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On Unbounded Positive ^-Representations
on Frechet-Domains

By

Wolf-Dieter HEINRICHS*

Abstract

Let D be a Frechet-domain from Op*-algebra, abbreviated F-domain. The present paper
is concerned with the study of positive ^representations of L+(D), of the Calkin representation
of L+(D) and of bounded sets in ultrapower Du. For this the density property plays an important
role. It was introduced by S. Heinrich for locally convex spaces in [2].

In the paper [3] we gave several characterizations of the density property of an F-domain
D. In this work we give a characterizations of continuity of positive "^representations and Calkin
representation of L+(D] by the density property of D. This generalizes the well-known result
due to K. Schmiidgen, see [12], Further we describe bounded subsets in ultrapower Z)u. If D
has the density property, then every bounded set M c Du has a simple structure: For each bounded
set M c Du there exists a bounded set N c D with M c'Nu. S. Heinrich proved an analogous
result for bounded ultrapowers on locally convex spaces.
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§ 1. Preliminaries

Throughout the paper, D denotes a dense linear subspace of a Hilbert
space H. We denote the norm, unit ball, and the scalar product of H by ||-||,
UH and <y>, respectively. For a closable linear operator T on H, let ?, D(T)
and || T|| denote the closure, domain, and the norm of T (provided the later
exists), respectively. The set of linear operators

L+(D):={TeEnd(D):D c D(T*) and T*(Z)) c D}
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Is the maximal Op*-algebra on the domain D with the involution
T+ := T*\D. The domain D will be endowed with the weakest locally convex
topology such that D3cp\-> \\Tcp\\ are continuous seminorms for all TeL+(D).
This topology is called the graph topology t. Throughout this paper, we
assume that D is a Frechet space. In this case we say that D is an
F-domain. These assumptions imply that there exists a sequence (Ak) in L+(D)
such that the following conditions are satisfied, see [5]:

1. The topology of D is generated by the sequence of seminorms (Mfc-||),
i.e. for each TeL+(D) there exists keN such that ||r^||<||^k^|| for
all

2. Ai=Ij» Ak = A£, <<Mfc<P><<<Mfc+i<?> and \\Alq>\\<\\Ak+l<p\\ for all
<peD.

Throughout this paper, we fix a sequence (A^ a L+(D) for each F-domain D
such that conditions 1. and 2. are satisfied.

Let us now define a sequence of scalar products of D by

/^> for all

and let Dt denote the unitary space (D, <v>i)« The Hilbert norm of D, is
\\q>\\t := \\Atcp\\ and the completion of Dt is the Hilbert space Hl :=D(Al). Remark
that Dl=D and Hi=H are valid.

Let us consider the locally convex topology on Dt generated by

the sequence of seminorms (Mk-|li)- Since for all keN there exists
lkEN such that

M k9l l i=MA9ll<M« f c9l l for all cpe D9

it follows that this topology coincides with the graph topology f, i.e. D and
Dt coincide as locally convex spaces. In general, Ak$L+(Dt), however (Ak) is
an operator family in the sense of [13] (this is used in Proposition 1.1). An
operator TeL+(Dl) is called /-hermitian if <(?, r^>z = <r<p,^> l for all (p,\l/eD

and an /-hermitian operator T is called positive if <<p, r<p>£>0. In this case
we write T>fl.

If E and F are locally convex spaces, we denote by &(E,F)

the linear space of all continuous linear operators mapping E into F. Let

I EN. We define
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<g(Hl9 D) := {TE &(D, D) : There is Se&(Hl9 D) such that

Tcp = S(p for all cpeD}.

The following proposition is valid, see [13], Theorem 2.4.1.

Proposition 1.1. Let I EN. If M c D is a bounded set, then there exists
that B> ft and Me B(UH).

The algebra L+(D^ will be endowed with the topology ib of uniform
convergence on bounded sets. This topology is generated by the system of
seminorms

qB(T)= \\BTB\\, BE%(H,D) with

or for an arbitrary fixed leN by the system of seminorms

qB^T)=\\BTB\\l9 BeV(HhD) with 0<^.

