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On Some Derivations of Lie Algebras
Related to Galois Representations

By

Hiroshi TSUNOGAI*

§0. Introduction—Lie Version of the Outer Galois Representation—

Let E be an elliptic curve over a number field fc, 0 a fc-rational point
on E, and C = E\{O}. Then we have the outer Galois representation

(0.0.1) q>c\ Gk -> Out n(?(C <g> k),

where k denotes the algebraic closure of k and Gk = Gal (k/k) the absolute
Galois group of k. The weight filtration on n(P(C ® k) induces a central
filtration {Gk(m)}m>0 on Gk with Gfc(0) = Gk. The main result of this paper is
to show that the rank of the free Zrmodule

(0.0.2) ^(m) - Gk(m)/Gk(m + 1)

tends to infinity as m -» oo in the even numbers. This implies that the image
of cpc, considered in the graded quotients of Out n(P(C ® fc), is very large.

First we shall explain the background. Let C be a non-singular, geometri-
cally irreducible algebraic curve defined over a number field k. Then we have
a homotopy exact sequence of algebraic fundamental groups

(0.0.3) 1 -> KI(C ®k k) -> n^C) -> Gal (k/k) -> 1 .

(The choice of the base points plays no important role.) This exact sequence
induces the outer Galois representation

(0.0.4) (pc: Gal (k/k) -> Out (n^C ®k k)),

in which we are very interested. We consider also its quotients for easier
treatment. Replacing n^C^k) with its maximal pro-/ quotient n(P(C®kk),
we obtain another exact sequence
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(0.0.5) 1 -> n(P(C ®k k) -» Tr'i (C) -> Gal (fc/fc) -> 1

with Ti^C) being a suitable quotient of 7r1(C), and hence

(0.0.6) q>g>: Gal (k/k) -> Out ^(C ®* fc)).

In this paper, we restrict our interest to the cases where C is one of the
following:

(1) P1 minus three points;
(2) an elliptic curve E minus one point.

In both cases, n(P(C ®k k) is isomorphic to the free pro-/ group II = <x, y>pro_j
of rank two, and its weight filtration coincides with the lower central filtration
{n(m)}m>.1. (In general cases, weight filtration is defined by T. Oda and M.
Kaneko first, and developed by them and by M. Asada, H. Nakamura etc. See
[K] [AK] [NT] etc.) By setting

(0.0.7) Gr n = 0 grm II = 0 n(m)/H(m + 1),
m>l m>l

Gr IJ has the Lie-algebra structure with bracket [ , ] induced from the commu-
tator in the group 77, and is isomorphic to the free Lie algebra 3? = <Z, Y>
of rank two over Zl by X = x mod 77(2), Y = y mod 11(2).

Y. Ihara [I] and M. Matsumoto [M] treated the case (1). The filtration
(I7(m)}m>1 of IJ induces a field tower {k(m)}m>0. Moreover, by setting

(0.0.8) 9 = 0 ^(w) = 0 Gal (k(m + l)/k(m)),
m>l m>l

^ becomes a graded Lie algebra and the Lie version % of q$ is defined. They
started from a non-trivial element om € ^(m) for odd m > 3, called Soule's ele-
ment, and proved that the rank of ^(m) tends to infinity as m -» oo by taking
Lie bracket of them iteratively.

The main purpose of this paper is to obtain an analogous result in the
case (2). Let E be an elliptic curve over a number field k, 0 a fc-rational
point of E, and C = E\{0}. Also in this case we can define the Lie version
% from (p$ (5.6.7). H. Nakamura [N] proved the following theorem:

Theorem ([N] Corollary (4.15)). For any elliptic curve E over a number
field k, there is an integer N such that for every m = 2 mod (/ — l)/^"1 with
m > 2 + (/ - I)/"'1,

grm (p:&(m) d»grT

gives a non-trivial homomorphism.

In fact, for m as in the theorem, we can find a non-trivial element %m e ^(m)

such that grm (p(rm) has a non-zero image under the projection to the highest-
weight sl(2)-irreducible component Hm of grm F. We shall start from these



GALOIS REPRESENTATIONS 115

tm's instead of Soule's elements (jm's and prove the next theorem analogous
to the case (1):

Main Theorem (= Theorem 5.10). Let E be an elliptic curve over a number
field /c, mt integers satisfying the condition in the theorem above (i = 1, . . . , k)
and mfc_x ^ mk. Then,

k,

From this theorem we obtain

Corollary (= Corollary 5.12). For any elliptic curve E over a number field

lim rank7 ^(m) -> oo .
m->oo

m: even

The contents of this paper are as follows. In § 1 we develop the generality
of graded free Lie algebras. The concept of Hall bases, originally considered
in [HI], is very useful for handling free Lie algebras. If a Lie algebra has
a graduation, we can introduce the induced graduation into its derivation
algebra. Although this is a simple idea, the author knows of no book or
paper which mentions it explicitly. In §2 we treat the case of the free Lie
algebra of rank two to prepare for the following sections. In § 3 we prove a
non-vanishing theorem about derivations coming from Nakamura's non-trivial
elements. By considering the action of sl(2), the result is extended in §4. In
§5 we review the outer Galois representation associated with a one-point-
deleted elliptic curve and Nakamura's result about it, and show the main
theorem by combining the Galois representation with the results of Lie calculus
in the previous sections. Finally in §6 we treat the case P1 minus three
points and recover Matsumoto's result using tools established in the previous
sections.

