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Further Generalization of Generalized
Verma Modules
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Akihiko GYOJA*

§ 0. Introduction

0.1. Let G be a complex semisimple Lie group, B a Borel subgroup, P a
parabolic subgroup containing B, g=Lie(G), 6=Lie(£), |)=Lie(P), and E a finite
dimensional irreducible £/(}))-module, where U(—) denotes the enveloping algebra.
A £7(g)-module of the form U($)®vwE is called a generalized Verma module
[24] and, in the special case where £=&, it is called a Verma module (cf. [9]
and its references).

In the course of proving the Kazhdan-Lusztig conjecture [21], it was shown
[1], [8] that the Verma modules correspond to the local cohomologies at the
5-orbits on G/B via the localization functor. Thus it is natural to ask what
are the £/(g)-modules corresponding to the local cohomologies at the 5-orbits
on G/P.

In this paper, we shall give an answer to this problem. It turns out that
here appears a further generalization of the generalized Verma modules. We
shall construct these £/(g)-modules in a purely algebraic way as follows. Let
;JT be the set of linear characters of the Lie algebra p, A the ring of polynomial
functions on Jf, and c: p—>.4 the canonical homomorphism, which we shall
consider as an ,4-valued character of a Cartan subalgebra, say t, contained in
b=LiQ(B). Let 1 be the lowest weight of a finite dimensional irreducible p-
module, W the Weyl group, Wi the Weyl subgroup of W corresponding to P,
and w an element of W which is longest in the coset wWi. Let UA(—)—U(—}
®c,4 and define the 'universal' Verma module MA(w(c+X—p)—p) by MA(w(c+
A—p)—p) = UA(Q)®UAa,).w<.c+i-P)-pA, where p is the half of the sum of the
positive roots. Note that w(c+X—p)—p is not fully universal as a character
of i but it is universal among the characters lying on a certain facet with
respect to the reflection group W (translated by w(X—p)—p). Hence MA(w(c-t
X—p)—p) resembles to reducible Verma modules and we can construct its quo-
tient VA(w, c+A, p) in the same way as the construction of the simple quotient

Communicated by M. Kashiwara, December 4, 1991.
1991 Mathematics Subject Classification : 17B10

* Department of Fundamental Sciences, Faculty of Integrated Human Studies, Kyoto
University, Kyoto 606-01, Japan.



350 AKIHIKO GYOJA

of the usual Verma module. The £/(g)-module investigated in this paper is the
specialization of VA(w, c+A, $)

V(w, 1, $)=VA(w, c+X, $®AC,

where C is considered as a trivial ^-module. (In other words, V(w, 1, J)) is
obtained from VA(w, c+A, $) by the specialization c->0.)

In contrast with the case of the usual generalized Verma modules, the most
difficult point in the study of our g-modules is the character formula, which
will be proved in (6.3). Once we get the character formula, we can deduce
several consequences from it. For instance, we show in (6.8) that our g-modules
are a generalization of the generalized Verma modules, and, we construct in
§7 a resolution of our g-module by Verma modules which is a generalization
of the resolution of a finite dimensional representation constructed by Bernstein-
Gelfand-Gelfand [2].

0.2. Using the character formula, we can also show that our £7(g)-module
V(w, 1, })) actually corresponds to the local cohomology at a 5-orbit of G/P.
See (6.6). This fact enables us a ^-module theoretic study of our £/(g)-modules,
by which we get an irreducibility criterion (9.13) for generalized Verma modules
in terms of the ^-functions of the semi-invariants. (See (9.2) for the semi-
invariants.) Our irreducibility criterion is far different from, and unfortunately,
less complete than the Jantzen's one [16], for we need to assume the anti-
dominancy in order to use the generalities concerning the localization functor
[1]. In this regard, see (9.14).

0.3. Let us explain our motivation. Assume that g is simple, the nilpotent
radical u of J) is commutative, and a Levi subalgebra I of p is normalized by
the longest element of the Weyl group. Let L be the Levi subgroup of P
corresponding to L Then it is known that (L, adjoint action, u) is an irredu-
cible regular prehomogeneous vector space, that there is an irreducible poly-
nomial / on u which is relatively L-mvariant, and that there is a unique
fundamental weight trf which can be extended to a character of the Lie algebra
p. (See [30], [12] for prehomogeneous vector spaces, and [25], [27] for there
special kind of prehomogeneous vector spaces.) Let b(s) be the Bernstein-Sato
polynomial (=&-function) of /. In [31], S. Suga observed a relation between
the simplicity of the generalized Verma module M(^)=U(^)^UWtiwC and the
zeros of b(s). (More precisely, M(X) is simple if and only if b(X—j)^0 for /=
1, 2, • • - . ) The original motivation of the present work was to explain and
generalize this observation.

Roughly speaking

(0.3.1) (L, adjoint action, u) = (L, left action, G/P).
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At one hand, we have the ^-module S)f*> which is related to the left hand
side of (0.3.1). We can show that S)/1 is simple if and only if b(l—j}i^§ for
any j^Z. On the other hand, we can expect that we get a £)-module, say
c5«(>0, on G/P by "localizing" the generalized Verma module M(X) as in [1].
Then M(X), which is related to the right hand side of (0.3.1), would be simple
if and only if M(/0 is simple. Hence, by showing that M(X)=-S)f*, we would
be able to explain the observation of Suga to some extent.

In this paper, we have tried to realize this idea and get (9.13), which is
our first result in this direction, although it is still unsatisfactory.

0.4. A deeply related problem is studied by M. Kashiwara [20]. The
relation between the present work and [20] will become clear in [13],

0.5. This paper consists of 9 sections. In Section 1, we define a new
generalization V(w, /I, }>) of Verma modules in (1.3) (cf. (4.1.1)) and give the
basic lemma (1.12), which is used to prove the character formula. In Sections
2 and 3, we review some known facts about the twisted .^-modules and the
localization functor, respectively. In Section 4, we construct a certain g-module,
which is used to deduce the character formula from (1.12). In Section 5, we
prove Proposition 5.2, which is used in (9.4). In Section 6, we prove the
character formula in (6.3). Using it, we prove in (6.6) that the dual g-module
of V(w, X, J)) corresponds to the local cohomology at BwP/P. In (6.7)-(6.9), we
study the relation between our g-modules V(w, X, J)) and the usual generalized
Verma modules. In Section 7, we construct a resolution of V(w, /I, p) by the
Verma modules, which is a generalization of the resolution of a finite dimen-
sional representation constructed by Bernstein-Gelfand-Gelfand. In Section 8,
we give a simplicity criterion (8.4) for a certain type of ^-modules, which is
used in Section 9 to obtain an irreducibility criterion (9.13) for the generalized
Verma modules.

0.6. The author would like to express his thanks to M. Kashiwara, Hisa-
yosi Matsumoto and K. Nishiyama for their comments.

Convention. We denote the complex (resp. rational) number field by C
(resp. Q), the rational integer ring by Z, and we put N= {0, 1, 2, • • • } . If two
objects, say X and Y, are naturally isomorphic, we often write X=Y.

§ 1. A Generalization of Verma Modules

1.0. In this section, we define a new generalization of Verma modules,
and prove a basic lemma, which will be used to prove the character formula
(6.3). First we review basic facts concerning Lie algebras in order to fix
notations. We define our generalization of Verma modules in (1.3). After
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studying elementary properties of our modules, we give a basic lemma in (1.12).
The remainder of the section is devoted to the proof of this lemma.

1.1. Let G be a connected reductive group over the complex number field
C, B a Borel subgroup of G, T a maximal torus contained in B, W=N0(T)/T,
and g, B and i the Lie algebras of G, B and T, respectively. Let r=Homc(t, C),
#(cr) be the root system of (9, t), g(a) the root subspace of g corresponding
to a^R, R+ the set of a^R such that g(a)czB, R- =—R^, and n±=Sae=£±0(aO-
Let II ={<*!, •••, ai] be the simple roots, II~—{a\, •••, al} the simple coroots,
{ttfi, • • • , Ttfz} the fundamental weights, and {&\t • • • , tB7} the fundamental
coweights. For a^R, let aTcEt be the corresponding coroot. Let Q=^i=iZai
and Q+ = ̂ \=iNai. Define fjt^Ji(fjt, ^eT) if ^—^eQ+ . Let r« be the reflection
with respect to a, and 5= {ra|tf^/7}. For iv^W, denote its length by l(w}.
Let ^ be the Bruhat order in W, where the identity element is minimal.

Let / be a subset of S, Wi the subgroup of W generated by /, wf the
longest element of WIt /7/={acE//|rae/}, Rx the root subsystem of R gene-
rated by 77j, I=I(/)=t+Sae*7g(a), u±=u±(/)=S«^±\/z/fl(a), J>=J>(/)=l+u+, and
})_=j)_(/)=l+u— We denote the connected subgroups of G corresponding to
I, rt±J p and £_ by L = L(/), U^=U^(I), P=P(I) and P.=P(I\ respectively.
For J,KcS, let (WVW/W*). (resp. (WI/W/W^)Z) be the shortest (resp. longest)
representatives of the double cosets in Wj\W/WK> For a subset 7C of S, let
K'=wsKws(<^S). Then (Wj\W/WK)t= {wws\ivi~(Wj\W/WK')s}. We write
(W/Wj\ etc. for (W^W/W^ etc.

Take a Q-subspace gQ of the center B such that fo(g)C=g. Let gQ be the
Q-linear span of a Chevalley basis of [g, g] and BQ. Put iQ—^Q+^a^RQa' and
iJiQ=tQ/2ae/7jQa><. Let ig and t/ iQ be their dual spaces. For a Q-algebra .4,
put g^=gQ(S)A etc. If A=C, we omit the suffix A(=C). We identify IJ,^.
with the Wj-invariant elements in HomQ(tQ, ^4) = HomXi^, A). We say that
/leT is anti-dominant (resp. regular) if </£, «>'>^]V"\{0} (resp. ^0) for any ae
/?+. Let lad (resp. i r a^ ) be the set of /iGEi" such that %—p is anti-dominant
(resp. regular and anti-dominant). Put Ij,ad=i7niad and i/, r a^^ t /n t rad .

Let ^ be a field of characteristic zero. For a Lie algebra a over &, let
U(a)=Uk(cL) be the enveloping algebra, and Z(a) the center of U(a). Express
^cEZ(g) as z=<p(z)+z' with <p(z) = U(i) and 2:' = /7(g)n+. Consider ^etv as a
character of £7(1). Let Xi=Z°</> and U(Jt, ti=U(ti/U(ti kerZ^. Let /o=(l/2)2«e^+^
and r ' U(i)-*U(i) be the isomorphism defined by r(H)=H-p(H) for H=t. Then
7°9 gives an isomporphism Z(%)~^U(\)W (cf. [9,7.4.5]), which is called the
Harish-Chandra homomorphism. Here £7(1)^ denotes the totality of the W-
invariant elements of U(i). Note that Z°T°(p = %i-.p. Hence IW^-0 = I^.P and
U(wX—p, Q)=U(sl—p, g) for any w^W.

For a f/fe(i)-module V and ^^1^, let V^ be the set of v^V such that for
any H^ik, there exists an integer n such that (H~^(H))nv=Q. We call F/f
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the weight space of weight p. If dimF^<oo for any jteei£, we define the
character ch(F) of V as the formal sum ch(y)— S^ej^dimF^)^.

Let T be an automorphism of g which normalizes i and induces —1 on t.
Then r(g(a))=0(— a). For any £/(g)-module M, define a g-module structure in
Homc(M, C) by <Af, uy=-<f, r(A}uy for A^Q, /eHomc(M, C) and w^M.
If M is a direct sum of weight spaces, and each weight space is of finite
dimension, then put M * = {/tEHomc(M, C)|/(M^)=0 except for finitely many

AI, C). Then (M*)*=A/, and ch(M*)=ch(M).

1.2. Verma module. Extend /l^lJ=Hom fe(iA , &) to a linear character of
the Lie algebra lu by putting Z\nk=Q. Let &(A) be the corresponding
module, 1^ its basis element, and

which is called a Verma module [33], [3] (cf. [9]). Denote its simple quotient
by V(Z)=Vk(X).

1.3. A generalization of Verma modules. For a ^-algebra A, put UA(a)=

Uk(a)®kA. For a-tl, let ^(fl) = f7^(bO/(£/Xb*)n+.*+SM«jfcf/X5*)(^-a(^))),
la be the element of .4(a) corresponding to l^UA(bk), and M^(a) = £7^(9*)
®vA<Ak-)A(a), which we consider as a family of Verma modules. We can show
that MA(CL) is a free £/4(n_.*)-module generated by u(a]—uA(a) :=l(g)la. Let
M^(aX = £/^(n-,*)n_,*wX#)> /^(a) be the (unique) maximal ^(g/0-submodule of
M^(fl) contained in MA(a)+, V A(a)=^4A(a)/J A(a}, and v(d)=vA(a) :=(uA(a) mod

Let L be an affine subspace of t&, ̂  = ^l(L)=ylA(^) the algebra k\_L~\ of
polynomial functions on L, C = CL the natural homomorphism tk—>A, M(L)=

), and V(L)=V r
A(L) :=F^CL)(CL). Let /> be a prime ideal of

.1(L), *(/>) the residue field at />, and M(L, p)=Af(L)(^A^k(p)} V(L, p}=V(L]
®AdL*)k(p} etc. If p(X) is the maximal ideal of A(L) consisting of polynomial
functions vanishing at X <=L, then A(L) -* k(p(W=k is the evaluation at 2.,
which we shall denote by the same letter /I Put

V(L, V=Vk(L, X):=V(L,

Let PW:={0\, K=K(L): = k(p(i», MK(L}:=M(L, PW = M(L)®Au.,K, V K(L}
:=V(L, p(y))=V(L)&)A(L)K, etc. (specializations at the generic point 77 of L).
Note that K(L) is the quotient field of A(L). Thus we can consider the com-

position rj — rjL^i^K) of tk— >A(L)-*K(L), the Verma module MK(r]L}, and its
simple quotient VK(*]L)-

Lemma 1.4. (1) MKdjL)=MK(L). (2) V K(TJ L)=V K ( L ) .
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Proof. (1) is trivial. Consider MA(L} as a submodule of MK(L). Since
VK(r]}=MK(r]}/JK(r]} and VK(L^K^MA(L)/JA(L))=MK(^/KJA(L\ it remains
to prove that

(1-4.1) JK(-q}=KJA(L).

Since J K(f])C\MA(L) is a £/A(9*)-submodule of MA(L) contained in MA(L)+, we
have KJA(L)iiK(JK(ii)r\MA(L» = JK(7]). On the other hand, KJ A(L} is a
£/tf(g*)-submodule of MK(y} contained in MK(I))±- Hence KJA(L)^JK(y)-

Lemma 1.5. (1) Let /IsL. // Vk(L, X) is simple as a U(Qk)-module, then
it is absolutely simple. (2) VK(L) is absolutely simple.

Proof. These assertions follow from (1.4, (2)), and [9, 2.6.5 and 7.1.8, (iv)].

1.6. Field extension. Let kf be a field containing k, L' — L®kk
r, A' —

Ak>(U}, and Kf the quotient field of A'. We can naturally consider ik (resp.
Q as a subspace of ik> (resp. i#). Then ik = {A=Homk>(ik>, &')U(U)c=&} and

Lemma 1.7. (1) V A(L)®AA' = V A,(L'). (2) VK(I)L)®KK? - VK(L)®KK' =
VK.(L')=VK,(7jL.). (3) Vk(L, mkk

f=Vk,(L', X) for JteL(czL').

