PBW Basis of Quantized Universal Enveloping Algebras

By
Yoshihisa Saito*

§ 0. Introduction

In [4], Lusztig constructed PBW bases of U_{q}^{+}. Then, he introduced the canonical base of $U_{q}^{+}[6]$ in case of A, D, E type. His results can be reformulated in case of U_{q}^{-}as follows.

Let L be the sub $\boldsymbol{Z}[q]$-module of U_{q}^{-}generated by a PBW basis of U_{q}^{-}. This submodule is independent of the choice of the PBW basis. Let $\pi^{\prime}: L \rightarrow$ $L / q L$ be the canonical projection. Then the image B of the PBW basis is a \boldsymbol{Z}-basis of $L / q L$ and it is independent of the choice of the PBW bases. Let - : $U_{q} \rightarrow U_{q}$ be the \boldsymbol{Q}-algebra involution defined by $e_{i} \mapsto e_{i}, f_{i} \mapsto f_{i}, q^{h} \mapsto q^{-h}$, $q \mapsto q^{-1}$. Then π^{\prime} induces a \boldsymbol{Z}-module isomorphism $\pi^{\prime \prime}: L \cap \bar{L} \rightarrow L / q L, \boldsymbol{B}=$ $\left(\pi^{\prime \prime}\right)^{-1}(B)$ is a \boldsymbol{Z}-basis of $L \cap \bar{L}$ and $\boldsymbol{Z}[q]$-basis of L. Moreover each element of \boldsymbol{B} is fixed by -. \boldsymbol{B} is called the canonical base of $U_{\bar{q}}^{-}$.

On the other hand, in [1] Kashiwara constructed the global crystal base of U_{q}^{-}. Let $(L(\infty), B(\infty))$ be the crystal base of U_{q}^{-}and let $U_{\bar{Q}}^{-}$be the sub- $\boldsymbol{Q}\left[q, q^{-1}\right]-$ algebra of $U_{\bar{q}}^{-}$generated by $f_{i}^{(n)}$. Then $U_{\bar{Q}}^{-} \cap L(\infty) \cap L(\infty)^{-} \rightarrow L(\infty) / q L(\infty)$ is an isomorphism. Let G be the inverse of this isomorphism. Then $G(B(\infty)$) is a base of U_{q}^{-}and called the global crystal base of U_{q}^{-}.

In [7], Lusztig showed $\boldsymbol{B}=G(B(\infty))$ in the simply laced case.
In this paper, we show that the monomials of the root vectors form a base of U_{q}^{-}and they give a crystal base at $q=0$, when g is an arbitrary finite dimensional semisimple Lie algebra.

In Section 1, we define the braid group action on the integrable U_{q}-module. Let M be an integrable U_{q}-module. Then we shall define the automorphism S_{\imath} of M as follows:

$$
S_{i} v=\exp _{q_{i}^{-1}}\left(q_{i}^{-1} e_{i} t_{i}^{-1}\right) \exp _{q_{i}^{-1}}\left(-f_{i}\right) \exp _{q_{i}^{-1}}\left(q_{i} e_{i} t_{i}\right) q_{2}^{h_{i}\left(h_{i}+1\right) / 2} v \quad \text { for } \quad v \in M .
$$

[^0]Here $\exp _{q}(x)$ denotes the q-analogue of the exponential function $\sum_{k=0}^{\infty}\left(q^{k(k-1) / 2} /[k]!\right) x^{k}$. The operator $q_{2}^{h_{i}\left(h_{i}+1\right) / 2}$ sends u to $q_{i}^{m(m+1) / 2} u$ if $t_{i} u=q_{i}^{m} u$. Here $q_{i}=q^{\left(\alpha_{i}, a_{i}\right)}$ and $t_{i}=q^{\left(\alpha_{i}, \alpha_{\imath}\right) h_{i}}$. Since $q_{i}^{-1} e_{i} t_{i}^{-1}, f_{2}$ and $q_{i} e_{i} t_{i}$ act on M in locally nilpotent way, S_{i} is well-defined. Moreover $\exp _{q}(x) \exp _{q-1}(-x)=1$ implies that S_{i} is invertible. There exists a unique automorphism T_{2} of U_{q} such that $S_{i}(x v)=\left(T_{\imath} x\right) S_{i} v$ for $x \in U_{q}$ and $v \in M$. This automorphism T_{2} coincides with the automorphism T_{i} introduced by Lusztig [4] with a small modification. In Proposition 1.4.1 we shall show that $\left\{S_{\imath}\right\}$ satisfies the braid relation. In Section 2, we show Ker $e_{i}^{\prime}=T_{2} U_{q}^{-} \cap U_{q}^{-}$. (e_{i}^{\prime} is defined in 2.1.) This is the key of this paper. In Section 3, we shall give a relation of cystal base and the braid group action. Let P be an element of $T_{i}^{-1} U_{q}^{-} \cap U_{q}^{-}$. We assume that P belongs to $L(\infty)$ and $P \bmod q L(\infty)$ belongs to $B(\infty)$. Using the fact that Ker $e_{i}^{\prime}=$ $T_{2} U_{q}^{-} \cap U_{q}^{-}$, we show that $T_{2} P$ belongs to $L(\infty)$ and $T_{2} P \bmod q L(\infty)$ belongs to $B(\infty)$. Thus $f_{i}^{(k)} T_{\imath} P$ belongs again to $L(\infty)$ and gives a crystal base at $q=0$. In Section 4, we introduce PBW basis $\left\{f^{k} ; k=\left(k_{1}, \cdots, k_{N}\right) \in \boldsymbol{Z}_{\geq 0}^{N}\right\}$. Chosing a reduced expression $s_{i_{1}} \cdots s_{i_{N}}$ of the longest element of the Weyl group we define

$$
f^{k}=f_{i_{1}}^{\left(k_{1}\right)} T_{i_{1}}\left(f_{i_{2}}^{\left(k_{2}\right)} T_{i_{2}}\left(\cdots f_{i_{N-1}}^{\left(k_{N-1}\right)} T_{i_{N-1}} f_{i_{N}}^{\left(k_{N}\right)}\right) \cdots\right) .
$$

By the consequence of Section 3 we show that f^{k} forms a base of $L(\infty)$ and $\left\{f^{k} \bmod q L(\infty)\right\}=B(\infty)$ when g is a finite-dimensional semisimple Lie algebra (Main Theorem). This generalizes the result of Lusztig [7].

This paper could not be written without Professor M. Kashiwara's guidance. The author would like to thank Professor M. Kashiwara.

§ 1. Braid Group Action on Integrable Modules

1.1. The operator Φ

We follow the notations in [1,2,3]. For example, g is a symmetrizable Kac-Moody Lie algebra, $\left\{\alpha_{i}\right\}_{2 \in I}$ is the set of simple roots, \boldsymbol{P} is a weight lattice, U_{q} is the corresponding quantized universal enveloping algebra generated by $e_{i}, f_{i}, q^{h}\left(h \in \boldsymbol{P}^{*}\right)$, etc.

Let $U_{q}\left(s l_{2}\right)_{i}$ be the subalgebra of U_{q} generated by $e_{i}, f_{i}, t_{i}=q^{\left(\alpha_{i}, \alpha_{i}\right) h_{i}}$.
Introduce the $\boldsymbol{Q}(q)$-algebra anti-automorphism * of U_{q} by

$$
\begin{equation*}
e_{i}^{*}=e_{i}, \quad f_{i}^{*}=f_{i}, \quad\left(q^{h}\right)^{*}=q^{-h} . \tag{1.1.1}
\end{equation*}
$$

We define the $\boldsymbol{Q}(q)$-algebra homomorphism $\Phi: U_{q} \rightarrow \operatorname{End}\left(U_{q}\right)$ by

$$
\begin{equation*}
\Phi(x)(y)=\Sigma\left(S\left(x_{(2)}\right)\right) * y x_{(1)}^{*} \tag{1.1.2}
\end{equation*}
$$

where

$$
\Delta(x)=\sum x_{(1)} \otimes x_{(2)} .
$$

Then we have

$$
\begin{align*}
& \Phi\left(e_{\imath}\right)(x)=t_{i}^{-1}\left[x, e_{\imath}\right] \tag{1.1.3}\\
& \Phi\left(f_{\imath}\right)(x)=x f_{\imath}-f_{\imath} t_{2} x t_{\imath}^{-1} \\
& \Phi\left(t_{\imath}\right)(x)=t_{\imath} x t_{\imath}^{-1}
\end{align*}
$$

for $x \in U_{q}$.

Lemma 1.1.1. For $i \neq j$

$$
\begin{equation*}
\Phi\left(f_{i}^{(n)}\right)\left(f_{\jmath}\right)=\sum_{k=0}^{n}(-1)^{n-k} q_{i}^{(n-k)\left(-a_{\imath \jmath}-n+1\right)} f_{i}^{(n-k)} f_{\jmath} f_{i}^{(k)} \tag{1.1.4}
\end{equation*}
$$

Proof. Let A and B be the endomorphisms of U_{q} defined by $A x=x f_{2}$ and $B x=f_{2} t_{2} x t_{2}^{-1}$. Then we have

$$
\Phi\left(f_{2}\right)(x)=A x-B x
$$

for $x \in U_{q}$. The operators A and B satisfy the commutation relation:

$$
A B=q_{i}^{2} B A
$$

By the q-analogue of the binomial formula, we obtain

$$
\begin{aligned}
\Phi\left(f_{\imath}^{n}\right) & =(A-B)^{n} \\
& =\sum_{k=0}^{n}(-1)^{n-k} q_{\imath}^{-k(n-k)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{2} A^{k} B^{n-k} . \\
\Phi\left(f_{2}^{(n)}\right)\left(f_{\jmath}\right) & =\sum_{k=0}^{n}(-1)^{n-k} q_{2}^{(-n+1)(n-k)} f_{\imath}^{(n-k)} t_{\imath}^{n-k} f_{\jmath} t_{\imath}^{-n+k} f_{\imath}^{(k)} \\
& =\sum_{k=0}^{n}(-1)^{n-k} q_{2}^{(n-k)\left(-u_{\imath J}-n+1\right)} f_{i}^{(n-k)} f_{\jmath} f_{\imath}^{(k)} .
\end{aligned}
$$

Q. E. D.

For $n=1-a_{\imath \jmath}$, the Serre relation implies

$$
\Phi\left(f_{i}^{\left(1-a_{i \jmath}\right)}\right)\left(f_{j}\right)=\sum_{k=0}^{-a_{\imath \jmath}+1}(-1)^{-a_{\imath \jmath}+1-k} f_{i}^{\left(-a_{\imath \jmath}+1-k\right)} f_{j} f_{i}^{(k)}=0
$$

Along with $\Phi\left(e_{2}\right) f_{\jmath}=0$, we conclude that f_{\jmath} is $U_{q}\left(s l_{2}\right)_{2}$-finite and it is a highest weight vector. Here U_{q} is regarded as a $U_{q}\left(s l_{2}\right)_{2}$-module through Φ.

1.2. Definition of S_{2}

Let $V(l)\left(l \in \boldsymbol{Z}_{\geq 0}\right)$ be the irreducible $U_{q}\left(s l_{2}\right)_{2}$-module of dimension $l+1$. Let us take a highest weight vector $u_{0}^{(l)}$ of $V(l)$. Then we have

$$
\begin{align*}
& e_{2} u_{0}^{(L)}=0, \tag{1.2.1}\\
& t_{\imath} u_{0}^{(l)}=q_{2}^{l} u_{0}^{(l)} .
\end{align*}
$$

Let $u_{k}^{(l)}=f_{i}^{(k)} u_{0}^{(l)}$. Then we have

$$
V(l)=\underset{k=0}{\ell} \boldsymbol{Q}(q) u_{k}^{(l)} .
$$

Next, we define the endomorphism S_{2} of the vector space $V(l)$ by

$$
\begin{equation*}
S_{\imath} v=\exp _{q_{i}^{-1}}\left(q_{i}^{-1} e_{2} t_{\imath}^{-1}\right) \exp _{q_{i}^{-1}}^{-1}\left(-f_{i}\right) \exp _{q_{i}^{-1}}\left(q_{2} e_{2} t_{2}\right) q_{\imath} h_{i}\left(h_{2}+1\right) / 2 v \tag{1.2.2}
\end{equation*}
$$

for $v \in V(l)$, where

$$
\exp _{q}(X)=\sum_{k=0}^{\infty} \frac{q^{k(k-1) / 2}}{[k]!} X^{k} .
$$

The operator $q_{2}^{h_{2}\left(h_{i}+1\right) / 2}$ sends u to $q_{i}^{m(m+1) / 2} u$ for a vector u with $t_{i} u=q_{i}^{m} u$. Since the action of e_{2} and f_{i} are nilpotent, this endomorphism is well defined.