Acknowledgement. The author would like to express his sincere gratitude
to Professors M. Matsumoto and H. Nakamura who kindly showed him their
recent results and gave him useful comments. Some parts of this study were
developed during the author's stay in RIMS, Kyoto. He thanks RIMS for
hospitality and, especially, Professors Y. Ihara and T. Oda for their warm
encouragement.

§L Graduations of Free Lie Algebras and Hall Bases

We first recall basic facts about Hall bases ([HI], [H2]) under generalized
graduations.
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1.1. Let S be a (possibly infinite) set of symbols. The formal monomials
are defined recursively by the following two conditions:

(1) an element X of S is a formal monomial;
(2) if C and C are formal monomials, the symbol [C, C'] is a formal

monomial.
We denote the set of all formal monomials by #.

1.2. Next we shall take a totally-ordered additive group A and a grading
function w. <% ^> A satisfying

(1) for any X e S, co(X) > 0;
(2) for any C, C 6 % o>([C, C']) = <o(C) + oj(C').

Note that co is determined by the values on S, and that co(C) > 0 for all
C e « We call co(Q the decree of C.

1.3. Fix a total order < on # compatible with grading, i.e. for elements
C, C' of tf

o>(C) < co(C') => C < C'.

In general we need not any properties about the way ordering among elements
which have the same degree, but we can induce an order in a natural way
from its grading function co. Fix a total order among symbols in S which
have same degrees. Then a natural order < on # is uniquely determined by

(1) if X e S and C e «\S such that o}(JSQ = co(Q, then Jf < C;
(2) if C = [Q, C2], C = [Q, C2] e <S? such that co(C) = o>(C') and Q <

Q, then C< C'.
We call this order the lexicographic order with respect to CD. In the following
we shall consider only lexicographic orders.

1.4. Now let us define the set of standard monomials $. It is defined
recursively by

(1) if X E S, then X E »\
(2) if C, C E @ satisfy C < C', then

(a) if C e S, then [C, C'] e @;
(b) if C = [Cls C2] (by definition, Cl5 C2 6 J* with Q < C2 automat-

ically) and C > C1? then [C, C'] = [C, [Cl9 C2]] £ *.

L5. Let J^ be a ring and j£? the free Lie algebra over R generated by
all symbols in S. Then we can consider formal monomials as elements in JSf
by regarding formal symbols [ , ] as Lie brackets in J&f. It is clear that #
generates ££ as K-module. The following theorem is essentially due to M.
Hall.

Theorem 1.6. Let S, %, A, co, <, @, R, & be as above. Then ^ forms
a basis of & over R.
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Proof. See M. Hall [HI] in the typical case that A = Z with the ordinary
order and that co(X) = 1 for all X e S. The proof is applicable in general
cases with no difficulty. Q

We call the basis @ the Hall basis (w.r.t. (S,A,CQ, <)).

1.7. Remark. There is an algorithm to transform any monomial C e %>
into a linear combination of elements of J* in &. We do not give a detail
of it here, but notice that every monomial in ^ is represented by a linear
combination of standard monomials of the same degrees as itself.

1.8. For a e A, we denote by j*?(fl) the sub-K-module spanned by the
elements C E & with co(C) = a. By the above remark, j£?(fl) coincides with the
sub-R-module spanned by the elements C e # with <w(C) = a. Thus JSP has a
graded structure with respect to CD:

together with the projections p(fl): JS? -> J*?(fl). Since o>(C) > 0 for any Ce^,
J^(fl) = 0 if a < 0. For / e jgf, only finitely many p(fl)(/) = /(fl) are non-zero
and / = X /(fl)- The degree of / is defined to be the minimum of a e A

aeA

such that /(a) 7* 0. (Put a>(0) = oo for convenience.) Then next lemma follows
immediately from definition.

Lemma 1.9. (1) For a, a' e A,
(2) For ae A and /, g € &,

a, +a2=fl

(3) In particular, if co(f) = a and co(g) = a', then co([/, g}) > a + a'

1.10. Let ® be the derivation algebra of ^f. We consider the decomposi-
tion of Q) into homogeneous components. Set

^(a) = {De ^\D(^(ar)) c jgf («+«') for any a' e A} .

Proposition 1.11. Every element D in Q) is uniquely represented by a (possi-
bly infinite) convergent sum

D = £ D(a} (D(a) e @(a}) .
aeA

Here "convergent" means that, for any f e &, D(a}(f) = 0 except finitely many
a e A.

Proof. For D e £^, define its component D(fl) of degree a by
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(1.11.1) D(a)(f) = p(a+a'\D(f)) for any fe^(a>) .

Then D(a) is a homogeneous derivation of degree a. Since D(f) has only
finitely many homogeneous component different from zero, D(fl)(/) / 0 for only
finitely many a e A, and

D(f) = X D(fl)(/) (essentially finite sum) .
aeA

The uniqueness is obvious. D

In the following, we use the notation in the above proposition: D(fl)

represents the component of degree a of D defined by (1.11.1).

Definition 1.11 For D e 0, the degree co(D) of D is defined by

(D(D) = M {a E A\D(a) ^ Q}

if it exists.

1.13. Remark. In general, co(D) always exists in the order completion A
of A. But we shall not detail about it since the derivations which we shall
deal with in this paper have their degrees in A.