Proof. (1) Since MA(L)®AA'=MA>(L'), it suffices to show that A'JA(L)=
JA'(L'). Since MA>(L')==UA>(n-,k)uA>(c)=UA>(n-tk}, we can take a free A'-basis
{MI, u2, •••} of MA'(L') in Uk(\\-.,k)uA>(c). An element M of MA>(Lf) belongs to
/^(Lx) if and only if U($k)uc:MA'(L'^. For n-^N and M = SfliM*eS tSnA /M1 ,
this condition can be written as a system of homogeneous y4-linear equations
in (a/i)l^n'=A'n. Since A' is flat over A, every solution (a{) in A/n can be
expressed as an /T-linear combination of solutions in An [7, Chap. 1, § 2,
Corollary 2 of Proposition 13]. Hence (Sisn^X), V^(^ /)=^ /-(Sisn^M<n/^(L)).
Letting n->oo, we get J A>(Lf}=A'J A(L}. (2) By (1.4, (2)), it suffices to prove
the equality Vx(L)(8)J!!C/=Vr/f'(L/), which can be proved in the same way as
above. (3) By (1), we have W(L', X}=V A\L'}®A.,,k'=(V A(L)®AA'}®A,,ik'=

1.8. Let r=dimL. If O^L, we can find a ^'-linear basis Alf -• , AT of
L' contained in L. In this case, put ^0=0. If O^L, we can find linearly
independent elements ^0, /li, ••• , lr^L such that L'~ {2i=0 alXl\ at^k', SI=0Qi
=1}. This equality also holds in the case where O^L. Take an element ^=
Si=o a^i of L'. Let &<^> be the subfield of K generated by k and ^(t*).
Then k(X>=k(al, ••• , a r). Hence the transcendental degree tr. degAK/l> of

over & is at most r^
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1.9. If k' — C and tr. degQ^<ooJ then {JleL'ltr. degA^<^>=dimL} ^<f> is
stable with respect to the translations by elements of L and hence everywhere
dense in //(ci^T).

Lemma 1.10. // tr. deg^C^^dim^L, then V k>(L' , X] is simple.

Proof. By (1.5, (1)) and (1.7, (3)), we may assume that £' = £<*>. Let IL=
{ ( p ' ^ k K ' ] ; (p\L=Q}> Hlf • • - , Hr be elements of U such that Zl(Hj)=dlj (O^z^r,
1^/^r), and Hz the corresponding elements of k{\^~\/IL. Then A is the sym-
metric algebra k[_Hly ••• , Hr~] and K is its quotient field k(Hlf ••• , //r). Since
al=X(Hl) (l^z'^r) are algebraically independent over k, the homomorphism A:
A—k[_Hi, ••• , #r]— >&[^(/fi), ••• , A(Hry] can be extended to an isomorphism X :
K=k(H1} ..- , H^-kWHJ, .» , X(Hr)} = k'. Since V K(L}®K,,k' = V A(L}®A,,k'
=(VA(L)®AA')®A>,xk'=Vk,(L', X), we get the assertion by (1.5, (2)).

1.11. From now on, the base field is always C. Later in (4.2), (4.6) and
(4.7), for a special C-subspace L of r defined over Q, we shall construct using
a family of twisted ^-modules, a certain /7^(g)-module MA(w}* (A=A(L)) and
a t/X9)-homomorphism <p : MA(L)—*MA(W)* satisfying the following conditions :
(1.11.1) Let /: MA(W)*-^MA(W}*(£)AK be the canonical morphism and MA(W)*(P)
=r\(MA(wy*®AK)v-ii) for fi^Q+. Then each MA(w)*(p) is a free /1-module
of finite type and MA(w)*=®^Q+MA(w)*([ji).
(1.11.2) Let <pi : MW=MA(L)®A,iC^MA(w)*<8>A,zC(X€:L) be the homomorphism
induced by (p. Then <p^Q for any l^L.
(1.11.3) There exists an open dense subset LQ of L with respect to the clas-
sical topology such that MA(w)*®AtxC is a simple £/(g)-module for X^L°.

The remainder of this section is devoted to the proof of the following
lemma.

Lemma 1.12. Assume that L(cT) z's defined over Q. If a UA(o)-module
MA(w)* and a UA(Q) -homomorphism <p: AfA(L)-*MA(w)* satisfy (1.11. ])-(!. 11. 3),
then chV(L, Z)=ch(MA(w)*®A.iC) U^L).

1.13. Let us fix l^L, and an affine line LI of L containing 1. Let AI —
A(Li), and Ki=K(Li} be the quotient field of A^. Then there are natural

i
morphisms A-+Ai-*C, whose composition is 1: A—-C. Let MAl(w)*=MA(w)*
®AAl9 MAl(w)*(ff) = MA(w)*(fjt)®AAlt (pi = <p®AAi, etc. As a first step of the
proof of (1.12), let us show that the natural homomorphism MAl(L1)—>VAl(L1')
induces

(1.13.1) ^i(MAl(L1))=MAl(

i.e., that ker^cM^Li).,. Assume that ker(p1(£MAl(L1')+. Take an element
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! such that u = u+ + u0 with u+<=MAl(Li)+ and Q=£u0<=Aiu(c). Then

(1.13.2) ?i(Mo)=-pi(MjeM^1(M;

by (1.11.1). Since uQ^Q, there exists A' =Li such that the image HQ of MO by
the natural homomorphism MAl(Li)-^>MAl(L1)®Allz>C=M(A') is non-zero. Let
9 / :=y>i(g)4 l i^'C = 9(8)^iji'C. By (1.13.2), p'(tto)=0. Since «0 is a generator of
MW)» this contradicts (1.11.2). Thus we get (1.13.1). Similarly, letting y>Kl=
<pi®Klf we get a surjective ^7^1(g)-homomorphism

(1-13.3) MKl(Ll}/kzv<pKl — > K^CLO .

Lemma 1.14. // L°nLi =£ 0, f/ien MKl(w)* =
UK ^-module. (See (1.11.3) /or L°.)

Let ,V be a DV/g^submodule of M^^w;)*. By (1.11.1), we can
regard MAl(w)* as a submodule of MKl(w)*. Let NAl=MAl(w)*nN and JV^jC^)
=MAl(w)*(p)r\N. For any ^eQ+, there is a finite subset LI(JU) of Li such
that the quasi-coherent sheaf on Li obtained by localizing the Ai-module
MAl(w)*(fji)/WAl(p) is locally free on Li\Li(p). (Note that a finitely generated
module over the principal ideal domain .4i is a direct sum of a free module
and a torsion module.) For p e Q+, take G^CE^I! so that LALi(^) =
Spec^^aC^)-1]. Take ^f ^(LQ(^Ll)\\J^Q^Ll(^^. Then ^x gives an algebra
homomorphism ^ : A1[a(j«)~1]-^C for any j«eQ+, and

(1.14.1)
— > NAl(f*)®Al.i,C — > M^di;)*^)®^. r C

is exact for any /jt^Q+. Any u^NAl can be uniquely expressed as M =
S/ISC+M(^) with u(fjt)r=NnMKj(w)*(fji). On the other hand, by (1.11.1), u^NAl

can be uniquely expressed as Sw(^) with u(fji)^MAl(w)*(fjt). Hence
w ) * ( ) = N A ( p ) and

(1.14.2) NA=^+NAl(fi).

By (1.14.1) and (1.14.2),

0 — > NA®A.i,C —> MA(w)*®A.i'C —> (MA(w)*/NA®A. v€ — ̂  0

is exact. Since /^L0, M^Cw/^^^.^'C^MX^)*®^.^'^ is a simple U"(g)-module.
Hence ^l®^li^C=0 or (M^1(u;)*/^1)®A1.^Cr=0. Assume that A/^^C^O.
Then ^1(/£)®^1.rC'=0 for any ^eQ+ by (1.14.2). Since the submodule NAl(f*)
of the free module MAl(w)*(fji) is also ,4i-free, /V^1(^)®^1.^'C=0 implies NAl(fji)
=0, JV^=0 and hence ^V=0. Next assume that (M^1(u;)*/^i1)®^1.^C'=0. Then

(fjto®Al.vC = 0 by (1.11.1) and (1.14.2). Since (MAl(w)*(p)/
is a free ^^fl^J-^-module, it implies (MAl(w)*((*)/NAl(fty)
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[fl(A£)-1] = 0, i.e., M^)*(Ai)[fl(Ai)-1]=^1(A£)[a(Ai)-1]. Considering the K,-
subspaces of MKl(w)*(fji) generated by the both members, we get MKl(w)*(fi)=
MKl(w)*(fjt)r\N, and hence N=MKl(w)*. Therefore, MKl(w)* is a simple UKl(ti-
module.

Lemma 1.15. // L°nLi =£ 0, then <pKl=<pi (g) K^ : MKl(LJ -> MKl(w)* is
surjective.

Proof. By (1.11.1) and (1.11.2), ^=£0. Since A//^(uO* is a simple UKl(gD-
module by (1.14), we get the assertion.

Lemma 1.16. // LViL^, then MKl(L1)/Ker<pKl ^ VKl(LJ .

Proof. By (1.14) and (1.15), A/A^LO/ker^/^ is a simple
Hence (1.13.3) is an isomorphism. (Note that
and hence V f f (

1.17. Let A/^(L)(^)-M^(L),_,, and MA(L}(^MA(L}^MK(L}(^ for /.-
<5+. Let u^JA(L} and decompose it as u = ^^Q{_u(fjt) with u(fi)tEMA(L)([jL).
Since /^(L) is a t/^(l)-stable and M(//) JS belong to different weight spaces,
u(f*)<=KJA(L). Hence

(1.17.1) /^(L)c 0 KJA(L)r\MA(L)(fi.
ft&Q +

The right side is contained in MA(L)^ and stable under the actions of .1,1 and
g(a)(ae/?). Thus the right side of (1.17.1) is also a /7^(g)-submodule contained
in MA(L)+ and hence (1.17.1) is an equality. Put J A(L)(fjL)=KJ A(L)r\MA(L)({i\
VA(LXf*) = MA(LKti)/JA(LKf*), and F(L, ^) - V(L, 1},-, for ^c:L. Define
JAl(Li)(fji) and F^^LO^) in the same way. Then

(1.17.2) JA(L)= ® JA(L)(ft),
ft^Q +

(1.17.3) VA(L}= 0 F^L)^),
pee+

(1.17.4) V(L, ;0 = 7A(£)®AiC= ® VA(L)Oi)<gU,C, and
/ieC+

(1.17.5) V(L, ;)(/*)= V^(L)(A«)®AiC=^1(L1)(/i)® j4l. iC.

We can also see that (1.13.1) induces a surjective t/^1(3)-homomorphism

p10\/^](
(1.17.6)

Since V A(L)(n) is an .1-module of finite type, we can prove by the "Nakayama's
lemma" that for any f-t-'=Q+ and /itiL, there is a Zariski open neighbourhood
U(ft) of 2 in L such that
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(1.17.7) dimF(L, W(p)^

for any Xt€.U([i)- By (1.7, (3)), we may assume that U([t) are defined over

1.18. Proof of (1.12). Let L be a C-subspace of T defined over Q, X an
element of L, and U(fjt) as above. Take /TcEL° so that tr. degQ<;i>Q<^><^'>=
dimL (cf. (1.9)). Since U(fji) are defined over QC*>, V^U^t) for any p. Let
Li be an affine line containing 1 and /i'. By (1.11.2), the image of <pz> is a
non-zero £/(9)-submodule of MA(w)*(&Aii>C. Since A' ^ L°, MA(w)* ®A,X>£ is
simple by (1.11.3). Hence <pt> is surjective, and MA(w}*®Aiz>C is a simple
quotient of the Verma module M(A'). By (1.10), V(L, 1') is also a simple
quotient of the same Verma module. Hence

(1.18.1) MA(w)*®A,rC^V(L,l'}.

By (1.15), tpK^tpif&AiKi'- MK^L^-^MK^W)* is surjective. Since the homomor-
phisms induced by <pi®AlKi between the weight spaces are also surjective,
<pi(MAl(Li}(p)) is an ^-lattice of the free ^-module MAl(w)*(fjt). Since Al is
a principal ideal domain,

(1.18.2) ^(M^LiXAOJsM^CuO^/i)

as .4i-modules. By (1.17.5), the surjection (1.17.6) induces a surjection
<pl(MAl(Ll)(i£b®Al.]LC^V(L, X)(p) for any fi<=Q^. Thus by (1.18.2), we get
the inequality

On the other hand,

dimF(L,

by (1.17.7)

i.C) by (1.18.1)

=dim(MA(w)*(fJ)®A.iC) by (l.ll.l)

Thus we get the desired equality.

Remark 1.19. (1) If L = W , then F(L, A) = V k(X). (2) If L = f, then
V(L, ^)=Mfc(^) for any /i. Thus our module is a generalization of Verma
modules and also of their simple quotients.

Let us prove (2). By [9, 7.6.24], MK(y) is simple in this case. Hence
/K(7y)=0. By (1.4.1), it follows that JA(L)=Q, V A(L}=MA(L\ and V(L, ^)=
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§ 2. Twisted ^-Modules on Homogeneous Spaces

2.0. The purpose of this section is to review the concept of twisted ring
of differential operators 3)X(X) due to Beilinson-Bernstein [1] (cf. (2.2)), and to
define the ^W-modules O(V0, X) (cf. (2.5)) and H1

T(X, OXW) (cf. (2.9)). We
also consider their 'relative versions' (cf. (2.10)-(2.13)).

2.1. First we fix some notations used in this section. For a smooth
algebraic variety X over the complex number field C, denote the underlying
complex manifold by Xan. A morphism /: X-^Y of smooth algebraic varieties
is denoted by fan if it is considered as a morphism between the underlying
complex manifolds. For a complex manifold X, we denote the sheaf of holo-
morphic functions by Oan=Oa/. We write OT for o™n. Let c=cx: (Xan, Oan}
->(X, O) be the morphism of ringed spaces induced by the identity mapping,
where O=OX is the sheaf of regular functions. Let G be a complex algebraic
group and g its Lie algebra. For an algebraic action a : GxX—*X, let a(g)x
= 0(g, *)» and (a(A)f)(x)=(d/df)f(a(e~tA)x)\l=0 for /leg and a smooth function
/ on X. Define G-actions R and L on G itself by R(g)x = xg~1 and L(g)x =
gx for any g, x^G.

2.2. Twisted ring of differential operators £)X(X). Let H be a connected
algebraic subgroup of G, l)=Lie(//) and X : fj— »C a character of the Lie algebra
6. Let F=F(;0=Fy, H) be the sheaf on Gan of local holomorphic functions
/ such that R(A)f=-*(A)f for any A<=t>. Let X=G/H and p=px: G->X =
G/H be the natural projection. Since F has a (pan)~1Ox

n -module structure, it
also has an ^/r^-module structure. Since L(A) (-1 =g) preserves F, F has
a structure of g-module. Let £DX(X) be the subring of t*p*n Endc(F} generated
by the endomorphisms induced by Ox and g. Here End is the sheaf of local
endomorphisms. Then 3)X(X) is a twisted ring of (algebraic) differential
operators (cf. [19, 2.3.3]). S'nce ®X(Z) is locally isomorphic to 3)x [19, 4.16],
we can naturally generalize definitions concerning ^-modules to general
modules. We shall use the concept of characteristic variety SS(c^) of a
module M, holonomicity, etc. without further explanation.

2.3. ^)xW)"module Oan(VQ, A). Assume that there exists an algebraic sub-
variety V0 of G such that p \ V Q : VQ—*X(=G/H) is an open immersion, and let
V be an open neighbourhood of V0 in G with respect to the classical topology
such that p(VQ)=p(V) and each fibre of p\V is connected and simply connected.
Then the restriction f - > f \ V Q defines an isomorphism

r=7>0: (Pan \VUF\V) —>(p"n\VJ*OW(^OtfvJ.