Given Be^(HhD) with 0<^, we can define the positive operator
T:=(B2 + l)~l\D. We set \l/:=T(pEHt for a cpeD, this implies y = B2\l/ + \l/.
Since yeD and B2\l/eD, we get ij/eD and TEL+(Dt). It follows from BTB<tI
that consequently qB,i(T)<l.

Proposition 1.2. Suppose that D is an F-domain and I EN. Then

is a continuous mapping.

Proof. Let SEL+(Dt) be an /-hermitian operator. We have

for all <p,\l/eD. This implies ( A f S ) + = A f S and AfSEL+(D). Since each
element TEL+(Dl) can be expressed through the form T=Si + iS2 with
S1?S2eL+(A) and /-hermitian, it follows that the above mapping makes
sense. It is well-known that BE%(H,D) and 0<£ implies BAfE^(H,D). It
follows that pl is a continuous mapping. O
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§2. The Density Property of an F-Domain D

The density property, abbreviation (DP), was introduced by S. Heinrich
in [2]. A lot of topological properties of the algebra L+(D) are characterized
by the (DP) of the domain D. These relationships were established in [3]
and we will repeat here some results. We start with the definition of the (DP)
for metrizable locally convex spaces.

Definition 2.1. Let E denote a metrizable locally convex space, (Uk)keN

a countable base of closed absolutely convex 0-neighbourhoods in E, and &
the system of all bounded subsets of E. Then E has the density property if
following holds:

Given a positive sequence (lk) and an neN, there exist n0eN and Me&
such that

no

ftW^V. + M.
fc=l

Now we give a characterization of the (DP) for F-domains D by partial
order properties of the Op*-algebra L+(D).

Theorem 2.20 ([3]). For an F-domain D, the following assertions are
equivalent:

1. D has the (DP).

2. Given a positive sequence (Afc) and an neN, there exist n0eN and
Be<€(Hn9D) with B>nQ such that

k=l

3. Given a positive sequence (Afc) and an neN, there exist n0eN and
P e #(//„, D) such that P is an orthogonal projection in the Hubert space
Hn and

k = l
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We denote by in the finest locally convex topology on L+(D) for which
the positive cone L+(Z>)+ :={TeL+(D): T>0} is normal. The topology in is
called normal topology. Since L+(D)+ is ifc-normal cone, we have tb c in.

Theorem 2.3. ([3]). For an F-domain D, the following assertions are
equivalent

1. D has the (DP).

2. L+(D) has the normal topology, i.e. ib = in.

Commutatively dominated F-domains are of the form

D:=f]D(hk(T)\
fc=i

where T is a self-adjoint operator on a Hilbert space H and (hk) is a sequence
of real measurable functions on the spectrum a(T) of T such that

I=h1(t)
 and hk(t)

2<hk + 1(t) a.e.

for each keN, see [8] Proposition 3.2.

Definition 2.4. We say that the functions (hk) fulfill the condition (*), if for
each positive sequence (Ak) there is an neN such that all functions (hk) are
essentially bounded on

Proposition 2.5. ([3]). Let D be a commutatively dominated F-domain.
Then we have the assertion:

D has the (DP) if and only if (h^ fulfill the condition (*).

The domain S(Rn) of tempered test functions has the (DP). One can find an
example which does not fulfill the condition (*) (and has not the (DP)) in
[1 1]. We will give a new example which does not fulfill the condition (*). The
example was constructed by K.-D. Kursten in [6] for the realization of the
Heisenberg algebra for systems in infinitely many degrees of freedom.

Example. Let A:={(n^)JLi :njENv{Q}} be an uncountable index set and
let x '• A -> [0, 1] be a bijection. Furthermore let H be a (non-separable) Hilbert
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space with an orthonormal basis {cpt'.tE[Q, 1]}. We define by T(pt:=tcpt a
continuous, self-adjoint operator on H with spectrum [0,1]. Using real
measurable functions

hk(t):=( 1 + £ nX with («,):=*- HO

we obtain the F-domain D:= (~] D(hk(T)). Suppose the functions (hk) fulfill the
k = i

condition (*). We set Afc := 1 for all k e N. By assumption there exists an n E N

such that all functions (hk) are bounded on

We set

t (11+ 1)

with leN. If fc<ra, then we have /ik(f,)=l for all leN, i.e. f ,eW for all

leN. Since A n +i( f i ) = (l +/)"+1, it follows that hn+l is unbounded on N. This
contradiction implies that (hk) does not fulfill the condition (*).