For $x \in U_{q}$ and $n \geqq 0$, we set

$$
\begin{aligned}
x_{2} & =\frac{x-x^{-1}}{q_{2}-q_{2}^{-1}} \\
\left\{\begin{array}{l}
x \\
n
\end{array}\right\}_{i} & =\frac{\prod_{k=1}^{n}\left(q_{2}^{1-k} x\right)_{2}}{[n]_{2}!} .
\end{aligned}
$$

Hence we have

$$
\left\{\begin{array}{c}
q_{i}^{m} \tag{1.2.3}\\
n
\end{array}\right\}_{i}=\left\{\begin{array}{rll}
{\left[\begin{array}{c}
m \\
n
\end{array}\right]_{i},} & \text { for } & m \geqq n \geqq 0 \\
0, & \text { for } & n>m \geqq 0 \\
(-1)^{n}[n-1-m]_{i}, & \text { for } & n \geqq 0>m \\
n
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
x \tag{1.2.4}\\
n
\end{array}\right\}_{2}=(-1)^{n}\left\{\begin{array}{c}
q_{i}^{n-1} x^{-1} \\
n
\end{array}\right\}_{2} .
$$

Ordinary, $\left[\begin{array}{l}m \\ n\end{array}\right]_{i}$ is defined for $m \geqq 0, n \geqq 0$. But we will extend $\left[\begin{array}{c}m \\ n\end{array}\right]_{i}$ for $m \in \boldsymbol{Z}$, $n \geqq 0$. We set

$$
\left[\begin{array}{c}
m \tag{1.2.5}\\
n
\end{array}\right]_{i}=\left\{\begin{array}{c}
q_{i}^{m} \\
n
\end{array}\right\}_{i} .
$$

Then we have

$$
\left[\begin{array}{l}
m \tag{1.2.6}\\
n
\end{array}\right]_{i}=(-1)^{n}\left[\begin{array}{c}
n-1-m \\
n
\end{array}\right]_{i} .
$$

Proposition 1.2.1.

$$
\begin{equation*}
S_{i} u_{k}^{(l)}=(-1)^{l-k} q_{i}^{(l-k)(k+1)} u_{l-k}^{(l)} \tag{1.2.7}
\end{equation*}
$$

for any $0 \leqq k \leqq l$.
The first step is the next lemma.

Lemma 1.2.2. For integers s, k, l with $0 \leqq k, s \leqq l$, we have

$$
\begin{gathered}
\Sigma(-1)^{b} q^{(l-2 k)(c-a)-c(b-c)+b-a(a-b+c)}\left[\begin{array}{c}
l-k+c \\
c
\end{array}\right]\left[\begin{array}{c}
-s+a \\
b
\end{array}\right]\left[\begin{array}{l}
s \\
a
\end{array}\right] \\
=(-1)^{l-k} q^{(l-k)(k+1)} \delta_{k, s}
\end{gathered}
$$

where the sum ranges over non-negative integers a, b, c such that $s=l-k+a-b+c$.
Proof. We recall the next formula

$$
\sum_{n=0}^{k} x^{-n} y^{k-n}\left\{\begin{array}{l}
y \tag{1.2.8}\\
n
\end{array}\right\}\left\{\begin{array}{c}
x \\
k-n
\end{array}\right\}=\left\{\begin{array}{c}
x y \\
k
\end{array}\right\}
$$

for $x, y \in U_{q}$. Then, (1.2.5) and (1.2.8) imply

$$
\sum_{n=0}^{k} q^{-a n+b(k-n)}\left[\begin{array}{l}
b \tag{1.2.9}\\
n
\end{array}\right]\left[\begin{array}{c}
a \\
k-n
\end{array}\right]=\left[\begin{array}{c}
a+b \\
k
\end{array}\right]
$$

By (1.2.6) and (1.2.9), we have

$$
\begin{aligned}
& \Sigma(-1)^{c} q^{-c(l-s+a)+(k-c)(-l+k-1)}\left[\begin{array}{c}
l-k+c \\
c
\end{array}\right]\left[\begin{array}{c}
l-s+a \\
k-c
\end{array}\right] \\
&=\Sigma q^{-c(l-s+a)+(k-c)(-l+k-1)}\left[\begin{array}{c}
-l+k-1 \\
c
\end{array}\right]\left[\begin{array}{c}
l-s+a \\
k-c
\end{array}\right] \\
&=\left[\begin{array}{c}
k+a-s-1 \\
k
\end{array}\right] \\
&=(-1)^{k}\left[\begin{array}{c}
s-a \\
k
\end{array}\right] \\
&=(-1)^{k}\left[\begin{array}{c}
s-a \\
s-a-k
\end{array}\right] \\
& \quad=(-1)^{s-a}\left[\begin{array}{c}
-k-1 \\
s-a-k
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\sum q^{s(s-a-k)+a(k+1)}\left[\begin{array}{c}
-k-1 \\
s-a-k
\end{array}\right]\left[\begin{array}{l}
s \\
a
\end{array}\right] & =\left[\begin{array}{c}
s-k-1 \\
s-k
\end{array}\right] \\
& =\delta_{s, k}
\end{aligned}
$$

Therefore

$$
\Sigma(-1)^{c+s-a} q^{-c(l-s+a)+(k-c)(-l+k-1)+s(s-a-k)+a(k+1)}\left[\begin{array}{c}
l-k+c \\
c
\end{array}\right]\left[\begin{array}{c}
l-s+a \\
b
\end{array}\right]\left[\begin{array}{l}
s \\
a
\end{array}\right]=\delta_{s, k}
$$

Assume that s equals k. Since $s=l-k+a-b+c$, we have

$$
\begin{aligned}
& -c(l-s+a)+(k-c)(-l+k-1)+s(s-a-k)+a(k+1) \\
& \quad=(l-2 k)(c-a)-c(b-c)+b-a(a-b+c)-(k+1)(l-k),
\end{aligned}
$$

which implies

$$
\Sigma(-1)^{b} q^{(l-2 k)(c-a)-c(b-c)+b-a(a-b+c)}\left[\begin{array}{c}
l-k+c \\
c
\end{array}\right]\left[\begin{array}{c}
l-s+a \\
b
\end{array}\right]\left[\begin{array}{l}
s \\
a
\end{array}\right]=(-1)^{l-k} q^{(l-k)(k+1)} \delta_{s, k}
$$

We proved the lemma.
Q.E.D.

We define the endomorphism s_{\imath} of $V(l)$ by

$$
\begin{equation*}
s_{\imath}=\sum_{a, b, c}(-1)^{b} q_{i}^{c(c-b)-a(a-b+c)+b} e_{i}^{(a)} f_{i}^{(b)} e_{i}^{(c)} t_{i}^{c-a} . \tag{1.2.10}
\end{equation*}
$$

Lemma 1.2.3.

$$
\begin{equation*}
s_{i} u_{k}^{(l)}=(-1)^{l-k} q_{i}^{(l-k)(k+1)} u_{l-k}^{(l)} . \tag{1.2.11}
\end{equation*}
$$

Proof. We get

$$
s_{i} u_{k}^{(l)}=\Sigma(-1)^{b} q_{i}^{(l-2 k)(c-a)+c(c-b)+b-a(a-b+c)}\left[\begin{array}{c}
l-k+c \tag{1.2.12}\\
c
\end{array}\right]_{i}\left[\begin{array}{c}
l-s+a \\
b
\end{array}\right]_{i}\left[\begin{array}{l}
s \\
a
\end{array}\right]_{i} u_{l-s}^{(l)} .
$$

Indeed

$$
\begin{aligned}
s_{2} u_{k}^{(l)} & =\Sigma(-1)^{b} q_{i}^{c(c-b)-a(a-b+c)+b} e_{i}^{(a)} f_{i}^{(b)} e_{i}^{(c)}\left(q_{i}^{(l-2 k)(c-a)}\right) u_{k}^{(l)} \\
& =\Sigma(-1)^{b} q_{i}^{(l-2 k)(c-a)+c(c-b)+b-a(a-b+c)} \\
& {\left[\begin{array}{c}
l-k+c \\
c
\end{array}\right]_{2}\left[\begin{array}{c}
k-c+b \\
b
\end{array}\right]_{i}\left[\begin{array}{c}
l-k+c-b+a \\
a
\end{array}\right]_{2} u_{k-a+b-c}^{(l)} } \\
& =\Sigma(-1)^{b} q_{i}^{(l-2 k)(c-a)+c(c-b)+b-a(a-b+c)}\left[\begin{array}{c}
l-k+c \\
c
\end{array}\right]_{i}\left[\begin{array}{c}
l-s+a \\
b
\end{array}\right]_{i}\left[\begin{array}{l}
s \\
a
\end{array}\right]_{i} u_{l}^{(l)}
\end{aligned}
$$

where $s=l-k+c-b+a$. By Lemma 1.2.2, we have

$$
s_{i} u_{k}^{(l)}=(-1)^{l-k} q_{i}^{(l-k)(k+1)} u_{l-k}^{(l)} .
$$

Q.E.D.

Proof of Proposition 1.2.1. It is enough to show that s_{i} equals S_{i}. First, we get

$$
e_{i}^{(a)} f_{i}^{(b)} e_{i}^{(c)} t_{i}^{c-a}=q_{i}^{2 a c-2 a b+a(a-1)-c(c-1)} \frac{\left(e_{i} t_{i}^{-1}\right)^{a}}{[a]_{i}!} f_{i}^{(b)} \frac{\left(e_{i} t_{i}\right)^{c}}{[c]_{i}!} .
$$

Then, we have

$$
s_{\imath}=\Sigma(-1)^{b} q_{2}^{c(c-b)-a(a-b+c)+b+2 a c-2 a b+a(a-1)-c(c-1)} \frac{\left(e_{2} t_{2}^{-1}\right)^{a}}{[a]_{2}!} f_{i}^{(b)} \frac{\left(e_{2} t_{2}\right)^{c}}{[c]_{i}!} .
$$

On the other hand, we have

$$
\begin{aligned}
& c(c-b)-a(a-b+c)+b+2 a c-2 a b+a(a-1)-c(c-1) \\
& \quad=-\frac{a(a-1)}{2}-a-\frac{b(b-1)}{2}-\frac{c(c-1)}{2}+c+\frac{(-a+b-c)(-a+b-c+1)}{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
s_{\imath} u_{k}^{(l)} & =\sum_{a, b, c} \frac{q_{i}^{-a!a-1) / 2}}{[a]_{2}!}\left(q_{\imath}^{-1} e_{2} t_{\imath}^{-1}\right)^{a} \frac{q_{\imath}^{-b(b-1) / 2}}{[b]_{\imath}!} f_{\imath}^{b} \frac{q_{\imath}^{-c(c-1) / 2}}{[c]_{i}!}\left(q_{2} e_{2} t_{2}\right)^{c} q_{i}^{(-a+b-c)(-a+b-c+1) / 2} u_{k}^{(l)} \\
& =S_{i} u_{k}^{(l)}
\end{aligned}
$$

since $k=s=l-k+a-b+c$.
Q.E.D.

We define the endomorphism S_{\imath}^{\prime} of $V(l)$ by

We can prove the next result similarly,

$$
\begin{equation*}
S_{i}^{\prime} u_{k}^{(l)}=(-1)^{l-k} q_{l}^{(l-k)(k+1)} u_{l-k}^{(l)} . \tag{1.2.14}
\end{equation*}
$$

Therefore, $S_{\imath}=S_{\imath}^{\prime}$, and (1.2.13) is another expression of S_{2}.
Let M be an integrable U_{q}-module. M is a direct sum of irreducible $U_{q}\left(s l_{2}\right)_{q}$ modules. So, we regard S_{\imath} as an endomorphism of M.

