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Growth of Volume in Fatou-Bieberbach Regions

By

Jean-Pierre RosAY1* and Walter RUDIN*

Introduction

We call a set Qc^Cn a Fatou-Bieberbach region (F.B. region, for brevity)
if Q is the range of a one-to-one holomorphic map 0 with domain Cn, and

In other words, F.B. regions are proper subsets of Cn that are biholomor-
phically equivalent to Cn. Numerous examples of such regions (when n>l) can
be found in [2] and [6].

It is easy to see that the volume (i.e., the 2n-dimensional Lebesgue meas-
ure) of every F.B. region is infinite, simply because

(1) vol(Q)

Here J0 is the complex Jacobian of 0 [7; p. 11], hence J0 is holomorphic,
|/0 12 is subharmonic and of course positive, and its integral over Cn is there-
fore infinite.

Let B be the open unit ball of Cn. Thus rB is the ball of radius r, cen-
tered at 0. The preceding paragraph shows that vol (Qr\rB} must tend to oo
as r— >oo, whenever Q is F.B. Theorem 1 of the present paper shows that this
can happen arbitrarily slowly.

We became interested in vol (Qr\rB) because we wanted to know (we still
don't) whether there is an F. B. region in Cz that does not intersect the set
{zw=Q} , a union of two intersecting complex lines. (This is a special case of
a more general question : Which analytic varieties V can be avoided by F. B.
regions? When F is a complex line in C2 then it can be done; see [3] or
Example 9.7 in [6]. In this direction, Bedford and Smillie [1] proved an inter-
esting result concerning algebraic varieties.) If there were such a region, it
would be the range of a biholomorphic 0 of the form
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(2) 0(z, M>)=(exp27ri/(z, w\ vx$2nig(z, w)}

where /, g:C2->C are entire. Put W=(f, g). Then QQ=W(CZ) is an F.B.
region with the following very special geometric property:

// (z, w)^QQ and m, n are integers, not both 0, then (z+m, w + n) is not in

(Otherwise, $ would not be one-to-one.) A weak consequence of this is
that for every choice of (y0, vQ)^R2 the plane

(3) {(z, w] : Im z=yQ, Im W=VQ}

intersects QQ in a set whose area is 5^1. This leads to

(4) vol(G0nr£)=:0(r2)

which is much smaller than the trivial estimate O(r4).
So, if we could have shown that O(r2) cannot be achieved by any F.B.

region in C2, we would have proved that {zw—ty cannot be avoided.
An earlier result (Example 9.5 in [6]) gave an F.B. region QaC* and a

vector v^C2 such that the regions Q+kv (&=0, ±1, ±2, • • • ) are disjoint.
Therefore

(5) vol(Gnr£)=O(r3)

for this particular Q.

Theorem 1. // n>l and JJL\ [0, oo)— »£0, oo) satisfies ^(r)-»oo as r— »oo, then
there exists a holomorphic one-to-one map F: Cn-*Cn, with JF=l, whose range
Q satisfies

(6) l i mY

We emphasize "JF=1" because there exist F.B. regions in every Cn (with
n>l) which are not the range of any volume-preserving biholomorphic map
with domain Cn. ([4], [5], or [6], Remark 6.5 and p. 77).

By -a cube in Cn we shall mean the Cartesian product of n equal squares
in C whose sides are parallel to the real and imaginary axes.

Theorem 1 is an immediate consequence of Theorem 2. We only need to
place the cubes Kj so that their centers tend to oo sufficiently rapidly.

Theorem 2. Let n>l. Let Kj (/=0, 1, 2, • • • ) be disjoint compact unit cubes
in Cn, centered at points (tj} ••• , tj)^Rn.

