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On the Irregularity of Special Non-Canonical Surfaces

By

Kazuhiro KONNO *

Abstract

We consider minimal surfaces of general type whose canonical map is "special" meaning that it is

composed of a pencil or its degree is high. We characterize, to some extent, Beauville's examples of

irregularity 2 in the pencil case, and show that the irregularity is at most 12 when the canonical degree

is 5.

Introduction

Let S be a minimal surface of general type defined over C, and let K=KS

denote a canonical divisor. I fp g > 1, we can consider the rational map associated
with | K , the canonical map 0K : S^Ppg~l. We put 1=<P* (S) and let $K : S^Z
be the induced rational map. When <f)K is not birational, some important results
were obtained by Beauville and Xiao :

(1) Suppose that 2 is a curve, that is, K is composed of a pencil. We get
a relatively minimal fibration/: X^B after blowing up the base points and taking
the Stein factorization if necessary. Put b =g (B) and let g be the genus of a general
fibre of/ Beauville [1] showed that g<5 when pg is large. Later, Xiao [12]
showed that either b=q = l or b = Q, q<2.

(2) Suppose that Z is a surface. It is well-known that Z is a ruled surface
when its degree is small (cf. [1], [14] or [10]). Hence, if dcan : = deg0* is large,
Miyaoka-Yau's inequality implies that Z is ruled and, as in the previous case, S has
a pencil of curves of genus g induced by the ruling of Z. Beauville [1] showed that
dcan < 9 whenpg is large enough. Xiao showed that dcan = 9 is actually impossible for
pg>132 ([14]), and that ?<3 when dcan>l, pg>H5 ([14] and [16]). He also
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proved that there is a bound on q, g when dcan = 5, 6. After that, Sun [11] has
shown q<5 when dcan — & and/?g>55, along an analogous line.

The purpose of this article is to give a slight refinement of the above results.
Our main interest is in the cases q = 2 in (1) and dcan = 5 in (2). We show that a
surface with q = 2 whose canonical map is composed of a pencil is essentially an
example of Beauville [1, 2.5] when the Albanese map is not surjective (Theo-
rem 3.6), and that q<!2 if the canonical map is of degree 5 onto the image
(Theorem 4.5). As one may learn from (1) and (2), we are naturally led to
studying fibred surfaces /: X^B, We use the powerful methods due to Xiao in
order to analize/*&)*. Hence the paper should be regarded as an appendix to his
remarkable papers, especially to [14].

§ 1. Irregularity of Fibred Surfaces

In this and the next sections, we recast Xiao's method in [14] and prepare
some results for the later use. See also [12], [15], [16], [1], [3] and [9].

ILL Let ^ be a locally free sheaf on a non-singular projective curve B. We put
£*= Homtg1, a)s) and //(<£) = deg(<f)/rk((f). According to [4], we have a
filtration of $ by locally free subsheaves $f:

— jtp— GQ

which satisfies
(i) S't/S'i-i is semi-stable,
(ii) /A-Of) >/A + 1Gf), where /

As usual, we call such a filtration the Harder-Narashimhan filtration of $. Note
that we have

(1.1) (rkGO-l)M*)+0/GO>deg(<0.

Let it: P($}^B be the associated projective bundle. We denote by !f(<f) and F a
(relatively ample) tautological divisor and a fibre of n, respectively. The locally
free sheaf £ is called nef if and only if H (<f) is nef. By [9], the g-divisors JJ(<f)
—///Gf)F and jFf(<f) — #i(<f)jF are respectively nef and pseudo-effective.

1.2. Let /: X^B be a relatively minimal fibration of non-singular projective
surface X onto a non-singular projective curve B of genus b. We assume that X is
of general type andpg > 0. We let g denote the genus of a general fibre D off. Then
g > 2. By Arakelov's theorem [2], the relative dualizing sheaf CL>X/B is nef. By [3],

is a direct sum of a locally free sheaf and q— b copies of a)B, andf*a)x/B =
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l is nef.
From now on, we let $ be the locally free subsheaf of /*&)* generically

generated by elements in H°(if*a)x) ; the quotient $'=f*(jL>x/$ is also locally free.
Put r = rk(<f) and let OC^1C---C^/ = <f be the Harder-Narashimhan filtration for

For each /, the natural sheaf homomorphism/*^^/"*/*^^"^^^ induces a
rational map 0, : JT—*P (<£,)• Let p, : X^X be the elimination of the indeterminacy
of 0/, and let $t : Xr^>P(&^ be the induced holomorphic map. We denote by M/ the
pull-back to Xi of #(<?,) via $>•. Then A?/ — /// (<f )p*D is nef, since so is #(<?/) —

Put Af (<£•) = (A) *^«- Then Af (<£)-/// GO/) is nef. Note that J^EE
(^) with an effective divisor Z(<O, where = denotes the numerical

equivalence.
Let &' be the locally free subsheaf of <f * generated by #°Gf *), and put J^ =

C^' ) *. Then J^ and J^* are both nef. We have />g=A° (/*<«*) =A°(<?) and A1^)
/z°(J^"*) by the choice of <f and &.