§3. Positive ^Representations of L + (D)

If D has (DP), then ib = rw is valid on L+(D) and each positive
* -representation on L+(D) is continuous. In this section we will prove that
if Tb^in on L+(D\ then there is a non-continuous positive ^representation
of L+(D). A similar assertion is true for a faithful ^representation of the
generalized Calkin algebra of L+(D).

Let D, D0 be domains. By a ^-representation CD of L+(D) on Z)0 we mean
a *-homomorphism of L+(D) in L+(D0) satisfying a)(IdD) = IdDo. The domain
Z>0 will be endowed with the graph topology of the Op*-algebra co(L+ (£>)),
i.e. the weakest locally convex topology such that D03<p[— » \\Tq>\\ are continuous
seminorms for all Te co(L+(DJ). The algebra co(L+(D)) will also be endowed with
the topology of uniform convergence on bounded sets of D0. The representation
at is called weakly continuous if for each (peD0 the linear functional <oj(-)(p5<p>

is continuous on L+(D). We say a> is continuous, if co is a continuous mapping
of L+(D) onto 0}(L+(D)). The representation CD is positive, if 0<r implies
0<co(r).
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In order to define "^representations of the Calkin algebra of L+(D\ we
consider an F-domain D, a free ultrafilter U on ./Vand the following linear spaces:

J5 «,:={(<?;) e £":(<?;) is bounded},

Dx := {((p,.) e D" : ((p^ is o(D, Z)')-0-sequence},

The elements from Dn will be denoted by (<^)u or /and the elements from Du

will be denoted by (cp^ or / The domains Du and Du will be endowed with
the topologies which are generated by the seminorms

respectively. The space Z)u is called (ordinary) ultrapower of D. On Du and
Du we can define scalar products by

and

respectively. It is well-known that Du and Dn are F-domains and the graph
topologies t are generated by pk and pk, respectively. See [4], Satz 3.3.1. or
[9], Proposition 3.7. The formula

defines a positive ^representation n of L+(D) on Du. The *-representation
TC will be termed (unbounded) Calkin representation. For more details see [10],
[12] or [7]. The kernel ker n is the closed ideal If of all operators in L+(D)
which map each bounded subset of D into a relatively compact subset of
D. The quotient algebra ^c:=L+(D)/i^ is called the Calkin algebra of
L+(D). Let e denote the quotient map of algebra L+(D) onto j/c. Then
n = a o e defines a faithful * -representation o of the *-algebra j/c. We endow j</c
with the quotient topology of L+(D), which is generated by the seminorms
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qB(a) := \\ n(B)a(a)n(B) \\ a e j/c, B e ^(H, D) with 0 < B,

see [12], Theorem 2.1 or [4], Satz 3.3.5.

Let us now prove some preliminary lemmas.

Lemma 3.1. Suppose that D is an F-domain, (piy(p eZ) and (q>^ weakly
converges to cp. Then g:=(c^)uel)u, g:=(q)i — cp)uEDu and the equation

is true for all T<=L+(D).

Proof. By definition of Du and Du we get immediately g£Du and
geDu. Choose TeL+(D). Since

it follows that

o

Lemma 3.2. Suppose that D is an F-domain. Given a positive sequence
and an meN, there exists BE%>(Hm,D) with Q<mB such that

for all (peD (the value oo on the right hand side is possible).