1.3. Definition of T_{2}

Let $\operatorname{Int}(\mathrm{g}, P)$ be the category of integrable U_{q}-modules, for an object M of $\operatorname{Int}(\mathrm{g}, P)$ let $\Psi(M)$ be the underlying $\boldsymbol{Q}(q)$-vectorspace. Then Ψ is the functor from $\operatorname{Int}(\mathrm{g}, P)$ to the category of $\boldsymbol{Q}(q)$ vector spaces. Let R be the endomorphism ring. Then R contains S_{\imath} as well as U_{q}.

We define the algebra automorphism T_{2} of R by

$$
\begin{equation*}
T_{\imath} x=\operatorname{AdS}_{\imath}(x) \tag{1.3.1}
\end{equation*}
$$

for $x \in U_{q}$.
Proposition 1.3.1. We have

$$
\begin{equation*}
T_{2}\left(e_{2}\right)=-f_{2} t_{2} \tag{1.3.2}
\end{equation*}
$$

$$
\begin{equation*}
T_{i}\left(f_{2}\right)=-t_{i}^{-1} e_{\imath} \tag{1.3.3}
\end{equation*}
$$

$$
\begin{equation*}
T_{l}\left(t_{\jmath}\right)=t_{J} t_{i}^{-a_{i}} \tag{1.3.4}
\end{equation*}
$$

$$
\begin{align*}
& T_{\imath}\left(e_{\jmath}\right)=\sum_{k=0}^{-\sum_{i j}}(-1)^{-a_{2 j}-k} q_{\imath}^{a_{2 j}+k} e_{i}^{(k)} e_{\jmath} e_{i}^{\left(-a_{\imath \jmath}-k\right)} \quad \text { for } \quad i \neq j \tag{1.3.5}\\
& T_{\imath}\left(f_{\jmath}\right)=\sum_{k=0}^{-a_{2 j}}(-1)^{-a_{i j}-k} q_{i}^{-a_{2 j^{-k}}} f_{i}^{\left(-a_{\imath \jmath}-k\right)} f_{\jmath} f_{i}^{(k)} \quad \text { for } \quad i \neq j \tag{1.3.6}
\end{align*}
$$

In particular U_{q} is stable by T_{2}.
Proof. Let $\left\{u_{k}^{(l)}\right\}$ be as in 1.2. Then we have

$$
\begin{aligned}
S_{\imath} e_{\imath} u_{k}^{(l)} & =S_{\imath} e_{i} S_{\imath}^{-1} S_{\imath} u_{k}^{(l)} \\
& =T_{\imath}\left(e_{\imath}\right)(-1)^{l-k} q_{i}^{(l-k)(k+1)} u_{l-k}^{(l)}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{2} e_{2} u_{k}^{(l)} & =[l-k+1]_{2} S_{2} u_{k-1}^{(l)} \\
& =[l-k+1]_{2}(-1)^{l-k+1} q_{2}^{k(l-k+1)} u_{l-k+1}^{(l)} .
\end{aligned}
$$

Therefore $T_{\imath}\left(e_{\imath}\right)=-f_{\imath} t_{\imath}$. Similarly, $T_{\imath}\left(f_{\imath}\right)=-t_{\imath}^{-1} e_{\imath}$ and $T_{\imath}\left(t_{\jmath}\right)=t_{\nu} t_{\imath}^{-a_{2 j}}$. We shall prove (1.3.6).

Lemma 1.3.2. Let

$$
S_{i}^{\prime \prime}=\exp _{q_{i}^{-1}}\left(-f_{2}\right) \exp _{q_{i}^{-1}}\left(q_{2} e_{2} t_{2}\right)
$$

Then we have

$$
\operatorname{Ad}\left(S_{\imath}^{\prime \prime}\right)\left(f_{\jmath} t_{j}^{-1}\right)=q_{\imath}^{-a_{\imath \jmath}\left(a_{\imath \jmath}-1\right) / 2} \operatorname{Ad}\left(\exp _{q_{i}}\left(-q_{i}^{-1} e_{\imath} t_{i}^{-1}\right)\right)\left(\Phi\left(f_{i}^{\left(-a_{\imath j}\right)}\right)\left(f_{\jmath}\right) t_{j}^{-1}\right) .
$$

Proof. Since $\left[q_{2} e_{2} t_{2}, f_{\nu} t_{j}^{-1}\right]=0$, we get

$$
\operatorname{Ad}\left(\exp _{q_{i}^{-1}}^{-1}\left(q_{\imath} e_{\imath} t_{\imath}\right)\right)\left(f_{J} t_{j}^{-1}\right)=f_{J} t_{j}^{-1}
$$

Therefore

$$
\begin{aligned}
\operatorname{Ad}\left(S_{\imath}^{\prime \prime}\right)\left(f_{j} t_{j}^{-1}\right) & =\operatorname{Ad}\left(\exp _{\left.q_{2}^{-1}\left(-f_{\imath}\right)\right)\left(f_{j} t_{j}^{-1}\right)}\right. \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n}(-1)^{n-k} q_{\imath}^{-(n(n-1) / 2)+k\left(n-1+a_{2 j}\right)} f_{i}^{(n-k)} f_{j} f_{i}^{(k)} t_{j}^{-1} \\
& =\sum_{n=0}^{\infty} q_{\imath}^{-(n(n-1) / 2)-n\left(-a_{2 \jmath}-n+1\right)} \Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right) t_{j}^{-1} \\
& =\sum_{n=0}^{-a i j} q_{2}^{(n(n-1) / 2)+n a_{i j}} \Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right) t_{j}^{-1} .
\end{aligned}
$$

By (1.1.3) and Lemma 1.1.1, $\oplus_{k=0}^{-a_{i j}} \boldsymbol{Q}(q) \Phi\left(f_{i}^{(k)}\right)\left(f_{\jmath}\right)$ is a $\left(-a_{\imath \jmath}+1\right)$-dimensional irreducible $U_{q}\left(s l_{2}\right)_{\imath}$-submodule of U_{q}, and f_{j} is a highest weight vector of weight $-a_{2 \jmath}$. Therefore

$$
\begin{equation*}
\Phi\left(e_{i}^{(k)}\right) \Phi\left(f_{i}^{\left(-a_{\imath j}\right)}\right)\left(f_{j}\right)=\Phi\left(f_{i}^{\left(-a_{i j^{-k}}\right)}\right)\left(f_{j}\right) \tag{1.3.7}
\end{equation*}
$$

Then, we have

$$
\begin{aligned}
& \operatorname{Ad}\left(\exp _{q_{i}}\left(-q_{i}^{-1} e_{\imath} t_{i}^{-1}\right)\right)\left(\Phi\left(f_{i}^{\left(-a_{\imath j}\right)}\right)\left(f_{j}\right) t_{j}^{-1}\right) \\
& \quad=\sum_{n=0}^{\infty} \sum_{k=0}^{n}(-1)^{k} q_{i}^{(n(n+1) / 2)+k(n-1)} t_{i}^{-n} e_{i}^{(k)}\left(\Phi\left(f_{i}^{\left(-a_{\imath j}\right)}\right)\left(f_{j}\right)\right) e_{i}^{(n-k)} t_{j}^{-1} \\
& \quad=\sum_{n=0}^{\infty} q_{2}^{(n+1) / 2} \Phi\left(e_{i}^{(n)}\right) \Phi\left(f_{i}^{\left(-a_{i j}\right)}\right)\left(f_{j}\right) t_{j}^{-1} \\
& \quad=\sum_{n=0}^{-a_{2} j} q_{\imath}^{n(n+1) / 2} \Phi\left(f_{i}^{\left(-a_{\imath j}-n\right)}\right)\left(f_{j}\right) t_{j}^{-1} \\
& \quad=\sum_{n=0}^{-a_{2} j} q_{i}^{(n(n-1) / 2)+n a_{2 j}+\left(a_{i j}\left(a_{\imath j}-1\right) / 2\right)} \Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right) t_{j}^{-1} .
\end{aligned}
$$

Q. E. D.

Let

$$
\begin{equation*}
S_{\imath}^{\prime}=\exp _{q_{\imath}^{-1}\left(q_{\imath}^{-1} e_{\imath} t_{i}^{-1}\right) S_{\imath}^{\prime \prime}} \tag{1.3.8}
\end{equation*}
$$

By Lemma 1.3.2, we have

$$
\begin{equation*}
\operatorname{Ad}\left(S_{i}^{\prime}\right)\left(f_{j} t_{j}^{-1}\right)=q_{\imath}^{-a_{2 j}\left(a_{\imath \jmath}-1\right) / 2} \Phi\left(f_{i}^{\left(-a_{\imath \jmath}\right)}\right)\left(f_{\jmath}\right) t_{j}^{-1} . \tag{1.3.9}
\end{equation*}
$$

On the other hand, we get

$$
f_{j} t_{j}^{-1}=q_{\imath}^{-a_{\imath \jmath}\left(a_{2 j}-1\right) / 2} q_{2}^{h_{2}\left(h_{2}+1\right) / 2} f_{,} t_{j}^{-1} t_{2}^{a_{\imath}} \jmath q_{2}^{-h_{\imath}\left(h_{\imath}+1\right) / 2} .
$$

Therefore,

$$
\begin{aligned}
\operatorname{Ad}\left(S_{i}^{\prime}\right)\left(f_{j} t_{j}^{-1}\right) & =q_{\imath}^{-a_{i j}\left(a_{\imath \jmath}-1\right) / 2} \operatorname{Ad}\left(S_{\imath}\right)\left(f_{j} t_{j}^{-1} t_{\imath}^{a_{\imath \jmath}}\right) \\
& =q_{i}^{-a_{2 j}\left(a_{\imath \jmath}-1\right) / 2} \operatorname{Ad}\left(S_{\imath}\right)\left(f_{\jmath}\right) t_{j}^{-1} .
\end{aligned}
$$

This and (1.3.9) imply (1.3.6).
Introduce the \boldsymbol{Q}-algebra anti-automorphism ω by

$$
\begin{aligned}
\omega e_{2} & =f_{2} \\
\omega f_{\imath} & =e_{\imath} \\
\omega t_{\imath} & =t_{\imath}^{-1} \\
\omega q & =q^{-1} .
\end{aligned}
$$

Applying ω to (1.3.6), we obtain (1.3.5).
Q.E. D.

This proposition immediately imply the next corollary.

Corollary 1.3.3.

$$
* T_{\imath} *=T_{2}^{-1} .
$$

1.4. The braid group action

Proposition 1.4.1. $\left\{S_{\imath} ; i \in I\right\}$ satisfies the braid relations for the Weyl group
W of g .
Proof. In case of $a_{\imath \jmath}=a_{\jmath \imath}=-1$, we have to prove

$$
S_{\imath} S_{\jmath} S_{\imath}=S_{\jmath} S_{i} S_{\jmath} .
$$

This is equivalent to

$$
S_{\jmath}=\left(\operatorname{Ad} S_{2}\right)\left(\operatorname{Ad} S_{\jmath}\right)\left(S_{i}\right)=T_{\imath} T_{\jmath}\left(S_{\imath}\right)
$$

By (1.3.2)-(1.3.6), we have

$$
\begin{align*}
& T_{\imath} T_{\jmath}\left(f_{\imath}\right)=f_{\jmath} \\
& T_{\imath} T_{\jmath}\left(e_{i}\right)=e_{\jmath} \tag{1.4.1}\\
& T_{\imath} T_{\jmath}\left(t_{\imath}\right)=t_{\jmath} .
\end{align*}
$$

Therefore we get

$$
\begin{aligned}
& T_{\imath} T_{\jmath}\left(\exp _{\left.q_{2}^{-1}\left(q_{2}^{-1} e_{2} t_{2}^{-1}\right) \exp _{q_{i}^{-1}}\left(-f_{\imath}\right) \exp _{q_{2}^{-1}}\left(q_{2} e_{2} t_{2}\right) q_{i}^{h_{i}\left(h_{2}+1\right) / 2}\right)}\right. \\
& =\exp _{q_{i}^{-1}}\left(q_{2}^{-1} T_{\imath} T_{\jmath}\left(e_{2} t_{\imath}^{-1}\right)\right) \exp _{q_{\imath}^{-1}}\left(-T_{\imath} T_{\jmath}\left(f_{2}\right)\right) \exp _{q_{\imath}^{-1}}\left(q_{2} T_{\imath} T_{\jmath}\left(e_{\imath} t_{2}\right)\right) q_{\imath}^{h_{\jmath}\left(h_{\jmath}+1\right) / 2} \\
& =\exp _{q_{j}^{-1}}\left(q_{j}^{-1} e_{j} t_{j}^{-1}\right) \exp _{q_{j}^{-1}}\left(-f_{j}\right) \exp _{q_{j}^{-1}}\left(q_{j} e_{j} t_{j}\right) q_{j}^{h_{\imath}\left(h_{j}+1\right) / 2} \\
& =S_{j} \text {. }
\end{aligned}
$$

The remaining cases are similarly proved by the corresponding identities to (1.4.1) due to Lusztig [4].
Q.E.D.