Proposition 1.3. FFiYA the above notation,

- (b- 1) (g-r).

equality holds here, then deg(^x )=2(6 — l ) (g— r) anc? J^ is a direct sum of
rk(J^) copies of (L>B-

Proof. The following inequalities were shown in [14, p. 477] :

(1.2)

(1.3)

(1.4) deg(J^) +deg(^ ) >2(b -

We have an exact sequence

and A0(<y)=A0(/*^)=/?g. Since we have hl(f*c*x)=q(X)-b by [3, Theo-
rem (3.1)], we get q— 6= A1 Of) — %((fx ). By the Riemann-Roch theorem and
(1.3), we have %($' ) =deg(<f )- (b- l)(g-r) >deg(^ )/2. Applying (1.2),
we get g-6<fcrk(JO-(deg(JO+deg(<O)/2. Hence the inequality follows
from (1.4). If the equality holds there, then the equalities hold in (1.2), (1.3) and
(1.4). Hence we have degGT ) =2(b- 1) (g-r), deg(J^) =2(6- l)rk(J^) and
A!(.F) =rk(J^). Since J^ and J^* are both nef, we see that J^* is semi-stable of
degree 0 and A°(Jr*) =rk(J*0. Since J^* is generated by its global sections, it is
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a direct sum of 0B. Q. E. D.

Corollary I A. Assume that rkC^O =r. Then pg<br. Furthermore, f : X-^B is
locally trivial if (and only if) the equality holds in (1.4). In particular, when q=b
+r— (b- 1) (g-r), fis locally trivial and g-aif'.

Proof. Since rk(J^) =r, we have <F = &. Hence <f * is also nef and degGf *) =
-degGf)+2(6-l>>0. By Clifford's theorem, pg=/i0Gf) <deg(<f)/2+r<6r.
By (1.4), we have

= deg(<f) + degGT

If deg(/*to*) = 2(6- l)g, then we have deg(/*^^/5) = deg (/*&>*) — 2(6 — l)g = 0.
Hence /is locally trivial. The rest may be clear from Proposition 1.3. Q. E. D.

Lemma 1.5. Ifb = Q,thenq(iX)<r+l.

Proof. Assume that q >r + 2. Let S be the minimal model of X and let a : S-»
Alb (5) be the Albanese map. Since q >r+ 1, it follows from [16, Theorem 2] that
cu(5) cannot be a surface. Hence C=a(S) is a non-singular irreducible curve of
genus q. Let /? : X^C be the fibration induced by a. We denote by h the genus of
a general fibre DI of £. Since 6 = 0, we have deg(<f) =pg—r and #iGf) >pg/r— 1.
Hence J^y— (pg/r~ O-O is pseudo-effective, and we have (^— (pg/r— \}D)D\ >0.
Since X is non-ruled, we have DDi>2. It follows that 2h~2>DDi(pg/r- 1) >
2(pg/r— 1). On the other hand, we have deg J3*a>x/c=x(@x) — (A — 1) (g- 1) >0.
Since #>r + 2, we get

which is impossible. Q. E. D.

Now we can show the following :

Theorem 1.6. Letf: X-^E be a relatively minimal fibration of genus g> 2, b =
g(Jf), and assume that X is of general type. Assume that the global sections off*ti)x
generically generate a locally free subsheaf of rank r.

(1) 1/6 = 0, thenq(X^<min {g-r, r+1}.
(2) Ifb = l,thenq(X}<r.
(3) Ifb>landg>r, then q(X) <r and g<r+r/(b- 1).
(4) Ifb>l and g=r, then q(X) <b +g— 1 unless X is a product ofB and a

curve of genus g.
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Proof. Assume that b = 0. Then 3F = 0 and we have q <g — r by Proposition 1.3.
Hence we get (1) by Lemma 1.5.