Proof. Given an arbitrary cpeD with 9^0. We set

fc=l
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(if the denominator is oo, then we set <p0:=Q). Then

Wn2

fc=i

for all neN. It follows that there exists a fixed bounded set M c D with the
property that for all cp e D the corresponding (p0 belongs to M. By Proposition
1.1 there exists a Be%(Hm,D) with 0<W5 such that M c: B(UHJ. Using

for all TeL+(D)
il/eM

and taking T:=(I+B2)~l, we get the inequality

We remove the normalization for cp0 and obtain

~1<p)m<- V 2~kkkl((p, dk<py for all cpeD,

hence

1<P>™<- 7. 2~fc4~1<(p,^ t(p> for all

O

Lemma 33. Le? D be an F-domain. Suppose that for each positive

sequence (Afc) and anmeN there exists always a BE ^(Hm, D) with Q<mB such that

for all g 6 Du (the value oo on the right hand side is possible}. Then D has the (DP).
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Proof. Suppose that D does not satisfy the (DP). By Theorem 2.2 there
exist an mzN and a positive sequence (Afc) such that for each neN and
B<=%(Hm,D) with 0<m#, we can find a (pn,BeD with

(1)

By assumption, there exist an m e N and a Bi e ̂ (Hm, D) with 0 < mB1 such that

- - (2)
A=i

for all g e Du. By Lemma 3.2 there is a B2 e #(//„, /)) with 0 < mB2 such that

(3)

for all <peD. We set BQ:=Bl + B2
2e%(Hm,D) and replace 5? and 1^ in (2)

and (3) by J0. Remark that the inequalities are true with BQ. Using (1), we get

for all neN with k+\<n. Therefore ((pn,Bo)™=i is a bounded sequence in

D. Since D is semireflexive, we obtain that the set {cpn >Bo : n e N} is relatively

weakly compact in D. Thus, there exist a i^0eZ) and a subsequence ^i'=(pni,B0

which weakly converges to i^0. Let g0:=(il/i-^o)u^^ £o:=G?i)ueAi>
re{l,m} and TeL+(Dr). By Lemma 3.1 we get

^oy. (4)

Choose now n0eN such that (see (2) and (3))

oX (5)

(6)
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Using the equation (4) and the inequality (5) we obtain

- - - o y . ( 7 )

We add the inequality (6) and get

<g0^(A2
m(I+Sor

1)go><l £ 2-%-1<g0j7i(^fc)|0>. (8)
2fc = i

Now let us construct a contradiction. Using (1) we get

l9nl,Boy = l. (9)

On the other hand, by (1) we have

too. This implies

l- Z 2-^-^
A=i

and we have a contradiction with the inequality (8). Thus D has the (DP). O

We can now prove the main result in this section. The following theorem
generalizes the result due to K. Schmiidgen to the case of an arbitrary
F-domains, see [12].

Theorem 3.4. Suppose that D is an F-domain. U is a free ultrafilter on N
and £#c the Calkin algebra ofL+(D). Then the following assertions are equivalent

1. D has the (DP).
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2. Each positive ^-representation oj of L+(D) is continuous.

3. The faithful ^-representation <r:jz?c-+L+(Du) is continuous.

4. Each weakly continuous ^representation a) of L+(D) is continuous.

Proof. (1) => (2). Using Theorem 2.3, we have T^ = TW on L+(D), i.e. L+(D)
has the normal topology. Let co:L+(D)-+ L+(D0) be a positive *-representa-
tion. The uniform topology on L+(DQ) is generated by the family of seminorms

M c Z)0 is bounded, SeL+(D0).
\l/eM

Since the set

UM:={TeL+(D):pM(a)(T))<l}

is absolutely convex and L+(D)+ -saturated, it follows that UM is a
0-neighbourhood in L+(D). This proves the continuity of co.

(2)=>(3). Note that n:L*(D)-* L+(DU) is a positive ^representation.
Since the quotient map e :L+(D)-*jtfc is continuous and n = o°e, it follows
that a is continuous.

(3) =>(!). Given an arbitrary ge£>u, g^O. We set

g0:=Z2-^^\g,a°t(Ak)gy
\fc = i

The inequality

implies that there exists a fixed bounded set M c Du with g0eM (for all
geDu). By assumption, a is continuous and by Lemma 1.2,

is continuous for all meN, too. For each me TV there exists a Be%>(Hm,D)
with 0<m£ such that
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heM

is valid for all TeL+(Dm). We set h:=go and T\=(I+B2)-^ and get

for all gEDu. By Lemma 3.3, D has the (DP).

(2)=>(4). According to [12], Lemma 1.4, each weakly continuous *-
representation a> of L+(D) is a positive ^representation. By assumption, CD
is continuous.