Since 3)x(Z)\P(V0) acts on t*(t>an V}*(F\ V), C*O$?VQ) has a ^W-module structure.
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(Here and below, we say that c*Op"Vo) etc. is a ^M-module instead of a
(@xW I />(Vro))-module etc., if there is no fear of confusion.) This ^(/0-module
structure of e^Op^v^ does not depend on the choice of a neighbourhood V of a
given VQ, but as we shall see later in (2.7), it depends on the choice of W
If v/e need to specify this dependence, we write Oan(VQ, X) for

2.4. Let HQ be a connected, simply connected, open neighbourhood of the
identity element e of H, and M the set of such open neighbourhoods HQ. For
any H^St, a linear character X of the Lie algebra I) determines a unique
holomorphic function A' : H^-^C" such that K(e) = l and A'(xy) = A'(x)Ji'(y)
whenever x, y and xy are contained in H0. In the sequel, until the end of
(2.9), we fix a character Z of Ij, and write X for ^'. Let i: VQxH-^VQH be
the natural isomorphism. Then for H0^M, V = VQHQ satisfies the condition of
(2.3) and

(2.4.1) (,'"» F0x#0)-W, tf)|V)=^0"®cW-1.

Lemma 2.5. The twisted ring of (algebraic) differential operators 3)XW
preserves the subsheaf Opw^ of c*Opw$- We denote this <Dx(X)-module OPw^ by
O(VQ, X) if we need to specify the dependence on V0.

We omit the proof, since it is essentially contained in the proof of (2.12).

2.6. Dependence of O(VQ, X) on VQ. If VQ and V'Q are algebraic subvarieties
of G such that p(VQ)=p(V'Q) and, p: VQ->X (=G/#) and p: V'Q—X are both
open immersions. Then there exists a unique morphism s : VQ — > H such that

Lemma 2.7. Let V0, V'0 and s be as above. The <DxW-module structure of
0(V0, Z)(resp. Oan(VQ, /O) and O(Vi, Z)(resp. Oan(V'Q, 1)} are the same if and only
if /Us is locally constant on s~1(^o)nF0 for any HQ^4(. (Note that O(VQ, A)=
0(V0, V=0P(VQ, and Oan(V0, V=Oan(Vi, ^)=^O??r0) as sheaves on p(V0).)

Proof. It is enough to consider the g-module structures on Oan(VQ, X) and
Oan(VQ, X). Although we have assumed F0 and V'0 to be algebraic subvarieties,
we may assume them to be analytic subvarieties as far as we are dealing with
the analytic case. Since the problem is local with respect to the classical
topology, we may shrink F0 arbitrarily. For a given vQ^V0, we can find //OCE
M which contains s(v0) and s(fo)'1. Since in a small neighbourhood of VQ, the
value of s is always contained in HQ, we may assume from the beginning that
s(Vo)c:HQ. Then V :=VQH0 is an open neighbourhood of VQ and V£. Let /leg,
/e(?S?lro)=(?J?n), rvl(fp\VQ)=fQ and r;J(/J|VrJ)=/J. (See (2.3) for rVQ and rn .)

Then f0\V0=fp\VQ and fQ(vh)=fQ(v^(h)~1 for any v<=V0 and h^HQ. Analogous
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equalities hold for f'Q and VQ. For any v^V 0 and tc^C, e~tAvQ can be uniquely
expressed as e~tAv0=vh with v=v(t)(E.V0 and h=h(t)^HQf if \t\ is sufficiently
small. Then f*(e-tAv*)=(fp)(v)l(hYl and f'Q(e-tAvQs(vQ))==ff

Q(vs(v)s(vY1hs(vQ»=
(fp)W(s(vY*hs(vt)Yl. Note that, if |f| is sufficiently small, v(t)^v0, h(t)=e
and sMOr^Ws^o)^- Hence s(v(t}Ylh(t)s(vQ}^HQ and ^(sW^/is^o)) is defined.
Moreover s(v(0)±1=s(vo)±1 ̂ ft and fc(f)s(u0)=s(vo)^#o etc. Thus

)) = ^sCtOs^o)-1)-^) and /
Hence

(2.7.1)

and

-~-
(2.7.2)

Thus (2.7.1) coincides with (2.7.2) if and only if

(2.7.3) - ( s M O ) s ( v o ) - 1 ) 1 t-o=0 .

Since ^(s(v(0)s(v0)~1)=>i(s(v(OMs(vo)"1) if Ul is sufficiently small, the condition
(2.7.3) holds for any vQ^VQ and Ar~§ if and only if A°s is locally constant on F0-

2.8. Let 5 be a smooth algebraic variety, T a closed subvariety of S, and
/^{/eEOsl/EEO on T}. For an ^-module M, let rr(M)=linjflto7w0g((?5//m, M).

771

Here //om denotes the sheaf of local homomorphisms. Let S be another smooth
algebraic variety containing S as an open dense subset, and /: S-^S the in-
clusion mapping. For an ^^-module M, put /7

r(M):=y*/Tr(A/|S), FT(Sf M):=
AS, rr(Af)), H^T(M): = Hi(RrT(M)\ and H$(S, M): - H\RrT(S9 M)). Note
that FT(M} etc. depend only on /"^M, and hence they can be defined also for
0s -modules.

2.9. Let V0 etc. be as before. Let j : p(VQ)-*X be the inclusion mapping
of the open subvariety />(V0) of %, and T a closed subvariety of p(VQ). Then
the ^W-module structure of OpcF^^^Fo, ^) induces ^)xy)-module structures
in #r(#pcr0)) and j*Hk(Op<y$). We shall (abusively) denote the latter sheaf by
H%-(Ox(X)\ if there is no fear of confusion. Similarly, we sometimes denote
the F(X9 <Dx«)-module H&X, O(VQ, Zfi by Hfr

2.10. In the remainder of this section, we shall consider 'a relative version'
of what we have considered. Let £ be a subvariety of IT— HomLie a zge&raff i , C).
We define G-actions R=RE and L = LS on Gx£ by R(g)(g' , ^=(g'g~\ Z) and

V for ^, ^'CEG and ^^5. Let F(c)=F(c, 7/) be the sheaf
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on (G X E}an of local holomorphic functions / such that (R(A)f) (g, X) =
-*(A)f(g, 1) for A<=% and (g, X)<=GxE. Let pE: GxE-»Xx E(=(G/H}xE) be
the natural projection. Since F(c) has a (^n)~1Ofx£-module structure, it also
has an ^i^/^C^ ̂ -module structure. Since L(A) (-4 eg) preserves F(c), F(c)
has a structure of g-module. Let S)X,E be the subring of c*pE%Endc(F(c))
generated by the endomorphisms induced by OX*E and g. We want to consider
S)X,E as a family of twisted rings of differential operators 3)X(X) parametrized
by l^E.

2.11. Let Fo and V be as in (2.3). Then the restriction f-+f\V0xE
defines an isomorphism

Using this isomorphism, we can define a ^.B-module stucture of c*O™Vo-)xE in
a similar way as in (2.3). Let H^4C (cf. (2.4) for «#) and c be the function
on HQxE such that c(e, A)=l for any A-^E, where e is the identity element
of H, and (d/dt}c(etAh, V\t=0=*(A)c(h, Z) for yle5, /ZCE//O and ^c-/s. (In the
notation of (2.4), c(/i, ^)=

Lemma 2.12. T/ie family of twisted rings of differential operators S)X,E
preserves the subsheaf £>PCFO )X# of c^Op^v^^E- We denote this £)XtE-module

by O(VQ, c} if we need to specify the dependence on V0.

Proof. Let f ( v 0 , X) be a regular function on V0xE, and g: C*-+G be an
algebraic homomorphism. If £=i, g(t)vQ can be expressed as g(t)v0=v(t)h(t)
with rational morphisms v: CX-*VQ and h: C'^H which are regular at t=l
and satisfy v(l)=v0 and /i(l) = g. Since (d/dt)f(g(f)vQ, Z)\t=i=(d/dt)f(v(t\ 1)
l(h(ty)-l\M = (d/dtMv(t),V\t-1 + f ( v o , V - ^ it is enough to
show that (d/dt)l(h(i)Yl\t=i is a rational function of (v0, X). More generally,
let us show that (d/df)%(h(t, t'0))U=i is a rational function of (&>„, X) if /z(if, z;0)
is regular in a neighbourhood of {(1, VQ)\VQ^VQ\ and /z(l, vQ)=e. Take an
(algebraic) local coordinate system {xlf ••• , ,\"n} in a neighbourhood of ee//.
Let (d/dt)(Xili)(t, v0)U=i= : ^z(^o) and (dX/dx^(e)= : ^t. Then (d/dM(h(t, v0))U=i
— S?=i^i/il(^o) is a rational function of (v0, ̂ )=(v0, Wi, ••• , ^J^

2.13. Take a closed subvariety T of p(VQ) as in (2.9), and let jE: P(V0)X
E-^XxE be the inclusion mapping. The ^.^-module structure of Op^v^xE=
O(VQ, c) induces ^)Tt£-module structures in H^XE(OP^V^XE) and JE*H^E(OP(.V^^E)-
It also induces a F(XxE, 3)x, ^-module structure in H^xE(XxE} O(VQ, c)). The
evaluation of f^F(E, OE} at l'~E gives a C-algebra homomorphism
—C, which we shall denote by 2. Then, as F(X,

(2.13.1) HtxE(XxE, 0(V0,
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§ 3. Localization of g-modules

3.0. In this section, we recollect results of Beilinson and Bernstein [1]
concerning the localization of g-modules, which give a correspondence between
a category of £/(g)-modules and a category of 'twisted ^-modules' on the flag
manifold X=G/B. (Here and below, G denotes again a complex reductive group
as in § 1.) Here we follow the exposition of Kashiwara [19], but we keep the
notations of the previous sections. Thus our notations here become slightly
different from those given in [19]. The twisted ring of differential operators
AxW—D^p in the notation of [19] is denoted by 2)X(Z) (cf. (2.2)) here. Also
Uz + p(ti in [19] is denoted by U(l, g) (cf. (1.1)). See also [14]. Henceforth, a
^-module means a ^-module which is quasi-coherent over O.

Lemma. 3.1. (Cf. [19, 6.2.3].) For any Aet", the natural ring homomorphism
*r(X,3)xW) induces an isomorphism U(l-2p, §)-* F(X, @XW)- Hence

U(w(l-p)-p, ti=U(l-2p, g)=r(*, 3)X(V) for any w^W.

3.2. Let Modqc(X) be the category of ^(/0-modules M which are quasi-
coherent over Ox, and Modqc,0(A) the subcategory of Modqc(l) consisting of M
satisfying the following conditions : (a) M is generated by global sections.
(b) If a .2)T(/D-submodule 32 of M is quasi-coherent over Ox and F(X, 3Z)=0,
then 32=Q.

Let Mod(A, g) be the category of U(Z, g)-modules. Note that Mod(w(Z—p)—
p, §)—Mod(l—2p, g) for any w~W. Define the functors F: Modqc(l)^Mod(h—
2p, g) and (g): Mod(Z-2p, g)-> MorfflCW) by F(M)=F(X, M) and

Lemma 3.3. ([19, 1.5 and 6.4.2]) // A — p is anti-dominant, i.e., <av, /I— p>
^1, 2, ••• for any a^R+, then F is an exact functor and F°(£)=id. By the
functors F and ®, Modqc>Q(A) is equivalent to Mod(X—2p, g).

Lemma 3.4. ([!]. Cf. [19, 6.4.1].) // 1— p is regular and anti-dominant,
i.e., <a", /l—py^Q, 1, 2, ••• for any ae/?+, then Modqc(Z) is equivalent to Mod(l
—2p, g) by F and (g).

Lemma 3.5. // 1— p is anti-dominant and <JM<=Modqc(X) is holonomic, then
supp((g)r(c30)cisupp(c3/) and SS(®F(<3ti)}^SS(<3tt}. Here supp(resp. SS) denotes
the support (resp. the characteristic variety).

Proof. Assume first that JH^Q does not have a proper
If M is not generated by the global sections, then F(X, ^0=0 and we get the
desired inclusion. If M is generated by the global sections, then F(X, M)^§.
Hence if a ^-submodule 3i of M does not have a non-zero global section,
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then 32£^ and, consequently, 32=0. Hence 3tt<^Modqc,QW and
by (3.3). Thus we get the inclusion also in this case. In general, we prove
the assertion by the induction on the length of 3IL in Modqc(X). Let
be a proper submodule of M. Since P is exact by (3.3), ®F(3l)
®r(c5«/3Z)-» 0 is exact. Hence supp((8)r(c^))c:supp((8)r(3Z))Usupp((8)r(JM/37))
c=supp(3Z)Usupp(c^/3Z)=supp(c30. The assertion concerning the characteristic
varieties can be proved in the same way.

Lemma 3.6. Assume that /let" is anti-dominant. (1) We have JH(M(wl— p})
d{[y(wfl—p)"]\wf^w}f where ///(—) denotes the set of composition factors, and
[— ] the isomorphism class. (See (1.2) for V(— ).) (2) Let Z be a subset of
JH(M(wl-p}} which does not contain \_V(wl-p}~\. Then Za\Jw^w JH(M(w'l

Proof. (2) follows from (1). Let us prove (1). By [3] (cf. [9, 7.6.23]),
J H(M(w%—p)) consists of [V(xZ-p)'] with the following property: There
exist 7i, • • - , Yn^R+ such that wA>rriwA>'~>rrn'~rriwA=xA. Put Wi=rri'~rriWi.
Since rnwl.ll=wi-lX— <M/i_i^ , ft>Yi^Wi-iA, (A, w^l^y^ {1, 2, • • • } . Since X is
anti-dominant, w^lji is a negative root. Hence wl-l>rriwi-.l(—wi} by [4,2.3].
Thus w = Wt>Wi>'~>wn and V(xX — p}=V(wnX—p').

3.7. Let B and ru be as in (1.1), and N± the connected subgroup of G
corresponding to the Lie subalgebra n± of g. Let w be an element of W. Let
P=Px> G^G/B—X be the natural projection, xQ=px(e), and X(w)=Bwx0.
(Here and below, we denote a representative element of waNG(T)/T by the
same letter.) Then p\wN-\ wN-—>X=G/B is an open immersion, and X(w)
is a closed subvariety of p(wN-) which is of pure codimension cd(w}\—l(ws}—
l(w). Hence, as in (2.9), for any character /I of 6, we can consider the
module

which is holonomic. Here /: p(wN-)-*X is the inclusion mapping. By (2.7),
the ^W-module structure of X(w) = Hc£$>(Ox(Xfi does not depend on the
choice of the representative element of w. We can also consider the P(X,
^x(/Q)-module F(X, T(w, ty=He£$>(X, OX(Z)). Recall that F(X, &x(Z))=U(l-
2p, ti=U(w(JL-p)-p, g).

Lemma 3.8. // Z-p is anti-dominant, F(X, 3£(w, ty=M(w(Z-p)-p, b)*.

Proof. As in [22], we can calculate the character of F(X, 3£(w, Z)), and
we get (without the assumption of anti-dominancy)

(3.8.1)
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(Cf. (3.9).) Since w(/i—p)—p is the highest among the weights of F(X, I£(w,
X))*, we get a non-zero £/(g)-homomorphism a: M(w(X—p)—p, V)-*F(X, 3£(w,
>0)* and its dual <;*: F(X, 3C(w, X)}~^M(w(l-p}-p, b)*. Let K^kera*. From
the diagram

8
> ®F(X,

we get the following diagram.

rc3) ff*
^(w;, J)) — > M(w(X-p)-pt 6)*

By (3.6, (2)) and (3.8.1), we can show that

JH(K}ci U JH(M(w'(li-p)-p9W= U
w' $w w' $

By (3.5),

supp(<8)/0c U
(3.8.2)

', ^))= U
to ' $ to

Since 3?(w;, 1)=HC/(^(OXW) does not have non-zero (^x-submodules whose sup-

ports are contained in X(w)\X(w), (3.8.2) implies that ed=Q. Hence F(d)=
r(ed)=Q and a* is injective. Comparing the characters (3.8.1), we can show
that a* is an isomorphism.

