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A Generalized Grothendieck-RIemann-Roch Theorem for

Hirzebruch's ^-Characteristic and Ty-Characteristic

By

Shoji YOKURA *

§ 0. Introduction

The Grothendieck-Riemann-Roch (abbr. GRR) is a relative version of the
Hirzebruch-Riemann-Roch (abbr. HRR), %(X, E)=T(X, E). Hirzebruch's %y-
characteristic Xy(X, E) and ^-characteristic Ty(X, E) are a generalization of the
Euler-Poincare characterisitc %(X, E) and the Todd characteristic T(X, £*) such
that when>? = 0 Xo(X, E) = %(X, £) and T0(X, £) =T(X, £), and they are equal;
Xy(X, E} = Ty(X, E), which is called the generalized Hirzebruch-Riemann-Roch
(abbr. g-HRR). In this short note we show that we can get a generalized GRR
version (abbr. g-GRR) such that when y = 0 our g-GRR specializes to the original
GRR and such that the Hirzebruch's g-HRR is induced from our g-GRR by
mapping X to a point, just like HRR is induced from GRR by mapping X to a point.
For the statements and the proofs of our main theorems see § 2.

Our g-GRR is entirely a formal consequence of the original GRR, achieved by
some formal calculations with power series and Grothendieck's A-rings. It remains
to see whether there are some geometric constructions for g-GRR.

I would like to thank the referee for some useful suggestions and comments for
revising the paper.

§ 1. Hirzebruelfs ^-Characteristic and Ty-Characteristic

Hirzebruch's %y -characteristic %y(X, E} and Ty -characteristic Ty(X, E\ for a
non-singular complex projective variety X and a holomorphic vector bundle E on X,
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are a generalization of the original Euler-Poincare characteristic %(X, E) - = S<^o
(-l)9dimcH*(X; E) and Todd-characteristic T(X, E) = (ch(E}td(Tx), [X]>,
where< , >is the Kronecker pairing, [X] is the fundamental homology class of X,
ch (£") is the Chern character of the bundle E and td (Tx) is the total Todd class of
the tangent bundle Tx of X :

rankE dim* £.

ch (E} - — 2 ea* and
z = i

where af are the Chern roots of E and $ are the Chern roots of Tx. For more
details and related topics of these two characteristics see Hirzebruch's books [6]
and [7].

Definition (1.1) (%y-characteristic %y(X,

where T^ is the dual of the tangent bundle Tx, i. e., the cotangent bundle of X.

For E = l, the trivial line bundle, &00 :=%j,(X, 1) is called the
which is a generalization of the arithmetic genus %(jC) -=x(%> !)•

Definition (1.2) (^-characteristic ^(X, £)). Let us set: (as elements of

and tdw(.Tj :=

where a£ are the Chern roots of ̂  and $ are the Chern roots of Tx. Then Ty (X, E)
is defined by

T,(X, E} : = <cA(1+,)(^) td^(Tx\ [Y]>.

For E = l, the trivial line bundle, IT, GO : = T/Z, l) = <rf^)(r^)f [AT]> is
called the generalized Todd genus or the Ty -genus. For three distinguished values
(i. e., 0, —1 and 1) of y, this ^-characteristic becomes the following :

y = Q : T0(X, E) = <c/z (E) id (Tx), [AT] > = r(JT, £), T- characteristic (or Todd-chara-
cteristic)
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where c (Tx) is the total Chern class of the tangent bundle Tx and e (Jf) is the
topological Euler-Poincare characteristic of Xf

rankE dim*

y = l :
= 1 j=l

the signature ofX with values in the vector bundle E (see [7, Chapter 6]).

With the above definitions Hirzebruch showed the following generalized
Hirzebruch-Riemann-Roch [6, § 21. 3] :

Theorem (1.3). (g-HRR) %y(X, E}=Ty(X, E\

Note that*oCO= T0CO=*CO, x-~i(X^=T^(X)=e(X^ and^X) =1 )̂
= signCX'), the signature of X.

§ 2. A Generalized Grothendieck-Riemann-Rocfa

In this section we show our main results. We formulate our generalized
Grothendieck-Riemann-Roch (g-GRR) in the same spirit as that for the formau-
lation of the original GRR.

A. Grothendieck generalized HRR to non-singular quasi-projective algebraic
varieties over any field and proper morphisms with Chow cohomology ring theory
instead of ordinary cohomology theory. For the complex case we can still take the
ordinary cohomology theory. Since our argument is formal, it works in whatever
context GRR is known. Here we stick ourselves to non-singular complex project!ve
varieties and cohomology theory for the sake of simplicity.

For a variety X, let KQ(X) be the Grothendieck group of algebraic coherent
sheaves on X and for a morphism/: X^Y the Grothendieck pushforward f\:
KO(X^)^KQ(Y^ is defined by

where Rlf*F is (the class of) the higher direct image sheaf of F. Then KQ is a
covariant functor with this pushforward. First we generalize this covariant functor
J£0 as follows :

Theorem (2.1). LetKQW(X) :=KQ(X)®Z\_y']. For a morphism f: X-^Y, we
define the pushforward /w,: J£0

W(X>^^oW(r) as follows :
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where f< : K0(X^K0(Y) is the Grothendieck pushforwand and T/ : = T$-f*T¥ is
a virtual "relative cotangent bundle" as an element ofK°(X\ and this pushforward is
extended linearly with respect to the polynomial ring Z\_y~\. Then K0

Ly] is a covariant
functor with the above pushforward,

Proof. Let/ : X-*Y and g : Y-» Z be morphisms and let F be a coherent sheaf
on X. By defintion

(by the projection formula for/0

/)y
(by the additivity of (g/)i)

+/*rg
v))y

(by the property of the exterior power A7")

)y (since 7>v +/*Tg
v = rg

v
7)

Q.E.D.