To every s>0 ocrresponds then a one-to-one holomorphic map F: Cn—>Cn,
with JF=l, and an open set ZaCn with vol(Z)<e, such that
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(7)
J = l

For simplicity, we shall write the proof of Theorem 2 for the case n— 2.
The place where this helps is the last part of the proof. There we use shears
in two (complex) directions. In Cn we would have to use n directions and
thus would have to take many more steps, but the principle is exactly the
same. This last part of the proof (the Proposition) is in fact very similar to
part of the proof of Lemma 7.2 in [6], but the differences are significant
enough that it seems best to include the details.

The following one-variable lemma will be used in the proof of the Proposi-
tion at the end of this paper.

Lemma. Suppose that (Ai'.i— 1, 2, 3, • • • } is a disjoint collection of compact
convex sets in C such that no bounded set intersects infinitely many At's. If, for
all z^l, gi is holomorphic in a neighborhood of At, and rj>0, then there exists
an entire function f : C—>C such that

(8) l/CO-£i(*)l<ri

for all z^Alt i=l, 2, 3, • • - .

This can be proved by repeated applications of Runge's Theorem, followed
by a passage to the limit.

In the proof of the Proposition we will be dealing with collections of com-
pact cubes with disjoint projections. These cubes will be slightly distorted,
but the distortions will be kept so small that the convex hulls of their pro-
jections remain disjoint. The At's of the Lemma will be these convex hulls;
the gt's will be constants.

Proof of Theorem 2. C2 is the union of concentric open cubes Qn, so
chosen that QQciK0 and Qn^Qn+i for all n^O. Let Q_l—%.

The collection <?= {KQ, K1} K2, • • • } contains disjoint subcollections €n such
that £0—{K0}, en is infinite for n^l, and the union En of the members of en

does not intersect Qn+i.
The desired map F will carry practically all of Qn\Qn-i into En.
Assume £<1/100 and pick £n>0 so that £0+£i + £2+ ••• <e.
Define F0(z)=z, Y0=Q, and consider the following induction hypotheses H(ri) :

( f lB) F.eAuUC2), JFn = l, and

Fn(z)-Fn-l(z)\<en on Qn,lm

(bn) For y=0, 1, ••• , n there are open sets YjdQj} vol (Yj)<ejt such that, setting
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the set Fn(Xj) lies in the interior of E3-.
(Cn) If j>n and z^Ej then

These hold for n=Q.
We will see that H(ri) implies H(n + l). Once this is done, the theorem

follows almost immediately:
By (aj, {Fn} converges, uniformly on compact subsets of C2, to a one-to-

one holomorphic map F with JF=1. Then (bn) implies that F(Xj)dEj for all
j. Setting Y=\jYj we see that vol(F)<e, Y is open, and

F(C2\F)ci F(XJ)a Ejc: \J Kl .
j=Q J=0 1=1

Since F(C*\Y)=F(C*)\F(Y) and vol (F(F))-vol (F)<s, we are done, setting
F(Y)=Z.

We turn to the induction step. Assume H(n).
Since Fn(Xj) is a compact subset of the interior of EJt there exists pn, 0<

pn<£n+i, such that

(9) dist (F»(*,), C2\

There exists dn>Q such that

(10) Fn(z')-Fn(z)\<pn iiz^Qn, z'-z <dn.

For j>n, let Kjs (s = l, 2, 3, • • • ) be the members of Q3. There exist dnjs>Q
such that

(11) \Fn(z')-Fn(z)\<en+i if z&Kji, zf-?\<dnjs.

We now claim the following.

Proposition. // H(n) holds then there exists 0neAut(C72), with J0n = l,
and there exists an open set Yn+1aQn+l with vol (Yn+1)<£n^1} such that

(12) \0n(z)-Z\<dn if Z^Qn,

(13) \®n(z)-z\ <dnjs if

(14) <P»(C?B+i\(0»urB

Once this is proved, put Fn+1=Fn°0n. Then (12) and (10) show that

(15) Fn + l(z)-Fn(z)\<Pn<*n + l ^ Z^Qn-

This gives (an+i).
If j<n and z^X3 then (note that X3-c:Qn} (15) and (9) show that Fn+l(z)
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^Ej. Thus Fn+l(Xj)czEj for j<n, and then (14) gives F7i+1(^^Tl)c:£?i+1, which
completes (bn+l).