Next lemma is obvious like Lemma 1.9.

Lemma L14 (1) For a, a' e A, [_@(a\ ^(fl'}] c &a+a'\
(2) For a e A and Dl9 D2 e 0,

[D1,D2](fl)= E [Difll),J>?2)].
a!+a2=a

(3) In particular, if (o(D^) = a and co(D2) = a', then co([D1? D2]) > a -f a'

§20 A Free Lie Algebra on Two Generators

From now on we denote by 3? the free Lie algebra on the set of generators
S0 = {X9 Y} and assume that the coefficient ring R is an integral domain with
characteristic zero. In this section we treat basic properties of &. If we take
Zz as its coefficient ring, this Lie algebra is isomorphic to Gr 77 defined in
§0 (0.0.7), so is related to Galois representations.

28L We denote by ^0 = ^(S0) the set of formal monomials over S0.
First, we set A = Z and define the most basic grading function d>, called total
degree, by

(2.1.1) &(X) = &(Y) = 1 .
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By setting an order of S0 by X < 7, the lexicographic order on ^0 is uniquely
determined, and so a Hall basis J? is. The Hall basis J? consists of the
following sequence of monomials:

X < Y < [X, 7] < [X, [X, 7]] < [7, [X, 7]]

< [X, [X, [X, 7]]] < [7, [X, [X, 7]]] < [7, [7, [X, 7]]]

< [X, [X, [X, [X, 7]]]] < [7, [X, [X, [X, 7]]]] < [7, [7, [X, [X, 7]]]]

< [r, [r, [r, [*, r]]]] < [[*, 7], [x, [x, 7]]]

2.2. Secondly, we set A = Z®2 equipped with the reversed lexicographic
order, i.e.

(a, b) <(c,d)ob <d or (b = d,a<c) ,

and define another grading function co0:^0-»>4 called bi-degree, by

(12.1) co0(X) = (1, 0) , a)0(Y) = (0, 1) .

Since X and 7 have degrees different from each other, the lexicographic order
< on ^0 w.r.t. o>0 is uniquely determined only by co0. From this order
<, a Hall basis ^0 is defined, which consists of the following sequence of
monomials:

X < 7 < IX, 7] < IX, [X, 7]] < • • • < (Ad X)nY < - • •

< IT, [X, 7]] < [7, [X, [X, 7]]] < [7, [X, [X, [X, 7]]]]

< [(AdX)'y,(Adxyy](i < ; ) < • • • < [7, [7, [X, 7]]] < ••• .

2.3. Next we consider

(2.3.1) £>*= 0 J8?w
«>(0,1)

(w.r.t. c00), i.e. the subalgebra of JSf consisting of components of degree > 1
in 7. Put Fn = (Ad X)nY for n = 0, 1, 2, ... and Sx = {FJn = 0, 1, 2, . . .}.

Proposition 2.4. ^f# is a free Lie algebra generated by S1.

This proposition is a direct consequence of the following "elimination
theorem".

Theorem 2.5 ([MKS] Chap. 5 §6, [B] §2.9). Let S be a set and y e S.
Then the free Lie algebra <£(S) on S over a ring R is, as an R-module, the
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direct sum of the free R-module Ry and the free Lie algebra over R generated
by all elements of the form (Ad y)nz with n e N, z e S\{y}.

In the following sections we introduce suitable graduations on J^# to
prove the main theorem.

§3. Derivations Related to the Case of C = E\{0}

In this section we shall treat derivations of 3? related to Galois representa-
tions associated with an elliptic curve minus one point.

3.1. For any even integer m > 4, define a derivation Dm of $£ by

(3.1.1) Dm:

r=0
(- l)r[(Ad XYY, (Ad X)m~l-r 7] .

Note that Dm([X, 7]) = 0. This section is devoted to show the following
non-vanishing theorem.

Theorem 3.2. Let ml9...,mk be even integers >4 such that mfc_! / mfc.
Then

33« To prove the theorem, we shall introduce a system defining a Hall
basis for j£?#. From Proposition 2.4 we can take Sl = {Vn = (Ad X)nY\n =
0, 1, 2, . . .} as a freely generating system of j£?#. The set of formal monomials
over S1 is denoted by ^ = ^(S^). Set A = Z®4 equipped with the reversed
lexicographic order, and define a grading function co: ^ -> A by

(3.3.1) a(V0) = (1, 0, 0, 0) , coiV,) = (1, 1, 0, 0) , o)(72) = (1, 1, 1, 0) ,

a>(Vt) = (1, 1, 1, 1) (i > 3) .

Then co is compatible with the following order on S^:

Hence co and this order uniquely determine a lexicographic order on ^ and
also a Hall basis @ of

Lemma 3.4 The derivation Dm acts on the elements S^ by

(m/2)-l

(3-4.1) Dm(V0)= X (-irC^K.-i-J,
r=0

(3.4.2) D»(n) = 0,

(3A3)
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and for i > 3

(3.4.4) Dm(V,) = -^ ~ \Vr, Vm^_r-]

Proof. The first three formulae are obvious and the rest is shown by
induction on L Q

3.5, We decompose Dm into its homogeneous components w.r.t. a>. By
comparing the degrees of each term appearing in the formulae in Lemma 3.4,
it follows that o>(Dm) = (1, 1, 0, 0) and that Dm is decomposed as follows:

(3.5.1) Dm = Dj,1'1-0'^ + Dj,1'1'1-0* + (terms of higher degree)

The first two components are described as

«.

