is not necessarily unstable in the sense of (2.6).
Now the proof of Theorem (1.4) will be completed by Lemma (2.3) and the
following lemma.

Lemma (2.5). Assume that I is generic. Choose At with Vl>2 and let
(x7(t),yY(t)) be a parametriiation of local irreducible component j of F,(/) at
A,.
(i) // v y ( / ;0 )>0 , r / i£ r / i vy( / ;r)> 0 for any T E € .
(ii) // v y ( / ;0)<0, there exists a unique % e C so that v (/;£)< 0. For any other

Proof. We consider the Laurent expansion

(x7(t)\ (d\ (a\ (0
(2.5.1) ,^\ = \ \t~p+ (terms of higher degree), U

U7(OJ \b) (bj (0

Assume first that v y ( / ;0)>0. Then val /(/Uy(0,3'y(0))<0 by Lemma (2.1) and
therefore va\t(f(xY(t),yY(t))-r)<Q for any T.
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Assume that v y ( / ;0)<0. This implies that val,(/(*y(0,;yy(0))>(). Then
lim,_>0 f ( x y (t),yY(t)) is well defined. So we denote this limit by £(7). Then it is
obvious that valt (f(xY (f), yr (f )) - T) = 0 for any I ^ §(7) . This completes the
proof, n

Definition (2.6). We call that a local irreducible component 7 of F,(/)
at A, is stafc/e (respectively unstable) if v r(/ ;0)>0 (resp. vy( / ;0)<0). By
Lemma (2.1), 7 is stable if and only if lim,_>0|/'(jty(0,;yy(0)l = °° under the above
notation. We denote the set of unstable local irreducible components of T((f) at
infinity by //y(F^) . Assume that 7 is a unstable local irreducible component and
let £(y) be the complex number characterized in (ii). We consider £(y) as a
mapping £ : ?£/ (F( ) -» C , y h-» |(y) . £(y) is called f Ae /im/f critical value of f
along 7 .

Actually in the above proof, we have proved the following.

Theorem (2 B 6 8 1) 0 The number of the critical values at infinity \LJ is
equal to the cardinality of the image %(7/y (F()). In particular, it is less than or
equal to the cardinality of //7 ( F ( ) .

This gives a precise description of the set of critical values at infinity.
Therefore if we have enough informations about the local irreducible components
at infinity, we can get a better estimation using Theorem (2.6.1). In fact, we use
this in §4 to get a better estimation (Theorem (4.17)).

§30 Toric Compactification of C2

Let f ( x , y ) = X (,„,„, <V,X"-V" be a given polynomial of degree d and let

(3.1) fd(x,y) = cx>

be as in §1 where A , , . . . ,A A are mutually distinct non-zero numbers. Let
A() = (0;1;0) and AA+I = (1;0;0) as in §1 . The estimation by Theorem (1 .4) is not so
sharp when r or s is greater than 1 . So we would like to sharpen this estimation
using the toric embedding method. In §2, we used the projective compactification
to discuss the stability of the family {CTT e C} at the infinity. It turns out that a
suitable toric compactification is more convenient for this purpose. As we are
interested in the estimation of the number of critical values at infinity, we may
assume that /(0,0)^0 by adding a constant if necessary. We consider the
Newton polygon A(/) of/ which is the convex hull of the integral point (m,«)
such that amn ^ 0. By the assumption /(0,0) ^ 0 , we have O e A(/). Let N be the
space of covectors. Any covector P defines a linear function on A(/) . For any
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integral covector P='(p,q), let A(P;/)cA(/) be the locus where the linear
function P|A(/) takes the minimal value. We denote this minimal value by
d(P',f) as usual. Let fp(x,y) be the partial sum

fp(x,y):= £ amj,X'"y"

and we call fp the face function of the covector P. The dual Newton diagram

F*(/) is defined by the following equivalence relation in N : P ~ Q if and only if
A(P;/) = A(2;/). Here A(P;/) is the locus where linear function P\A(f) takes
its minimal value. Let Z* be a regular simplicial cone subdivision of T (/) and
let X be the toric variety associated with Z*. Let E{ = '(1,0), E2 = '(0,1). It is
easy to see that a, :=Cone(E,,£2) is admissible with Z . Thus we may assume
that a{ is a simplicial cone in Z*. This implies in particular that X is a smooth
compactifieation of the original affine space C 2 = C ^ . Let /?,,..., R^ be the
vertices of Z* in the counter-clockwise orientation where /? ,=£, , R2=E2. Thus
at :=Cone(Rl9Rl+]), / = l , . . . , jU be the two-dimensional simplicial cones in Z*