This proposition immediately implies the following result.
Corollary 1.4.2 ([5]). $\left\{T_{\imath} ; i \in I\right\}$ satisfies the braid relations.

$$
\text { §2. } T_{\imath} U_{q}^{-} \cap U_{q}^{-}=\operatorname{Ker} e_{\imath}^{\prime}
$$

2.1. Proof of $T_{\imath} U_{q}^{-} \cap U_{q}^{-}=$Ker e_{2}^{\prime}

Let U_{q}^{-}be the subalgebla over $\boldsymbol{Q}(q)$ of U_{q} generated by f_{\imath}.
Lemma 2.1.1 ([1]. For any $P \in U_{\bar{q}}^{-}$, there exist unique $Q, R \in U_{q}^{-}$such that

$$
\left[e_{\imath}, P\right]=\frac{t_{\imath} Q-t_{\imath}^{-1} R}{q_{\imath}-q_{i}^{-1}} .
$$

By this lemma, if we set $e_{i}^{\prime \prime}(P)=Q$ and $e_{i}^{\prime}(P)=R$, then e_{i}^{\prime} and $e_{i}^{\prime \prime}$ are endomorphism of $U_{\bar{q}}$. Moreover, we get
and

$$
\begin{aligned}
& e_{i}^{\prime \prime} f_{\jmath}=q_{i}^{\alpha_{i j}} f_{\jmath} e_{i}^{\prime \prime}+\delta_{\imath \jmath} \\
& e_{i}^{\prime} f_{\jmath}=q_{i}^{-a_{i j}} f_{\jmath} e_{i}^{\prime}+\delta_{i j}
\end{aligned}
$$

Here f, acts on U_{q}^{-}by the left multiplication.

The aim of this section is to prove the following result.

Proposition 2.1.2.

$$
\begin{equation*}
T_{\imath}\left(U_{q}^{-}\right) \cap U_{q}^{-}=\operatorname{Ker} e_{i}^{\prime} . \tag{2.1.1}
\end{equation*}
$$

The first step is the next lemma.

Lemma 2.1.3.

$$
\begin{equation*}
f_{\imath}\left(U_{q}^{-}\right) \cap T_{\imath}\left(U_{q}^{-}\right)=\{0\} . \tag{2.1.2}
\end{equation*}
$$

Proof. Let $u \in f_{i}\left(U_{q}^{-}\right) \cap T_{\imath}\left(U_{q}^{-}\right)$. Then $T_{\imath}^{-1} u \in U_{q}^{-}$. On the other hand, choosing $x \in U_{q}^{-}$such that $u=f_{2} x$, we have

$$
T_{\imath}^{-1} u=-e_{\imath} t_{\imath} T_{\imath}^{-1} x .
$$

Since $e_{\imath} U_{q} \cap U_{q}^{-}=0$, we obtain $u=0$.
Q.E.D.

Lemma 2.1.4. For $i \nLeftarrow j$

$$
\begin{equation*}
f_{J} f_{i}^{(n)}=\sum_{k=0}^{n} q_{i}^{k\left(n-k-a_{i j}\right)} f_{i}^{(k)} \Phi\left(f_{i}^{(n-k)}\right)\left(f_{j}\right) . \tag{2.1.3}
\end{equation*}
$$

Proof. By the definition of Φ we have

$$
\Phi\left(f_{\imath}\right)\left(\Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right)\right)=\Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right) f_{2}-f_{2} t_{2} \Phi\left(f_{2}^{(n)}\right)\left(f_{j}\right) t_{2}^{-1} .
$$

Therefore we have

$$
\begin{equation*}
\Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right) f_{i}=[n+1]_{\imath} \Phi\left(f_{i}^{(n+1)}\right)\left(f_{j}\right)+q_{i}^{2 n-a_{i j}} f_{\imath} \Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right) . \tag{2.1.4}
\end{equation*}
$$

We shall show this formula by induction on n,

$$
\begin{aligned}
f_{\jmath} f_{i}^{(n+1)}= & \frac{1}{[n+1]_{i}}\left(\sum_{k=0}^{n} q_{i}^{k\left(n-k-a_{i j}\right)} f_{i}^{(k)} \Phi\left(f_{i}^{(n-k)}\right)\left(f_{j}\right)\right) f_{2} \\
= & \frac{1}{[n+1]_{i}} \sum_{k=0}^{n} q_{i}^{k\left(n-k-a_{i j}\right)} f_{i}^{(k)}\left([n-k+1]_{i} \Phi\left(f_{i}^{(n-k+1)}\right)\left(f_{j}\right)\right. \\
& +q_{i}^{\left.2(n-k)-a_{i j} f_{i} \Phi\left(f_{i}^{(n-k)}\right)\left(f_{\jmath}\right)\right)} \\
= & \frac{1}{[n+1]_{i}} \sum_{k=0}^{n} q_{i}^{k\left(n-k-a_{i j}\right)}[n-k+1]_{i} f_{i}^{(k)} \Phi\left(f_{i}^{(n-k+1)}\right)\left(f_{j}\right) \\
& +\frac{1}{[n+1]_{i}} \sum_{k=1}^{n+1} q_{i}^{k\left(n-k-a_{i j}\right)+n+1}[k]_{i} f_{i}^{(k)} \Phi\left(f_{i}^{(n-k+1)}\right)\left(f_{j}\right) \\
= & \sum_{k=0}^{n+1} q_{i}^{k\left(n+1-k-a_{i j)}\right.} f_{i}^{(k)} \Phi\left(f_{i}^{(n-k+1)}\right)\left(f_{j}\right) .
\end{aligned}
$$

Q.E.D.

Corollary 2.1.5.

$$
\begin{equation*}
U_{q}^{-}=f_{i}\left(U_{q}^{-}\right)+M \tag{2.1.5}
\end{equation*}
$$

where M is the $\boldsymbol{Q}(q)$-subalgebra of U_{q}^{-}generated by $\Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right)$ for $i \neq j$ and $n \geqq 0$.

Lemma 2.1.6. For $i \neq j$

$$
\begin{equation*}
T_{i}^{-1} \Phi\left(f_{i}^{(n)}\right)\left(f_{\jmath}\right)=\left(\Phi\left(f_{i}^{\left(-a_{i j}-n\right)}\right)\left(f_{j}\right)\right)^{*} \tag{2.1.6}
\end{equation*}
$$

Proof. We shall show this formula by induction on n,

$$
\begin{aligned}
& T_{i}^{-1} \Phi\left(f_{i}^{(n+1)}\right)\left(f_{\jmath}\right) \\
& =\frac{1}{[n+1]_{\imath}} T_{\imath}\left(\Phi\left(f_{\imath}\right) \Phi\left(f_{i}^{(n)}\right)\left(f_{\jmath}\right)\right) \\
& =\frac{1}{[n+1]_{\imath}} T_{\imath}\left(\Phi\left(f_{i}^{(n)}\right)\left(f_{\jmath}\right) f_{\imath}-q_{\imath}^{-2 n-a_{i j}} f_{i} \Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right)\right) \\
& =\frac{1}{[n+1]_{\imath}}\left(\left(\Phi\left(f_{i}^{\left(-a_{i j}-n\right)}\right)\left(f_{\jmath}\right)\right) *\left(T_{\imath} f_{\imath}\right) *-q_{\imath}^{\left.-2 n-a_{i j}\left(T_{\imath} f_{i}\right) *\left(\Phi\left(f_{i}^{\left(-a_{\imath j}-n\right)}\right)\left(f_{\jmath}\right)\right)^{*}\right)}\right. \\
& =\frac{1}{[n+1]_{\imath}}\left(-t_{\imath}^{-1} e_{\imath} \Phi\left(f_{i}^{\left(-a_{\imath j}-n\right)}\right)\left(f_{\jmath}\right)+q_{\imath}^{-2 n-a_{i j}} \Phi\left(f_{i}^{\left(-a_{\imath j}-n\right)}\right)\left(f_{\jmath}\right) t_{\imath}^{-1} e_{i}\right)^{*} \\
& =\frac{1}{[n+1]_{\imath}}\left(\Phi\left(e_{\imath}\right) \Phi\left(f_{\imath}^{\left(-a_{i j}-n\right)}\right)\left(f_{\jmath}\right)\right)^{*} \\
& =\left(\Phi\left(f_{i}^{\left(-a_{\imath j}-n-1\right)}\right)\left(f_{\jmath}\right)\right)^{*} .
\end{aligned}
$$

Corollary 2.1.7. For $i \neq j$,

$$
\begin{equation*}
\Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right) \in T_{i}\left(U_{q}^{-}\right) \cap U_{q}^{-} \tag{2.1.7}
\end{equation*}
$$

Proof. U_{-}^{-}is stable under *. Lemma 2.1.6 immediately implies this corollary.
Q.E.D.

Lemma 2.1.8. For $i \neq j$

$$
\begin{equation*}
e_{i}^{\prime} \Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right)=q_{i}^{-2 n-a_{i j}} \Phi\left(f_{i}^{(n)}\right)\left(f_{j}\right) e_{i}^{\prime} . \tag{2.1.8}
\end{equation*}
$$

Proof. First we have

$$
e_{i}^{\prime} f_{i}^{(n)}=q_{i}^{-2 n} f_{i}^{(n)} e_{i}^{\prime}+q_{i}^{1-n} f_{i}^{(n-1)}
$$

Then, we have

$$
\begin{aligned}
e_{i}^{\prime} f_{i}^{(n-k)} f_{j} f_{i}^{(k)}= & q_{i}^{-2 n-a_{i j}} f_{i}^{(n-k)} f_{j} f_{i}^{(k)} e_{i}^{\prime}+q_{2}^{-2 n+k+1-a_{i j}} f_{i}^{(n-k)} f_{j} f_{i}^{(k-1)} \\
& +q_{i}^{-n+k+1} f_{i}^{(n-k-1)} f_{j} f_{i}^{(k)} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
e_{i}^{\prime} \Phi\left(f_{i}^{(n)}\right)\left(f_{\jmath}\right) & =\sum_{k=0}^{n}(-1)^{n-k} q_{i}^{(n-k)\left(-a_{i j^{-n+1}}\right.} e_{i}^{\prime} f_{i}^{(n-k)} f_{j} f_{i}^{(k)} \\
& =q_{i}^{-2 n-a_{i j}} \Phi\left(f_{i}^{(n)}\right)\left(f_{\jmath}\right) e_{i}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=0}^{n}(-1)^{n-k} q_{2}^{(n-k)\left(-a_{2}-n+1\right)} \\
& \cdot\left(q_{2}^{-2 n+k+1-a_{i j}} f_{2}^{(n-k)} f_{\jmath} f_{i}^{(k-1)}+q_{2}^{-n+k+1} f_{i}^{(n-k-1)} f_{j} f_{2}^{(k)}\right) .
\end{aligned}
$$

It is easy to show that the second term is 0 .
Q.E.D.

Lemma 2.1.9.

$$
M=\operatorname{Ker} e_{i}^{\prime} .
$$

Proof. By Lemma 2.1.8, we have

$$
\begin{equation*}
M \subset \operatorname{Ker} e_{i}^{\prime} . \tag{2.1.10}
\end{equation*}
$$

We recall the result in $[1]$,

$$
\begin{equation*}
U_{q}^{-}=\operatorname{Ker} e_{i}^{\prime} \oplus f_{i}\left(U_{q}^{-}\right) . \tag{2.1.11}
\end{equation*}
$$

Then this lemma follows from Corollary 2.1.5.
Q.E.D.

Proof of Proposition 2.1.2. By Lemmas 2.1.6 and 2.1.9, we have
$\operatorname{Ker} e_{i}^{\prime} \subset T_{2}\left(U_{q}^{-}\right) \cap U_{q}^{-}$.
Then this proposition follows from Lemma 2.1.3, (2.1.10) and (2.1.12).
Q.E.D.