Assume that b >0 and g >r. Then the inequality in Proposition 1.3 says that

We assume that q(X}=rJrl, and show that this eventually leads us to a
contradiction. We have rk(J^) =r, g=r + 1 (or b = 1). Corollary 1.4 shows that/
is locally trivial and £* — a)f r. This cannot happen for b= 1, since X is of general
type. Hence we can assume that b > 1 . Since / is locally trivial, we have an exact
sequence

Then, as in [12, § 1], one can see that this sequence splits. Recall that
is a subsheaf off*a)x/B> Hence, we have

which is impossible, since r+l=q =h°(.Qx) and b > 1. Therefore, q (X) <r. By q >
b, we have (b- l ) (g— r) <rk(J^) <r. Henceg<r-hr/(&- 1) when6>l andg>
r.

Assume that b > 1 and g=r. Then Proposition 1.3 gives us q(X) <6 + rk(Jr)
<b+g. If q—b-^-g, then /is globally trivial as is well-known. Q. E. D.

We close the section with the following :

Lemma 1.7. Assume that b = Q, q—r+ 1 and that the Albanese image is a curve
C. Let S be the minimal model ofX. Then the Albanese pencil ofS is a locally trivial
hyperelliptic fibration of genus pg/r, Ks = 8%(i(9s), and $ is the direct sum of r copies

o/0(V- 0.
If g = 2r+l, then X=S and S is a double covering of P=P1XC with branch

locus 2(pg/r+ 1) distinct fibers ofpi : P~^Pl. Ifg >2r+ 1, then m = 2r(g-2r- I)/
(/?g+r) is an integer greater than 1 and Kx<Ks~2m.

Proof. We use the same notation as in the proof of Lemma 1.5. Then the same
argument there easily gives us IL\ (<f ) =pg/r— 1, DD\ = 29 h =pg/r and % = (h — 1) (q
— 1). The last equality shows that a : S-+C is locally trivial. Since DDi = 2, D\ is
a double cover of P1. Hence it is a hyperelliptic curve. Since // (^) =fj.\ (<f ) and B
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=Pl, we see that £>-(9Pi(pg/r-l)®r.
We have a holomorphic map 0 : X->P=Pl X C putting 0 =/X# Since DD\ =

2, 0 is of degree 2. Put g = 2r+k. It follows from Theorem 1.6 that k is a positive
integer. By the Riemann-Hurwitz formula, we see that the branch locus BQ of 0 is
linearly equivalent to 2f, where f=/?* 0/»i(A-h 1) +J3* (77) and 77 is a divisor of
degree fc — 1 on C Furthermore, X is birationally equivalent to a double covering
Jfo of P constructed in the total space of [f] with branch locus BQ. Note that BQ is
free from multiple components. The dualizing sheaf of X0 is induced by KP-\-%.
Hence *(0*0)=*+(fc-l)A and wi0 = 8* + 40k-l)(A-l), where x=x(®s).

If k=l, then #(0*0) =#. Furthermore, J?0 consists of fibers of p\ and 2rj = 0.
In particular, since 50 is smooth, Z0 is isomorphic to X. Note that 777^0, since,
otherwise, X is a product of C and a curve of genus h contradicting q (JO =r + 1 =
g(C). Therefore, 77 is a 2-torsion element. Note further that X=S in this case.
Conversely, if we take a 2-torsion element 77£=Pic°(C) and construct a double
covering XQ of P in \_p*@(pg/r-\-1) +p*77] with branch locus consisting of 2(pg/
r+1) distinct fibres of p\, then an easy calculation shows that XQ satisfies our
requirements.

Assume that k > 1. We take the canonical resolution X* of XQ (see, [5]). Let
mt denote the multiplicity of the singular point of B0 appearing in the process of the
canonical resolution. The difference of the invariants ofX0 andX* can be measured
by the formula in [5]. Since #($**) =X> we have

(1-5)

Since #1 = 82 and K\* <Kx<&X, we have

(1.6)

Since k > 1, we can assume that \m\/2\ > 1. It follows from (1.5) and (1.6) that
2(fc-l)>l7([m //2]-l). Then,from(1.5),wegetS([[/n l/2]-A)([m I/2]-l)
>0. This allows us to assume [mi/2] >h. Then the fibre FI of p2 : P-^C passing
through this singular point induces on X* a rational curve. Since a : S^C is locally
trivial, this implies X* ¥^S and, hence, the equality does not hold in (1.6). Then, as
above, we see that [mi/2] =/z-hl. Since every fibre of a is non-singular, the
singular point must be a 2(/i + l)-ple point which becomes an ordinary 2(h + l)-ple
point after, say, A; i -times of blowing-ups (k\>6)9 and F\ is not a component of BQ.
Hence, onX*, the inverse image of F\ consists of a non-singular curve of genus h,
two (—1) -curves coming from the proper transform of F\ and 2ki ( — 2) -curves
which are "infinitely near" (—1) -curves. These (—1) -curves must remain onX,
since we have the holomorphic map/: Jf-^P1. Hence K\ <K\ — 2(fei + l) =
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l , m,= ••• =intl + ,
As in (1.5), (1.6), we get

and

If 2(fc— l )>(fc i + l)(/z-hl), then similarly as above, one can show that there is a
singular point of B0 of multiplicity 2(A H- 1) which becomes an ordinary 2(/z + l)-ple
point after, say, &2-times of blowing-ups. Let F2 be the fibre of p2 passing through
this singular point. Then it creates two (— 1) -curves and 2k2 infinitely near (— 1)-
curves onX. Hence Jft<8%-2(fc1+ 1) -2(fc2+ 0-