Remark (2.2). For j; — 0, /[j;]! Is nothing but the original Grothendieck
pushforward/,.

The original (e. g., see [1, 25 55 6]) is the following :

Let T : KoO^H* ( ; (?) be the transformation defined by T( « ) =cA ( ° )td(Tx) far
any variety X. Then T is actually natural, I e.} for any morphism f: X->Y the
following diagram commutes

i/l I/*
- - >H* (F ; 6

where f* : H* (X ; g)"^* (y ; O ^ ^e ^J5^ homomorphism.
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This GRR is generalized to our g-GRR as follows :

Theorem (2. 3). If we define rw : JT0
Cj7] (X}-»H* (X ; Q) [j] as follows

r w 00 = =<* a +,) 00 td^ (Tx\

which is extended linearly with respect to the polynomial ring Z\_y~\, then rw : J£0
W

->H* ( ; g) [ y] is a natural transformation, L e., for any morphism f: X^Y the
following diagram is commutative :

*ow co — - — >H* (x • 0 w
i/w. i/*

KQW (Y) - - - >H* (Y • g) [ y}.
Tlyj

Proof. It suffices to show that for a coherent sheaf F

i.e.,

(2.3.1)

By the projection formula /* (a °f*b^)=f*a Qb and using the "virtual relative
tangent bundle" Tf'> = Tx—f*TY, we can see that (2.3.1) is equivalent to the
following equation :

(2.3.2)

i.e., cA(i+,)(Sp^c/i(/r®^I>vV)=/*(cA(i+,)(F)

i.e.,

(2.3.3)

Before going on to the proof of (2.3.3), we recall a result form our previous paper
[9]:

Proposition (2. 3. 4). Let q be a variable and let

rankF rankF ^y rankK

ch w (F) = S e"' and fdw (F) = H , ^%r
"
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where TJ are the Chern roots of a complex vector bundle V. Then for f: X->Y

or, equivalently,

(2.3.5) ?
reldim(^c/Z(,)(/,F) =/*

•where reldim(/) '=dimX— dim F is f/ze relative dimension of a morphism f: X^
Y. {Note : (1) For a coherent sheaf F the definition of ch(^ (F) is similar to that of
ch (F). (2) This proposition is a formal translation of GRR, with the "q" doing
nothing but keeping track of degrees.}

Therefore, by (2.3.5), the left hand side of (2.3.3) becomes as follows :

= /*

Hence, if we can show the following equation (2.3.6), then we get (2.3.3), thus
(2.3.1) :

(2.3.6)

In fact, this equation is a special case of the following more general equation

Lemma (2. 3. 7) . For any virtual bundle E,

,) (F,) =3^,) (F).

Proof of Lemma (2. 3.7). If E is a bundle of rank n and at are the Chern roots
of E, then by definition we have

. , .(£}1 + v) v4-' J
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To see that the equation also holds for any virtual bundle E, it suffices to observe
that both sides of the equation are multiplicative. And for that we need the theory
of Grothendieck's X-ring structure on the contravariant functor K° (e. g., see [3] or
[SGA 6] ; for our purpose we just recall the definition of AyE=^p>0(A

pE^yp^.
The multiplicativity of the middle term ^p^0ch(i+y)(A

pEv^)yp, which can be
expressed as cA(i+jo(Aj,(Ev)), follows from the multiplicativity of c/Z(i+J?) and Xy.

Q. E. D.

Our g-GRR becomes the original GRR when y = Q, and g-HRR follows from
g-GRR by mapping X to a point.

Remark (2. 4). Now that we have established a generalized Grothendieck-
Riemann-Roch theorem, it is quite natural or plausible to pose the question whether
there is a "singular" extension of our generalized GRR theorem (0m the diagram
below), just like Baum-Fulton-MacPherson's Riemann-Roch theorem [1] (abbr.
BFM-RR) is a "singular" extension of the original GRR.

"mapping to a point" "smooth"
HRR < GRR < BFM-RR

f
" = " "y = Q" "j; = 0"

g-HRR < g-GRR < H

"mapping to a point" "smooth"

We do have a solution for [T] such that when we restrict ourselves to the smooth
category [T] becomes our g-GRR and such that when "j; = 0" [T] becomes BFM-RR
( [10] ). But our solution is still not satisfactory in the sense that it does not unify
BFM-RR, Chern-MacPherson classes [8] and Goresky-MacPherson's homology
L-classes [4]. Note that our g-GRR unifies GRR (in the case of y = Q), Chern
classes (in the case of y = — 1) and Hirzebruch's cohomology L-classes (in the case
of j; = l). We hope to return to the question whether there is an ideal theory
unifying BFM-RR, Chern-MacPherson classes and Goresky-MacPherson's
homology L-classes.
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