Remark 3.9. In (3.8), we have assumed that X— p is anti-dominant. Here,
we shall show that the assertion becomes false without this assumption.

Let G—SL2j 5(resp. T) be the subgroup of G consisting of the upper-

triangular matrices (resp. the diagonal matrices), and w=\j_ ~n )• The map-

ping G-^(^ ^V-Ka°°+W/(coo + cO^P1 induces an isomorphism X=G/B^Pl, by

which we shall identify G/B with P1. Then G acts on P1 by (a

\C

), and xQ=pz(e) is identified with oo. Note that -!V- =

First, let us consider J/£CIIO(.Y, OX(Z)). Denote the function w(i ±

by t. Then as vector spaces, H«Zw(X, Ox(X))=Hhw,(X, Ox)=C[f]. For te
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VO a ~l)~*a* giyes a 'multi-valued character' of T and induces an element of

r, which we shall denote by the same letter 2. Then A=l corresponds to p.

The function Px(wQ i))-^n on X(w)=C, which we shall denote by tn, is

identified via r=rwN_ (cf. (2.3)) with the following function /„ in F(/l, B)
(cf. (2.2));

(a b\ /O -1W 1 Q\/c d
SL23 =

\c d) \1 0 !\-ac-1 1/\0 c~l

Hence((g ftf^Q ?))=W/*0/.((J !>(? ?))l. -.=»'-'- and (jj

= ntn~1. In the same way, we get (Q _^1)?Il=(-^-2?z)/B, and ^

(-A-nXB+1. Let r(x)=-£%, CM* be the dual s/2-module (cf. (1.1)), and

the dual basis of ftB}BJB0. Then (^ ^n-(-^-w+lK-i, (Q J°1)^=(-^-

and (J o)en=(n + l>n+i. (Here we put *_!=().) Thus ^ic»)(^, OZW))* is iso-

morphic to the Verma module for any X, whose highest weight vector is e0

and the highest weight is — A=— 2p.
Let us consider H^w(Xt OXW). Denote the function (. i)xo->t by if. Then

H°N_.XQ(X,Ox) = Cm and H\X^(X, Ox)=®j^Cdj(t)f where ^-(r%odCM)e

C[t, r^/CM- The rational function pz(Q ?))^n (neZ) on A r_-^0 , which

we shall denote by rre, is identified via r—rN_ with the following function /„
in FU, B);

a b\ I 1 OWfl 6 \
= __>(G,-i)nf l-^

c d/ \fl-V 1/\0 a-1]

Hence ((g J)/,)((f ?))=W/^/.((J 7)(J S)l«=tf-»)f— and (g

=W— n)3B_!. In the same way, we get ^=(^-272)5^, and

ndn+l. Let {e^J^^i be the dual basis of {dn}n*i. Then (^ ^en=(n — l)en-lf

(Q ^i)«n=W~2?i)gn, and (J Q)eB=W-n-])eBTl. (Here we put e0=0.) Thus

H^(X, Ox(Xfi* is isomorphic to the Verma module if and only if Ji—j=£Q for
7=2, 3, 4, ••• , i. e., ^ — ̂  is anti-dominant. (For any X, Hl

x^(X, OxW) is the
Verma module.)

§ 4. The ^(g)-module MA(w)*

4.0. Let h be a ^/-invariant character of i, ld the lowest weight of a
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finite dimensional irreducible P-module, Ji=Ae-}-Ad, and w^(W/W/)i. In this
section, we construct a certain £/A(g)-module MA(w)* and a £/A(9)-homomorphism
(p: MA(L)-^MA(W)*, which satisfy the conditions (1.11.1) and (1.11.2). Later,
in §6, we shall show that MA(w)* also satisfies the condition (1.11.3), and shall
calculate the character of V(w, A, p) using (1.12). In this section, we fix a
subset / of S. In order to make the account easier to read, first we consider
the case where ^<z=0, and at the end of this section, indicate how to generalize it.

4.1. Naturally identify ij with the set }T of characters of the Lie algebra
J). Let ;ic<=t;=jf = : E, Xd be as in (4.0) and X=Ac+Xd. Put L = L(w, Ad, £)=
{w(*'c+td-p)-p\*'c<=E\, A=A(L), A'=A(E\ and K' the quotient field of A'.
Since for our argument here, it is more convenient to consider E instead of
L, we construct a Z7Xg)-module MA'(w)* and a t/^'(g)-homomorphism <p' :
MA'(w(cf+ld — p}--p}->MA'(w^ such that MA>(w)* ®A>A and <p'®A>A satisfy
the conditions (1.11. !)-(!. 11. 3). Here c' e Homc(i, A') = HomA,(tA>, /!') is the
natural character and A is considered as an A'-a\gebra by the isomorphism
induced by E^Xr

c-^w(X'c
Jr^d — p}—p'^L. Let us write out the conditions cor-

responding to (1.11. !)-(!. 11. 3), which MA>(w}* and <p' should satisfy.
(1. 11. T) Let /: MA>(w)*- > MA>(w}* ® A<K' be the canonical morphism and
AMu;)*Ou)=.r l((MA>(w)*®A<K')w^. + id-.p,-p^} for [*~Q^ Then each MA.(w)*(iJ)
is a free /T -module of finite type and MA>(w)*=Q)/JleQ+MA'(w)*(/ji'). Here -TI'—
cr®A'K'.
(1.11.20 Let $, : M(w(Z'c+Zd-p)-p, l}-MA.(wY®A,^C (^'-ij) be the homo-
morhism induced by <p'. Then ^,^0 for any ̂ ^t/-
(1.11.3') There exists an open dense subset to of tj with respect to the classical
topology such that MA'(w)*®A',i'cC is a simple £7(g)-module for ^c^to .

Henceforth, we shall exclusively consider E as the parameter space, and
we write -4, K, <p, c, y, etc. for A', K' , <p' ', cf , t]' ', etc. for the simplicity of
notation. For L = L(w, ld, $)=w(f+Ad — p)—p, we put
M(L\ JA(w,

(4.1.1) 7(w, ^, W :=V(L, w(l-p}-

ij:=c®K, VK(w, jj+idf $:=VK(L), etc. (Cf. (1.3).)

4.2. The £7X9>module M^(w). Let X=G/B and Y = G/P. Let ^: G—
Z, /)F: G -^ F and <?: X-^Y be the natural projections, XQ= px(e\ yQ= py(e\
where e is the identity element of G, X(w}=Bw x0 and Y(w)=Bwy0 for wf^W.
Let iu^(W/WT)i. Then F(w;) is a closed subvariety of pY(wU-)=iuU-'yQ of
pure codimension cd(w)=l(ws)—l(w). (Note that X(w;) is an open subset of
q~lY(w), and is of pure codimension cd(w) in .Y.) Let QY.E be as in (2.10).
Then as in (2.13), we can consider the F(YxE, ^y.

(4.2.1) MA(w) :=Hti™xE(YxE, o(wU-9 c»=Hc
Y

d
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Since &Y.E is generated by the operators induced by g and OY*E (cf . (2.10)), we
have natural morphisms £/(g)-^r(F x £, £)Y,E) and A=F(E, OE)-*r(YxE, OY*E)
—*r(YxE, £)Y,E), by which MA(w) becomes a ^(g)-module.

4.3. A free A-basis of MA(w). The natural G-action on Y induces actions
of the maximal torus T on Y(w)=BwyQ and wU-*y0. Letuw=0ae^nU;cfl-\fl /)8(«)
and M>(u-)=0ae«x/z_vR /)9(aO. By the isomorphism x-»(expx)w y „, the pair (w(ii-),
it,!,) is isomorphic to (wU--yQ, Bwy0) including the natural T-actions. Hence

(4.3.1) Htt$t>(Y,OY)<*( (g) Agfa), 0))<g)(
aefl+nw(fl-\#/) aew(

We can get a (7-basis of the left hand side of (4.3.1) by using the expression
of the right hand side as follows. The exact sequence

) — > r(c- m, o) —> H\*}(C, o} — > o
can be identified with the exact sequence

o — * CM — > co, z-1] — > tfwc, ^ — > o .
Let ((d/dx)*x-1 mod CM)= : ^cn)(^). Then

(4.3.2) r(C,0}=@Cxn and HUC, (?)

Let ua be a linear coordinate function on g(a) and d(
a

n}=d<in:>(ua). As is seen
from (4.3.1) and (4.3.2), the set of the elements of the form

(4.3.3) ( n w2
a&R+r\w(.R_\Rj-)

with w(a)^0 gives a C-basis of //f^($
J)(^> (?y). It also gives a free /1-basis of

Lemma 4.4. Let v be the element (4.3.3). Then

Hv=<w(c—p)—p— 2 n(a)a, Hyv for

Proof. The element (4.3.3) is a weight vector of the weight

we- 2 n(a)a+ S
«e«+n^C^_\/2/) ae«+r\wc/2-i-\«

(4.4.1)
= u;c— S «— 2 n(a)a .

Since we(l/F/l/F/)j, we have w(R+r\Ri)c:R_, and hence

(4.4.2) 2 «= 2 a^
ae^+nw(fl+\B/) ae/2+/^w/

By (4.4.1) and (4.4.2), we get the assertion.

Corollary 4.50 For ^t; and w
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ch(M j t(uO<8UiC)=«»<*-"-'' H (1-e-T1.
a^R+\wR r

4.6. For w^W/Wfii and ^GEQ+ , let MA(wX$={v<=MA(w)\Hv=<w(c--p)
-p-p, Hyv for /fen- By (4.3) and (4.4), MA(w)=®^Q+MA(w)(fjt) and each
MA(w}({ji) is a free A-module of finite type. Let MA(w)^(^)=HomA(MA(w)(fjt\ A),
and MA(w}*=®^Q^MA(w}*($. Then MA(w)* has a natural £74(g)-module struc-
ture and

for A&tj. Obviously MA(w)* satisfies the condition (1.11.1') of (4.1).

4.7. We have a £/A(&)-homomorphism A(w(c—p)—p)—>A4A(w)* whose image
is the weight space MA(w)*(Q)=MA(wy£(C-p)-P( = A). This homomorphism in-
duces a ^(g)-homomorphism <p: MA(w(c— p)—p, fy-* MA(w)*. Obviously, <p
satisfies the condition (1.11.2') of (4.1). The condition (1.11.3') will be proved
in §6.

4.3. Let us explain how to generalize the argument of this section to the
case where Ad is not necessarily zero. We keep the notations of (4.2). Let
Ad be the lowest weight of a finite dimensional irreducible P-module, and

the line bundle on X consisting of (local) regular functions / such that
-f(g^d(brl for geG and b^B. Let ^et; and }i=Xc-\-Ad. (Note that

the lowest weight X of a finite dimensional irreducible p-module can be always
expressed in this way.) Then q*O(wU-, ^C}®OXOX(^CL) has a natural
module structure, which induces a F(X, £)^y))-module structure on

(4.8.1) =Hc
Y

d
(

= Hc
Y

d
(^(Y, q*&x(l<L)\ (as a vector space).

(Note that Rq*O()id)=q*O(Jid) by the Borel-Weil theory [5].) "Varying ^cetj in
(4.8.1)", we get a F(XxE,

which has also a ^(g)-module structure as in (4.2). Let {fl} be a basis of
the P-module F(P/B, Ox(Xd}) consisting of weight vectors, and pt the weight
of fl. Then the functions wU-'P^wup-*fl(p), which we shall denote by ft,
give a F(wU--yQ, OF)-basis of F(wU--y0, q^Ox(Xd}}. Let F/(/O be the irredu-
cible p-module with the lowest weight I' . Since F(P/B, Ox(ld)}=V /yd) (cf.
(9.2) below), we have

(4.8.2) chWM^^C^e-vp-o.wkhVtW) n (l-e~aYl ,
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where w(e*')=ew*' etc. (As is indicated by the calculation

(un
afi)(r

lxa(u)wp, lc)=(ulfi)(xa(

the character (4.8.2) is the same as the case ^d=0 except for the contribution
from the factor (wfjti)(t\ which amounts to w;(chV/(>l)).) Since w^(W/Wi)i,
the highest weight of MA(w)®AizcC is w(A—p)—p. As in (4.6) and (4.7), we
can construct a L^(g)-module MA(w}* and a /7^(g)-homomorphism <p\ MA(w(c-\-
Z<L-p)-p, &)->MXw/)* which satisfy (l.ll.r) and (1.11.2').

§ 5. Stability of the Submodule Lattice by a Smooth Pull-back

5.1. Let X be a smooth algebraic variety over the complex number field
C, and O—OX the sheaf of regular functions on X. Let Y be another smooth
algebraic variety and /: X-+Y a smooth morphism. Let 3)x be the sheaf of
algebraic differential operators on X and 3)s the subring of 3)x generated by
Ox and the tangent vector fields which are tangent to the fibres of /. Let M'
be an 0F-module and M=f*M'=Ox®f-ioYf~lM'. Then M has a natural 3)r

module structure. The purpose of this section is to prove the following pro-
position.

Proposition 5.2. (1) Let N be a 3) rsubmodule of M—f*M' which is quasi-
coherent as an Ox-module. For any p^X, there exists an open neighbourhood U
of p and a uniquely determined Ofwrsubmodule N'(U) of M ' \ f ( U ) such that
N\U=(f\U)*N'(U). (Note that f is an open mapping.)

(2) Assume that f is surjective and the fibres of f are connected. Then
there is a uniquely determined OY-submodule N' of M' such that N=f*N'.

Remark 5.3. Since / is smooth, OX,P is faithfully flat over (f~1oY')p =
OY./W- Hence for any OF-submodule Nf of M', f*N' is an C^-submodule of
f*M', and, by [7, Chap. 1, §3, Prop. 9], f~lN' is a subsheaf of f*N'.

Corollary 5.4. Assume that f : X—>Y is a smooth surjective morphism whose
fibres are connected. Let M' be a quasi-coherent OY-module, M=f*M', S(M) the
set of 3) f-submodules of M which are quasi-coherent as Ox-modules, and S(Mf)
the set of quasi-coherent OY-submodules of M' . Then N' -* f*N' defines a bijec-
tion

5.5. Let y=(y\, • • • , 3>r) be a local coordinate system of Y at q=f(p). If
there is no fear of confusion, we regard OY,q as a subring of Ox,p by /*.
Especially, we identify yl^OY,q with f*yl=yl°f ^Ox,p. Choose zlt -• , z^=
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Ox.p so that x=(yit ••• , yr ; z1} ••• , zs) gives a local coordianate system of X
at £. For v=(vi, ••• , vs)^Zs, we write i>^0 if v,^0 for any i, and ?;>0 if
v^Q and y^O. If z;eZs and v^O, we set *(v)=EK=i *?*M 1 and 3u=d^(
•••(3/3zs)

Us. If v£0, we set ^(v)=0. Then dvz(w)=z(w-v).

5.6. Assume that we are given an w -tuple .4(^)=(fli(
Consider its power series expansion with respect to z;
with Av(y^~0?,q. Set / = S«oOy.flA(^)(c=C>F,fl), and let (Bl(y\ •-, ^^(3;)} be
a minimal generating system of the Or,g-module /. Then Av(y)'s can be ex-
pressed as

(5.6.1) JUy^Vc

with some cVil(y)^OY.q. Set

(5.6.2) Ci(x)=^
V^Q

Then c l(%)tE(5x,p J where Ox,p is the completion of the local ring Ox,p with
respect to its maximal ideal mx,P. Moreover cl=ct(x) (l^i^g) satisfy the
system of linear equations with coefficients in Ox.p',

(5.6.3) A(x)=±ctBi(y).