(4) => (3). Since n = a ° t is weakly continuous, it follows that n and cr are

continuous. O

§4. Bounded Sets in the Ultrapower of D

The aim of this section is to describe bounded sets in ultrapower Du. If
D has the (DP), then every bounded subset M c= Du has a simple
structure. Namely, we can find a bounded subset N c: D such that M c ATU,

i.e. for each/eM there exist cpteN such that f=((pl)u- Remark, that (cpt) is
not a weak 0-sequence in general case. We shall show converse, too. S.
Heinrich proved an analogous result for bounded ultrapowers of locally convex
spaces, see [2]. We start with the definition due to S. Heinrich.

Let II be a free ultrafilter on W and let D be an F-domain. We denote
the elements of the set-theoretical ultrapower of D with [<PJ]U and we consider
the following linear spaces:

,11 '•= {[^i]u: there exists Fell such that

for all keN},
ieF

for all keN],

The elements of Du will be denoted by ((p^ or / The space Du will be
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endowed with the topology which is generated by the seminorms

The locally convex space Du is called the bounded ultrapower of D.

Lemma 4.1. The locally convex spaces Du and Du are topologically
isomorphic. The isomorphism is

Proof. Taking (^.)u, (&)ue/5u with (c^)u = (&)„, i.e. li

Since (<pi — \l/d is bounded in D, we get

\\m\\ Ak(9i -

for all k e N. This implies [((^ — i/^)]u e Ku, i.e. (<pt-)u = (i^)u. Therefore / defines
a linear mapping. It is clear, that / is a one-to-one mapping. Taking an
arbitrary (i^)u e Z)u, there exists an Fell such that {i/^:/eF} is a bounded set
in D. Set q)i',= $i for all z'sF and (pt:=Q otherwise. We obtain (cp^ED^ and
J((q>i)u) = ($i)- This implies that / is a mapping onto Du. According to the
definitions of the corresponding topologies, / is a homeomorphism. " O

Theorem 4.2. Suppose that D is an F-domain and U is a free ultrafilter on
N. The following assertions are equivalent:

1. D has the (DP).

2. For each bounded subset M c= Du there exists a bounded subset N c: D
with M c= Nu.

3. For each bounded subset M c Du there exists a bounded subset N a D
with M c Nu.

Proof. (1)=>(2). According to [2], Theorem 1.4 and Lemma 4.1, the
assertion (2) is true.

(2) => (3). This implication is clear, because Du is a topological subspace
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of Du.

(3) => (1). The proof is shown in similar to the proof of (3) => (1) in Theorem
3.4. Given an arbitrary geDu, g^Q. We set

-i

too. There exists a fixed bounded set M c Du with g0eM for all g e Du. We
choose an meN. By assumption, there exists a Be%?(Hm,D) with 0<m# such
that M c (5(UHJ)U, i.e. there exists a sequence (<pf) with cpiGUHm and

go=(^<Pi)u- We have

|<g0,7r o pm(T)goy\ =

for all TeL+(Dm). We set T^I+B2)'1 and obtain

for all geDu. According to Lemma 3.3, D has the (DP). O

Proposition 4.3. Suppose that D is an F-domain and H is a free

ultra/liter on N. If D has the (DP\ then Du also has the (DP).

Proof. Since D has the (DP), it follows by Theorem 2.2 that the
following assertion is true: Given a positive sequence (lk) and an
n^N, there exist n0eN and Pe^(Hn,D) such that P is an orthogonal
projection in the Hilbert space Hn and

k=l

The ^representation n is positive. Hence we have

fc=i
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Remark that (n(Ak)) a L+(DU) is a sequence which satisfies the conditions 1
and 2 in section 1. Using Lemma 1.2, we get A*PEL+(D). Let us consider
the map

n(T) :=(T9l)u TE <€(HWD\ (fa e (Hn)u

which is an extension of n. It is easy to see that n is an element
of ^((Hn)UyDu\ where (Hn)u is a Hilbert space. We obtain

«0

k=l

and the assertion follows from Theorem 2.2. O

Problem 4.4. Is the assertion "If Dn has the (DP), then D has the
(DPT true!
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