§ 3. Crystals

3.1. Definition of crystal

Definition 3.1.1. A crystal B is a set with

$$
\begin{equation*}
\text { maps wt: } B \rightarrow P, \varepsilon_{2}: B \rightarrow \boldsymbol{Z} \cup\{-\infty\} \text { and } \varphi_{2}: B \rightarrow \boldsymbol{Z} \cup\{-\infty\} \text {, } \tag{3.1.1}
\end{equation*}
$$

$$
\tilde{e}_{2}: B \longrightarrow B \cup\{0\}, \quad \tilde{f}_{i}: B \longrightarrow B \cup\{0\} .
$$

They are subject to the following axioms:

$$
\begin{equation*}
\varphi_{\imath}(b)=\varepsilon_{i}(b)+\left\langle h_{\imath}, w t(b)\right\rangle . \tag{C1}
\end{equation*}
$$

(C2) If $b \in B$ and $\tilde{e}_{i} b \in B$ then,

$$
w t\left(\tilde{e}_{i} b\right)=w t(b)+\alpha_{\imath}, \varepsilon_{\imath}\left(\tilde{e}_{\imath} b\right)=\varepsilon_{\imath}(b)-1 \text { and } \varphi_{\imath}\left(\tilde{e}_{i} b\right)=\varphi_{\imath}(b)+1 .
$$

(C2') If $b \in B$ and $\tilde{f}_{i} b \in B$, then

$$
w t\left(\tilde{f}_{i} b\right)=w t(b)-\alpha_{i}, \varepsilon_{\imath}\left(\tilde{f}_{\imath} b\right)=\varepsilon_{\imath}(b)+1 \text { and } \varphi_{\imath}\left(\tilde{f}_{i} b\right)=\varphi_{\imath}(b)-1 .
$$

(C3) For $b, b^{\prime} \in B$ and $i \in I, b^{\prime}=\tilde{e}_{2} b$ if and only if $b=\tilde{f}_{2} b^{\prime}$.
(C4) \quad For $b \in B$, if $\varphi_{2}(b)=-\infty$, then $\tilde{e}_{2} b=\tilde{f}_{2} b=0$.

For two crystals B_{1} and B_{2}, a morphism ψ from B_{1} to B_{2} is a map $B_{1} \rightarrow$ $B_{2} \cup\{0\}$ that satisfies the following conditions:

$$
\begin{equation*}
\text { If } b \in B_{1} \text { and } \psi(b) \in B_{2}, \text { then } w t(\psi(b))=w t(b), \varepsilon_{\imath}(\psi(b)) \tag{3.1.3}
\end{equation*}
$$

$=\varepsilon_{\imath}(b)$, and $\varphi_{\imath}(\phi(b))=\varphi_{\imath}(b)$,
For $b \in B_{1}$, we have $\psi\left(\tilde{e}_{2} b\right)=\tilde{e}_{2} \psi(b)$ provided $\psi(b)$ and $\psi\left(\tilde{e}_{i} b\right) \in B_{2}$, For $b \in B_{1}$, we have $\psi\left(\tilde{f}_{2} b\right)=\tilde{f}_{i} \psi(b)$ provided $\psi(b)$ and $\psi\left(\tilde{f}_{i} b\right) \in B_{2}$.
A morphism $\psi: B_{1} \rightarrow B_{2}$ is called strict, if it commutes with all \tilde{e}_{2} and \tilde{f}_{2}.
A morphism $\psi: B_{1} \rightarrow B_{2}$ is called an embedding, if ψ induces an injective $\operatorname{map} B_{1} \cup\{0\} \rightarrow B_{2} \cup\{0\}$.

For two crystals B_{1} and B_{2}, we define its tensor product $B_{1} \otimes B_{2}$ as follows:

$$
\begin{aligned}
& B_{1} \otimes B_{2}=\left\{b_{1} \otimes b_{2} ; b_{1} \in B_{1} \text { and } b_{2} \in B_{2}\right\} \\
& \varepsilon_{\imath}\left(b_{1} \otimes b_{2}\right)=\max \left\{\varepsilon_{i}\left(b_{1}\right), \varepsilon_{i}\left(b_{2}\right)-w t_{i}\left(b_{1}\right)\right\} \\
& \varphi_{2}\left(b_{1} \otimes b_{2}\right)=\max \left\{\varphi_{2}\left(b_{1}\right)+w t_{i}\left(b_{2}\right), \varphi_{2}\left(b_{2}\right)\right\} \\
& w t\left(b_{1} \otimes b_{2}\right)=w t\left(b_{1}\right)+w t\left(b_{2}\right)
\end{aligned}
$$

Here $w t_{2}(b)=\left\langle h_{2}, w t(b)\right\rangle$. The action of \tilde{e}_{i} and \tilde{f}_{i} are defined by

$$
\begin{aligned}
& \tilde{e}_{\imath}\left(b_{1} \otimes b_{2}\right)=\left\{\begin{array}{lll}
\tilde{e}_{i} b_{1} \otimes b_{2} & \text { if } & \varphi_{\imath}\left(b_{1}\right) \geqq \varepsilon_{\imath}\left(b_{2}\right) \\
b_{1} \otimes \tilde{e}_{i} b_{2} & \text { if } & \varphi_{\imath}\left(b_{1}\right)<\varepsilon_{\imath}\left(b_{2}\right)
\end{array}\right. \\
& \tilde{f}_{i}\left(b_{1} \otimes b_{2}\right)=\left\{\begin{array}{lll}
\tilde{f}_{i} b_{1} \otimes b_{2} & \text { if } & \varphi_{i}\left(b_{1}\right)>\varepsilon_{i}\left(b_{2}\right) \\
b_{1} \otimes \tilde{f}_{i} b_{2} & \text { if } & \varphi_{i}\left(b_{1}\right) \leqq \varepsilon_{\imath}\left(b_{2}\right)
\end{array}\right.
\end{aligned}
$$

Example 3.1.2. For $i \in I, B_{\imath}$ is the crystal defined as follows

$$
\begin{gathered}
B_{\imath}=\left\{b_{\imath}(n) ; n \in \boldsymbol{Z}\right\} \\
w t\left(b_{i}(n)\right)=n \\
\varphi_{i}\left(b_{i}(n)\right)=n, \quad \varepsilon_{i}\left(b_{i}(n)\right)=-n \\
\varphi_{\jmath}\left(b_{i}(n)\right)=\varepsilon_{\jmath}\left(b_{i}(n)\right)=-\infty \quad \text { for } \quad i \neq j
\end{gathered}
$$

We define the action of \tilde{e}_{2} and \tilde{f}_{i} by

$$
\begin{gathered}
\tilde{e}_{i}\left(b_{i}(n)\right)=b_{\imath}(n+1) \\
\tilde{f}_{i}\left(b_{i}(n)\right)=b_{i}(n-1) \\
\tilde{e}_{\jmath}\left(b_{\imath}(n)\right)=\tilde{f}_{\jmath}\left(b_{\imath}(n)\right)=0 \quad \text { for } \quad i \neq j
\end{gathered}
$$

We write b_{i} for $b_{i}(0)$.
Example 3.1.3. For $\lambda \in P_{+}, B(\lambda)$ is the crystal associated with the crystal base of the simple module with highest weight λ. The unique element of $B(\lambda)$ of weight λ is denoted by u_{2}.

Example 3.1.4. $B(\infty)$ is the crystal associated with the crystal base of U_{q}^{-}. We set $\varepsilon_{i}(b)=\max \left\{k \geqq 0 ; \tilde{e}_{i}^{k} b \pm 0\right\}, \varphi_{2}(b)=\varepsilon_{\imath}(b)+\left\langle h_{\imath}, w t(b)\right\rangle$. The unique element of $B(\infty)$ of weight 0 is denoted by u_{∞}.

3.2. Some results

Theorem 3.2. ([3]).

$$
\begin{equation*}
B(\infty)^{*}=B(\infty) . \tag{3.2.1}
\end{equation*}
$$

We define the operators $\tilde{e}_{2}^{*}, \tilde{f}_{i}^{*}$ of U_{q}^{-}by

$$
\begin{equation*}
\tilde{e}_{i}^{*}=* \tilde{e}_{2} *, \quad \text { and } \quad \tilde{f}_{i}^{*}=* \tilde{f}_{i} * . \tag{3.2.2}
\end{equation*}
$$

Theorem 3.2.2 ([3]). 1. For any i, there exists a unique strict embedding of crystals

$$
\Psi_{i}: B(\infty) \subset B(\infty) \otimes B_{2}
$$

that sends u_{∞} to $u_{\infty} \otimes b_{2}$.
2. If $\Psi_{\imath}(b)=b^{\prime} \otimes \tilde{f}_{2}^{n} b_{2}(n \geqq 0)$, then $\varepsilon_{2}\left(b^{*}\right)=n, \varepsilon_{\imath}\left(b^{*} *\right)=0$ and

$$
\begin{gather*}
\Psi_{\imath}\left(\tilde{e}_{\imath}^{*} b\right)=\left\{\begin{array}{lll}
b^{\prime} \otimes \tilde{f}_{\imath}^{n-1} b_{2} & \text { if } & n \geqq 0 \\
0 & \text { if } & n=0
\end{array}\right. \tag{3.2.3}\\
\Psi_{\imath}\left(\tilde{f}_{\imath}^{*} b\right)=b^{\prime} \otimes \tilde{f}_{\imath}^{n+1} b_{\imath} \tag{3.2.4}
\end{gather*}
$$

3. Im $\Psi_{i}=\left\{b \otimes \tilde{f}_{\imath}^{n} b_{\imath}: b \in B(\infty), \varepsilon_{\imath}\left(b^{*}\right)=0, n \geqq 0\right\}$.
3.3. Action on $L(\lambda)$

Lemma 3.3.1 ([3]). For $b \in B(\infty)$

$$
\begin{align*}
& f_{i}^{(a)} G(b) \equiv\left[\begin{array}{c}
\varepsilon_{\imath}(b)+a \\
a
\end{array}\right]_{i} G\left(\tilde{f}_{i}^{a} b\right) \bmod f_{\imath}^{a+1} U_{q}^{-} \tag{3.3.1}\\
& G(b) f_{i}^{(a)} \equiv\left[\begin{array}{c}
\varepsilon_{\imath}\left(b^{*}\right)+a \\
a
\end{array}\right]_{i} G\left(\tilde{f}_{i}^{* a} b\right) \bmod U_{q}^{-} f_{i}^{a+1} . \tag{3.3.2}
\end{align*}
$$

Let $\lambda \in P_{+}$, and let $V(\lambda)$ be the irreducible U_{q}-module generated by the highest weight vector u_{λ} of highest weight λ. For $w \in W$, let us denote by $u_{w \lambda}$ the global base of weight $w \lambda$. Then we have

$$
\begin{equation*}
u_{w \lambda}=u_{\lambda} \quad \text { if } \quad w=1 . \tag{3.3.3}
\end{equation*}
$$

If $w=s_{i} w^{\prime}>w^{\prime}$, then we have

$$
\begin{equation*}
u_{w \lambda}=f_{i}^{(c)} u_{w^{\prime} \lambda} \quad \text { where } \quad c=\left\langle h_{\imath}, w \lambda\right\rangle . \tag{3.3.4}
\end{equation*}
$$

Lemma 3.3.2. For $b \in B(\infty)$

$$
\begin{equation*}
G(b) u_{w \lambda}=G\left(\tilde{f}_{\lambda}^{* c} b\right) u_{w^{\prime} \lambda} . \tag{3.3.5}
\end{equation*}
$$

Proof. Note that $f_{\imath} u_{w^{2}}=0$ and $f_{i}^{1+c} u_{w^{\prime} \lambda}=0$. By Lemma 3.3.1,

$$
\begin{aligned}
G(b) u_{w \lambda} & =G(b) f_{i}^{(c)} u_{w^{\prime} \lambda} \\
& =\left(\left[\begin{array}{c}
\varepsilon_{\imath}\left(b^{*}\right)+c \\
c
\end{array}\right]_{i} G\left(\tilde{f}_{i}^{* c} b\right)+U_{q}^{-} f_{i}^{++1}\right) u_{w^{\prime} \lambda} \\
& =\left[\begin{array}{c}
\varepsilon_{i}\left(b^{*}\right)+c \\
c
\end{array}\right]_{i} G\left(\tilde{f}_{i}^{* c} b\right) u_{w^{\prime} \lambda} .
\end{aligned}
$$

If $\varepsilon_{i}\left(b^{*}\right)=0$, it is obvious. If $\varepsilon_{i}\left(b^{*}\right) \neq 0$, then we have

$$
\begin{equation*}
G(b) u_{w \lambda} \in U_{q}^{-} f_{i} u_{w \lambda}=0 \tag{3.3.6}
\end{equation*}
$$

and

$$
G\left(\tilde{f}_{i}^{* c} b\right) u_{w^{\prime} \lambda} \in U_{q}^{-} f_{i}^{c+1} u_{w^{\prime} \lambda}=0
$$

since $G(b) \in U_{q}^{-} f_{i}^{\varepsilon_{i}(b *)}$ and $\varepsilon_{i}\left(\left(\tilde{f}_{i}^{* c} b\right)^{*}\right)=\varepsilon_{i}\left(b^{*}\right)+c$.
Q.E. D.