Since (5.6.3) has a solution in G x , p , and since 6x.P is faithfully flat over OX,P,
(5.6.3) has a solution in OX,P [7, Chap. 1, §3, Prop. 13]. Hence we may take
ct(x) in Ox,p. (Note that, if we define cVil(yYs as the coefficients of the power
series expansion (5.6.2) of cl(x)t the equality (5.6.1) holds.) Since {Av(y)\v^Q\
and \Bl(y)\l^i^g\ are both generators of J, Bl(y)'s can be expressed as
Bl(y)=TiV>0di,v(y)Av(y) (a finite sum) with some dt,v(y)^OY.q. Set K=OX,PJ
and Pl=Pl(y, dz)=^v^dl,v(y)dv

z (l<i^g). Then

2 .4
u^ 0 zo ^ 0

(5'6'4)

Set L=2f-iOx.P(^>l(x)). By (5.6.4), Bt(y)^L+Kmz.p. Since {B^^), -, Bg(y)}
generates the O^.p-module K,

(5.6.5) KdL+Kmxtp.

On the other hand, by (5.6.3), P,A(x)=P,(y, 3,)Sf»ifi.(^)c.(x)=2f.i5l(^)-P,clW
^ /C. Hence

(5.6.6) L^K.

By (5.6.5), (5.6.6) and the "Nakayama's lemma", we get K — L. Hence there
exist elj(x)sEOx.p (l^i, j<g) such that Bl(y) = ^j=1elJ(x)'PJ(y, d2)A(x). By
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setting Q%(x, dz)=^j=ielJ(x)Pj(y, 92), we get the following lemma.

Lemma 5.7. Given A(x)=(al(x), ••• , a n (*))•= Ox. P, there exist n-tuples Bl(y}
=(bn(y), •- , bin(yV^OY,fw, Qlf=E^)f,p and cv(x)^Ox.p(^^i^g) such that Bl(y)
=QlA(x) (l^i^g), and A(x)=^i==lcl(x)Bl(y).

5.8, Proof of (5.2). Let u be a section of M=/*M'=0Jr<8)/-iorM' on an
open neighbourhood U of p. By shrinking U, if necessary, we may assume
that u can be expressed as M=S5=i0/*)(8)wJ with aj^r(U,Ox') and u'j^
P(f(U), AT). (Note that / is an open mapping.) Let A(x)=(a1(x), ••• , an(x}}^.
01. P, and take B^y^b^y), - , bin(y)), Qt and Cl(x) as in (5.7). Set v(=
2?=iM3>X-. Then Qxu = S^iOl«X^(8)^-2]^iM3')(8)^-S^il®^X^)^=
l ® v j and Sf=i^W(l(S)t;0=Sf=iE^i^^ If

wesetSf=10yi/(p)i;;=T(tt,/0^^
Since OX,P is faithfully flat over OY./W, the $yi/cp)-submodule T(u, p) of M/(p)

is uniquely determined by M (cf . [7, Chap. 1, § 3, Prop. 10]). By shrinking U,
if necessary, we may assume that ct's and all the coefficients of Q^s are
regular on U. By the same argument as above, we get ^f,p'U=Ox,p'®oY,f^p^
(2f=i#r./cp')vO for any p'^U. In other words, if we define a subsheaf T(u,U)
of M ' \ f ( U } by T(u, £7)=Sf=i0/aDv{, then (%| U}u=(f\U)*T(u, U). By shrink-
ing L^, we may assume that U is an affine open subset of X. Since we are
assuming N to be a quasi-coherent C^-module, there exist sections ua^r(U,N)
(ac-:,4) such that N\ U=^a<=AOuUa. Define an O/a7)-submodule N'(U) of M' /([/)
by JV /(t^=2fle^T(Ma, IT). Then .V|£7=SaeX^/it/)M f l = SaeA(/|£/)*r(Ma, f/)=
(/|f/)*iV'(f7). Moreover, if an 0/an-submodule A^(f/) of M ' \ f ( U ) satisfies
N\U=(f\U)*N'(lD, then Np,=Ox,p.®oY,f,pl^'(U)f,p., for any ^ef/. Since
0Xj23 ' is faithfully flat over OY./W), JV'C^/cp') is uniquely determined by jVp'.
Hence ^Vx(f7) is unique. Thus we get the first assertion.

Let p and p' be two points of A'. Take an open neighbourhood U (resp.
U') of />(resp. p'), and an #/clo -module /\W) (resp. an 0 /Cff ̂ -module N(U'}}
as in the first part. If p"^Ur\U'9 Np,, = Ox,pll®oY,f(p,,,N

f(U)f^ = OX,P»
®oY,f,p,,,N

f(U'}f^. Hence N'(U)=N'(U') on f(Ur\U'}. In order to get the
second assertion, it is enough to prove that N'(U)=N'(U'} on f(U)r\f(Uf},
assuming the connectedness of the fibres of /. Hence it is enough to prove
that f(Ur\U') = f(U}r\f(U'}. Let q ^ f ( U } r \ f ( U f ) . Then f~\q}r\U^6 and
f~\q)r\Uf^6. Since f~\q) is connected, we can find an element p"^f~l(q)r\
Ur\U'. Then q=f(pf/}^f(Ur\U'). Thus we have completed the proof.

§6. Character of V(w, X, $

6.0. In this section, first we determine the character of V(w, X, p). Once
the character formula is obtained, we can deduce several consequences from it.
See (6.6) and (6.8).
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6.1. Let Ad be the lowest weight of a finite dimensional irreducible P-module,
and

, 1, 2, ••• for any

An easy calculation using fundamental weights shows that ij, rattta) is an open
dense subset of i/. Let /Ic^tJ, /l=^c+/U, and assume that ^C^t7, r a d W d ) - Let
us consider the simplicity of the £/(g)-module

for w^(W/W i}i, where cd(w)=l(ws)— l(w)==codimxX(w)=codimYY(w) and OXW
denotes (abusively) the .2) ̂ (/O -module q*O(wU., %c)®Ox(Ad}. (Cf. (2.9).) Note
that the inclusion q~lY(w}—>X is an affine morphism and hence, Hc

q*fy\w}(Ox(A))

=Rrq-iYw(0:(Z))\:cd(w)'] and H£$\W}(X, Oz(Xfi = Rrq-lY<a,(X, 0T«))[cd(u;)].

(To see this, it suffices to show that the inclusion morphism Y(w}— >Y is affine,
whose proof we do not give here since a similar argument appears later in
(7.2).) Since

the simplicity of the C7(g)-module MA(w)*®Ai xcC is equivalent to the simplicity
of the ^)A-W)-module

which is equivalent to the simplicity of the ^(/U-module

q*Hc
Y

d($)\OY(Zcy). (Note that A— p is regular anti-dominant, and use (3.4).)
Furthermore, by (5.4), the simplicity of ?*//?'l£f (0F(/lc)) is equivalent to that
of the ^)F(/i

6.2. Let ^et;>radtfd)0t;.rad(0), and assume that H£$\W}(X, O*W) is not

simple. By (6.1), N: = Hc
q*%\w)(X, Ox(ic)) = r(H£$\w}(O:(W is not simple.

(See (3.2) for T.) Let L be a simple submodnle of 7V. Put Mw\=M(w(Jtc—p)
-p, b). Since NdH%Sg>(X, Oz(^=Mt by (3.8), L* (^L) is the simple quo-
tient of Mw. (The injectivity of N=Hc

q^\w^Hc/{S?} follows from the vanish-

ing of H$$^I-IYM(X, OxW), which can be proved by the usual 'devissage'.)
Let Wl^JH(N/L)ciJH(M*/L)=JH(Mw)\{lL-]}. By (3.6), Q=V(w'(le-p)-p)
with some w'<w. By (3.4), (g)Q is a composition factor of ®N^

Hence

(6.2.1) supp((g)<2)= U 'X(w") for some W^{wff^(W/WI)i\w
W"<EWQ

(Consider the characteristic variety.) On the other hand ®V(w'(Ac—p)—p)* is
the simple submodule of ®M*, = Hc/ffS(Ox(*c)). Since HC£$\\OX(AC)) does not
have a non-zero submodule supported by X(w'y\X(w'\

(6.2.2)
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By (6.2.1) and (6.2.2), w'^W/W^. Since the highest weight w'(lc-p)-p of
Q is also a weight of Mw=M(w(Ac—p)—p, b),

(6.2.3) (w(lc-p}-p)-(wfttc-p}-p)E,Q+, w, w'^QV/WAi, and w>w' '.

Theorem 6.3. Let Xd be the lowest weight of a finite dimensional irreducible
P-module, ^ij, A=Ae+*<i, and w^W/W^. Then

chV(w, I, j))=<ru"
a^^XwRj

is the simple ^-module with the lowest weight /L)

Proof. We calculate the character of V(w, 2, p) using (1.12). Since we
have already proved that (MA(w)*, <p) defined in §4 satisfies (1.11. 17) and (1.11.2'),
it remains only to prove (1. 11.30- (Cf. (4.1).) Let

to =07, rad(/U)niJ( rad(O))-

Then (6.2.3) does not hold for any ^CEt;. Hence MA(w)*®A.i.cC=Hc
q*%\w,(X,

OxWc+^di) is simple for A'c(^ IQ. Moreover ij is an open dense subset of t/ with
respect to the classical topology. Thus A4A(w)* satisfies (1.11.30- Hence

chV(w, I, $)=&MA(w)*®A,icC by (1.12)

=chMA(w)®A,icC by (1.1)

= e-wf>-r-w(chVI(X)) n (l-e-aYl by (4.8.2).

Corollary 6.4. Let w^W/Wrfi, td be as in (6.3), and
(1) VA(w, c+Ad, p)(^) is a free A-module of finite type.
(2) chVK(w, r]+Zd, |))-chM^)*(8)^-g--^'0.i(;(^chy

e-")-1. (See (4.1) for VA(w, c+Xd, p) etc.)

Proof. Since V A(w, c+Ad, }))(/£) is a quotient of the finitely generated _4-
module MA(w(c+Ad — p)—p)(fji), (cf. (1.17) and (4.1)) it is enough to prove that
VA(w, c+Ad, }))(//) is a projective .4-module [26], [32]. The projectivity follows
from the following lemma together with (6.3).

Lemma 6.5. Let C be a polynomial ring over a field and M a C-module
of finite type. Assume that the dimension of the (C/m)-vector space M/mM does
not depend on the maximal ideal m of C. Then M is a projective C-module.

Proof. It is enough to prove that the quasi-coherent sheaf M on SpecC
corresponding to M is C-free in a neighbourhood of any closed point mc=E SpecC,
where C is the structure sheaf. Let Cm be the local ring at m, and let
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M I , - - - , un be elements of M which give a basis of M/mM. Let eif ••• , en be the
natural basis of Cn and define a C-homomorphism <p: Cn -»M by (p(el)—ul.
Let {i;,-} be a generator system of M. Since <p(g)cCm is surjective by the
"Nakayama's lemma", v.7=StM lc lJ with some clj^Cm. Take an element /CEC
such that all the CLJ'S come from C/^CC/"1]. Then <p®Cf is surjective. Let
_V//=/,/®cC/ and /f^ker^C/. From the exact sequence 0-»/iC-*C/-*M/->0,
we get the exact sequence (C/m')®K^>(C/m')n-+M/m'M-^>0 for any maximal
ideal m' contained in SpecC/. Since the dimension of the (C/m')-vector space
M/m'M is equal to n, the image of (C/m')®K in (C/m')n equals 0, i.e., Ka
m'Cf. Since the intersection of m'C/ for maximal ideals m' of Cf is 0, we
get K=Q and Mf = Cn

f.

Theorem 6.6. Let Ac, ^<L, % and w be as in (6.3). // X—p is anti-dominant,
then

F(X, ?*/W(<3^^ OxW) = V(w, 1, »)*

as U(Q)-modules. (See (6.1) for C^W).)

Proof. Using the notation of (4.1), put MA = MA(w(c + /U — p ) — p ) , JA

=JA(W, c+Ad, }>), F^ - MV/^, MX = MA®AK, JK= JA®AK, VK = VA®AK, and
MK(W)*=MA(W}*®AK. First, let us show that the kernel of the homomorphism
<p\ MA(w(c+Ad — p)—p)-*MA(w)* defined in (4.7) and (4.8) is JA. Consider the
diagram

0 —> JA —> A/x —^ VA —> 0
i | I

V V V

o —-> /A- —-> ,v/7, — * y* —> o
consisting of the natural morphisms. Since VA is a free ,4-module by (6.4, (I)),
the first horizontal sequence is a split exact sequence, and hence the second
one is also exact. Since MA and VA are /1-free, the second and the third
vertical arrows are injections, and hence the remaining one is also an injection.
(In fact, we can show that JA is a free ^-module together with its 'weight
spaces' using [26], [32] and (1.17.2).) By (1.4, (2)), VK is the simple quotient
of the Verma module MK and JK the maximal submodule of MK. Since chVK =
chMK(w)* by (6.4, (2)), VK = MK(w)*. Since MA(w)* is .4-free, the natural
morphism MA(w)* —> M^(M;)* is injective, (pK := <p®K\ MK —> MK(w)* is not
identically zero, and hence surjective. Thus we can identify (pK: MK-*MK(W}*
with the projection of the Verma module to its simple quotient. Especially its
kernel is JK. Hence JAdMA<r^JK=MAr\ker<pK=kQT(p. Since ker^) is contained
in MA(w(c+Ad — p)—p)+, ker(p=JA. Thus <p induces homomorphisms VA(w, c +

I*, $)->MA(w}*, V(w, A, $^MA(wF®A.icC = H£%\wy(X, OjU))* and <r*:

^, p)*. Note that the image of a* contains the weight
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space of the highest weight. Let K=kera*. By (3.8), M(w(l — p)—p, b)*=
H%$\X, Ox(Xb=>H£$w(X, 0X(V)^K, and K* is a quotient of M(w(i-p)-p,

b). If K^Qf then # contains the weight space of weight w(Z—p)—p. This
contradicts the fact that the image of 0* contains the weight space of weight
w(A—p)—p. Hence K—0 and 0* is injective. Since

eC (cf. (4.8))

= e-Wf"f-w(chVIW) n (1-e-*)-1 by (4.8.2)
aE.R+\wRj

=chV(w, I, }))* by (6.3),

cr* is an isomorphism.

Remark 6.6.1. In the above theorem, we can not omit the assumption that
X— p is anti-dominant. See (3.9) and (1.19).

6.7. Generalized Verma modules. Let V/W) be the finite dimensional
irreducible X/)-module with the highest weight A* ', and

Such a £7(g)-module is called a generalized Verma module. Obviously

(6.7.1) chA/M7, p)=ch7;«/) II (I-*")-1.