where R^ = R} . Here we assume /? ,=£ , , R2= E2, Rp+] = Rl . Let a, =

Cone( £,,£",) . Recall that X is a smooth compact toric variety of dimension 2

whose affine charts are C^ , / = l , . . . , jU and it has the canonical decomposition

where E(R,) is a rational curve corresponding to each vertex Rt G Vertex(Z*).

The divisor E(Rt) intersects with (and only with) £(/?,_,) and E(Rl+l). So the dual
graph of the divisors £(/?,), / = l , . . . , jU makes a cycle. Taking a subdivsion if
necessary, we may assume that //:='(-l,-l) in Vertex(Z*). Thus we assume
that H = Re for some 3 < 6 < /LL . The projective compactifieation corresponds to
the smallest simplicial cone Z* which has three vertices {El,E2,H}. There is a
canonical morphism ¥ : X — > P2 so that

f(l;0;0) 3<i<0
L^ i = 0

Let ( u t , v t ) be the corresponding coordinates of the chart C2 . Let us consider the

unimodular matrix cr' corresponding to the vertices of the cone a,:

Then the original affine space is identified with the coordinate space C^ with

* = «, , v = v, . Recall that C2 is glued with the original affine space C2 by
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l_y \AI vl

We consider the curve C- { ( x , y ) e C2;/(;c,v) = 0} in the original affine space C2

and let C be the closure of C in X. The curve Cis defined in C2 by the equation

f0 ( u i , v l ) = Q where fa (ut, v,) is defined by

In C2 , E(R,) is defined by u, = 0. It is easy to see that /ff|(0,0) # 0 and

Therefore Cn E(R,) is non-empty if and only if dimA( /?,;/)> 1. Let Dp...,Dm

be the 1 -dimensional faces of A(/) in the counter-clockwise orientation so that
D,,Dm contains the original O. Let Pt = '(p^q,) be the corresponding primitive
integral covector of Dl . Note that each Pl must be a vertex of Z' and therefore
we can write Pt = Rv for some 1 < vi < \JL . Then we can write

(3.4) fP(x,y) = Slx
>>

where 5( e C and ^|; , \< j <it are mutually distinct non-zero complex numbers.

By the above consideration, E(Rt)n C & 0 if and only if / = v; for some \<j<m.

We consider the toric coordinate chart av =Cone(^?v , /?v + 1) . Then by (3.3) and

(3.4),

Thus E(Rv)nC consists of ^ points {(0,^ i /);7 = l,... ,^}cCJ i . Put AM :=

)nC for ! < / < m , \ < j < f t . See [O5], [Ol], [K-K-M-S] for

further information about the toric compactification. The following example
shows the situation.

Example (3.6). Let f ( x , y ) = x6y2(x+ v)2 + y4 + x4y + l . As Z , we can
take the regular simplicial cone subdivision with vertices /? ,=£, , R2 = E2 , R9 =
-E2 and

where /?,, /^, /?8, /?9 correspond to the four faces. We have two transversal
points in £(/?3)nC which are mapped to (0;1;0) by *F and thus in the projective
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compactification, we see that two local irreducible components are interesting at

Figure (3.6.A)

Now we consider the estimation of the value of the function / along an

irreducible component 7 of another curve D at infinity. (In §4, we take F,(/) as

D.) Let Oy(0 be a parametrization of 7 in the coordinates (x,y) (namely in C^)

in the neighborhood of the infinity where x y ( t ) and yY(t) are Laurent series in the

variable t. We assume that xy(t) , yY(t) ^ 0 and write them as

\xy(t) = ayt
pY + (higher terms)

( y 7 ( t ) =$/h+ (higher terms), teDe(0).

Let Q7 :=
 l(pv,qY)eN and Ay :=(a r/Jy). We assume that

(3.7.1)

so that X y ( t ) , yY(t)±Q and \\(xY(t),yr(t))\\ -*<*>.