Next proposition is the first step of us.

Proposition 3.6. // m, / m2, tten [Dmi, DmJ ^ 0. In /act, co([Dmi, DmJ) =
(2, 2, 1, 0)

D 1(2,2,1,0). [^0. ^l»

i> » aJ < - [ F 2 , F m i + m 2 + i _ 5 ] ] ( i > 3) .

Proo/. Since co(DJ = (1, 1, 0, 0) for any even m > 4, o;([Dmi, DmJ) >
(2, 2, 0, 0) and [Dmi, DmJ<2'2'0'°) = [Dj,1;1'0^, Dj,1;1'0'^]- But by direct calcula-
tion using (3.5.2) we obtain [Dmi, Dm2](2'2'°'0) = 0. Now, from (3.5.1), the next
possible component is

I~D D 1(2,2,1,0) _ rD( l , l ,0 ,0) D ( l , l , l ,0)- i , r D ( l , l , l ,0 ) D(l,l,0,0)-|
L-^mii xym2J — LJL/m1 » AXm2 J ' Ll^ml ? AXm2 J '

From (3.5.2) and (3.5.3), V0, V1 and V2 are killed by [i?™,,^,]*2'2'1'0'. We
shall calculate its action on V{ for i > 3. First,

2> Fm2+i_3])
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Similarly we get

2, IT,, Fmi+m2+i_5]
+ K + i-3)[F1,[F2,Fmi+m2+i_5]]

By adding both, we obtain

U>mi, AJ*2'2'1'0^) = (m2 - mi)\Vlt [F2, Fmi+m2+i_5]]

which is non-zero if ml=£m2 since both [[Ft, F2], Fmj+m2+i_5] and [F2,
[Yi, Vmi+mj+t-5-]-] belong to a. D

To show Theorem 3.2 it suffices to prove the following proposition.

Proposition 3.7. // mk^ * mk, then <o([Dmi, [Dm2, [• • • [D ,̂ Z)mJ • ••]]]) =
(fe, fe, 1, 0). /n /act,

, [(Ad FJ*-2^, n,l+...+mt+,_2lk_1]] (i > 3) .

Proof. Induction on k. Since oj([Dm2, [•••[Dm f c_ i , DmJ •••]]) = (fe - 1,
fe- 1,1,0) by assumption, we have co([Dmi, [Dm2, [•••[Z>M)c_ i , DmJ •••]]])>
(fe, fe, 1, 0) and

FD FD T--TZ) Z> l---!!!*'*'1'0)Lx'm1' Lixm2' L Li'm|[_i> 1JmkJ JJJ

_ rnd, 1,0,0) rn r - . - r n n -|...-i-i(t-i.t-i.i,o)-|
L îti! > L1/m2' L Li/mk_1! ^m^J JJ J •

The image of Vt (i > 3) is calculated as:

,, [(Ad

= -K - «*-i)|Ti, [(Ad K^-3^, C^, K-.^+.-.^^^J

+ K - m^)^, [F15 [(Ad Fif^F,, K,^,.^...^^,^

= (m4 - mt_1)[F1, [(Ad K^-2^, ^1+...+,1|k+/_2t_1]]

= (mt - mt_1)([(Ad Vj-lVi, Vmi+...+mk+i-2k-^
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Again this is non-zero if m f e_x ^ mk, since both [(Ad V1)
k~lV2, Fmi+...+mk+I-_2k-i]

and [(Ad VJ-2V2, [Fl5 7mi+...+mfc+,_2fc_1]] belong to a. D

Corollary 3.8. Let ml5 m2 be even integers greater than or equal to 4 and
m1^m2, Dmi, Dm2 the derivations of & defined by (3.1.1), and D the Lie
subalgebra of Q) generated by Dmi and Dm2. Take a grading function cb on <£
defined by (2.1.1), i.e. cb(X) = a>(Y) = 1, and denote the homogeneous decomposi-
tion of D w.r.t. c5 by

D = D(m) .

Then, as m tends to infinity in the multiples of gcd(m1,m2),

R D(m) -» oo .

Proof. By definition, Dm has a degree mt (i = 1, 2) with respect to co. The
m-th graded part D(m) of D contains elements in the form

(3.8.1) [Dm i ,[---[Dm i ,[DW 2 ,[---[Dm 2 ,[Dm i ,Dm 2]] •••]]-]]

a -fold &-fold

((a + l)m! + (b + I)m2 = m, a > 0, b > 0) ,

which exist when m is a large enough multiple of gcd(m1,m2) and which
are non-zero by Theorem 3.2. When m tends to infinity in the multiples of
gcd (ml9 m2), the number of such elements for m tends to infinity. So it suffices
to show that they are linearly independent. For this, we consider another
grading function co0 on £ defined by (2.2.1), i.e. co0(X) = (1, 0), co0(Y) = (0, 1).
Since Dm has degree (m£ — 1, 1) with respect to co0, any two elements of the
form (3.8.1) have different degrees from each other. Hence they are linearly
independent. D

§4. The Action of $1(2) on Derivations

In this section we consider the action of the Lie algebra

sl(2) = sl(2, R) = {M e M2(K)|tr M = 0}

(with bracket [M, N] = MN - NM) on <£ and 0, and extend the results in
the previous section.