We can repeat such a procedure unless 2(fc— 1) is some multiple of A + l.
Hence m = 2(k — l)/(/z + 1) is a positive integer and Kx<K2 — 2m. If m = 1, one
can easily see that the fibre of p\ : P-^P1 passing through the singular point of
multiplicity 2/1+2 of jB0 is a multiple component of B0 , which is impossible.

Q. E. D.

§ 2. Inequalities

In this section, we give some inequalities generalizing one in [14, Lemma 3]
along an analogous line there. We freely use the notation in the previous section.
In particular, let OC^C ••• C^/ = ^ be the Harder-Narashimhan filtration of ^.
Putd^AfGOD andal = 2g-2-dl for !</</. Weputd=dh a=ah M=M(f)
and Z=Z(S>^) for the sake of simplicity. If there are no danger of confusion, we
also put rf = *(<£•), &=&(£), Mt=M(^ andZ,=Z(^).

Lemma 2.1. FFzY/z ?/ze above notation, the following hold.
(1) 2rl-2<dl<2g-2.
(2) Le£ Zi=SnijGj be the irreducible decomposition and put

at = max {m7 DG7- > 0} .
7

l is nef for any t>at. In particular, (al
Jrl)Kx—(ul +

Proof. (1) : We clearly have dl<2g — 2. Since dt equals to the degree of the
linear system Mt\\D which is of dimension rl— 1, Clifford's theorem shows di>
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2r,-2.
(2) : Recall that KX/B and M/ — faD are nef. Let C be any irreducible curve on

X. If C is not a component of Z/, then Z/ C > 0 and (&iKx/B +M/ — //,-D +Z,-)C > 0.
Assume that C=Gy for some/ If DG7 = 0, then (af-J£r/*+M/— jM/Z>+Z,)Gy- =

If Z>Gy>0, then fe^/5+Mf- //f-D+Z,-)G;-= (ai-
+(Zi-mjGj)Gj>Q. Hence a, tf*/* +^- -#,•/> +Z,=

— l))Disnef. Sincea/=Z)Z/, we always have a, > a/. Therefore, (fl,-+l)
- 1))D is nef. Q. E. D.

Lemma 2.2. J/rkO") <r- 1, rte/i degW ̂ g-r+^Cr-rkCJ^)). //rk(^)
r, rtcn deg(^)>2(pg— r).

By the Riemann-Roch theorem andpg=h°($\ we get deg (<f) =/?g +
— 1) -/z1^). Since J^ is nef, we have degCJ^) >0. Hence, by (1.2), we have

If rk(J^)=r, then & = S and Clifford's theorem shows pg =
Hence deg(cT) >2(/>g-r). Q. E. D.

Corollary 2.3. If r>\ and pg>min{(3r-2)6+r+l, 2(g-
then the canonical map of X separates fibers off.

Proof. Let L be a line bundle of degree 26 + 1 on B. Then it is very ample.
Assume that/?g> (3r — 2)6H-r-f 1. Sincepg>br, we have rk(^0 <r by Corol-

lary 1.4, and Lemma 2.2 shows that deg((f)>pg—r+6. We have deg(<f( — L))
>pg—r+b—r(2b + l )>(r—1)(6 — 1) by assumption. Hence, by [8, Corollary],
L can be chosen so that //°(^( — L)) ^0. Since /*L +(^—/*L) is a
subsystem of HT^ I , the canonical map separates fibers of/

Assume that#,>2(g- l)6+g+g+ 1. Since deg(/*Wjr) =x(Qx) + (g+ 0(6
— 1), we have deg(f*a)x(— L)) > (g — 1) (6 — 1). Hence, as above, the canonical
map can separate fibers also in this case. Q. E. D.

Lemma 2.4.

" (6-1).
zg—«i —i zg— d\ — 1

/« particular,

Proof. For each /, we have
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(2.1) K2
x=Kx(Mi+Z,')

-2-a,.)^, +2(g- l)/z,.