Theorem 6.8. Let I c= 5, u; e (I^/PF/)^ and X be a character of 1 swc/z
</i, eO(aeElI/) a^ non-positive integers. If

(6.8.1) J:=wIw-lc:S,

then w(A—p)—p is the highest weight of a finite dimensional irreducible
module, and

Proof. Since w^(W/Wz)h w;(/7/)=-/7j. Let ae77/ and u;(a)=-j8. Then
/S^TZ^ and <w(i-p)-p9 j8v>=a wl^-<p9 w~1^y-<p, ^>=-a av>+<1o,
a v >— <|0, ]8V>=— <^, av>. (Note that <p, r^)^! for r^^O Thus <w(A—p)—p,
j8">(j8e77j) are non-negative integers, and we can consider the generalized
Verma module M(w(A—p)—p, £(/)). Consider the f/A(b)-module A(w(c—p)—p)
as in (1.3). Extend this L/A(b)-module to a ^/Xp(/))"m°dule by putting
0(a)li0cc-/,)-/,=0 for a^R.r^Rj. (See (1.3) for Uc^).^. Note that the Pf/-
invariance of c implies the PFj-invariance of w(c—p)—p.) Let w;F/(^d) be the
irreducible P(/)-module with the highest weight wAd. Then A(w(c—p)—p)
®c^^/Wd) has a f7^(p(/))-module structure. Let

MA(w(c+id-p)-p, X/)) ^
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It is enough to prove that

(6.8.2) MA(

Denote the left (resp. right) hand side of (6.8.2) by MA (resp. V A}. As is
easily seen, MA is isomorphic to ^(u-(/))®c^/WcO as an /1-module, and the
kernel of the natural homomorphism MA(w(c+ld — p)—p, fy-*MA(w(c+Ad — p)—
p, X/)) is contained in MA(w(c+Ad — p)—p, ft)+. Hence we get a surjective
£/A(9)-homomorphism <p\ MA—>VA. For [A<=Q+, let MA(ft) and VA(p) be the
images of MA(w(c+Ad — p)—p, &)(/*) (i. e., 'the weight space' of weight w(c+Ad

— p)—p—fjt) by the natural projections. As is easily seen, MA is a direct sum
of MA(fi)'s. On the other hand, VA is also a direct sum of VA(p)'s, by (1.17.3).
Since <]> induces a surjective A-homomorphism <j)([t) : MA(fjt)—*VA(fji) for each p,
it is enough to show that <f>(p) is bijective. As is easily seen, MA(fjt) is a
free ^-module of finite type. On the other hand, VA(fjt) is also a free A-module
of finite type by (6.4, (1)). Since <f>(fjt) is a surjection between free A-modules
of finite type, it is enough to show that dim MA(fji)®AiicC=dimVA(fjt)&)A, zcC
for ^Cel7, i. e.,

(6.8.3) <±M(w(l-p)-p, }(jy)=cW(w,

where A=Ac+Ad- By (6.7.1) and the Weyl's character formula, the left hand
side of (6.8.3) is equal to

(6.8.4)

where e(w-')=(-l)I^'J and /o(/)=(l/2)2aeB+naja. Let jSeHj and a--^-1^)
(^II/). Then (wp + p, fi~y=-(p, av>+<p, /T>=0, and hence i^^+p is Wj-
invariant. Since wWIw~1=WJ and wp(I)= — p(J), (6.8.4) is equal to

(6.8.5) e-™p-p

On the other hand, by (6.3) and the Weyl's character formula again, the right
hand side of (6.8.3) is equal to

(6.8.6) e~wP~Pw( S s^'^'c^/
w r eW 7 n^R+nRf

• n a-e-T1.
ae#+\iu/2/

(Note that the highest weight of F/(/0 is M;/^.) Since

w n (l-e-^-^wC

replacing w' with w'wt in (6.8.6), we can see that (6.8.5) is equal to (6.8.6).
Thus we get (6.8.3) and complete the proof.
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Remark 6.9. Let us show that the set

(6.9.1) {V(w, 1, X/))|/c:S, w(E(W/WI)l) a O<=Zio for a^

is strictly larger than the set

(6.9.2) [M(lf, X/)) 1/cS, a', /T>eZ,0 for j8e/7,,}/£ .

Let MW, J)(/)) be a module which belongs to (6.9.2). Then by (6.8), M(K ', j)(/))
=V(M>sf, ^s^', $(wsjws)) belongs to (6.9.1). Next let us find a module which
belongs to (6.9.1) but not to (6.9.2). For this purpose, it suffices to show that
V(w, X, J)(/)) in (6.9.1) with Jet; belongs to (6.9.2) if and only if u;(/77)c=-/7.
Assume that F(i#, X, £(/)) is isomorphic to some module M(X, }>(/)) m the set
(6.9.2). By the Weyl's character formula and by (6.7.1),

(6.9.3) chA/tf', D(/))= S e(M;>w'c;'^CJ"-'(J) H (l-O"1-

Note that the numerator of the right hand side of (6.9.3) can be expressed as
e * ' - f , where / is a Laurent polynomial in {e?\ ft^lJj} . Hence among the
factors of the denominator, (1— e~a) for a<=R+\Rj can not be canceled. (Note
that the group ring of the root lattice is a unique factorization domain.) On
the other hand, for JL = ti,

(6.9.4)

by (6.3). Hence

(6.9.5)

By (6.9.3) and (6.9.4), we also get

(6.9.6) ev<*-P)-P+p«) jj (
a^R^nwRf

Since the right hand side is T'T,/ -antisymmetric, the left hand side is divisible
by Ilae^nfljU — e-a)[6, Chap. 6, no. 3.3, Prop. 2]. Thus (6.9.5) becomes an
equality. Since w&(W/Wj)i, w(Rzr\RJ should be equal to —(RjnR+), and

(6.9.7)

(Moreover, comparing the highest terms of (6.9.6), we get

(6.9.8) w(X-p)-p=Z').

Conversely, assume V(w, 1, $(!)) in (6.9.1) is given and u>(II/)<=— IL Then,
by (6.8), V(w, X, W)=M(w(l-p)-p, ^(wlw'1)) belongs to (6.9.2). Hence, if
X is Wi -invariant, V(w, I, X^)) in C6-9-1) belongs to (6.9.2) if and only if
M>(n/)<=— n« Thus (6.9.1) is strictly larger than (6.9.2). In other words, our
£7(g)-module V(w, 1, p) is a further generalization of generalized Verma modules.
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§7. Resolutions of V(iv, I, p)

7.0. Resolutions of a finite dimensional £/(g)-modules by the Verma modules
were constructed in [2] and [22] in several ways. In this section, we shall
construct resolutions of V(w, ^, J>) by the Verma modules. First we construct
a resolution of V(w, /I, J>) using the Grothendieck-Cousin complex [22]. Then
using this resolution instead of [2, 9.9], and following the argument of [2],
we construct a second resolution, which is a generalization of the resolution
of a finite dimensional representation constructed by Bernstein-Gelfand-Gelfand
[2, 10.1 and 10.1']. In order to reduce our task, we consider only the case
where A is ^/-invariant.

7.1. Grothendieck-Cousin complex. We fix an element w^W/W^i until
the end of (7.6). Let W}iy = {x^WI\l(x)=i\f W(w, i)={w'^W\ w ̂  w', l(w')=
l(w)—i], Zl=\Jj>ml\Jx&^^w.^X(x) for j^O, Zt=Zi for i>0 and Z't=X for zgO.
(See (3.7) and (4.2) for X(w) etc. Note that W(w, i)r\wWi=wWP and (Z(-
Zf

i+1)r\q-lY(w)=^Jx&v^X(wx).) For any sheaf & on .Y, .Y=Z;=3ZJ=3-»=>Zr=D

Z['^.l=^ gives the global Cousin complex of £F' with respect to the filtration {Z(}

(7.1.1) 0 — > /U, ff') — > //*.,*.(*, ff') — > H^/Z,Z(X, ff') — > ••• .

See [22, 7.8]. We have also the /oca/ COMSJ'H complex [22, 8.6]

(7.1.2) 0 — > ff' — > ff^/ziCff7) — > // i i / Z i(ffO — ̂  ••• .

7.2. Let C be the full subcategory of the category of quasi-coherent O-
modules consisting of sheaves whose supports are contained in q~lY(w}. Then
C is closed under kernels, cokernels and extensions. Since H£/Zfi(3')e.C for

any 3''=C and i, j = Z, all the basic assumptions of [22, 9.4 and several lines
preceding it] are satisfied with our category C and the filtration \Z(\ . Let us
show that the following conditions are satisfied for z'^0.

(L.V.\ Rrzlss.M(3')=rxlx,(3') if 9'*=C and

Let d: Z'i— Zi+!-+X be the inclusion mappings. If z>0, then the connected
components of Z'i— Z'i+l are affine spaces X(x) (x^W(w, i)), and hence for any
w'^W, t't~

l(w'X(wsy) is a disjoint union of X(x)r\w'X(ws) (x^W(w, 0). Each
X(x)r\w'X(ws) is empty or a complement of a hypersurface in the affine space
X(x\ and hence ^-^i^'Z^s)) (i >0) are aflfine varieties. Since {^'^(u/s)!^7^^}
is an affine open covering of X, c( (i>G) are affine morphisms. Hence by the
argument of the proof of [22,9.6], we can prove (L.V.)l for i>0. Since
Rrx/z^^=RrZo/Zl(3^ and rT/z i(ff /)=/Tz0/z1(ff /) for g'r-c, we get (L.V.\

by the same argument. Thus the condition (L.V.) of [22, p 362] is satisfied.
In a similar way, using the fact that Zi—Zl+l are affine varieties, we can show
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that the condition (G.V.) of [22, p 362] is also satisfied.

7.3. First construction of a resolution. Let m:=cd(w} = codimYY(w) =
codimxq-lY(w) = l(ws)-l(w), and EF :=Hf-iYW(Ox)=Rrq-iY^(Ox)lm^. (Recall
that w^W/Wj^.) Then EF^£. Note that, for z>0,

^r'z'i/Z'i + 1^r'q-'iY(.w')==' RTtZ'i -Z'i + png- lFCw)— ©
w&V^

in £, and codimx^(i^^)=^+/(^) for x^Wr. Hence, for z'^

(7.3.1) ffii/zi+1(9
r)=^i/zi+1(ff?-iyc«,)(^))= © H^X,

x&V^

and

(7.3.2) #1,.^.1(EF)=0, if

By [22, 10.5], £F is locally Cohen-Macaulay with respect to {Zi}. In other
words, the complex (7.1.2) is exact for £F' = ff. By [22, 9.5.(e)], H^/Z'i+l(3)

are /T(Ar, — )-acyclic. Hence /f^GY, EF) are the cohomologies of the complex

(7.3.3) F(X, H«Z,Q /z, (ff)) — ̂  T(,Y, //^ /z& (ff )) — > . . - .

Again by [22, 9.5. (e)], the complex (7.3.3) can be naturally identified with the
complex

(7.3.4) H^ /^ (X, EF) — > H^ ISk (X, EF) — > - - - .

By the same calculation as (7.3.1), we get

(7.3.5) #ii/z4+1(*, *)= 0
x&V

Since

RF(X, ^=

we have

f //?(w)(rf O), if i=0
(7.3.6) H*(X, EF)=^

10, if f ^ O .

Since the cohomologies of the complex (7.3.4) can be identified with (7.3.6),
and each term of this complex are given by (7.3.5), we get the exact sequence

(7.3.7) 0 — > Hy^(Y, OY) — > A° — > A1 — > ---- > A1' — > 0,

where
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Lemma 7.4. For AelJ> a d , we have an exact sequence

(7.4.1) 0 <— Hf(w,(Y, oy«))* ̂ — BQ <— Bl < ---- <— Bv <— 0,

where l'=l(wi) and

Bt= © M(wx()i-p)-p).
xEWp

Proof. As a dual of (7.3.7), we get the exact sequence

0 — Hf(w,(Y, Or(Xfi* — (A0)* < ---- <— (A'')* ̂ - 0 .

Thus the assertion follows from (3.8).
Using (6.6), the above assertion can be also stated as follows.

Lemma 7.5. // ^t/,ad, we have an exact sequence of U(§)-modules

(7.5.1) 0 < — V(w, I, p) < — BQ < — B! < ---- < — Bv < — 0

where I' and Bt are as in (7.4).

Lemma 7.6. For Azi;> a f Z , dim Tor HC, V(w, Z, ̂ )=cardW}l\ where C is
considered as a trivial right ^--module.

Proof. Since (7.5.1) gives a free £7(tt_)-resolution of V(w, 1, $), the torsion
groups are the homology groups of the complex

0 <— Bo/n-Bo <£- Bi/n-Bi <^- ••• <— Br/n.Br <— 0 .

For X(^W^ and y^.W^'l\ we have (wy(Z—p)—p)—(wx(A—p)—p)=w((p—yp)
—(p — xp)\ which can not be equal to zero by [2, 9.8]. Hence dl=Q. (Note
that Bt/K-Bi^@XEwMCu(wx(X—p)—p), where u(-) is the highest weight

vector of the Verma module M(— ).) Since dim5l/n_5l=card W^\ we get the
assertion.

Lemma 7.7. ([3]. Cf. [9].) For any field k of characteristic zero, and
2, {Ji^il, the following conditions are equivalent: (1) Mk(X — p, bk)^Mk((jt—p, bA).
(2) There is a sequence Ti, ••• , Tn of roots such that ^^rr iM)^

7.8. For xt y^W and f'^R, we write x-^y if xrr=y and /
Sometimes we shall omit the symbol T on the arrow. For xy y^W, the follow-
ing conditions are known to be equivalent (cf . [4]) : (1) There exists a sequence

Tn
Ti, ••• , Tn in R such that X = XQ-+XI-> >xn=y. (2) x^y. (3) BxBc:ByB.

Lemma 7.9. Let Y<^R, w^W and wf — wrr. Then w —> w/ if and only if
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Proof. Let n=<.^, p>. Then Q=£n<=Z and wp—wrp—nw(f}. Hence wp>
w' p if and only if nu/(7*)>0. Let f' = w(fl. We may assume that p'X) by
replacing 7 with — 7" if necessary. Since wf=rr>w and wp—rrwp=nf', the

condition n^x>0, i.e., n>0 is equivalent to rr>w>w, i.e., w-^wf by [2, 8.10].

Lemma 7.10, For w;, w' ^W , the following conditions are equivalent :
(l)Mjr(u;(^-/o)-p, B^M^w/^-p)-^, B). (/teco// that r)^c®AK.} (2}M(-wp-
p, fy^M(-w'p-p, 6) and wWj^w'Wj. (3) w^wf andwWI=w'WI. (4)

ri r2 rra
is a sequence 7*1, ••• , ^n in J?/ SMC/I ^/iaf W=WQ <-Wi< ---- <— wn=w'.

Proof, Assume that MK(w(r]-p)-p, b) => ,MK(w'(r]-p)- p, B). By (7.7),
there exists a sequence ?{, ••• , 7*^ in /? such that w(^ — p)^rriw(r] — p)^ ••• ^
rr.n--rr'2rriw(7] — p)=w'(7] — p). For any #, 3;^^, x(-f] — p)^y(j] — p} implies that

%Wi=yW i and x(—p)*^y(—p). Hence wWI=w/WI and

(7.10.1) -wp^-r^wp^ ••• ̂ -r rn-r r ir r iu;1o=-M; //o.

Let w;"1(?'<)=?'i- Since wWI=rr.--'rriwWI= wrTi ••- rriW r the reflections rri

belong to W/. Hence Ti^Ri and —wp^—wrrip^--'^ — wrrn--rr2rrip= — w'p.
By (7.9), this relation is equivalent to the assertion (4). Thus we have proved
the implication (1)=}(4). The implications (4)^(1) and (2) <=$ (4) can be proved
in a similar way. Let us prove (3) =}(!). Take x^=(W/Wj)s so that xWj =
wWI=w/WI. If w^w', then *, ^ and wx can be expressed as x=ti ••• ta,
where a=l(x) and tt^S, w=ti'-- tari ••• rb, where a+b=l(w} and r/e/, and
^/=til---tia,rj1-'-rJbl, where l^ / i<-- -<2 a ' ^a , l^j\<--<jb>^b and a'+b'=l(w').
Since ^^(W^/)s and til--tialWI=w'WI = xWi=t1--taWI, the expression of w/x

should be w'—t^-tarj^-r^,. Let J0— ri • • • ? - & . Since ri ••• rb^rjl ••• r^,, we can
find a sequence 7*1, ••• , Yn^Ri such that

''i '"2 rnri -•• rb=yQ < — y1 < ---- < — yn=rJl ••• rh, .

(Apply (7.8) to the Weyl group Wi with the set of simple reflections /.) Then

(7.10.2) w = xy0 < — xy1 < — ••• <-^- xyn=wf ,

and y^Wj. Since r] is W i -in variant,

(7.10.3) xyi-i(y-p)-xyi(y]-p)=xyi-i(-p)-xyT(-p).