Corollary 3.3.3. Let $\lambda \in P_{+}, P \in L(\infty)$ and $b \in B(\infty)$ such that $b \equiv P \bmod q L(\infty)$.
Then we have

$$
\begin{equation*}
P u_{s_{i} \lambda} \equiv G\left(\tilde{f}_{1}^{*\left(h_{i}, \lambda\right\rangle}\right) u_{\lambda} \bmod q L(\lambda) . \tag{3.3.7}
\end{equation*}
$$

Proposition 3.3.4.

$$
\begin{equation*}
T_{i}(P) u_{\lambda} \in L(\lambda) \tag{3.3.8}
\end{equation*}
$$

and
(3.3.9) $\quad T_{\imath}(P) u_{\lambda} \equiv \begin{cases}\tilde{e}_{i}^{m} G\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right) u_{\lambda} & \text { if } \varphi\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right)+\left\langle h_{i}, \lambda\right\rangle=0 \\ 0 & \text { if } \varphi_{2}\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right)+\left\langle h_{i}, \lambda\right\rangle \neq 0\end{cases}$
where $\left.m=\varepsilon_{i}\left(\tilde{f}_{i}^{*(n i}, \lambda\right\rangle b\right)$.
Proof. We recall (1.2.4)

$$
S_{i} u_{k}^{(l)}=(-1)^{l-k} q_{i}^{(l-k)(k+1)} u_{l-k}^{(l)}
$$

So, $L(\lambda)$ and $L(\lambda) / q L(\lambda)$ are stable by S_{i}, and for $b \in B(\lambda)$

$$
S_{\imath} b=\left\{\begin{array}{lll}
\tilde{e}_{i}^{\epsilon_{i}(b)} b & \text { if } & \varphi_{i}(b)=0 \tag{3.3.10}\\
0 & \text { if } & \varphi_{i}(b) \neq 0
\end{array}\right.
$$

In particular,

$$
S_{i} P u_{s_{i} \lambda} \equiv \begin{cases}\left.\tilde{e}_{i}^{m} G\left(\tilde{f}_{i}^{*\left\langle h_{i}\right.}, \lambda\right\rangle b\right) u_{\lambda} & \text { if } \varphi_{i}\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right)+\left\langle h_{i}, \lambda\right\rangle=0 \tag{3.3.11}\\ 0 & \text { if } \varphi_{i}\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right)+\left\langle h_{i}, \lambda\right\rangle \neq 0 .\end{cases}
$$

On the other hand, by (3.3.10)

$$
\begin{aligned}
S_{\imath} P u_{s_{i} \lambda} & =T_{\imath}(P) S_{\imath} u_{s_{i} \lambda} \\
& =T_{\imath}(P) u_{\lambda} .
\end{aligned}
$$

Therefore, we have (3.3.8) and (3.3.9).
Q.E.D.

3.4. Action on $L(\infty)$

Let $b \in B(\infty)$ and $\lambda \in P_{+}$.
Lemma 3.4.1. $G(b) u_{\lambda} \neq 0$ if and only if $\varepsilon_{i}\left(b^{*}\right) \leqq\left\langle h_{i}, \lambda\right\rangle$ for any i.
Proof.

$$
\left\{P \in U_{q}^{-} ; P u_{\lambda}=0\right\}=\sum_{i} U_{q}^{-} f_{i}^{1+\left\langle\left\langle h_{i}, \lambda\right\rangle\right.}
$$

and

$$
U_{q}^{-} f_{\imath}^{a}=\underset{\varepsilon_{i}(b *) \geq a}{\oplus} \boldsymbol{Q}(q) G(b) .
$$

So, we have

$$
\left\{P \in U_{q}^{-} ; P u_{\lambda}=0\right\}=\sum_{i} \varepsilon_{\left.s_{i}\left(b^{*}\right) \gg h_{i}, \lambda\right\rangle} \boldsymbol{Q}(q) G(b) .
$$

Q.E.D.

Lemma 3.4.2. ([2]).

$$
\varepsilon_{\jmath}\left(\tilde{f}_{i}^{a} b\right) \leqq \varepsilon_{\jmath}(b) \quad \text { for } \quad i \neq j .
$$

Now, let us assume that $\left\langle h_{2}, \lambda\right\rangle$ is sufficiently large for any i.
Lemma 3.4.3. If $\varepsilon_{i}\left(b^{*}\right)=0$, then $G\left(\tilde{f}_{i}^{*\left\langle h_{i} \cdot \lambda\right\rangle}\right) u_{i} \neq 0$.
Proof. By Lemma 3.4.1, $G\left(\tilde{f}_{i}^{*\left(h_{i}, \lambda\right\rangle} b\right) u_{\lambda} \neq 0$ if and only if $\varepsilon_{j}^{*}\left(\tilde{f}_{i}^{*\left(h_{i}, \lambda\right\rangle} b\right) \leqq$ $\left\langle h_{j}, \lambda\right\rangle$ for any j, where we set $\varepsilon_{i}^{*}(b)=\varepsilon_{\imath}\left(b^{*}\right)$ for $b \in B(\infty)$. If $i=j$, then

$$
\left.\varepsilon_{j}^{*}\left(\tilde{f}_{i}^{*\langle h i}, \lambda\right\rangle b\right)=\left\langle h_{i}, \lambda\right\rangle+\varepsilon_{i}^{*}(b)=\left\langle h_{i}, \lambda\right\rangle .
$$

If $i \neq j$, then

$$
\varepsilon_{j}^{*}\left(\tilde{f}_{i}^{*}{ }^{* h} i, \lambda_{>} b\right) \leqq \varepsilon_{j}^{*}(b) \leqq \lambda_{j}
$$

since $\lambda \gg 0$.
Q.E. D.

Let b be an element of $B(\infty)$ and let us assume that $P=G(b)$ belongs to $T_{i}^{-1} U_{q}^{-} \cap U_{q}^{-}$.

Lemma 3.4.4.

$$
\begin{equation*}
G\left(\tilde{f}_{i}^{*\left(h_{i}, \lambda\right\rangle} b\right) u_{\lambda} \neq 0 . \tag{3.4.2}
\end{equation*}
$$

Proof. Since $T_{\imath}^{-1}=* T_{2} *$ and U_{q}^{-}is stable under *

$$
\begin{aligned}
T_{\bar{i}}^{-1}\left(U_{\bar{q}}^{-}\right) \cap U_{q}^{-} & =\left(T_{\imath}\left(U_{q}^{-}\right) \cap U_{\bar{q}}^{-}\right)^{*} \\
& =\left(\operatorname{Ker} e_{i}^{\prime}\right)^{*} .
\end{aligned}
$$

Then we have $e_{i}^{\prime} P^{*}=0$, and therefore $\tilde{e}_{i} P^{*}=0$. This implies

$$
\begin{equation*}
\varepsilon_{i}^{*}(b)=0 . \tag{3.4.3}
\end{equation*}
$$

By Lemma 3.4.3, we have (3.4.2).
Q.E. D.

Lemma 3.4.5.

$$
\begin{equation*}
T_{\imath}(P) u_{\lambda} \neq 0 . \tag{3.4.4}
\end{equation*}
$$

Proof. By Proposition 3.3.4, it is enough to show that $\varphi_{i}\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right)+\left\langle h_{i}, \lambda\right\rangle$ $=0$. We have

$$
\begin{equation*}
\varphi_{i}\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right)+\left\langle h_{i}, \lambda\right\rangle=\varepsilon_{i}\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right)+\left\langle h_{i}, w t(b)-\lambda\right\rangle . \tag{3.4.5}
\end{equation*}
$$

Since $\varepsilon_{i}^{*}(b)=0, \Psi_{i}(b)=b \otimes b_{i}$ and $\left.\Psi_{i}\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle}\right)=b \otimes \tilde{f}_{i}^{\langle h i}, \lambda\right\rangle b_{l}$,

$$
\begin{aligned}
\varepsilon_{i}\left(\tilde{f}_{i}^{*\left\langle h_{i}, \lambda\right\rangle} b\right) & =\varepsilon_{i}\left(b \otimes \tilde{f}_{i}^{\left\langle h_{i}, \lambda\right\rangle} b_{i}\right) \\
& \left.=\max \left\{\varepsilon_{i}(b), \varepsilon_{i}\left(\tilde{f}_{i}^{\ll h_{i}}, \lambda\right\rangle b_{i}\right)-\left\langle h_{i}, w t(b)\right\rangle\right\} \\
& =\max \left\{\varepsilon_{i}(b),\left\langle h_{i}, \lambda\right\rangle-\left\langle h_{i}, w t(b)\right\rangle\right\}
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
\varepsilon_{i}\left(\tilde{f}_{2}^{*\left\langle h_{i}, \lambda\right\rangle} b\right)=\left\langle h_{i}, \lambda-w t(b)\right\rangle . \tag{3.4.6}
\end{equation*}
$$

Since $\left\langle h_{i}, \lambda\right\rangle$ is sufficently large, it equals $\left\langle h_{i}, \lambda-w t(b)\right\rangle$. Therefore $\varphi_{i}\left(\tilde{f}_{i}^{*_{i}\left(h_{i}, \lambda\right\rangle} b\right)$ $+\left\langle h_{i}, \lambda\right\rangle=0$.
Q.E.D.

Lemma 3.4.6.

$$
\begin{equation*}
\varphi_{\imath}(b)+\varepsilon_{\imath}^{*}(b) \geqq 0 \quad \text { for any } \quad b \in B(\infty) . \tag{3.4.7}
\end{equation*}
$$

Proof. By Theorem 3.2.2

$$
\Psi_{i}(b)=b^{\prime} \otimes \tilde{f}_{i}^{n} b_{2}
$$

where $n=\varepsilon_{i}^{*}(b)=-\varphi_{i}\left(\tilde{f}_{i}^{n} b_{i}\right)$. We have

$$
\begin{aligned}
\varphi_{i}(b) & =\varphi_{i}\left(b^{\prime} \otimes \tilde{f}_{i}^{n} b_{i}\right) \\
& =\max \left\{\varphi_{i}\left(b^{\prime}\right)+\left\langle h_{i}, w t\left(\tilde{f}_{i}^{n} b_{i}\right)\right\rangle, \varphi_{i}\left(\tilde{f}_{i}^{n} b_{i}\right)\right\} .
\end{aligned}
$$

Therefore we have

$$
\varphi_{\imath}(b)+\varepsilon_{2}^{*}(b)=\varphi_{\imath}(b)-\varphi_{2}\left(\tilde{f}_{2}^{n} b_{2}\right) \geqq 0 . \quad \text { Q. E. D. }
$$

Proposition 3.4.7.

$$
\begin{gather*}
T_{\imath} P \in L(\infty) . \tag{3.4.8}\\
T_{\imath} P \equiv \tilde{f}_{2}^{* \varphi_{\imath}(b)} \tilde{e}_{\imath}^{\left.\tilde{e}_{\imath}^{(b)}\right) b \bmod q L(\infty) .} \tag{3.4.9}
\end{gather*}
$$

Proof. By Lemma 3.4.6, we have

$$
\begin{equation*}
\varphi_{\imath}(b)=\varphi_{\imath}(b)+\varepsilon_{i}^{*}(b) \geqq 0 . \tag{3.4.10}
\end{equation*}
$$