Since ((a, + l)A:Ar-Cu, + 2a(fe-l))D)Z,->0, we have

(2.2) ^Z,>--(

Now, put i = l. It follows from (2.1) and (2.2) that

(2.3)

Hence we get the inequalities, if we note #i>//(<f). Q. E. D.

Corollary 2.5. // deg(<f ) >2r (6 - 1), then

Proo/ Since ai^lg-l-cfj^Zg-Zr^lg-l, we have fli/(fli + l)<4(g
- l)2/(2g- 1). Since //i>//(^) >2(ft — 1), (2.3) gives the inequality. Q. E. D.

When c? is small enough, we can give a better bound.

Lemma 2.6. Assume that 0<d<min{2g— r, 2g — 3} and
(2g-l).

Proo/ (fl + lXjr-O/z + lflCfc-l))/) isnef by Lemma 2.1. Since Kx~^iD is
pseudo-effective, we have fc-//iD) ((a + l)Kx- (jJLi + la (b - 1))D) >0. If fol-
lows from this and (1.1) that

(2.4)

On the other hand, (2.1) and (2.2) for i=l give us
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Hence it follows from (1.1) that

(2.5)

Note that we have 2(g- 1) (a -r + 2) < ((r- 1) (2g- 1) +a + l)a.
Since a >0, the desired inequality follows from (2.4) when ((r— 1) (2g— 1) +

Q + l))//i>(2g-l) degGf)-2(6-l)(2g-2-a) and, otherwise, it follows from
(2.5). Q. E. D.

By using the same method, one can also get a slight improvement of [15,
Corollary 3] .

Lemma 2.7. Let f: X-^B be a relatively minimal fibmtion of genus g>2, b =
g(J5), andputh=q(X}-b. Ifg-h>Q,then

When f is not locally trivial, the equality holds only ifg—h — l.

Proof. By [3, Theorem 3.1], f*ux/B = ̂ ®®fh. Hence deg(jf) =
and rk(jf ) =g—h. Since ffl is a direct factor off*a)x/B, it is nef.

Let OC jf ! C • • • C je k = Jf be the Harder-Narashimhan filtration for 3? . The
natural sheaf homomorphism/* Jf i~^/ */* 0) /̂5-^60 /̂5 induces a rational map 0 : X
->P( Jfi) . Let M be the pull-back of a tautological divisor by 0. Then KX/B =M+
Z with an effective divisor Z, and M— //i(jf)D is nef, where D denotes a general
fibreof/ Puta^DZ. Since // 1 ( Jf )>//( Jf ) =degf*a)x/B/(g-h\ it is sufficient to
show

(2.6)

Similarly as in Lemma 2. 1, one can show that (a + i)Kx/B — //i ( Jf )D is nef. Hence
and we get
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similarly as in (2.3). Since a<2g — 2, we get (2.6) with equality holding only if a
= 2g-2(hence rk(jfi) = l since 2g-2^a>2rk(^fi)—2 by Clifford's theorem).

Q. E. D.

Proposition 2.8. I f f : X->B is a relatively minimal fibration of genus g>2
which is not locally trivial. Then

When f is of hyperelliptic type,

if g is even,
(2g-l)(3g+l) '
(5g3-6g2 + 5g-l)g

if g is odd.
l(2g-l)(3g2-2g + 2) '

Proof. If/ is not locally trivial, its slope A(/) —Kx/B/dzg(f*(*)x/B) is
well-defined and satisfies A(/)<12 by [15, Theorem 2]. If / is a hyperelliptic
fibration, then [7, Theorem 4.0.4] shows

4(g-D(3g+l) .. .
~2 , if g is even,

if g is odd.
g +1

Since we have A(/) >4g(g—l) / (2g—l)(g—/z) by Lemma 2.7, an easy cal-
culation shows the assertions. Q. E. D.

Corollary 2.9. Let the situation be as in Theorem 1.6, and assume that b >0, g
=r > 2. If q (JO = b +g — 1, then one of the following holds :

(1) pg=gb-l, g<3,/w locally trivial and K2
x=

(2) pg>gb, g<6, and

Ky> 2g-l
ifg = 2.

Proof. We have deg(/*Wx/jB) =pg—gb+l. Since it is a non-negative integer,
we get/?g>g& — 1.

Assume that pg =gb — 1. Then/ is locally trivial, and we get q— 6<(g+l)/2
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by the proof of [15, Corollary 3]. Since q ~b =g — 1, we get g < 3.
Assume that pg>gb. Since/is not locally trivial and q—b=g—l, it follows

from Lemma 2.7 and Proposition 2.8 that K2
X/B> (4g(g— l)/(2g— l}}degf*a)x/B

and g<6, respectively. We also have Kx/B>4degf*a)x/B by [15, Theorem 1].
Hence we get (2). Q. E. D.