Proposition (30§)0 (i) First we have valJ(xJ(t),yJ(t)}>d(QJ'J) and the
inequality holds if and only if Qy ~ Pt and pY - ^ f(XY = 0 for some i, \<i<m
and j, 1 < j < i, . (ii) The limit lim /_>0 Oy(0 in X always exists and we have

,0)eC^ if e7eIntCone(^,^ / + 1)

.a^'jS^eC^ if Q7 = cR, , for some c> 0.

Here Int Cone (RrR]+l) is the open cone generated by Rf and R/+] . In particular,

if Q7 ~ P, and $* - ^af = for some /, \<i<m. lim 0y (t) = (0,^ ) e C£ .

Proof. We sketch the proof. First it is easy to see that

/(*, (0,yr (0) = /Gy (A7 )td(Q?*f } + (higher terms).
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Assume that Q7 + P\,...,Pm. Then fQ (x,y) is a monomial. Therefore fQ (Ay) = 0
is possible if and only if Q7 =cPt for some positive integer c and ftp -4,,ay = 0
for some j, 1 < j < lt . This proves the assertion (i).

We prove the assertion (ii). Assume first that Qr GlntCone (Rt,Ri+}). This is
equivalent to

(3.8.1) det(Rl,Qr) = alq7-blp7>0, det(Q7,/?/+1) - b^pr -al+]qr > 0 .

We use the coordinate C£ to see the limit lim/^o^W- By the definition, we

have

(3 .8 .2) M, (r) = xr (0"1+1 yr (0""'+1 - C,f /?1 + (higher terms)

(3.8.3) uf (r ) - jcr (f )~ "' yy «"' = C2r*= + (higher terms)

where

h, = det(Gr,/?/+1) > 0 , 1 1 2 = (#,,G7) > 0.

Thus we see that limOv(0 = (0,0)eC!. .
f->0 7 '

Assume that Q7 =cRt for some positive integer c. Then the first inequality in
(3.8.1) must be replaced by atq7 -btp7 = 0 . Thus using (3.8.2) and (3.8.3), we get

7->0 ' I I ,

This completes the proof of the assertion (ii). O

§4o Toric Generalization of Theorem (1.4)

Let f ( x , y ) be as before. We will generalize Theorem (1.4) using Theorem

(2.6.1) and the toric embedding theory. We assume that dimA(/) = 2 for brevity

but every argument works even in the case dim A(/) = 1 . See Remark (4.20). Let

D,,...,D / ; / be the faces of A(/) in the clockwise orientation so that D, , Dm

contain the origin. Let /^ = / ( / ? / , ^
r

l ) be the corresponding primitive integral

covector of Dt . To get a better estimation, we first introduce the reduced

polynomial f ( x , y) := /(*, y) - /(0, 0) . Note that A(/) c A(/) but O<£A(f). We

factorize fp(x, y) as in (3.4):

(4.1) fP,(x,y) = S,x''y^
/=!

Note that fp(x,y) = fp(x,y) for / = 2 , . . . ,m-l .

Definition (4,2)0 We define two integers v(Di ) and rj(D,) by
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We say that f(x,y) is non-degenerate on the outside boundary if v(D /) = 0 for
any 2 < / < m - 1 .

Thus the main aim of this section is to study unstable local irreducible
components of T( (/) and to get a better estimation about the cardinality of the set
of critical values at infinity %(//? (F, )) (see Definition (2.6) and Theorem (2.6.1)
in §2) using the toric argument as in §3. Let 7 be an irreducible component of
F,(/) at infinity and let Oy(f) be a parametrization of 7 in the coordinates (x,y)
where ;cy(0 and yy(t) are Laurent series in the variable t. We assume first that

VW> * ° and Mr>l2 +bv Wl2 -> °° c -> o)
and we expand them in a Laurent series as

x Y ( t ) = art
p* + (higher terms), ay

(4.3)
r , y

+ (higher terms), b7

(higherterms)

where Qy := r ( /? y ,g y )e N and A y := ( a y ,& y ) . The case xY(t)yY(t) = 0 or
dim(A(/)) = 1 will be treated later. By the above assumption we have that

(4.4) A y EC* 2 , min(/?y ,gy)< 0.