By (3.4.3), (3.4.6) and (3.4.10), we have

$$
\begin{aligned}
\Psi_{\imath}\left(\tilde{e}_{i}^{m} \tilde{f}_{\imath}^{*\left\langle h_{2}, \lambda\right\rangle} b\right) & =\tilde{e}_{\imath}^{\left(h_{2}, \lambda-w l(b)\right\rangle}\left(b \otimes \tilde{f}_{\imath}^{\left\langle h_{2}, \lambda\right\rangle} b_{2}\right) \\
& =\tilde{e}_{2}^{\varepsilon_{2}(b)} b \otimes \tilde{f}_{\imath}^{\varphi_{2}(b)} b_{\imath} .
\end{aligned}
$$

On the other hand, by Theorem 3.2.2 we have

$$
\begin{aligned}
\Psi_{2}\left(\tilde{f}_{i}^{* \varphi_{i}(b)} \tilde{e}_{2}^{\varepsilon_{2}(b)} b\right) & =\tilde{f}_{2}^{* \varphi_{2}(b)}\left(\tilde{e}_{2}^{\varepsilon_{2}(b)} b \otimes b_{2}\right) \\
& =\tilde{e}_{2}^{\varepsilon_{2}(b)} b \otimes \tilde{f}_{2}^{\varphi_{2}(b)} b_{2} .
\end{aligned}
$$

Since Ψ_{\imath} is an embedding, we have

$$
\begin{equation*}
\tilde{e}_{2}^{m} \tilde{f}_{l}^{\left.*^{\langle h} h_{2}, \lambda\right\rangle} b=\tilde{f}_{2}^{* \varphi_{2}(b)} \tilde{e}_{2}^{\varepsilon_{2}(b)} b . \tag{3.4.11}
\end{equation*}
$$

Therefore we obtain

$$
\begin{equation*}
T_{\imath}(P) u_{\lambda} \equiv G\left(\tilde{f}_{2}^{* \varphi_{2}(b)} e_{i}^{\varepsilon_{i}(b)} b\right) u_{\lambda} . \tag{3.4.12}
\end{equation*}
$$

For $\lambda \gg 0$, Proposition 3.3 .4 and (3.4.12) imply this proposition.
Q.E.D.

Corollary 3.4.8. Let us define the map $\Lambda_{\imath}:\left\{b \in B(\infty) ; \varepsilon_{i}^{*}(b)=0\right\} \rightarrow\{b \in B(\infty)$; $\left.\varepsilon_{2}(b)=0\right\}$ by $b \mapsto \tilde{f}_{2}^{* \varphi_{2}(b)} \tilde{e}_{2}^{\varepsilon_{i}(b)} b$. Then Λ_{2} is bijective and $\Lambda_{2}^{-1}(b)=\tilde{f}_{2}^{\varphi_{2}^{*}(b)} \tilde{e}_{2}^{* \varepsilon_{2}^{*}(b)} b$.

Proof. Let $b \in\left\{b \in B(\infty) ; \varepsilon_{\imath}^{*}(b)=0\right\}, b^{\prime}=\tilde{f}_{i}^{* \varphi_{\imath}(b)} \tilde{e}_{i}^{\varepsilon_{i}^{(b)}} b$. By Proposition 3.4.7 $\varepsilon_{2}\left(b^{\prime}\right)=0$. We have

$$
\begin{equation*}
\varepsilon_{\imath}^{*}\left(b^{\prime}\right)=\varphi_{\imath}(b) . \tag{3.4.13}
\end{equation*}
$$

Indeed we have $\Psi_{\iota}\left(b^{\prime}\right)=\tilde{e}_{2}^{\varepsilon_{2}(b)} b \otimes \tilde{f}_{2}^{\varphi_{2}{ }^{(b)}} b_{\imath}$. Theorem 3.2.2 implies (3.4.13). We get

$$
\begin{aligned}
\varphi_{\imath}^{*}\left(b^{\prime}\right) & =\varepsilon_{i}^{*}\left(b^{\prime}\right)+\left\langle h_{\imath}, w t\left(b^{\prime}\right)\right\rangle \\
& =\varphi_{\imath}(b)+\left\langle h_{\imath},\left(\varepsilon_{\imath}(b)-\varphi_{\imath}(b)\right) \alpha_{\imath}+w t(b)\right\rangle \\
& =2 \varepsilon_{\imath}(b)-\varphi_{\imath}(b)+\left\langle h_{\imath}, w t(b)\right\rangle \\
& =\varepsilon_{\imath}(b) .
\end{aligned}
$$

By Theorem 3.2.2 and (3.4.13), we have

$$
\begin{aligned}
& \Psi_{\imath}\left(\tilde{e}_{i}^{* *} \varepsilon_{i}^{*}\left(b^{\prime}\right)\right. \\
&\left.b^{\prime}\right)=\tilde{e}_{i}^{\tilde{e}_{i}(b)} b \otimes b_{2} \\
&=\Psi_{i}\left(\tilde{e}_{i}^{\varepsilon_{i}(b)} b\right) .
\end{aligned}
$$

Therefore we obtain

$$
\tilde{e}_{i}^{*_{*}^{*} *_{i}\left(b^{\prime}\right)} b^{\prime}=\tilde{e}_{i}^{\varepsilon_{2}(b)} b .
$$

Hence, we have

$$
\tilde{f}_{i}^{\varphi_{i}^{*}}\left(b^{\prime}\right) \tilde{e}_{i}^{* \varepsilon_{i}^{*}\left(b^{\prime}\right)} b^{\prime}=\tilde{f}_{i}^{\varepsilon_{i}(b)} \tilde{e}_{i}^{\varepsilon_{2}(b)} b=b .
$$

Let $b \in\left\{b \in B(\infty) ; \varepsilon_{\imath}(b)=0\right\}$ and $b^{\prime}=\tilde{f}_{2}^{\varphi_{i}^{*}(b)} \tilde{e}_{2}^{* \varepsilon_{i}^{*}(b)} b$. We have the following formulas similarly

$$
\begin{gather*}
\varepsilon_{i}^{*}\left(b^{\prime}\right)=0 \tag{3.4.14}\\
\tilde{f}_{i}^{* \varphi_{i}(b)} \tilde{e}_{i}^{\varepsilon_{i}(b)} b^{\prime}=b . \tag{3.4.15}
\end{gather*}
$$

The corollary is proved.
Q.E.D.

§4. Main Theorem

4.1. Proof of Main Theorem

In this section, we assume that g is a finite-dimensional semisimple Lie algebra.

Proposition 4.1.1 [4]. (1) Let $w \in W$ and let $s_{\imath_{1}} \cdots s_{\imath_{k}}$ be a reduced expression of w. Then the automorphism $T_{w}=T_{i_{1}} \cdots T_{i_{k}}$ of U_{q} is independent of the choice of the reduced expression of w.
(2) If $w \alpha_{i} \in R^{+}$, then $T_{w} f_{\imath} \in U_{q}^{-}$.

Fix a reduced expression $s_{\imath_{1}} \cdots s_{\imath_{N}}$ of the longest element of W. This gives us an ordering of the set of all positive roots R^{+}

$$
\begin{equation*}
\beta_{1}=\alpha_{2_{1}}, \quad \beta_{2}=s_{i_{1}} \alpha_{2_{2}}, \cdots, \quad \beta_{N}=s_{i_{1}} \cdots s_{i_{N-1}} \alpha_{i_{N}} . \tag{4.1.1}
\end{equation*}
$$

We define

$$
\begin{equation*}
f_{\beta_{m}}=T_{i_{1}} \cdots T_{i_{m-1}}\left(f_{i_{m}}\right) \tag{4.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{k}=f_{\beta_{1}}^{\left(k_{1}\right)} f_{\beta_{2}}^{\left(k_{2}\right)} \cdots f_{\beta_{N}}^{\left(k_{N}\right)} \quad \text { where } \quad k=\left(k_{1}, \cdots, k_{N}\right) \in \boldsymbol{Z}_{\equiv 0}^{N} . \tag{4.1.3}
\end{equation*}
$$

Theorem 4.1.2 (Main Theorem).

$$
\begin{equation*}
f^{k} \in L(\infty) \quad \text { for any } \quad k=\left(k_{1}, \cdots, k_{N}\right) \in \boldsymbol{Z}_{\geq 0}^{N} . \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\{f^{k} \bmod q L(\infty) ; k \in \boldsymbol{Z}_{\mathbb{\geq} 0}^{N}\right\}=B(\infty) . \tag{ii}
\end{equation*}
$$

Proof. Let $P \in L(\infty)$ such that $T_{2} P \in U_{\bar{q}}^{-}$. Then we have $e_{i}^{\prime} T_{i} P=0$.

Therefore

$$
\begin{equation*}
f_{i}^{(n)} T_{2} P=\tilde{f}_{\imath}^{n} T_{\imath} P \tag{4.1.4}
\end{equation*}
$$

Hence we obtain

$$
\begin{equation*}
f_{i}^{(n)} T_{2} P \in L(\infty) \tag{4.1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}^{(n)} T_{\imath} P \equiv \tilde{f}_{\imath}^{n} \tilde{f}_{2}^{* \varphi_{2}(b)} \tilde{e}_{\imath}^{\varepsilon_{2}(0)} b \bmod q L(\infty) \quad \text { if } P \equiv b \bmod q L(\infty) . \tag{4.1.6}
\end{equation*}
$$

By (4.1.5), we have $f^{k} \in L(\infty)$ immediately.
By Proposition 3.4.7, we have $f^{k} \bmod q L(\infty) \in B(\infty)$ for any k. So, there exist the cannonical map $\pi:\left\{f^{k}\right\} \rightarrow B(\infty)$ by $f^{k} \mapsto f^{k} \bmod q L(\infty)$. We write b^{k} for $f^{k} \bmod q L(\infty)$.

The first step is the next lemma.
Lemma 4.1.3. π is injective.
Proof. Let $b_{(1)}=T_{i_{1}} f_{2_{2}}^{\left(k_{2}\right)} \cdots T_{i_{N-1}} f_{i_{N}}^{\left(k_{N}\right)} \bmod q L(\infty) \in B(\infty)$. Then we have

$$
b^{k}=\tilde{f}_{i_{1}}^{k_{1}} b_{(1)}
$$

and

$$
T_{\imath_{1}} f_{\left.i_{2}\right)}^{\left(k_{2}\right)} \cdots T_{\imath_{N-1}} f_{\imath_{N}}^{\left(k_{N}\right)} \in T_{\imath_{1}}\left(U_{q}^{-}\right) \cap U_{q}^{-}=\operatorname{Ker} e_{\imath_{-1}}^{\prime} .
$$

Therefore we have $\tilde{e}_{\imath_{1}} b_{(1)}=0$. Hence we obtain $k_{1}=\varepsilon_{\imath_{1}}\left(b^{k}\right)$. This implies

$$
b_{(1)}=\tilde{e}_{\left.i_{1} \varepsilon_{1} b^{(6)}\right)}^{\varepsilon^{k}} .
$$

By Corollary 3.4.8, we have

$$
f_{i_{2}}^{\left(k_{2}\right)} T_{i_{3}} \cdots T_{i_{N-1}} f_{i_{N}}^{\left(k_{N}\right)} \equiv \Lambda_{i_{1}}^{-1}\left(b_{(1)}\right) \bmod q L(\infty) .
$$

Let $b_{(2)}=\tilde{e}_{2_{2}}^{\varepsilon_{2}\left(\lim _{1}^{-1}(b(1))\right)} \Lambda_{i_{1}}^{-1}\left(b_{1}\right)$. Then similarly we have

$$
\begin{gathered}
s_{i_{2}}\left(\Lambda_{1}^{-1}\left(b_{2}\right)\right)=k_{2}, \\
b_{(2)} \equiv T_{i_{2}} f_{i_{3}^{\left(k_{3}\right)} \cdots T_{i_{N-1}} f_{i_{N}}^{\left(k_{N}\right)},},
\end{gathered}
$$

and

$$
f_{i_{3}}^{\left.k_{3}\right)} \cdots T_{i_{N-1}} f_{i_{N}}^{\left(k_{N}\right)} \equiv \Lambda_{i_{2}^{-1}}^{-1}\left(b_{(2)}\right) \bmod q L(\infty) .
$$

Repeating this, $k=\left(k_{1}, \cdots, k_{N}\right)$ is uniquly determined by b^{k}.
Now we define a map $b^{k} \mapsto f^{\rho\left(b^{k}\right)}$. It is trivial that this map is π^{-1}. Therefore π is injective. Q.E.D.