§ 3. Surfaces whose Canonical Map Is a Pencil

From now on, we let S be a minimal surface of general type withpg > 2. In this
section, we assume that the canonical image is a curve Z. Let a : X->S be the
elimination of the base points of the variable part of | K . Then taking the Stein
factorization, we get a relatively minimal fibration/ : X—*B of genus g, b =g (Jf). In
this case, <f is a line bundle and M(<f) = deg(*)D. Hence d=M(ff)D = Q.

Theorem 3.1. Assume that the canonical map ofS is composed of a pencil Then
b=q = l or &=0, q<2. Ifq = 2,theng>3. Furthermore,

(3.1)

Proof. The statement for b, q follows from Theorem 1.6. Then, since b < 1 and
since $ is a line bundle with /z°(<f ) =pg > 1, we have deg(<^) =pg —l+b. Hence we
get (3.1) by Lemma 2.4 putting d=di = Q, r=l. Q. E. D.

Remark 3.2. The statement for b, q in Theorem 3.1 already can be found in
[12]. Unfortunately, (3.1) may not be sharp : When g = 2 andpg>3, we can find
the following bound in [13] :

K2>

4pg~6, i f ( f e g ) = (0,0)

4/>g-4, if (6,0) = (0,1)

4pg, if (fc ?) = (!, 1).

When 6 = 0, we can write K = \ (pg~l^D0 \ +Z0, where D0 = a*D and ZQ =
cr*Z.

Lemma 3.3. Let the notation be as above and assume that b = Q.
(1) Ifq = 1, then K2>4pg~4 with equality holding only if the Albanese pencil

is hyperelliptic.
(2) //Dg=0, thenK2>2(g-l)(pg-D.
(3) IfD2

0>09thenK2>max{D2
0(pg-iy, (2g-2-/)§)(pg-l)}. Inparticu-
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lar, J

Proof. (1) : Let a : S~^ Alb (S) be the Albanese map, and let Z>i be a general
fibre of a. Since K— (pg — 1)A> is pseudo-effective, we have 0< (K — (pg — l)Do)Di
= 2A-2-D0i>iG>g-l)<2A-2-2(pg-l), where h=g(D^. Hence /i>/?g with
equality holding only if DI is a hyperelliptic curve. On the other hand, we have
K2> (4-4//z)% by [15, Theorem 2] . Hence K2> (4-4/pg)pg = 4/?g-4.

(2) : Since# is nef, we have #2= (pg- VKD0+KZ0 = 2(g- 1) (pg- 1) +^Z0

>2(g-l)Cpg-l).
(3): We have Z=a*Z0+S((/>g— l)m/+l)E/ f where mz denotes the

multiplicity of a base point of | D0 \ appearing in a, and Et is the inverse image of
the base point. Hence 2g~2-Tlmi=KD0=(pg-l^Do+DQZ0. K2=(2g-2-
Sm,) (pg- 1) -hjRTZ0= (ft- 1)2D§ + (£ + (/?g- 1)A>)Z0> (pg- I)2!)2,. We also
note that D2

0> Sm,-. Hence ^2> (2g-2-D§) (pg- 1). Q. E. D.

Corollary 3.4. Le£ S be a minimal surface of general type whose canonical map
is composed of a pencil Then K2 > 4pg — 7.

Proof. By Remark 3.2, we can assume that g> 3. By Lemma 3.3, we only have
to consider the case that 6 = 0, Do>0 andpg<4. If pg = 4, then Lemma 3.3, (3)
implies that K2>3(pg— 1 ) = 4pg — 1. Assume that pg ~ 3 . If Do>2, then we are
done. If DQ = I , then KDQ = 2 +D0Z0 • Since KD0 +Z>o is even, D0Z0 is a positive odd
integer. It follows K2> (3- 1)2+ (3- 1) =6 = 4pg-6. Assume that/?g = 2. Then
K2>l=4pg-l. Q. E. D.

Corollary 3.5. Let the notation and assumption be as above. Assume that the
variable part of \ K \ is free from base points, when b = 0. Then the following hold.

(1) Ifb=q = l,theng<5.
(2) Ifb = Qandpg>2Q-9qf then g<5.

Proof. By Miyaoka-Yau's inequality, we have K2<9%. Hence (1) and (2)
follow from (3.1) and Lemma 3.3. Q. E. D.

When q = 2, we can say more :

Theorem 3.6. Let S be a minimal surface of general type with q = 2 whose
canonical map is composed of a pencil of genus g. Assume that the Albanese map is
not surjective. Then K2 = %% and the Albanese pencil is a locally trivial hyperelliptic
fibration of genus pg. Furthermore, g — 3 and S is an example of Beauville [1, 2.5]
except possibly when (pg, g) = (2, 6), (2, 9) or (3, 7).