If j>n and z^E3 then (13), (11), and (cn) imply (c r tT l).
So all that remains to be done is to give the

Proof of the Proposition. 0n will be obtained as a composition of 4
shears: 0 n = a i ° a z ° f f 2 ° ( 7 1 .

Define TTI(Z, w)=z, K2(z, w] — w. Recall that the projections Ki(Kj} and
K2(Kj) are lined up along the real axis in C.

Fix n. Then Qn=SxS, Qn+l — TxT, where S, T are concentric open
squares in C, ScT. Put finitely many disjoint closed squares ?m into T, in
such a way that

(i) the diameter of each jm is < 1/100,
(ii) no Tm intersects the boundary of S, and

(iii) the union of the cubes rmk=fmX7k covers all of Qlt + i, except for a
set Yn+i of volume <£7 l + ] .

Let W be the collection of all /\,*c:Q;t+l\(3TO.
Let ^1-{rmfc:7r2(rmft)c=T\S}.
The lemma will be tacitly used in the construction of each a, to give us

certain holomorphic functions <pt: C—>C.
Recall that we are assuming H(ri). In particular, (cn) says that Fn has

moved no point of Ej by as much as £ if j>n. Thus

(16) DJ^Fn(EJ) (j>n)

is a union of slightly distorted unit cubes whose projections are disjoint,
Put (7i(z, w) = (z-\-<pi(w), w), where ^x is almost 0 on S and on Tcz(Dj] for

all j>n, <pl is almost equal to a large pure imaginary constant on each yk out-
side S, and these constants are so chosen that the projections Tri^iCTm*)), for

lt are disjoint from each other and are far from ^(^(TxS)) and from
for all f>n.

Put az(z, w} — (z) w-\-<pz(z)). Again, <p2 is almost 0 on ^(^(QJ) and on
fti(0i(Dj)) for all j>n, <pz is almost equal to a large pure imaginary constant
on each projection ni(ai(rmk)}, this time for all Fmk^.W, and these constants
are so chosen that the projections (7iz°ff2

o(Ti)(rimk} are disjoint from each other
and are far from (^"tfVtfi) (<???) and from (7r2°<72°<7i) (£>.?) for all j>n.

Setting r^fc = ((72-(71)(rmft), Qn=(a*°<r3(Qn), and D'j=(a^a,}(D3} we have
now reached the following position :

(«) Q'n is almost the same as Qn.
(]8) The sets Q'n, Fmk (for rm^ePF), and D'j (for ;>n) have disjoint 7r2-

images.
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(70 each F'mk differs from a translate of Fmk (a cube of edge < 1/100) by
a very small distortion, and

(d) each component of Dj is a small distortion of one of the given unit
cubes and therefore contains a cube CdEj of edge 1/2. (Recall (cj.)

Put as(z, w)=(z-i-(/)3(w), w), where <pa is almost 0 on x2(Qn) and on n2(D'j)
for y>?2, and is almost constant on each n^F'mk), and these constants are so
chosen that a^a^al moves the center of each Fmk^W to the center of ni(Cmk),
where Cmk is one of the cubes C as in (5) above, in Df

n+1.
Finally, o±(z, w)=(z, w+<p*(z)), where ^4 is almost 0 on ni(a*(Q'n}) and on

ni(03(Dj)') for j>n, and y>4 is almost constant on each ^(^sCTm*)), and these
constants are so chosen that each a^a^Fmk)) lies in one of the above-mentioned
cubes Cmk in D'n+l.

If all approximations implicit in "almost" are sufficiently close, then 0n —
aioff^az°(Ti will satisfy (12), (13), and (14).
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