By (7.9) and (7.10.2), xy^-pfexy^-p). By (7.10.3), w^-p^xy^-p^
-•^xyn(y — p) = w'(y — p). Thus, by (7.7), we get the implication (3)=X1).
The implication (4) =^ (3) follows from (7.8).
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Lemma 7.11. Let R = R(x) be an nxm-matrix with components in C[*] =
C[#i, ••• , #i], where Xi, ••• , %i are indeterminates. Assume that the rank of
R(X) is m—l for any l^C1. Then there exists a unique vector u — M(;c)eC[;c]m

up to a non-zero constant multiple such that R(x)u(x)=Q and u(x) is not divisible
by any element of C\_x~]\C. Moreover, w(^)^0 for any X^C1.

Proof. The assertion concerning the existence and the uniqueness is
obvious. Let Rj(x) (1^/^w) be the column vectors of R(x). For any teC1,
there exists a unique nontrivial linear relation !>}f=iCjRj(A)=Q up to a constant
multiple. Let Uk=\^f=Cl\ck^=Q} . For any t£EUk, there exist unique Uj(X)~
C(j'^k) such that ^*W)=S^*M^W)^W)- Using the formula of Cramer for a
system of linear equations, we can express wj(*)'s as regular functions in x-=
Uk. By multiplying the denominators of Mj(#)'s, we get a relation of the form
SjNiMj'Wfl/*)^ with u'!j(x}~C[_x~\ such that wi'W^O for any Z<=Uk. Dividing
by the greatest common divisor, we may assume that u'j(x)'s are relatively
prime. Since u is a non-zero constant multiple of u" , z/(A)=£0 for any X^Cl =

Lemma 7.12. // the equivalent conditions of (7.10) are satisfied with w and
w'f then there exists a U A($)-homomorphism (p: MA(w'(c—p) — p, B)— *MA(w(c— p)
— p, B) such that <p®A,*C^Q for any ^i/. Such a homomorphism (p is unique
up to multiplication of a non-zero complex number.

Proof. It suffices to consider the case where w — wfra with ae/?/n/?+
and l(w)=l(w')+l. Then w'(a)^R+,

(7.12.1) w(c—p}—p—w'(c—p)—p + nw'a^wf(c—p)—p

with n:=(p,a~y, and MK(w'(7] — p)—p,fy^MK(w(r] — p)—p,fy. Hence there
is a non-zero element u of UK(n.) such that

(7.12.2) [#, ul^—^nw'a, H> for /fet, and

(7.12.3) n,i/v=0,

where v denotes the canonical generator of MA(w(c—p) — p, b). Multiplying
and/or dividing an element of A if necessary, we may assume that u^UA(n-)
and a~lu£U A(K-) for any a^A\C. Identify A with a polynomial ring
CT>i, •-, x{], let U(n-)(—nw'oL) be the set of w^[/(n_) satisfying (7.12.2), and
fix a C-basis of U(n-)(—nw'a). Then Z7(n_) (— ni^'a)®^ can be identified with
Am, where m=dimf/(n_)(— nw'a). Let u=u(x)=t(ul(x], ••• , MTO(^)). As is seen
from the proof of [9, 7.6.12], the condition (7.12.3) on u can be written as a
system of linear equations in ut(x} (Igz^m) with coefficients in A=C[_xlf ••• ,
x{], say,
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(7.12.4) R(x)u(x)=Q.

Since w(A — p)—p=w'(A — p)—p-}-nw'a^w'(A—p)—p for any / le t / , dim Horn
(M(w'(l~p)-p, b), M(w(A-p}-p, b)):=l by [9, 7.6.6 and 7.6.23]. Hence the solu-
tion space of (7.12.4) is one-dimensional for any (^, ••• , fa)^Cl, i.e., the rank
of R(X) is equal to m— 1. Thus applying (7.11) to our situation, we get an
element v' — uv of MA(w(c—p) — p, b) such that v'®Atil^Q for any /lei/. Then
the ^(g)-homomorphism which sends the canonical generator of MA(w'(c—p)
— p, b) to vf satisfies the condition.

7.13. Fix a reduced expression of each w^.Wi\{e] and let a(w)^I be the
last factor of the fixed expression. For any arrow w-+w', define the function
s(w, w'} by the induction on l(w) as follows. If wa(wf)>w, let s(w, w')=l.
(Especially s(e, w')=l.) If wa(w')<w, let s(w, w')= — s(w0(w'), w'a(wf)}.

Lemma 7.14. ([2, 10.3 and 10.4]) (1) // w1^Ws->w2 with w^Wl9 there
exists exactly one w^Wi—{wz} such that Wi-^Wt-*w2. (2) For any quadruple
(MI, w2, wz, w4) as in (1), s(wlf Ws)s(w3, wz)+s(wlt

7.15. Let ws=QV/Wi)i. For any x^WI} MK(wx(r) — p)—p, b) can be em-
bedded in MK(w(?) — p}—p, b) by (7.10). Let c'(e, x)(x^W!} be such embed-
dings. By (7.12), we may assume that c'(e, x) induces an embedding c'A(e, x]
of MA(wx(c—p)—p, b) into MA(w(c—p}—p, b), and that c'A(e, x)(£)AitC^Q for
any ^etj. Fix such an embedding for each x-~W i. Then, if xl9 x2^Wj and
Xi-»xz, there is a unique embedding cf(xlt x2): MK(wxz(^ — p)—p, b)-^A4K(wxl(r]
— p) — p, b), which is compatible with the fixed embeddings c'(e, x}. Put x0=
e, Mi=MA(wXi(c— p)— p, b)(/=0, 1, 2), and let ut be the canonical generator
of Mt. By (7.12), we can take ?e/P so that ui:=tc'(xlr x2}(u2}^Ml and
ui®A.2l^Q(^M1®A.iC) for any ^^1J. Then tc'(e, xz} sends u2 to c'A(e, x j ( u i )
eM0. Hence tc'(e, xz) sends M2 into MQ, and for any ^etj, (tc'(e, x2)(g)A, *€)
(uz®T) = (cf

A(e, xl)®A.iC)(u/2&'):J=Q, since c'A(e, xJtgC is an embedding of a
Verma module. Then by the uniqueness part of (7.12), feCx . Hence c'(xlf xz)
sends MA(wxz(c—p)—p, b) into M^wx^c—p^—p, b) and c'(xl9 xz)®A.iC^Q for
any ^etj. Let

s(xlf x2)c'(xlf xz), if *i-»*8

0, otherwise.

Let ^ )={A;eW r
7U(A:)=i}, /7=/(jc7) as before, and

x&V<»

Then dt=(c(x, y))x&v^,y&w^+^ and the natural projection e;

— p, fy-»VA(w, c, p) defines a sequence
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(7.15.1) 0 <— VA(w, c, p) <— C^,0 <— CAll< ---- <— CAtl>

which is a complex by (7.14). (Note that CAtl^.JA(w(c—p) —
p, fy=CAt0.)

Theorem 7.16. For w^O^/W/)*, ^ complex

0< — FxCw;, )?, }))< — CK,,< — CKil<-

obtained as (7.15.1)®AK is exact.

Theorem 7.17. For w^(W/Wi)i and ^et;, let

Then the complex

(7.17.1) 0 <— V(w, I .p) ^- C0W) «^

obtained as (7.1S.l)§§A,xC is exact, if 2^i^iad.

Proof. Since (7.16) and (7.17) can be proved in the same way, we shall
prove only (7.17). The surjectivity of e is obvious. Assume that we have
already proved the exactness at C0(/D, ••• , C\_i(A), and let us prove the exactness
at C tU). (If f=0, we do not assume anything.) Let Cj-=CjW) and Kj=kQrdj.
The desired equality dl+i(Cl+1)=Kt is obtained by modifying the proof of [2,
10. T]- Here, we provisionally use notations close to those in [2]. Also in
our case, it is enough to prove the same assertions as Lemmas 10.5, 10.6 and
10.7 of [2]. We do not need any modification concerning Lemma 10.5 of [2].
As in [2], the proof of "Lemma 10.6" is divided into following two steps.

Lemma a. JH(K^JH(C^.

The proof is the same as in [2] except that we use the exact sequenece
(7.5.1) instead of the one constructed in [2, 9.9].

Lemma b. Let /leT, M<=0, and L(h — p} be the simple quotient of the
Verma module M(i—p)=U(^®uwC(i—p). (See [2, §8] for O). Assume that

X is maximal in {^T L(cj}—p} occurs in J H(M}} . Let r: M(A — p)-*M be a
homomorphism such that the image r(fx-p) of the canonical generator f x-P of
M(Z—p) is not zero. Then the image of r(fx-P) in M/n_-M is also not zero.

Proof. We shall prove the assertion by the induction on the length of M.
Let fj-pEiM be a weight vector whose weight (])— p is maximal among the
weights of M and /VciM the submodule generated by f$-p. Concerning the
case where r(/^_ i0)^iV, we do not need any modification of the proof given in
[2]. Assume that r(f^p)^N. Then L(l-p}^JH(N}c:JH(M(<p-p}}. Hence
^(/}. On the other hand, L(<f>—p)^JH(N)c:JH(M). According to the condi-
tion of the lemma, we get A=</>. Since (p— p is a maximal weight of
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M, r(/,

To complete the proof of "Lemma 10.6", i. e., the injectivity of the mapping
Cl+l/n--Cl+1-*Kl/n-'Ki, it suffices to apply Lemma b to the module M—K^
Cf. the proof of Lemma 10.6 of [2].

Lastly, we modify the proof of Lemma 10.7 of [2], namely, we replace the
proof of the identity dimcCi+l/n-Cl+1 — dimcKl/n-Ki < oo with the following
argument. Define the modules C and D, and the morphisms y, -9, rj and $ in
the same way as in the proof of Lemma 10.7 of [2]. Then we get exact

7] T # d-i

sequences D-*C-*Kl-*Q, and C^Ci-^Kl.1-^Q. (The latter sequence should be
£ £

replaced with C-+CQ-*V(w, ^, p)-»0, if 2=0.) As in [2], using these sequences,
we can show that dim/f t/n-/iCf=dimTori+i(C, V(w, I, £)). On the other hand,
by (7.6), we get dimC4+1/n-C t+i=card T/F^+1)=dimToriV-i(C, V(w, Z, £)).

Remark 7.18. We assumed that X— p is anti-dominant in (7.17). The author
does not know whether this condition is necessary or not. A deeply related
result is obtained by O. Gabber and A. Joseph [10].

§ 8. ^-modules Associated to Complex Powers of Functions

8.0. The purpose of this section is to prove (8.4), which will be used in
the next section.

8.1. Let X be a connected smooth variety over C, O—OX the sheaf of
regular functions, 3)x the sheaf of algebraic differential operators, / i - - - , /^e
F(X, Ox} which are not identically zero, /—{I, 2, ••• , l\, ek—(Q, ••• , 0, 1, 0, ••• ,
0)sCz, where 1 appears as the &-th component, s=(si, ••• , si) the linear coor-
dinate functions of C1, g=Il5=i/i, B an open ball contained in Q=X\g~1(Q),
and /S=/J1---/JZ a single valued branch of BxCl=>(x, s)->/iMSl---.AMS:. Let
^[§]=^®cC[si, • • - , si], ^-^/^..../^^[s]/1, ^/(a)=^/1,...,/l(a)=K//Z!i.i(sl-
aW, 3l(a)=mf(a}U~i\ -• , /I"1], for a=(alf -, <xi)<=Cl and u(a) (resp. u'(a)}
the section of the ^-module Jl(a) (resp. 32' '(a)) corresponding to /-.

Lemma 8.2. For any k^If there exist Pk=Pk(s)<^£)[s] and bk(s)^C[s]
such that Pkf-'rek=bk(s)f- and bk is a product of polynomials of degree at most 1.

Proof. This lemma is essentially due to Sabbah [28]. Since Sabbah works
in the analytic category, we need to deduce from it the corresponding assertion
in the algebraic category. The necessary argument is the same as the last
part of the proof of [12, 2.5.4].

Lemma 8.3. Let g=Hft as above,

W={(x, s
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W—the Zariski closure of W in T*X, and

For any a^C1, the characteristic variety of Jl(a) is WQ. Especially 3l(a) is
holonomic. (Here T*X denotes the cotangent bundle of X.)

Proof. If g'1®) is normal crossing, the assertion can be easily verified.
Moreover, we can show that the characteristic cycle of 3l(a) does not depend
on a in this case. In general, by the Hironaka's desingularization theorem
[15], there exist a smooth algebraic variety X and a projective morphism p:
X^X such that (g°p)~1(Q) is normal crossing and p induces an isomorphism
p: S:=X\(g^p)-1(Q)-^X\g-1(0)=Q. Let m(a) be the £)i-module defined in the
same way as 32 (a) using f i ° p , ••• , f i ° p instead of f l t ••• , f t. Then 3l(a)=

y*(3Z(g)|fl)=y*(f .3l(a)\8}=( }*(%(Q)\Q)=( fl(a), where j: Q-*X and ;: Q->
\Jp\Q / Jp Jp

/N/ [

X are the inclusion mappings, and I is the integration along fibres. (See [17].)
fSince Jl(a) is holonomic, the characteristic cycle of 3l(a)=\ HI (a) depends only
JP

on the characteristic cycle of !7Z(g)[23]. Hence the characteristic cycle of
3l(a)=32fl,....fl(ai, ••• , at) coincides with that of 3Zg(0), whose support is known
to be WQ [29] (cf. [12, 2.4.6, (2)]).

The purpose of this section is to prove the following assertion.

Proposition 8.4. Let p be a point of WQ, and assume that there exist in-
vertible micro-differential operators Qk in a neighbourhood of p such that

(8.4.1) Qkf
s-+ek=bk(s)fs-,

where bk's are the polynomials appeared in (8.2). Then 3l(a) is a simple Si-
module (i.e., it does not have a non-trivial coherent £)-submodule) if and only if

for any k^I and v^Z1.

8.5. Proof of the "if part". Let M be a coherent non-zero ^-submodule
of 3Z(a). Since 32 (a) does not have a non-zero submodule supported by g~l(Q)
and since ^(g)|(,Y\^-1(0)) is a simple ^-module, M=Jl(a) on X\g~\Q). Let
U"(CL} be the element of Jl(a)/JH corresponding to u(a). Then <-Jl(a)/M=\Jm&z

&(gmu"(ay). Fix an integer m arbitrarily. Since the support of m(a)/<3ft is
contained in g~l(Q), gm+m'u"(a)=Q for a sufficiently large integer m' '. Applying
Pk's several times to this relation, we get a relation of the form (H^,v^sbk(a
Jrv))gmu"(a)=Q with some finite subset S of IxZ1. It follows from our as-
sumption that gmuff(a)=Q and 3l(a)=M.

Remark 8.5.1. The assumptions on Qk's are not used in the "if part".
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8.6. In order to prove the "only if part", we need some preliminaries.

8.6.1. Let M be a ^-module, u a section of M, and f^Ox> Consider
the left ideal 3 of ^[s] consisting of differential operators P(s)^=^)[s] such
that (fm-sP(s)fs)u=Q holds in C[s](g)cJ« for a sufficiently large integer m.
(Note that /m"sP(s)/se^}[s] if m is sufficiently large.) Let fsu be the section
of X\=3)\_i\IS corresponding to the identity element of ^)[s]. Then X
— ^[s]/J= «2)[s](/sw). For a complex number a, let fau be the section of
~C/(s— OL)£ corresponding to fsu. Then j:/(s—a)j:=g)(fau).

8.6.2. Define an endomorphism t of the ^-module X by £ : P(s)(fsu) -»
P(s+l)(/-/sw). Then £ is well-defined and injective.

Proof. Let m be a sufficiently large integer, and fm~
The following conditions are equivalent : P(s)(fsu)=Q. ^lJ-__0s

JPjU=Q. S.^o(s
+iyp/tt=0. P(s+l)(/-/'iO=0. Thus we get the assertion.

8.6.3. If 3)u is holonomic, then X is a subholonomic ^-module, and J7/(s
— a)JC (a eC) and XltJC are holonomic.

Proof. The first assertion is due to Kashiwara [18, Theorem 2.5]. The
remaining assertions follow from it.