Proof. Except for the last sentence, this is clear from Lemma 1.7. Assume that
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g>3 and put m=2(g — 3)/(/?g+l). Then Dl>2m as we saw in the proof of
Lemma 1.7. Since J£2 = 8£ = 8(pg—l), Lemma 3.3 gives us 8>Do(j?g— l)>2m(pg

-1). Sincem>2, wehave2(pg+l)>(g-3)(/?g-l)>( Jpg+l)(pg-l). Since
m is an integer, we obtain the list of the exceptions. Q. E. D.

§ 4. Surfaces with High Canonical Degree

In this section, we assume that the canonical map of S induces a rational map
0* : S->ZdPp

s-
1 of degree dcan > I onto the image Z.

The following lemma due to Xiao [14, Lemma 1] guarantees that Z is ruled by
rational curves of small degree when dcan is large. See also [10].

Lemma 4ei0 If there exists a positive integer 5 such that

, ^ 2(a+o f 1
deglX ^+2 (P.- 1 -

7 Acs a pencil of rational curves of degree <8. Furthermore, when 8=1, the
above inequality can be weakened to

degr<y(jpg-3)

except if pg= 10 and (21, 0(1)) -(P2, 0(3)).

Assume that Z is ruled by rational curves of degree 6. Let A be a pencil of
curves on S induced by the ruling of Z via <f>K. Let a : X-*S be the composite of
blowing-ups which eliminates Bs^l. Then, taking the Stein factorization if
necessary, we get a relatively minimal fibration/: X-^B. As before, we denote by
g the genus of a general fibre D of/ and put b =g(B).

Let $ be the locally free subsheaf off*a)x generically generated by its global
sections. Since D is mapped onto a rational curves of degree 8, the restriction map
^°fe)-^^°fc) is of rank <5+ 1. Hence r=rk(<f) <d+ 1. Put d=M(fi}D as
before. Let 0 : JT->P(^) be, as in 1.2, the rational map associated with/**f-^&>x.
Then, by the choice of &, the canonical map <&KX is a composite of 0 and the rational
map of P(<f) induced by #(<?) which we denote by 0H-

Lemma 4.20 Assume that the canonical image is ruled by rational curves of
degree 6.

(1) dcan is a multiple ofd/6. If @H separates fibers q/T((f)->$, then d=dcand.
If dcan is a prime number, then d=dcan8.
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(2) Ifg=r, then f is of hyperelliptic type, d = 26 and dcan is even.

Proof. (1) : Since the image of D under the canonical map is a rational curve
of degree 5, d is a multiple of 5, and d/5 equals the degree of @KX I D, hence, 0 is
of degree d/d onto its image.

(2) : Since rk(<f) =g, the restriction map ̂ (H^-^C&O is surjective. By
the assumption, it follows that D is mapped onto a rational curve via its canonical
map. Hence D is a hyperelliptic curve. By what we saw above, <p is of degree 2 onto
the image. Hence dcan must be even. Q. E. D.

Note that S has no pencil of hyperelliptic curves if dcan is odd. Hence
Theorem 1.6, Lemma 1.7 and Lemma 4.2 give us the following generalization of
[16, Theorem 3].

Theorem 4.3. Assume that U is ruled by rational curves of degree 6. Assume
further that g>d+I or dcan is odd. Then q<d^r2. Ifq = d + 2, then b = 0 and g>
25+3. If dcan is odd and q = d-\-2, the Albanese image of S is a surface.

Lemma 4.4. Suppose that b>\ and g=d+1.
(1) Assume that 6= 1. Then dcan is an even integer not exceeding 10. Ifdcan

-10, then b=q = 2,pg = 3. Ifdcan = S, then Q), q,pg) = (2, 2, 3), (2, 3, 3) or (3, 3,
4). Ifdcan = 6, then (b, q, Pg) = (2, 2, 3), (2, 2, 4), (2, 3, 3), (3, 3, 4), (3, 3, 5) or
(4, 4, 6).

(2) 7/5=2 and dcan = 6, then (b, q, Pg) = (2, 2, 4), (2, 2, 6), (3, 3, 6) or (4,
4,9).

Proof. We can assume that ff =f*a)x- PutH=H(f*(*)x)- Since degf*a)x/B >
0, we have

(4.1)

(1) : Though this is essentially contained in [13, p. 74], we give a proof for the sake
of completeness. Put dcan = 2m. Then 0H is a map of degree m onto the image Z.
Hence H2>m degI7. Since H2 = dQgf*a)x=X + 3(b — 1) and degI7>/?g —2, we get

(4.2) (m-l)pg<3b-qJr2m-2.