4.1. We first recall some basic properties of sl(2) and its representa-
tions. Put
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Then they form a basis of sl(2) over R, and we have [£, F] = H, [H, F] = 2E
and [H, F~\ = —2F. Moreover, If generates a Cartan subalgebra, and E (resp.
F) is of weight 2 (resp. —2). Here we identify a root an:H\-^n with n.

4.2. The finite-dimensional irreducible representations of sl(2) are con-
structed as follows. Let W = W1 = R®2 = Rx © Ry be an sl(2)-module with
the action given by multiplications of matrices:

(4.2.1) Fx = 0, Hx = x, Fx = y, Ey = x , Hy = -y , Fy = Q.

Then W is a two-dimensional irreducible sl(2)-module with a maximal vector
x of weight 1. The symmetric tensor product Wn = Sym" W of W (n e N)
turns out to be an sl(2)-module in a natural way, and also they are irreducible
of dimension n + 1 with a maximal vector x®n of weight n. Together with
the trivial representation, these are all the finite-dimensional irreducible repre-
sentations of sl(2) if we extend coefficients to the fraction field g of R. Note
that maximal vectors w are characterized by Fw = 0, and that {Ffcw|/c =
0, 1, ..., n} forms a basis over g if w is of weight n.

Lemma 4.3. Let w be a maximal vector of weight m (i.e. Ew = 0 and
Hw = mw). Then, for r = 0, 1, . . . , m,

(4.3.1) FrFrw = / w * 0 ,
(m - r)!

(4.3.2) Er+1Frw = Q.

Proof. Notice that EF = H + FE and HFrw = (m - 2r)Frw. By induc-
tion on fe, we can easily show that

£Frw = r(m - r + IJF^w (r = 1, ..., m) .

Using this iteratively, the first formula follows. The second formula is immedi-
ately deduced from the first one since Ew = 0. D

4.4. Define an sl(2)-action on & as derivations by

<AAK IT
(4A1) £ : , Y~-Y.

It is easy to see that M\_X, 7] = 0 for any M E sl(2). Since this gives an
embedding of sl(2) into the derivation algebra 2 of J^, sl(2) acts also on 2
by adjoint action in 2\

(4.4.2) Ad: sl(2) -> Der ^ .

Lemma 4.5. T/ie derivation Dm(m>4: even) defined by (3.1.1) is a maximal
vector of weight m — 2.
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Proof. In general, if D e 2 satisfies that D([X,Y}) = 0, then D is deter-
mined by D(X) alone since D(\_X, 7]) = ID(X), 7] + IX, D(7)] - 0 and this
equation characterizes D(Y). (In fact, in a free Lie algebra, if two elements
are linearly independent over the fraction field Q of the coefficient ring R,
then they form a free family ([B] §2 Exercise 14); in particular, the centralizer
of Y in & is RY.) In our situation, since both Dm and any Mesl(2) map
[X, 7] into 0, so does [M, Dm]. Thus the assertion is reduced to proving
that IE, Dm~\(X) = 0 and that [H, Dm](X) = (m- 2)Dn(X), which easily follow
by direct calculation. D

4.6. Let us denote (Ad F)rDm by Dmj(r). Since Dm generates an irreducible
sl(2)-module of weight m — 2 and Dm is its maximal vector, it follows that
Z>m,(r) 7^ 0 for r = 0, 1, . . . , m — 2 and that Dms(m_i) = 0. Now we have an
extended version of Theorem 3.2 in the previous section.

Theorem 4.7. Let m1,...,mk be even integers > 4 swc/z £/za£ mk^ / mfc,
rl5 . . . , rfc integers such that Q < rt < mt — 2 for any i = 1, . . . , k. Then

[Dmi.M, U>mi.w [- [Dmk_Ii(rit_l); Dmk,(r J •••]]] * 0 .

fc

Proo/. Put r = ^ r^ and operate (Ad E)r on the left-hand side. Then,
i=l

from Lemma 4.3, we have

(Ad

[(Ad Ef-'(Ad FY^Dm^, (Ad

! l -- CDm" CD^' C' '

This is non-zero by Theorem 3.2, hence the proof is concluded. D

Corollary 4.8. Let m1, m2 be even integers greater than or equal to 4 and
ml ^ m2, rl5 r2 integers such that 0 < rt < mt - 2 (i = 1, 2), Dmii(ri), Dm2t(r2) the
derivations of & defined above, and D the Lie subalgebra of Q) generated by
Dmi (ri) and An2,(r2)- Take a grading function cb on J£? defined by (2.1.1), and
denote the homogeneous decomposition of D w.r.t. CD by

as m t^nds to infinity in the multiples of gcd(m l 5m2),

rankR D(m) -» oo .
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Proof. Similarly to Corollary 3.8, it suffices to show the linear indepen-
dence of the elements

(4.8.1) [ m i t ( r i ) , [• ' • [Jmit(ri) [fin2,(r2), [• ' • [Pm2.(ra)> [Am.fr,), An2.(r2)]] • • • ] ] • • • ] ]

a-fold &-fold

((a + l)ml 4- (b + I)m2 = m, a > 0, b > 0) ,

which belong to D(m). They are of weight (a + 1)^ - 2 - 2rx) + (& + I)(m2 -
2 - 2r2) = m - 2((a + I)(FI + !) + (& + I)(r2 + 1)). If mx(r2 + 1) - m^ + 1) ^
0, then all elements of the form (4.8.1) have mutually different weights, hence
they are linearly independent. If m1(r2 + 1) = ^2(

ri + IX then apply Corollary
3.8 after operating (Ad E)r (r = (a + l)rl + (b + I)r2; independent of a, b) to
each element. D

§5o Proof of the Main Theorem

In this section, we first recall the setting of outer Galois representations
in the case of an elliptic curve with one point punctured, and then prove the
main theorem using the results in the previous sections. Notations mainly
follow [NT].