8.6.4. If S)u is holonomic, the composition factors of -£/(s— a) X (including
multiplicities) depend only on (a modZ).

Proof. Let C[s, t~] be the (7-algebra defined by the relation ts=(s+l)t,
and ^)[s, f]=-^®cC'[s, ^]. The multiplication by s and the endomorphism t
defined in (8.6.2) give a ^)[s, ^-module structure in JC . The assertion follows
from (8.6.2), (8.6.3) and [12, 2.8.5].

8.6.5. Assume that there exist a differential operator P(s) and a polynomial
c(s) = C[s] such that P(s)(f • fsu}=c(s)fsu. If c(a-/)=£0 for y = l, 2, ••• , then

)[/-1](cf. [12, 2.3.8]).

8.6.6. Let £ be a point of the conormal bundle T*X, and assume that p

is contained in the characteristic variety of £l(s—a}£ for any a^=C. Let €p

be the ring of germs of micro-differential operators at p. If there exists a
micro-differential operator Q^8P which is invertible and satisfies Q ( f - f s u ) =
c(s)fsu with the same c(s) as in (8.6.5), then c(s) is a minimal polynomial of

Proof. Let £P—6P®®£' Since /> lies in the characteristic variety of
£l(s-o)£> Q^<Sp^3)j:/(s-a)j:=j:p/(s-a)j:p for any aeC. Hence (s-
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for any a*=C. Since a(s)J?p=£0 for any a(s)eC[s]— {0}, the above rela-
tion implies the faithful flatness of X p over C'Cs]. Let Ci(s) be a minimal
polynomial of s^End(j:/tJ:). Then c(s)=Ci(s)d(s) with some d(s)-^C[s]. If
d(s)£C", then c(s)C[s] £ d(s)C[s] and f(s)^p£c1(s)^pc^J,=6?p[s](/'+1M).
On the other hand, since Q is invertible in ep, c(s)-Cp — c(s)€p\_s~\(fsu) — ep[_s]
Q(fs+1u)=£p[s~](fs+1u). Thus we get a contradiction. Hence d(s)^Cx, i.e.,
c(s) is a minimal polynomial.

8.7. Proof of the "only if part". Assume that bi(a — v)=Q for some v^Z1,
and let us prove that 'TZ(a) is not simple. Since 32(a) = j*(32(a)\Q) and 3i(a)\Q
depends only on (a modZ1), we may freely replace a with other element in
the same residue class modulo Zl. Especially, we may assume from the be-
ginning that bi(a)=Q. We have (PiP2 ••• Pi)gs+lu(a)=c(s)gsu(a), where c(s)=
nUWs+ai + 1, ••• , s+aa-i+l, s+ak, ••• , s+aO- Put J:=^[s](^sz/(g)) and let
us show that the conditions of (8.6.6) are satisfied. For any ^eC, there exists
an integer 772 such that

(8.7.1) ^/(s-j8+mU=^(^-™M(a))=^(^M(a))[5r-1] = 3Z(a-|-j83),

where <5=(1, • • • , ! ) . (Cf. (8.6.5).) By (8.6.4), the characteristic variety of £/(s
-/3)J7 coincides with that of j:/(s — {l+m)j: = m(a+p$), which is WQ by (8.3).
Moreover, (QiQz--Qi}gs^u(s)=c(s)gsu(s) and QiQz--Qi is invertible at p(EWQ.
Thus the conditions of (8.6.6) are satisfied. Hence c(s) is a minimal polynomial
of s^Enda)(j:/tJC). Since ^i(g)=0, c(0)=0. Let c(s) = Ci(s)s. If s is surjective,
then s is an automorphism of XltXt for XltX is holonomic. But, then Ci(s)
=0 as an endomorphim of XliX, which contradicts the minimality of c(s).
Hence s^End(J:/tJ:} is not surjective, i.e., sJ7+iTj:£j:. Then sr :=(sJ7+^j:)/

Since t£=£ on ,0, ET^O. Thus we get a proper submodule of
Since JT/sJ? and j:/(s+m)j:=3l(a) (cf. (8.7.1)) have the same composi-

tion factors, 32 (a) is not simple.

§ 9. Submodules of V(w, A, $) and ^-functions

9.0. The purpose of this section is to prove (9.4) and its corollary (9.13).
In (9.4), we describe the submodule lattice of V(w, X, £). In order to state (9.4),
we need some definitions, which are given in (9.1)-(9.3). The proof of (9.4) is
given in (9.5)-(9.11). In (9.13), we give a criterion for the simplicity of
generalized Verma modules, by combining (8.4) and (9.4).

9.1. Let 1 be a ^/-invariant character. If we forget the
structure, then O(wU-t Z)=OY\wU--y0. (See (2.5) for O(wU-, /Q.) Hence we can
regard l^r(wU--y0, OY) as a section of O(wU-, /O, which we shall denote by
U. We write 1^ for ]^. Then 3)y U--yQ is isomorphic to «2)F(/0|£/_- j;0 by
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*. Thus from any (£}FG*)i£/_ -^-module JH, we get a

9.2. Semi-invariants. From now on, we assume that G is semi-simple
and simply connected. Note that these assumptions are not restrictive for the
study of (generalized) flag manifolds, £7(g)-modules, etc. Then each ttT=S*=i
n^i (nt^Z) determines rational characters of T, B and B.:=wsBws (via the
projection J3_ — > T), which we shall denote by the same letter ttf. If every nl

O^'^O is non-negative, then there exists a regular function f* on G such
that f*(e)=l and f*(V 'xb)=-&(b^(b)fw(x) for x^G, fe'(Efl_ and b = B. We call
such a polynomial a semi-invariant. These functions fs can be constructed as
follows. Let Vm be a finite dimensional irreducible representation of G with
highest weight &, vw its highest weight vector, and v-w the lowest weight
vector of the contragradient representation V& of yw such that <i>_», v»>=l.
Then the regular function /® is given by

(9.2.1) r(g)=<v-.,gvmy.

Let /* = /--. Then /•=ni-i/?»-

9.3. Assume that !!/={«*+!, ••• , aj. Then t;={^=Si=i^^tUt^C'}. Let
be independent complex variables, /s(^)=nt=i/?i(^)J ^=^[51, ••• ,
=^YS?=i(st-^)22', and M(^) the generator of m'(Z) corresponding

to fs. For any ^G-module M, let #.5M:=L}-u5K(g:EG), where L^-i is the left
translation by g"1.

Theorem 9.4. Assume that ^=-^c+^d^^rad, where Xc is W / -invariant and X d

is the lowest weight of a finite dimensional irreducible P-module. For w^~-
, put

of V(w, ^, }>)},

L?= {U(&-submodules of V(w, A, p)*}

L2= {coherent 3) x(i)-svbmodules of H

L3= {coherent $x(tc)-submodules of Hc&$? (O x(lc))} ,

L,= {coherent £)Y(Zc)-submodules of H^%}(OY(1C})} ,

L,= {coherent (2)Y(lc}\U..-yQ)-submodules of Hc
Y

dff (OY(2tc}}\U-- yQ

L6= {coherent (<£Y\U--yQ)-submodules of

L7= {coherent ®G-submodules of H

Then as lattice-ordered sets,
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(See (1.1) /or t;ad, (HW,),, £/_, and *, (4.8) for Ox(Xd], and (4.2) for X, Y, X(w\
Y(w), cd(w) and y0. We denote the dual of L by Lopp.}

Proof. Obviously, L?^^L?, LZ=L, and L5^L6 . By (3.4) and (6.6), L?s
L2. By (5.4), L3 = L4. In order to prove L4 = L5 and L4=L7 , we need some
preliminaries. Henceforth until the end of (9.11), we write /I for Ac, since we
exclusively consider the ^/-invariant characters.

Lemma 9.5. For any w^:W, Y(w)r\U-'yQ^$

Proof. Since BwsB is a Zariski open subset of G, BwsBgr\BwsB^<f) for
any g^G. Hence Bgr\wsBwsB^<j>. Especially, Y(w)r\U-- yQ = Bwy0rMvsBws
'By0^<r> for any w=W.

Lemma 9.6. Let S be a smooth algebraic variety over C, U a Zariski open
subset of S, As a twisted ring of algebraic differential operators on S ([19, 2.3.3]),
AU=AS\U, M a coherent As-module, and Nf a coherent Au-submodule of M\U.
Then there exists a coherent As-submodule N of M such that N\U—N'.

Proof. Since M and N' are quasi-coherent over Os and OU} respectively,
we can find a quasi-coherent 0)S-submodule M of M such that Ni\U=N', by
[11, (5.9.2)]. Let N be the /Vsubmodule of M generated by Vi. Then .V is
a coherent As-submodule of M such that N\U=N'.

9.7. Let us prove that L± = L5. Define a mapping L4 -» L5 by the restric-
tion to U--yQ. By (9.6), this morphism is surjective. Assume that two modules
M and Y in L4 restricts to the same module in L5. Then J\//(MnAO is sup-
ported by the complement of U-'yQ. Hence every irreducible component of the
characteristic variety of M/(Afr\N) is the conormal bundle of some subvariety
of Y\U-~y0. On the other hand, each irreducible component of the characteristic
variety of H^(ff(OYW) is the conormal bundle of Y(w') with some w'^W/WIt

which is not a conormal bundle of a subvariety of Y\U--y^ by (9.5). Hence
)=0, i.e., Af=N.

Thus it remains to prove that L4 =

Lemma 9.8. A defining equation of the hyper surf ace B^-raiB of G is given
by A=0.

Proof. Since raj('&l)='&l—8ljaj, we can show that / t(rap=£0 (resp.^0) if
i^j (resp. /=;') by (9.2.1). Since /^(O) is a union of cosets in B-\G/B, and is
a hypersurface of G, we have f^1(Q)=B--r(XiB. For A<E0(a t) and
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such that [_A, A'~]=a^, we have

/t(exp(M)rtti)=<v-arl, ratvW

=ct<v.9i, A

with some ce(7\{0}. (By the representation theory of slz, we can show that
A'vWi=£Q. Considering the weight of raivWi, we get raivWi=cA/vJlli (c^O).) But
AA'vWi=[A, A'lpai= a~vWi=vWi. Hence /i(exp(L4)rfli)=^+O(f2) (c¥=0). Thus
/z=0 is a defining equation of

Lemma 9.9. G\B.-P=\JrEis\iB--rB.

Proof. The minimal elements of W\WZ are S\I. Hence the maximal ele-
ments of W\wsWi are {i^5rlr^S\/} . By the equivalence w^
we get G\BwsP={JwEw\wswIBwB=\Jrt=s\iBwsrB. Multiplying ws from the
left, we get the assertion.

Lemma 9.10. The rational characters tD% (l^i^k) of B can be extended to
those of P and P.. Denoting them by the same letter uri? we have ft(p'gp)=

) for g^G, p'>=P_ and p^P.

Proof. Let l<Li<k, aen/={a*+i, ••• , at} , A^§(a) and ^47eg(a). Then
we have Avmi=§ and ofvWi=§. Hence by the representation theory of s/2,
A'vWi=Q and fl(gexpA'} = (v-vi,gexpA'<'Vm:> = <v-a>i,gvm:> = fl(g'). Thus we
get the relative in variance with respect to P. The relative invariance with
respect to P_ can be proved in the same way.

9.1L Let us prove that L4 = L7. It is enough to prove that

(9.11.1)

(cf. (5.4)). Let jG: 5_-P->G and jY: B--yQ-^Y be inclusion mappings. Then
w-lH&<p(wm'(-Xft = (jG}*Ml?^WP(mf(-X)\B-'P}. Since w-lHe

Y
d$>(Or(Xft -

(JY)*H*£$^(0(U.., X ) \ B - - y J . it is enough to show that p$O(U-, X)=M'(-X)

on B.-P. Let ^=SJ=i^^i and /~-*=IIi=i/T^. Then f~* gives a multi-valued
holomorphic function on G\U?=i/T1(0) = 5_-P. (Cf. (9.8) and (9.9).) Denote by
Of~'A theO-moduleon B.-P generated by f ~ x . ThenOf-*=3)f-*=3l'(-X)\B--P.
By (9.10), f'x gives a section of F(A, P) on U--PQ, where PQ is a connected,
simply connected open neighbourhood of the identity element of P. (See (2.2)
for F(X, P}.) Thus f~l determines a section of Oan(U-, Z)=c*(pY

n\U-'P0)*(F(Ji,
P) U--PQ). Take a single-valued branch of /-* on U.-P0 so that /-z(g)=l.
Then /-* = ! on t/_, i.e., /^ determines ler(f/--yo, OY)=r(U--y0, O(U-, ^)),
which we have denoted by 1; in (9.1). For g^G, we have (L(g)f~*)(x)=
f~*(g~1x)=(p*<pg)(x)f~*(x) with a locally defined analytic function <pg on F.
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For /leg, let ^>A—(d/dt)(pQ^tA\t==Q. Then <pA is a regular function,
(P$<pA)-f-*, and .4-1^ = ^-1^. Hence l®l*<=i$&r(X)®p?<DY<»

p$O(U-, Z) satisfies .4(l(g)l^)=(^^)(l®l^). Thus all the linear differential
equations satisfied by f~l are also satisfied by 101A Since OB_.Pf~* and

are integrable connections of rank one, ^'(— /O! J3_-jP=05_.p/~ ;==
V- Thus we have completed the proof of (9.4).

9.12. As an application of (9.4), we get a criterion for the simplicity of
V(w, /(, p) in terms of ^-modules under certain assumptions. Here we restrict
ourselves to the generalized Verma modules.

Let A=Ac+Ad be a character of 1, where Xc is JF/-invariant and Ad is a
highest weight of a finite dimensional P-module. First, assume that

(9.12.1) n2={ak+1, • • - , ai] with £>0, and

(9.12.2) Q+p, O^O, -1, -2, ••• for any a<=R+.

Let WQ be the characteristic variety of ^'(/lc) [/I1, ••• , /**]. Consider two
more assumptions that
(9.12.3) for any i^k, there exists P^3)G and ftt(s)^C[s] such that Plf

s-+ei=
bi(s)f*, where /8=/!1--/{* and ^=(0, ••• , 0, 1, 0, ••• , 0) (1 appears as the z-th
component), and that
(9.12.4) there exists a point p^W0 and for any i^k, there exists an in-
vertible micro-differential operator Ql in a neighbourhood of p such that
Qifs-+ei=bi(s)fs- with the same Ws)'s as in (9.12.3).

Let us identify Ac=Wi, • • • , ^fe)^^ T A with ^c=2*

Theorem 9.13. Under the above four assumptions, the following conditions
are equivalent :
(1) The generalized Verma module Af(A, p(-O) is simple as a ^-module.
(2) The generalized Verma module M(—WS%, $(wslws}} is simple as a ^-module.
(3) The coherent <3)G-module HBWSP(WS^I/(^C)) is simple, i.e., it does not have
non-trivial coherent 3)G-submodules.
(4) &,tfc— *)=£() for any l^i^k and

Proof. Since the action of — ws on i extends to an automorphism of g
preserving b, we get ( ] )<=> (2). By (6.8) and (9.4), we get (2) & (3). Since
wslBwsP = G\Jk

t^f^(0) by (9.8) and (9.9), w-s
lH^wsP(wsm

f(Xc}}^r(^}U\\ -,
/IT1]. Hence we get (3)^(4) by (8.4).

Remark 9.14. We assumed (9.12.1) only to exclude the trivial case. The
author conjectures that the assumptions (9.12.3) and (9.12.4) are always satisfied.
Thus the assumptions except (9.12.2) would be harmless. But (9.12.2) is es-
sential and, because of this assumption, our irreducibility criterion is less
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complete than the one given by Jantzen [16]. In our forthcoming paper [13],
we shall start to study the simplicity of generalized Verma modules and the
^-functions of the semi-invariants without such assumptions. The relation
between (9.13) and the result of Suga [31] will also become clear in [13].
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