From (4.1) and (4.2), we get mq+ (m — 3)6<4m— 4. If q>3, then we have m<
4, since b>2. Assume that q=b = 2. Sincepg>3, it follows from (4.2) that 4 =
3b—q>m — l. Hence we get m<5. The rest follow from an easy calculation.

(2) : Let Fbe the image of 0 : X^>P(f#a)x). Then V is numerically equivalent
to 2H~vF with an integer v. Since F is a relative hyperquadric of rank 3, one can
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easily show 3v <2deg (/*&>*) (see, e. g., [6]). Since H induces a map of degree 3,
we have#2(2#-vF) > 3degZ, that is, 2deg(/*wx) -v > 3degZ. Hence deg(/*o>*)
> (9/4)degl'. On the other hand, since I is not ruled by straight lines, Lemma 4.1
gives us degl"> (4/3) (pg-1-9/4). Therefore, deg(/*w^)>3Jpg-9. Since
deg(f*cox)=X + 4(6-1), we have

(4.3) 2pg<4b-q + 6.

It follows from (4.1) and (4.3) that q< 4. Furthermore, since/?g>4, we get

(fc 0) = (2, 2) :4<p g <6
(fc?) = (2, 3):A = 4, 5
(6, g) = (2,4):Jpg-5
(M) = (3,3): />g = 6,7
(b, <?) = (3, 4):A = 7
(fc *) = (4,4):A = 9.

It is known that surfaces with degreepg — 2 inPpg~~l is ruled by straight lines unless
it is the Veronese surface, pg = 6. Hence, ifpg^6, we can assume that degZ>pg— 1.
Since deg/*&>jr> (9/4) (pg— 1), we have

7, if ft = 4,

9, if/?g = 5,

14, ifpg = 7.

Hence we can exclude several cases and get (2). Q. E. D.

In [14, Theorem 5], it is shown that there is a bound of q, g when c?can>5.
Now we can give a bound on q.

Theorem 4.5. Let S be a surface of general type whose canonical map is a
rational map of degree dcan >4 onto its image.

(1) If dcan>7, then q<3 except possibly when dcan = 7, pg = 10, q = 4, K2 = 63
and Z is P2 embedded into P9 by \ 0(3) I .

(2) Ifdcan = 6,thenq<5.
(3) Ifdcan = 5, then q<l2, and q^U whenpg>!36.

Proof. (1) : Assume that q>4. Miyaoka-Yau's inequality gives us

degZ<K2/dcan<9x/dcan<(9/dcan) (pg~3).

Hence Lemma 4.1 implies that £ is ruled by lines unless we are in the case excepted
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in (1). But then, Theorem 4.3 and Lemma 4.4 give us g<3, a contradiction.
(2) : Assume that q > 6. By the same reasoning as above, Lemma 4. 1 implies

that S is ruled by rational curves of degree 8 < 2. In this case, however, Theorem 4. 3
and Lemma 4.4 give us q<4, a contradiction.

(3) : Assume that q> 13. By the same reasoning as above, Lemma 4.1 implies
that Z is ruled by rational curves of degree d<8. But, Theorem 4.3 shows q< 10
contradicting our initial assumption. Quite similarly, assuming q = 12 and/?g > 136,
we can show that U is ruled by rational curves of degree <5<9. But Theorem 4.3
tells us q< 11. Q. E. D.

Remark 4.6. In the above theorem, (1) and (2) respectively can weaken the
assumption onpg in [16, p. 602, Corollary] and [11, Theorem 3].

As for g, we can show, for example, the following :

Proposition 4.7. Let the notation and assumption be as above.
(1) Ifdcan = 6andpg>l9Q9 then g< 16.
(2) // dcan = 5andpg>\ 324, then g < 44.

Proof. We show only (2), because (1) can be treated similarly if we note that
d = 6d holds whenpg is large enough by Corollary 2.3 and Lemma 4.2.

Ifpg>l324, then

Hence, by Lemma 4.1, Z is ruled by rational curves of degree <5<9. We assume g
>45 and show that this leads us to a contradiction. By Theorem 1.6, we can
suppose6<l. By Lemma 4. 2, we have d = 5d. Since 53<45<2g- 10<2g-£- 1,
it follows from Lemma 2.6 (and Lemma 2.4 when <f is semi-stable) that K2>
(1584/169) (pg — 28). However, since pg>728, this contradicts Miyaoka-Yau's
inequality K2<9(pg

jr 1). Hence g<44. Q. E. D.
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