We divide the situation in two cases.

Case I. d(QY;f)<0. Case II. d(QY\f) = 0.

First Lemma (2.1) and Lemma (2.2) can be generalized by Proposition (3.8)
as

Lemma (4 0 5) 0 We have v d t f ( f ( x Y ( t ) , y Y ( t ) ) ) > d ( Q Y ' , f ) and the inequality
holds if and only if QJ =cPt, fp (Ay) = 0 for some c> 0 and \<i<m.

Recall that F,(/) is defined by F,(/) = {(x,y) E C2; J ( x , y ) = 0} where
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First we observe that the Newton boundary A(J) is slightly different from A(/)
(see Figure (4. 19. A)) but the following is enough for our purpose.

(4.6) J Q r ( x , y ) =

!-(x,y), Pr=q7<0

dfo
--(x,y), pr>qr, f Q r ( x , y ) * f Q r ( x , 0 ) .

We assume that y is an unstable irreducible component of F,(/) at infinity.

Case I. We first assume that d(Q7\f) < 0 . Then by Lemma (4.5), we must have

QJ-cPl with 2<i<m-l. We call the face D2,...,D IH_, the outside faces of

A(/) • We ask how many such components are possible for a fixed /. By an easy
computation, we can see that the multiplicity of yPl -^tx

q' in the factorization of

JP(x,y) is exactly v, ; - 1 . Thus by the argument in §3, the local equation of

F,(/) in the toric coordinate chart C£ is of the form

where 8l ^0, r\(vv ) is a polynomial with 77(^)^0 for any 7 = 1,. . . ,^, . (Recall

that P,=RV and ov =Com(Rv ,RV +1).) Let Atj =(0,£ ,,)eC^ . By the same

discussion as in Proposition (2.4) and by Proposition (3.8), we have that

Proposition (4.7). The number of local irreducible components j at

infinity of T,(f) such that lim/-»o(*y(0».yy(0) = A./ is at most v,., ~* for anJ
2<i<m-l. Thus the number of the unstable irreducible components j such that

the limit lim/-»o(*y(0»;yy(0) e E(Pt) is bounded by v(Di) .

Now we consider the second case: d(Qr',f) = Q. Then it is clear that
d(Q7',f) ^ 0 . We divide this case into two subcases.

Case II-l. d(QY-f) = 0. Case II-2. d(QY\f) > 0.

Recall that D, and Dm are the face which contains the origin O. Let

D, =A(P,;/) and Dm = k ( P m \ f ) . We call D, and Dm (resp. D, and Dm ) the right

conical face and the left conical face of /(Jt,y) respectively (resp. of /(;c,y)).
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Note that D, c D, and D, might be a vertex for i = l , / w . D, for p, < 0

(respectively D;|I if qm <0) is called a bad face in [N-Z].
Assume for example p{<0. It is more convenient to consider the

factorizations :

(4.8.1)

It is easy to see that the support of Jp^(x,y) = Q is the parallel translation of

dfP
A(/> ; /) by - 1 to the direction of y-axis and JP{ ( x, y) = ft -- (x,y). Thus we have

X^ij v'{j =r j (D,) . In particular we have ^<7j(D,) . Similarly if ^ / ; i <0, we

consider the factorizations :

(4.8.2)
}Pm (x, y) = 8m (x-«»> yp» y>» n £ (*-«- yp-> - L,, Ym'. em > o

dy

We have also S^L, v(t = rj(D{) and ^H <r j(D I H) . For the convenience, we
introduce the polynomials

,=i '' "' '" /=i

so that we have (p} (x
ch y ~ P l ) = fp (jc, y) and ;̂|/ (x~cll"y'J'") = /P (^, v).

Definition (48863)0 We define the contribution from the conical faces as
follows.

Note that rjCD,)7 < r/(D,). It is obvious that p, =0 (respectively ^WI =0) implies
D,c:{v = 0} (resp. Dllf{j: = 0}).