5.1. Let E be an elliptic curve over a number field fc, 0 a fc-rational
point on E and C = £\{0}. By Grothendieck's comparison theorem, the geo-
metric fundamental group n(f(C ®fc k) is isomorphic to the free pro-l group 17
of rank two. We fix a presentation

(5.1.1) n = /71§1 = <x, y, z\z = [x, y]>pro-<

and identify 7i(l\C ®fe k) with 17 in such a way that z topologically generates
the inertia group of a point above O. Set

(5.1.2) lfl = {0-

where ~ denotes conjugacy in 17,

(5.1.3) /Til = {(76/i i l|(7(z)

and

(5.1.4) r l f l =f l f l / In t /7 l f l

Here Fltl is canonically isomorphic to f f t l / ( l n t (z)>. (In this section, we shall
omit the subscript 1§1 representing the genus and the number of punctures of
the curve C if we do not emphasize them.)

5828 The weight filtration of 77lfl coincides with its lower central filtration
{n(m}}m>l defined by
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(5.2.1) 77(1) = 77,

(5.2.2) 77(m + 1) = [77, 77(m)] (m > 1).

([G1?G2] means the topological commutator group of two groups G1 and
G2.) Let

(5.2.3) Gr 77 = 0 grm 77 = 0 77(m)/77(m + 1).

Then, for each m > 1, grm 77 becomes a free Zrmodule of finite rank, and
Gr 77 a free Lie algebra generated by X = x mod 77(2) and Y = y mod 77(2)
with a graded structure corresponding to the grading function CD determined
by cb(X) = co(Y) = 1.

5.3. We define subgroups of f, F* and 7" by

(x)*-1, a(y)y~1 e 77(m +(5.3.1)
(7(Z)

(5.3.2)

(5.3.3) F(m) = f(m) Int 77/Int 77 ,

where ~ means conjugacy by an element of 77(m). Since the filtrations
{F(m)}m>i, (7^(m)}m>1 and {7"(m)}m>1 are central, their graded quotients

gr" F = F(m)/F(m + 1) , grm 7^ = 7^(m)/7^(m + 1) and

grm F = F(m)/F(m + I)

are abelian groups for m > 1 (in fact, free Zrmodules of finite rank), and

G r f = 0 g r m f , Grr*=0grm7^* and G r T = 0 g r m r
w>l m>l m>l

turn out to be graded Lie algebras with bracket [ , ] induced from commuta-
tors in groups. By [NT] Corollary (1.16) (rank formulae) and Claim (2.5), for
m < 3, all the m-th graded parts are trivial except gr2 F = gr2 7"* ~ Zt (gener-
ated by Int (z)). For m > 4, grm F c~ grm 7^ canonically. Since the action of
7"* on Gr 7^ induced from its conjugate action on itself factors through
r*/r*(l) - GL (2, Z,), Gr 7^ has GL (2, Z^-action.

5.4. The natural action of F on 77 induces the action of Gr F on Gr 77
as derivations in the following way. For a G grm f, take any representative
a G F(m) and define a derivation Da of Gr 77 by

"1 mod 77(m + 2)
1 mod 77(m + 2).

This is well-defined, and the assignment cri-^D^ determines an injective
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homomorphism

(5.4.2) Gr f ci> Der Gr II

between graded Lie algebras, where the graded structure of Der Gr IT is natu-
rally induced from that of Gr II (§ 1). By the argument in [NT] (5.2), the
image of Gr f coincides with the positive-degree part of

(5.4.3)
Derb Gr 77 = {D e Der Gr II\D([_X, 7]) = [T, [X, F]] for some Te Gr 77} .

Moreover, Or/7* is mapped bijectively to the positive-degree part of

(5.4.4) Der* Gr 77 = {D e Derb Gr H\D(\X9 7]) = 0} .

5.5. We can introduce more precise graduations on Lie algebras above.
Let co0 be the grading function of Gr77 defined by (2.2.1). As in §1, this
induces a graduation of Der Gr 77, hence also of Gr f and Gr r* by (5.4.2).
We denote the homogeneous component with respect to co0 as grm>" 77, grm'M f
or grm'"r*.

5.6. Now we shall consider the outer Galois representation cpc associated
with C. The image of

(5.6.1) q$\ Gal(k/k) -> Out 77

is included in 7^ since it stabilizes the conjugacy class of the inertia group
<z>. We consider the m-th truncated representation

(5.6.2) <pc(m): Gal(k/k) -> F/F(m)

for m > 1. Define a field tower (k(m) = fe(m; C)}m>0 by fc(0) = k and

(5.6.3) Gal (k/k(m)) = Ker <pc(m) (m > 1).