Let $Q_{-}=\Sigma \boldsymbol{Z}_{\text {so }} \alpha_{2}$.

$$
\begin{equation*}
t_{i} f_{\beta_{m}} t_{i}^{-1}=q_{i}^{-\left\langle h_{i}, \beta_{m}\right\rangle} f_{\beta_{m}} . \tag{4.1.7}
\end{equation*}
$$

For $\xi \in Q_{-}$, we set

$$
B_{\xi}=\left\{b^{k} ; k \in \boldsymbol{Z}_{\geq 0}^{N}, w t\left(b^{k}\right)=\xi\right\} .
$$

Hence we have $B_{\xi} \varsigma B(\infty)_{\xi}$. By (4.1.7), we obtain

$$
\# B_{\xi}=\#\left\{\left(c_{1}, \cdots, c_{N}\right) \in \boldsymbol{Z}_{\equiv 0}^{N} ; \xi=-\Sigma c_{i} \beta_{\imath}\right\} .
$$

On the other hand, the PBW theorem for finite-dimensional semisimple Lie algebra implies

$$
\begin{aligned}
\# B(\infty)_{\xi} & =\operatorname{dim}_{\boldsymbol{Q}(q)}\left(U_{q}^{-}\right)_{\xi} \\
& =\operatorname{dim}_{C}\left(U^{-}\right)_{\xi} \\
& =\#\left\{\left(c_{1}, \cdots, c_{N}\right) \in Z_{\mathbb{刃 n}}^{N} ; \xi=-\Sigma c_{\imath} \beta_{\imath}\right\} .
\end{aligned}
$$

Therefore

$$
B_{\xi}=B(\infty)_{\xi} .
$$

Hence we obtain (ii).
Q.E.D.

4.2. Examples

Example 4.2.1.

$$
\begin{gathered}
\mathfrak{g}=A_{2}, \quad I=\{1,2\}, \quad a_{\imath \jmath}=a_{\jmath \imath}=-1, \\
\beta_{1}=\alpha_{1}, \quad \beta_{2}=\alpha_{1}+\alpha_{2}, \quad \beta_{3}=\alpha_{2} .
\end{gathered}
$$

In this case, $\Psi_{121}: B(\infty) \subsetneq u_{\infty} \otimes B_{1} \otimes B_{2} \otimes B_{1}$. We shall calculate $\Psi_{121}\left(f^{\left(k_{1} k_{2} k_{3}\right)}\right)$. First we have

$$
\begin{gathered}
\Psi_{1}\left(f_{1}^{\left(k_{3}\right)}\right)=u_{\infty} \otimes \tilde{f}_{1}^{k_{3}} b_{1}, \\
T_{2} f_{1}^{\left(k_{3}\right)} \equiv \tilde{f}_{2}^{* \varphi_{2}(b)} \tilde{e}_{2}^{\tilde{\varepsilon}_{2}^{(b)}} b \quad \text { where } \quad f_{1}^{\left(k_{3}\right)} \equiv b \bmod q L(\infty)
\end{gathered}
$$

and

$$
\varphi_{2}(b)=k_{3}, \quad \varepsilon_{2}(b)=0 .
$$

Therefore we have

$$
\begin{aligned}
T_{2} f_{1}^{\left(k_{3}\right)} & \equiv \tilde{f}_{2}^{*_{3}} b \\
& \stackrel{\Psi_{2}}{\longrightarrow} b \otimes \tilde{f}_{2}^{k_{3}} b_{2} \\
& \stackrel{\Psi_{1}}{\longrightarrow} u_{\infty} \otimes \tilde{f}_{1}^{k_{3}} b_{1} \otimes \tilde{f}_{2}^{k_{3}} b_{2} .
\end{aligned}
$$

Since $\varphi_{2}\left(u_{\infty} \otimes \tilde{f}_{1}^{k_{3}} b_{1}\right)=k_{3}$ and $\varepsilon_{2}\left(\tilde{f}_{1}^{k_{3}} b_{2}\right)=k_{3}$, we have

$$
\begin{gathered}
f_{2}^{\left(k_{2}\right)} T_{2} f_{1}^{\left(k_{3}\right)} \longmapsto \tilde{f}_{2}^{k_{2}}\left(u_{\infty} \otimes \tilde{f}_{1}^{k_{3}} b_{1} \otimes \tilde{f}_{2}^{k_{3}} b_{2}\right) \\
=u_{\infty} \otimes \tilde{f}_{1}^{k_{3}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} . \\
T_{1} f_{2}^{\left(k_{2}\right)} T_{2} f_{1}^{\left(k_{3}\right)} \equiv \tilde{f}_{1}^{* \varphi_{1}\left(b^{\prime}\right)} \tilde{e}_{1}^{\varepsilon_{1}^{(}\left(b^{\prime}\right)} b, \quad \text { where } \quad b^{\prime} \equiv f_{2}^{\left(k_{2}\right)} T_{2} f_{1}^{\left(k_{3}\right)} .
\end{gathered}
$$

Since $\varphi_{1}\left(b^{\prime}\right)=\varphi_{1}\left(u_{\infty} \otimes \tilde{f}_{1}^{k_{8}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2}\right)=k_{2}$ and $\varepsilon_{1}\left(b^{\prime}\right)=k_{3}$ we have

$$
\begin{aligned}
T_{1} b^{\prime} & \longmapsto \tilde{e}_{1}^{e_{1}\left(b^{\prime}\right)} b^{\prime} \otimes \tilde{f}_{1}^{k_{2}} b_{1} \\
& \longmapsto \tilde{e}_{1}^{k_{s}}\left(u_{\infty} \otimes \tilde{f}_{1}^{k_{s}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{s}} b_{2}\right) \otimes \tilde{f}_{1}^{k_{2}} b_{1} \\
& =u_{\infty} \otimes b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{1}} b_{1} .
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
f^{\left(k_{1} \cdot k_{2} \cdot k_{3}\right)} & =f_{\beta_{1}^{\left(k_{1}\right)} f_{\beta_{2}^{\left(k_{2}\right)} f_{\beta_{3}}^{\left(k_{3}\right)}}}=f_{1}^{\left(k_{1}\right)} T_{1} f_{2}^{\left(k_{2}\right)} T_{2} f_{1}^{\left(k_{3}\right)} \\
& \equiv f_{1}^{\left(k_{1}\right)} T_{1} b^{\prime} \\
& \longmapsto \tilde{f}_{1}^{k_{1}}\left(u_{\infty} \otimes b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{2}} b_{1}\right) \\
& = \begin{cases}u_{\infty} \otimes \tilde{f}_{1}^{k_{1}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{2}} b_{1} & \left(k_{1}<k_{3}\right) \\
u_{\infty} \otimes \tilde{f}_{1}^{k_{3}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{1}+k_{2}-k_{3}} b_{1} & \left(k_{1} \geqq k_{3}\right) .\end{cases}
\end{aligned}
$$

By [3], we know

$$
B(\infty)=\left\{u_{\infty} \otimes \tilde{f}_{1}^{k_{2}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{1}} b_{1} ; 0 \leqq k_{1}, 0 \leqq k_{2}, 0 \leqq k_{3}\right\} .
$$

We shall calculate $\left(u_{\infty} \otimes \tilde{f}_{1}^{k_{2}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{1}} b_{1}\right) *$. First we have

$$
\left(\tilde{f}_{1}^{k_{1}} \tilde{f}_{2}^{k_{2}+k_{3}} \tilde{f}_{1}^{k_{2}} u_{\infty}\right)^{*} \longmapsto u_{\infty} \otimes \tilde{f}_{1}^{k_{2}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{s}} b_{2} \otimes \tilde{f}_{1}^{k_{1}} b_{1} .
$$

And we have

$$
\begin{aligned}
\tilde{f}_{1}^{k_{1}} \tilde{f}_{2}^{k_{2}+k_{3}} \tilde{f}_{1}^{k_{2}} u_{\infty} & \longmapsto \tilde{f}_{1}^{k_{1}} \tilde{f}_{2}^{k_{2}+k_{3}}\left(u_{\infty} \otimes \tilde{f}_{1}^{k_{2}} b_{1}\right) \\
& \longmapsto \tilde{f}_{1}^{k_{1}}\left(u_{\infty} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{2}} b_{1}\right) \\
& \longmapsto \begin{cases}u_{\infty} \otimes \tilde{f}_{1}^{k_{1}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{2}} b_{1} & \left(k_{1} \leqq k_{3}\right) \\
u_{\infty} \otimes \tilde{f}_{1}^{k_{3}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{1}+k_{2}-k_{3} b_{1}} & \left(k_{1} \geqq k_{3}\right) .\end{cases}
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
f^{\left(k_{1} \cdot k_{2}, k_{3}\right)} & \equiv \tilde{f}_{1}^{k_{1}} \tilde{f}_{2}^{k_{2}+k_{3}} \tilde{f}_{1}^{k_{2}} u_{\infty} \\
& \longmapsto\left(u_{\infty} \otimes \tilde{f}_{1}^{k_{2}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{1}} b_{1}\right)^{*} .
\end{aligned}
$$

Example 4.2.2.

$$
\begin{array}{ll}
\mathfrak{g}=B_{2}, & I=\{1,2\}, \quad a_{\imath \jmath}=-2, \quad a_{\jmath}=-1, \\
\beta_{1}=\alpha_{1}, & \beta_{2}=2 \alpha_{1}+\alpha_{2}, \quad \beta_{3}=\alpha_{1}+\alpha_{3}, \quad \beta_{4}=\alpha_{2} .
\end{array}
$$

We can calculate similarly,

$$
\begin{aligned}
& f^{\left(k_{1}, k_{2}, k_{3}, k_{4}\right)} \\
& \longmapsto\left\{\begin{array}{l}
u_{\infty} \otimes \tilde{f}_{2}^{k_{2}} b_{2} \otimes \tilde{f}_{1}^{k_{1}+2 k_{2}} b_{1} \otimes \tilde{f}_{2}^{k_{3}+k_{4}} b_{2} \otimes \tilde{f}_{1}^{k_{3}} b_{1}\left(k_{2} \leqq k_{4}, k_{1} \leqq-2 k_{2}+k_{3}+2 k_{4}\right) \\
u_{\infty} \otimes \tilde{f}_{2}^{k_{2}} b_{2} \otimes \tilde{f}_{1}^{k_{3}+2 k_{4}} b_{1} \otimes \tilde{f}_{2}^{k_{3}+k_{4}} b_{2} \otimes \tilde{f}_{1}^{k_{1}+2 k_{2}-2 k_{4}} b_{1}\left(k_{2} \leqq k_{4}, k_{1} \geqq-2 k_{2}+k_{3}+2 k_{4}\right) \\
u_{\infty} \otimes \tilde{f}_{2}^{k_{4}} b_{2} \otimes \tilde{f}_{1}^{k_{1}+2 k_{4}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{2 k_{2}+k_{3}-2 k_{4}} b_{1}\left(k_{2} \geqq k_{4}, k_{1} \leqq k_{3}\right) \\
u_{\infty} \otimes \tilde{f}_{2}^{k_{4}} b_{2} \otimes \tilde{f}_{1}^{k_{3}+2 k_{4}} b_{1} \otimes \tilde{f}_{2}^{k_{2}+k_{3}} b_{2} \otimes \tilde{f}_{1}^{k_{1}+2 k_{2}-2 k_{4}} b_{1}\left(k_{2} \geqq k_{4}, k_{1} \geqq k_{3}\right) .
\end{array}\right.
\end{aligned}
$$

References

[1] Kashiwara, M., Crystallizing the q-analogue of universal enveloping algebras, Duke Math. J., 63 (1991), 465-516.
[2] -, Grobal crystal base of quantum groups, RIMS preprint 756 (1991), to appear in Duke Math. J.
[3] Crystal base and Littelmann's refined Demazure character formula, RIMS preprint 880 (1992).
[4] G. Lusztig, Quantum groups at roots of 1. Geom. Dedicata, 33 (1990), 89-113.
[5] —, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc., 3 (1990), 257-296.
[6] -, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3 (1990), 447-498.
[7] , Canonical bases arising from quantized enveloping algebras II, Progr. Theor. Phys. Suppl., 102 (1990), 175-201.

[^0]: Communicated by M. Kashiwara, April 1, 1993.
 1991 Math. Subject Classification: 17B37, 81R50.

 * Department of Mathematical Sciences, University of Tokyo, Hongo, Tokyo, 113, Japan.