Now we consider Case II-1 first. In this case, we must have either Q7 = cPl

or Qr = cPm for some c> 0. Let us consider the case Q7 = cP for instance. By the

assumption min(pl,qi)<0 and dim(A(/)) = 2, we must have /?, < 0 < ql if such a

7 exists. The essential difference from Case I is that CTr\E(P}) is not fixed as

the constant term is on the initial term. Now we assert
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Lemma (4 .9) . Assume that p\<Q. The local irreducible components of
r/(/) of type Case II-1 withQ7 =cPp c>0 (respectively Q7 =cPm, c > 0 ) are all
unstable. The corresponding critical values are {/(0,0) + (p,(^1

/
/);l <j < i\].

Similarly if qm <0, the critical values from components j such that Q7 =cPm,
c>0 are {/(0,0) + <pm(?m;); 1 < j < t'm}.

Proof. We consider the case Q7=cP, c>0 and p} < 0 < q}. As we have

JP (x> y) - P —L (-^> y) and
dy

0 = J(x7 (0,3>7 (0) = ^ (fly, b7)'
 C'7 + (higher terms),

we must have by (4.8.1) a*b~Pl = ̂ /o for some 1 < j0 < i\. Thus by (4.3) we get

f(xr (0, yr (0) = /(0,0) + q>} (^i|o) + (higher terms).

Conversely for any 1 < j < £\, there exists a local irreducible component 7 of T,
such that Qy = cP, c> 0 and a^'b~p} = ̂  r This proves the assertion. G

Let FO?) be the compactification of F(0 in X. Observe that CT

0 if and only if T = /(0, 0) + cp, (^ ; ) for some j.

Case II-2. Now we consider the case d(Q7',f) = 0 and d ( Q ' , f ) > Q . This is

possible only if A(Q7;f) = {O] and /?7^7 < 0. So we assume for example

(4.10) p7<0<q7.

By the assumption d(Qy\f)>0, we have that /0(j:,0) = 0 (if not, we get a

contradiction d(Qy ; /)<0) and /a (x, j) ^ /Qy U, 0) . Thus by (4.6) JQr(x,y) =

, y). The assumption A(Q ;f) = {O] implies that /?, < 0 < q, and
' 'cry

(4.11)

From the equality J ( x y ( t ) , y r ( t ) ) = 0 , we get

(4.12) 70)(^) = ̂ (A/) = 0.

By (4.12), we must have dimA(<2x;/) = 1. Such a face A(Qy;/) is called a/?

inside face with mixed weight vector of f ( x , y ) . Geometrically the supporting

line of such a face separates the Newton polygon A(/) and the origin O . See the

left side figure of Figure (4.14.A). We consider the right conical face D, . By the
expression (4.1) or (4.8), the left edge of D, is R := (r{,s{ + p{ X^ v{ t) =
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(<?!<?,,-/?,£,). This gives a vertex (q]el,-ple] -1) of the Newton polygon A(J) by

the differential in y. If - ple{ = I, it is easy to see that there exists no inside face

of mixed weight Qr with py < 0 < qy . Therefore we assume

(4.13) -m>2 .
In this case, it is not necessary to count the number of such local irreducible
components. In fact, we have

Proposition (4.14). Each local irreducible components 7 of F,(/) of
Case 11-2 gives the limit critical value /(0,0).

Figure (4. 14. A)

The left side of Figure (4. 14. A) show the situation where we have a inside
face with a mixed covector. In the right side figure, we do not have any inside
face.

Proof. By the assumption, we have

f(xr (0, y7 (0) = /(0, 0) + (higher terms).

Thus the assertion is trivial. Q

Until now, we have assumed that xy(t),yY(t)$Q. Now we consider the
exceptional case that xy(t) = 0 or y7(t) = 0. Assume for example

This implies that y divides J ( x , y ) . By the above argument, it is necessary that
— p\e\ >2. In this case, we can see that f ( x , 0) = /(0, 0) . Thus if this is the case,
valtf(xr(t),yY(t)) = 0 and 7 is unstable and the corresponding limit critical value
is again /(0,0) . Now summerizing the above argument, we have

Proposition (4.15). Assume that -ple{>2 in (4.8.1) (respectively
-qmem>2 in (4.8.2)). Then either there exists an unstable local irreducible
component of F,(/) of type Case 11-2 with py < 0 < qr (resp. qy < 0 < /?y), or y =
0 (resp.x = 0) is a (global) component of F,(/). In any case, the possible limit
critical value is /(O, 0).
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Definition (4.16). Let us define

[0,

and we define the toric degeneracy v'" (/) by

Recall that f ( x , y ) is called convenient if A(/) intersects with both axes.
Note that the last three terms are zero if f ( x , y ) is convenient. Now we are ready
to state the main theorem.