Since cpc(l) coincides with the usual /-adic representation, we have fe(l) = fe(£/00),
the field of /-power division points of E. The field tower {fc(m)}m>i ^s a

successive central extension of fc(l), for the filtration (TXm)},,,^ is central. Put

(5.6.4) 9 = 0 ^(m) = 0 Gal (k(m + l)/k(m)).
m=l m=l

Then <p$ naturally induces an injective homomorphism

(5.6.5) Gr cp = 0 grm cp: 9 -+ Gr r.
m=l

Since grm r = 0 for m < 3, we have fc(l) = fc(2) = fc(3) = fe(4). It is an impor-
tant remark that if m is odd, then ^(m) = 0 or, equivalently, k(m) = k(m + 1)
([N] Proposition 4.2). Identifying grm F with grm 7^ for m > 4, we get
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(5.6.6) 9 c+ Gr r* .

Furthermore, compositing with (5.4.2), we obtain an injective homomorphism

(5.6.7) <^: 9 -» Der* Gr 77,

called the Lie version of the outer Galois representation.

5.7. We are greatly concerned to know how large the image of q$ or
(fo is. In [N] H. Nakamura proved that ^ is non-trivial for any elliptic
curve E over number field k. Here we review his result briefly. Consider
the quotient 77/77" of 77 by its topological second derived group 77" =
[[77,77], [77,77]] and define

(5.7.1) !P* = {/ e Aut 77/77"|/(z) = z", a e Zf } ,

(5.7.2) y*(m) = {/e !F*|/ acts trivially on 77/77(m + 1)77"} (m > 1).

The projection 77 -> 77/77" induces

(5.7.3) y.r*-*¥*,

and the image of 7"*(m) under 7 is included in !F*(m). Hence 7 induces

(5.7.4) Gr 7 = 0 grm 7: Gr F* -> Gr ̂ * - 0 grm *F*
m>l m>l

= 0 V*(m)/¥*(m + 1),
m>l

where Gr ?F* is an abelian Lie algebra. Similarly to the case of grm 7"*, also
grm ^* has GL (2, Z,)-action naturally, and grm 7 is GL (2, Z,)-equivalent. In
fact, grm !F* is isomorphic to det (g) Symm~2 as a GL (2, Zt)-module. In other
words, grm ¥* is an irreducible sl(2, Zz)-module with highest weight m — 2.

5.8. Composing (5.6.1) with (5.7.3), we have another Galois representation

(5.8.1) \l/ = yo (p®: Gal (k/k) -> ?P*/<Int (z)> .

The Lie algebra version

(5.8.2) Gri/r. ̂ -»Gr <F*

of i^ is obtained by composing (5.6.6) with (5.7.4). H. Nakamura [N] proved
the following theorem.

Theorem 5.9 ([N] Corollary (4.15)). For any elliptic curve E over a number
field k, there is an integer N such that for every m = 2 mod (/ — l)lN~l with
m>2 + (l~ I)/"-1,

g rm^.^(m) c^grmr

gives a nontrivial homomorphism.
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In fact, he showed the non-triviality of grm \j/ for such m, by the explicit
formula of \j/ (loc.cit. Corollary (4.12)) and the non-vanishing properties of
Kummer characters arising from values of theta functions at division points.
Let im be an element in ^(m) whose image under grm \j/ is non-zero.

Theorem 5.10. Let E be an elliptic curve over a number field k, mt integers
satisfying the condition in Theorem 5.9 (i= l,...,k) and mk_i / mk. Then,

Proof. We prove the theorem by relating tm with Dm.

Lemma 5.11. // m is even and m > 4, then the highest weight of grm F*
is m — 2 with multiplicity one, and the highest-weight vector (unique up to con-
stant multiple) is the derivation Dm defined in (3.1.1).

Proof. A derivation D e grm F* has weight m — 2k if and only if D(X) e
grw-fc+1'&/7. Since grm- f l '°/7=0 and rank grm>117= 1, grm F* does not in-
clude a component of weight m and has a component of weight m — 2 with
multiplicity at most one. It is easily seen that Dm gives a non-zero element
of weight m — 2 if m is even and m > 4. D

Denote this highest-weight component by Hm. The Qrlinear space
Hm ®'LI Qi has a basis {Dmj(r)\r = 0, 1,..., m — 2}. We can identify the projec-
tion to Hm with grmy: grm J1* -»grm V*. Hence the image D'm of im in
^m ®zz Qi is non-zero and is written in the form

m-2

r=r0

Since it suffices to show that the highest-weight component of [D^ l3[-"?

[D^k x, D^k]---]] is non-zero, the assertion is reduced to Theorem 4.7. D

Corollary 5.12. For any elliptic curve E over a number field k,

lim rankZj ^
(m) -> oo .

m:even

Proof. Take an integer N satisfying the condition of Theorem 5.9 and
let ml = 2 + 2(1 - I)/*"1 and m2 = 2 + 3(1 - I)/*'1. The argument in the
proof of the theorem reduces the assertion to Corollary 4.8 since gcd (m1? m2) =
2. n

§6. A Remark to the Case C = P^fO, 1, 00}

In this section we first review briefly the results of Y. Ihara [I] and
M. Matsumoto [M] about the case of P1 minus three points. Then we shall
give a simple proof to the non-triviality of iterated brackets of the derivations
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of a Lie algebra J£? related with Galois representations associated with this
case. The proof is carried out in quite a similar way to the case C = E\{0},
by introducing another grading function on X* than that in the previous
sections. The result proved below was originally shown by Matsumoto in
terms of his depth filtration. We shall describe the relation between his
method and ours at the end of this section.