Main Theorem (4.17). The number of critical values at infinity of the
function f is less than or equal to v£" (/) .

Corollary (4.17.1) ([OS]). Assume that f ( x , y ) is a convenient poly-
nomial with non-degenerate on the outside Newton boundary. Then f has no
critical value at infinity.

The assertion is obvious as v(D f) = 0 by non-degeneracy and rj(D1)/ =
- £(/) = 0 by the convenience. The following proposition says Theorem (4.18) is
stronger than Theorem (1 .4).

Proposition (4.18). We have the inequality. v*" (/) < v£' (/) .

Proof. We assume for brevity that Dh corresponds to the support of f d ( x , y ) .
So Ph = '(-!,-!). In the case of & = 0 in (3.1), Dh is a vertex but then v(DJ = 0
and this does not make any problem. We divide the two degeneracy into three
parts.

yp; (f) = max(r -1,0) + v(Dh ) + max(s - 1, 0)

+ rKD^ + e^
) \i=h+\ J

We will show that

(4.18.1)

(4.18.2)
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The assertion (4.18) follows immediately from these inequalities. Let us show
(4.18.2) for example. As the assertion is obvious in the case of r < 1 , we assume
that r > 2 . Let us consider the factorization of the face function of f(x, v) :

where 0 = -Z^,v / ; r Comparing with (3.1), we have rh -£^, vh <; = r and

sh -Z/i, vhj =s. Note that g7 < 0 and q} < p} for /7 + l < y < m - l . Thus the

projection of the face Dj in jc-axis for h + 1 < j < m - 1 is the interval
( ,

[rj +qJI,VjJ,rJ] and r] + q] I v; , = r/+1 . Therefore
/=! /=!

(4.18.3) r ;-V l=-^ ;Xv,,, >v(£> ;+ l) + l, h<j<m-\.

Taking j = /z, we see that r = rh+l . In the case of j = m, we have

(4 - 1 8 .4) ra- r^ > -qm £ V,,,,, > 7J( Dm )' , 9(II < 0 .
/=!

Here rm+l is by definition rm + qm X^'i vm , is the jc-coordmate of the left side edge

of Dm . Taking the summation for j = h + 1, . . . , m , we get

(4. 1 8 .5) r- ^ = rh+] - rm+t > 'f v(D,) + 7J(DM )' + m - h - 1.
/=/?+!

We can see easily that if rm^ = 0 , then gm = 0 and as we have assumed r > 2 , this
implies that m > h + 1 . Therefore we have r,II+I + m - h - 1 > 0 . By this inequality
and (4.18.5), we get the inequality (4.18.2). Q

Now we give several examples.

Example (4.19). (A) Let f ( x , y ) = y2'1 + x3" y" (x + y)n + x4y . Then A(/)
has four faces. See Figure (3.19.A). In this example, d = 5n and f5n =
x*"y"(x + y)n, and the projective degeneracy at infinity v£'(/) = 5n-3. On the
other hand, ri(DlY = n-l, v(A2) = n-l and v(D3) = 0, rj(D4)' = Q and e(f) = 0 .
Thus we have v'°' (/) = 2n - 2 . In the left figure, the dotted region is the Newton
polygon A(/) . The right figure is A(J).

Let f ( x , y ) = x4y4 + xy3 + x*y2 + xy. In this example, we have
= 0, r/(D,)/ = r/(D4)/ = 0 and e(/) = l and v^1 (/) = !. In fact, /(0,0) is the only
critical point at infinity.
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(C) Let f ( x , y ) = x + c2x
2 + -~ + cnx

n +xmy. Then A(/) has three faces and
V1T(/)- 1 • In fact:> / nas one critical value 0 from the infinity. This polynomial
has no critical point ([O4]).

Figure (4.19.A)

Remark (4.20). (1) We have remarked that the toric degeneracy at infinity
depends on the choice of the linear coordinate system. Let us see this by Example
(4.19.A). Let f ( x , y ) = y2"+x^"yn(x +y)n+x4y . We have seen that v£" (/) =
2n-2. We have seen the contribution from D, is effective by Lemma (4.19). In

dfp
fact -^-(x,y) = 0 has n - 1-distinct solutions and the corresponding critical values

dy
are also mutually distinct. However the contribution v(D2) = n-l from D2 is

negligible. Namely these components give no critical values at infinity. In fact, let
us consider the change of coordinates u = x, v = jc + y. Then in (u, v), f ( x , y ) , is
equal to f'(u, v) = (v-uf" +u*nv"(v-u)n +u"(v-u). The corresponding Newton

diagram is as in Figure (4.20.A).

Figure (4.20.A)

Now we see that f ' ( u , v ) is convenient and v(D2) = v(D4) = 0 and v(D3) =
n-\. Thus v^1 (/') = n-l. Now note that the contribution from D, of A(/') is
nothing but the contribution from D, of A(/). So we get n - 1 critical values at
infinity from this face. Thus the function f ( x , y ) has exactly n - 1 limit critical
values.

(2) We consider the case that dim A(/) = 1.
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(I) Assume that dimA(/) = 2. Then /(*,y) is a weighted homogeneous
polynomial of degree d^O with weight vector P='(p\q). A(/) has three faces.
See Figure (4.20.B). It is convenient to consider the factorization:

*=i (ylpl^il - 7i y, if pq < 0.

It is well known that /: C2 - f ~ l ( Q ) -> C is a locally trivial fibration ([M]). In
fact, the trivialization is explicitly given using the associated C' -action defined by
t°(x,y) = (xtp ,ytq) for teC and (;c,v)eC2. Therefore 0 is the only possible
critical value of / from the infinity. The following is a corollary of Theorem
(4.17) and Proposition (4.15).

Proposition (4.21). Let f ( x , y ) be as above. Then 0 is a regular value of
f from the infinity if and only if v, = • • • = vk = 1 and £(/) = 0 . £(/) = 0 if and
only if r, s < 1 and pq>Q.

pq<0

Figure (4.20.B)

(II) Assume that dimA(/) = l. This implies that d(P; f) = 0. The factorization
take the form:

L

f ( x , v) = c(yWx® )e H (y^x^ - 7, Y< , e > 0 .

Let g>(s) = csel[^l(s-Yiy' • Then f ( x , y ) = (p(y^X
l(l1). Let ip},...,ps} be the

critical values of <p. Note that 8 < Zf=I v, =rj(A(f)). The corresponding critical
locus of / is one-dimensional. Therefore they give the same critical values from
the ininity as well. If e > 2 , 0 is also a critical value of (p . If e = 1 but \p\ > 2 or
\q\ > 2 , y = 0 or x = 0 is a component of V, (/) and 0 is a critical value from the
infinity of /. This can be interpreted by Main Theorem (4.17) as follows. A(/)
has two identical conical faces D, = Dm . But the corresponding weight vectors
are /> = '(-|p|,|?|) and P2 = '(|p|,-|?|). In the case pq<0, ??(/),)' = rj(D2X - If=1 v,
but they give the same critical values. If pq = Q, say assume that p = 0, q > 0,
then rj(D, )' = 0 and r?(D2 Y = If=1 v, .

Example (4022), (A) Let f ( x , y ) = xU,=i(y-Y,). Then /"'(O) has k
isolated critical points (0,7,),...,(0,7A). As v£"(/) = 0, / has no critical values
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at infinity. In fact, the fibers {f~l(t)m,teC} can be defined by the homogeneous
polynomial XH^=l(Y ~Y,Z)-tZk+l =O.Thus in the neighborhood of (0; 1; 0), this
gives a family of smooth transversal curves:

A

, v = Z / Y .
1=1

In the neighborhood of (1; 0; 0), this gives a family of curves:

, v = z / x .
1=1

This is also topological stable family as the local Milnor number is constantly

(B) Let

Then / : C2 — > C has no critical point but 0 is a critical value from the infinity as

This work was done when the first author was visiting Tokyo Institute of
Technology in October, 1992 and completed when the second author was visiting
Institute of Mathematics in Hanoi for the International Workshop on Topology
and Geometry in March, 1993. We would like to thank the both institutions for
their support.
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