6.1. Let C = P1\{0, 1, 00} and

(6.1.1) (pg>: Gal (k/k) -> Out nt(C ®k k) ^ Out 77

the outer Galois representation. For m > 1, we define the m-th truncated
representation (pc(m), as a quotient of q>£\ by

(6.1.2) <pc(m): Gal (k/k) -> Out (77/77(m + 1)),

and a field tower {k(m) = k(m; C)}m>0 by fc(0) = k and

(6.1.3) Ker cpc(m) = Gal (k/k(m)) (m > 1).

Since cpc(l): Gal (k/k) -> Out(77/77(2)) = Aut /7ab coincides with two direct sum
of the /-cyclotomic character, we have fc(l) = k(filao), the /-cyclotomic extension
of k. It is known also that {fc(m)}m>1 is a successive central extension of fc(l)
with Gal (k(m + l)/fc(m)) being a free Zrmodule of finite rank. Setting

(6.1.4) 9 = 0 ^(m) = 0 Gal (k(m + l)/fc(m)),

^ becomes a graded Lie algebra. The outer Galois representation <p$ natu-
rally induces an injective homomorphism

(6.1.5) <py: & -> Out Gr 77 = Der Gr 77/Int Gr 77

between graded Lie algebras. Here we denote Int Gr 77 the ideal of Der Gr II
consisting of all inner derivations, and Out Gr 77 the quotient, called the outer
derivation algebra.

For any odd integer m > 3, by the non-triviality of Soule's character %m

[So] and the explicit formula of power-series representation [IKY], ^(m) has
a non-trivial element crm. Y. Ihara showed in [I] that [ormi, crm2] ^ 0 for m1 /
m2 by carrying out the calculation of derivations associated by %. Extending
this method, M. Matsumoto [M] proved that any iterated bracket [<rmi, [am2,
[ '"» [^mfc-i* °"mj•"]]] is non-vanishing if mk^ + mk, and that the rank of ^(m)

tends to infinity as m -» oo. His proof is based on the concepts of the Hall
basis and of the depth filtration (see Remark 6.8).

Here we shall recover his proof by introducing a new graduation on ^.

6-2. For any odd integer m > 3, define a derivation Dm of & by
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(621) D-{^°v ' ' ' m'\Y\-^[Y,(AdX)m-1Y~].

This element equals to the component of am of degree CDO = (m — 1, 1).

Theorem 6.3 (Matsumoto [M]). Let m l 5 . . . , m f c be odd integers > 3 such
that mk^ ^=mk. Then

[ZL , [Dm , ['"[Dm ,Dm 1---111 T^ 0.I- nil' L "12* I- L Wljf— i" Wjj-l _l _l _l '

6«4 As in the preceding sections, we prove the theorem by introducing
another grading function CD into J£?# with a freely generating system S1 =
{Vn = (Ad X)nY\n = 0, 1, 2,...} equipped with the order F0 < V1 < F2 < ••• <
Vt<"' and the set of formal monomials ^ = ^(SJ over S^ Set A = Z®3

equipped with the reversed lexicographic order, and define a grading function
CD: (^l -> A by

CD(V0) = (1,0,0), CD(V1) = (1 ,1 ,0 ) ,
(6.4.1)

(o(Vt) = (1,1, 1) (i > 2).

Since CD is compatible with the order on S1? cw and this order uniquely introduce
the lexicographic order on ^ and determine a Hall basis $' for $£*.

6.5. Next we decompose Dm into its homogeneous components w.r.t. CD.
Easy calculation shows that

(6.5.1) Dm(F0) = [F0, Fm_J ,

(6.5.2) DJFJ = [F0, FJ + [Fl5 Fm_J ,

(6.5.3) Dm(l^) = J

By comparing degrees of each term, we obtain that (o(Dm) = (1, 0, 0) and that
Dm is decomposed as follows:

(6.5.4) Dm = D£'°'V + !#•'•<» + DS>°'» + D^-» .

The first two components are described as

'0'°)

1>1'°)
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The steps of the proof are completely as in §3. We write only the key
statements.

Proposition 6.6. // ml * m2, then [DWl, DmJ ± 0. In fact, G>([Dmi, DmJ) =
(2, 1, 0) and

\D D iu.1,0). o, i
L mi, W2J • . - [ F l J F m i + m 2 + , _ 3 ] ] (i > 2) .

Proposition 6.7. // mk^ * mk, then o)([DWl, [Dm2, [- - - [Dm^ DmJ - ••]]]) =

(fc, 1, 0). In /act,

[D TD F - -TD D l- .-nil^ '1 '0)Lx/m1J LA/m2' L L^mfc-!? ^mfcJ JJJ

.o.O) rnd.o.O) r . . . rn n -1(2,1.0)... -1-1-1
! 5 L^ma ' L Lum^-^ umkJ JJJ

o, [(Ad For
2F1? Kmi+...+mfc+i_k_1]] (i > 2) .

6.8. Remark. In [M] Matsumoto introduced the concept of the depth
on <K For C e V9 the depth dep (C) of C is defined to be the minimal number
of the pairs of parenthesis necessary to denote C in the right associative
notation, i.e.

(2) dep^C'])^^ ( i fC = * o r y )

recursively. For any Ce^Xjy}, the following relation holds between its
depth and its degree used in this section:

dep (C) = (the second component of o>(Q) — 1 .

Thus we can recover the depth function from our grading function.
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